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Abstract

We present a new class of topological spaces called SL-spaces, on which every Borel measure
has a Lindelof support. The class contains all metacompact spaces. However, a 0-refinable
space is not necessarily an SL-space.

Subject classification (Amer. Math. Soc. (A/OS) 1970): primary 60 B 05; secondary 54 D 20.

1. Introduction

Let Xbe a topological space and @(X) be the Borel field of X, that is, the smallest
a-algebra generated by all open subsets of X. By a Borel measure we mean a
totally finite, non-negative, countably additive set-function on &(X).

A Borel measure /x is a regular (resp. Radon) measure if it satisfies, for every
Borel set B

p(B) = sup{fi(F); 2?=>Fand Fis closed (resp. compact)}.

A Borel measure fj. is r-smooth if for every increasing net {£/„} of open subsets we
have supa/*([/„) = /x(U«^o)- If ^ is a regular measure on a topological space X,
then it is necessary and sufficient for /* to be r-smooth that supa fiQJJ — \i{X)
for every increasing net {VJ of open subsets satisfying U a ^ = ^ Moreover if
A' is a regular topological space, then the r-smoothness implies the regularity
(see Gardner (1975), Theorem 5.4).

We define the support S^ of fi as follows:

S/1 = {XG X; (i(U)>0 for every open U containing x).
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222 Susumu Okada [2]

Moreover, if there exists the smallest closed subset S* satisfying fi(S*) = n(X),
then S* is said to be the strong support of fi. It is evident that 5 * equals S^ if
S* exists. Note that S^ is equal to f) {F; Fis closed and fi(F) = fi(X)} and that
5A may be empty.

From the definitions, a r-smooth measure has a strong support. Since a Radon
measure is r-smooth, a Radon measure has a strong support. It still seems to be
unsolved whether the r-smoothness or the regularity is implied by the existence
of the strong support. But the existence of a non-empty support S^ does not
necessarily imply even the regularity of /n, since the Dieudonne measure has a
non-empty support and is not regular (see Example 2.3).

The main purpose of this paper is to study a new class of topological spaces
where every Borel measure has a Lindelof support. These spaces are called SL-
spaces. We show that every metacompact space is an SL-space. Furthermore, a
#-paracompact space is shown to be an SL-space (for the definition of #-para-
compact spaces, see Section 3). However, a 0-refinable space is not necessarily an
SL-space. Moreover, we prove that every /^-subset of an SL-space is also an
SL-space, while an open subset is not always an SL-space. The class of SL-spaces
is not closed by the products though the product space of an SL-space and a
<T-compact space is an SL-space.

All topological spaces considered in this paper are Hausdorff spaces.
The author expresses his thanks to Professor W. Moran for suggesting an

example which is not 0-paracompact but metacompact (Example 3.9). The author
is also indebted to the referee for suggesting improvements on the original paper,
particularly, for an example which is not metacompact but 0-paracompact
(Example 3.10).

2. Fundamental properties of supports

In general, even if a Borel measure has a non-empty support, it does not imply
the existence of the strong support (see Example 2.3). However, we have the
following theorem by Gardner (1975), Theorem 3.1. Recall that a Borel measure
(i is said to be locally measure zero if for each x in X there exists an open neighbour-
hood U of x with /*(£/) = 0.

THEOREM 2.1. Let X be a topological space; then the following statements are
equivalent:

(1) every non-zero regular Borel measure has a non-empty support;
(2) every non-zero regular Borel measure has a strong support;
(3) every regular Borel measure is r-smooth;
(4) every regular Borel measure which is locally measure zero is identically zero.
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[3] Supports of Borel measures 223

For continuous mappings and supports, we have

THEOREM 2.2. Let Xand Ybe two topological spaces andf be a continuous mapping
ofX to Y. Then, for a Borel measure fi on X, the relation f(S ^ Sf(/t) holds, where
f(p) is the image measure of ft byf, that is,f(n)(B) = iiif~\B))for each Borel set
Bin38(Y).

PROOF. We may assume that S^ is non-empty. For every x in S^ and each
open neighbourhood V of/(x), we have

which implies f(S^Sfl/l). Since Sf{/t) is closed, we have

The following example shows thatfjs^) is not equal to S/(/() in general.

EXAMPLE 2.3. Let Q be the first uncountable ordinal and [0,Q] be the set of
ordinals less than or equal to £2. We put [0,Q] the usual interval topology. We
consider the Dieudonne measure n on [0, Q], that is, n(B) = 1 or 0 according as
B does or does not contain an unbounded closed subset of [0, Q] for each Borel
subset B of [0,Q] (see Halmos (1950), Section 52 (10), or Schwartz (1973), p. 45).
Hence we have /*({Q}) = 0 and /x((7) = 1 for every open set U containing Q, so
that Sp is equal to {&} and p is not a regular measure. By v we denote the restriction
of p to [0,Q) = [0,Q]-{£2}, then v is a regular measure by Gruenhage and Pfeffer
(1978), Example 5, and we can easily show that S, is empty. So we have

where i is the natural injection of [0, Q) to [0, Q].

Nevertheless, for strong supports the equality holds:

THEOREM 2.4 (Rajput and Vakhania (1977), Lemma 1). Let X and Y be two
topological spaces and p be a Borel measure on X with S*^0. For a continuous
mapping f of X to Y, SJ{/l) exists and we have Sfl/t) =f(S*).

THEOREM 2.5. Let X be a topological space and A be a subset of X. Then, for
a Borel measure p on A we have Stl/t)nA = S^, where i is the natural injection of
A into X.

PROOF. We may assume that S^ is not empty. For every x in S^ and every open
set V containing x, we have t(jj,)(U) = pj(UnA)>0, which implies
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Conversely, for each x in Sll/t)nA and any open neighbourhood Uof x, we have
li(UnA) = i(/n)(t/)>0, which shows S^^nA^S^. This completes the proof.

As to strong supports, we have Sf(/l)nA = S* by Theorem 2.4.

Let (i be a Borel measure on a topological space JIT and A be a subset of X.
Then there exists a Borel subset B in # ( J 0 such that n*(A) = /*(£), where /** is
the outer measure derived from /A. By / i B we mean the restriction of fi to the
Borel subset B. Since ^ is /ig-thick in B, we can consider the restriction (jiB)A of
/ i B to A (see Halmos (1950), Section 17, Theorem A). It is easy to prove that the
restriction measure (jiB)A is independent of the choice of B satisfying p*(A) = ^B),
so that we can denote it by pA. Remark that pA(C) = /x*(C) for every C in

THEOREM 2.6. Let p be a regular Borel measure on a topological space X.
Then the following statements are equivalent:

(1) I* is a r-smooth measure;
(2) for each closed subset F with fip>0, the support S^ is non-empty;
(3) for each closed subset F with iiF>0, the strong support S*r exists;
(4) for each subset A with y.A > 0, the support S^ is non-empty;
(5) for each subset A with \t.A > 0, the strong support S* exists.

PROOF. If p is r-smooth measure, then so is \iA by Amemiya, Okada and Okazaki
(1978), Section 5. Hence (1) implies (5). So it is sufficient to show that (2)
implies (1). Let {UJ be an increasing net of open subsets of Jf such that \JaUa = X
Suppose a = sup/i(l/a)</t(JSr), then we can choose an increasing sequence { l y
from {[/„} such that supn i4U«J - a- If we put F= (Un-i^oJ". then we have
PF>0, SO that SMr is not empty. For an element x in S^, there exists a Uaix)

containing x, which implies /t(Fn Ua(x)) = pgiFn Ua(x))>0. Then we have

a = M((JJU^ u CU)) = /*( U^o.)+f<Ualx) n F) > /*

which is a contradiction. Therefore we have supa /*(l/a) = y^X), which completes
the proof.

REMARK 2.7. (1) For each subset A of X, we have S ^
(2) If A is a //.-thick subset or an open subset, then we have S^ = S^nA.
(3) We consider the restriction to the support It holds Slfit ) c ^ - If S* exists,

then Sf^.) exists and we have SJ» = S*.
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[5] Supports of Borel measures 225

In general S^ is not necessarily equal to SM n A even if both fi and fiA are
Radon measures and A is a closed (?,-subset.

EXAMPLE 2.8. Let a,b,c be real numbers such that a<b<c. Then there is a
non-negative valued continuous function / such that (i) jZx/ix) dx = 1; (ii)
[a,b] =/~1(0), where dx is the Lebesgue measure. If we put dfi =fdx, then /x is a
Radon measure and the restriction ^ c] is a non-zero Radon measure. It is evident
that aeSp and a $ S^ e), which implies S^m ̂ S^n [a, c].

In general, the equality S(/Isii) = S^ does not hold even if fi8/l > 0. In fact we have

EXAMPLE 2.9. Let p be the Dieudonne measure on [0,Q] and a be in [0,ii).
We put v= Sa+fj., where So is the Dirac measure at a. Then we have 5,, = {a,Q}
and v8i>>0. But it follows that Cl$S{vsr) and QeSv, which implies S(),g j ^ ^ .

PROBLEM 2.10. Let n be a regular Borel measure on a topological space. Then,
is Sl/tg } equal to S^l

In a product space, we have the following theorem.

THEOREM 2.11. Let X= IIA6A-*A be a product space and p. be a Borel measure on
X, then we have

AEA

where /xA is the image measure of p by the projection px of X to Xx.

PROOF. For each x = (x^) e S^, we have

AVA

for every neighbourhood Vx of xx in Xx, which implies x€j[XeAS/tk. Therefore

is not necessarily identical to IlAeA^M' m 8eneral-

EXAMPLE 2.12. In the space R of real numbers, we put dfi = (\/2if) exp ( - x2/!) dx.
There is a non-negative continuous function / o n R2 vanishing outside a compact
set such that supp/^px(supp/) x/>2(supp/), where p{ is the projection ( i= 1,2).
If we put dv=fd(fixfi), then it is easily verified that Sv = supp/ and
•S^M = /><(supp/) (i =1,2). Thus we have

5, = supp/^Csupp/) x^supp / ) = SPlM x 5

https://doi.org/10.1017/S1446788700012143 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012143


226 Susumu Okada [6]

3. Iindelof supports

We show that every Borel measure on a metacompact space has a Lindelof
support. A topological space is called metacompact if every open cover has an
open point finite refinement. A paracompact space is metacompact. By using the
idea of Moran (1970) we have

THEOREM 3.1. Let X be a metacompact space and p be a Borel measure on X.
Then the support S^ of /x is a Lindelof space.

PROOF. Assume that S^ is non-empty. Let Qf0 be a family of open subsets of X
which covers S^. Then there is an open point finite refinement ^ of %f0 ̂ {X—SJ.
We put % = {Ue%; UnS^fB} and <&% = {Ue%; ^{U)^l/n(n = 1,2,...)}.
Then we have %2 = Un=i^2- Suppose that the cardinal of <tft is uncountable.
Then there exists an n such that the cardinal of %% is uncountable, so that we can
take a countable sequence {P^ in <%%. If we put P = iim^Pm, then we have

( U

which means that P is not empty. For an element x in P, there is an increasing
sequence {ks} such that xeft^P^, which contradicts the point finiteness of
Hence the cardinal of <$l% is countable. For each U in ^ 2 , there is a Vv in
such that U<=- Vv, therefore we have

U u<= u vv,
Ue*t U*

so that iSy is a Lindelof space. This completes the proof.

COROLLARY 3.2. Every Borel measure on a paracompact space has a Lindelof
support.

COROLLARY 3.3. Assume that a regular topological space X is not paracompact but
metacompact. Then there is no Borel measure of which support is identical to X.

COROLLARY 3.4 (Rajput and Vakhania (1977), Lemma 2). Let X be a metric
space and n be a Borel measure on X. The support SM is separable. Particularly ifS*
exists, then S* is separable.

COROLLARY 3.5. Let X be an inseparable Banach space. Then there is no Borel
measure /A such that the linear hull of the support S^ is equal to X, in particular S^
is not equal to the unit ball.

Note that Corollary 3.6 implies Corollary 1 of Ionescu Tulcea (1973).
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Now we introduce a new class of topological spaces. Recall that a family
of subsets is called locally finite at x if there exists a neighbourhood V of x such
that {a; AanV^0} is finite. We call a topological space X d-paracompact if
every open cover # of X has an open refinement if = U " - i ^ satisfying that for
every x in X there is an n(x) such that xe\J Ueirnlz) U and #J,(a!) is locally finite at JC.

THEOREM 3.6. Let n be a Borel measure on a d-paracompact space X. Then the
support Sp of p is a Lindelqf space.

PROOF. Suppose that S^ is not empty. Let 01 be a family of open subsets of X
which covers 5A; then there is an open refinement ~W = U n - i ^ °f & which
satisfies the condition preceding Theorem 3.6. Put

Xn = {xeX; xe \J U, -Wn is locally finite at x},
V

then we have X= (J»-i*n- Without difficulty it is shown that Xn is an open
subset of X for every n. We put

<&n = {UnXn; UeiTn and UnXnnS^0),

then we have /*(K) > 0 for every K in <%n. We can show that the cardinality of <%n

is countable for every n from the definition of Xn by the same idea as in the proof
of Theorem 3.4. For every V= UnXn in <2rn, there is a W$ in % containing U.
Thus we have

> y u U^CU U
n=l n=l V 1 P

which implies that 5 ,̂ is a LindelSf space. This completes the proof.

COROLLARY 3.7. Let X be a metacompact or 6-paracompact space and n be a
regular Borel measure on X. Then (j. is r-smooth if and only if its strong support
S* exists and S* is a Lindelof space.

REMARK 3.8. (1) The 'if part of Corollary 3.8 always holds even if .Sf is neither
metacompact nor 0-paracompact.

(2) The statement does not hold if we replace S* with S^. In fact, consider a
Borel measure v = i^oxi) + 8a on [0,Q), where ae[0,Q) and /i is the Dieudonne'
measure on [0, Q]. Then S* does not exist but S^ = {a}. So v is a regular measure
of which support is compact. Nevertheless v is not a r-smooth measure since

l = supav([0,a))<I<[0,Q)) = 2.
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The following example is originally given by Bing (1951) and Michael (1955).
Moran (1968), IV.2 has treated it again in his thesis and has shown the author
that a modification of the proof there gives a proof that G is not 0-paracompact.

EXAMPLE 3.9. Let P be an uncountable set, Q be the power set of P and F be the
power set of Q, that is, the set of all two-valued functions on Q. For/? eP, we put

ifpeA,

for each A in Q and put K = {fp;peP}. We define a topology on F as follows:
{/} is a neighbourhood of / i f feF- K; for fpeK and a finite subset A of Q,
N(fp; A) = {feF;f(A)=fp(A) for each AeA} is a neighbourhood of fp. Let
G be the union of K and {feF; f{A) = 0 for all except finitely many A e Q). Then
G is a normal, countably paracompact, metacompact space. But G is not 6-
paracompact.

EXAMPLE 3.10. Consider 'pointed extension' of the real number field (69 in
Steen and Seebach, Jr. (1970)). Let X be the set of real numbers and Q be the set of
rationals. We define a topology on X generated by all sets {x}u(Qn U), where
xeU, U'v& open for the Euclidean topology. Then AT is a ^-paracompact HausdorfF
space. But A'is not a metacompact space. This result is quoted by the referee.

4. SL-spaces

We define SL-spaces.

DEFINITION 4.1. A topological space X is called an SL-space if every Borel
measure /x on X has a Lindeldf support S1^ (S^, may be empty).

From Section 3 we have

THEOREM 4.2. A metacompact or 6-paracompact space is an SL-space.

The class of 0-refinable spaces is introduced by Worrell, Jr. and Wicke (1965).
Recall that a topological space is said to be 6-refinable if each open cover of A'has
an open refinement % = Un=i *%* s u c ^ t^Sit every <%n covers X and for each x in X
there exists an n(x) satisfying that ^in{X) is point finite at x, that is, the cardinal of
{Ue<%n(x); xe U} is finite. From the definition a metacompact or 0-paracompact
space is 0-refinable.
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Now we present a 0-refinable space which is not an SL-space. Let S be the
Sorgenfrey line, that is, the real line with the right half-open interval topology.
S is Hausdorff and hereditarily Lindelof, particularly paracompact. The product
space X = S x S is separable since the set of rational numbers is dense in X and
X is not Lindelof (see Steen and Seebach Jr. (1970), 51 and 84). But X is
0-refinable by Burke (1970), Theorem 1.6 and Lutzer (1972), Proposition 3.1. As
the following example shows, X is not an SL-space, that is to say, a 0-refinable
space is not always an SL-space.

EXAMPLE 4.3. (1) Since Xis separable, there exists a countable dense subset {*„}.
If we put fi = S«_i 1/2" 8^, then the support S^ of /x is equal to X. Since X is not
a Lindelof space, X is not an SL-space.

(2) All Borel subsets £8(X) of X are Lebesgue measurable by Vitali's covering
theorem (for example, see Saks (1937), Chap. 4 (3.1)). Let v be the restriction of the
Lebesgue measure to 88(X). Since v is still a-finite, there exists a totally finite
Borel measure vx such that v is absolutely continuous with respect to vx and vt is
absolutely continuous with respect to v. So the support Sn is identical to X,
which also shows that X is not an SL-space.

A closed subset of an SL-space is also an SL-space. In general, we have

THEOREM 4.4. Let X be an SL-space. Then every F^-subset L of X is also an
SL-space.

PROOF. We can write L = (Jn=i ̂ n> where Fn is a closed subset of X for every n.
Let (j, be a Borel measure with a non-empty support S^. Then

S/l = St(ll)nL= \J(Sl(ll)nFn)
n=l

by Theorem 2.6. Since Sll/t)nFn is a LindelSf space for every n, so is SA, which
completes the proof.

An open subset of an SL-space is not necessarily an SL-space.

EXAMPLE 4.5. Let X be the real line with the rational sequence topology (see
Steen and Seebach, Jr. (1970), 65). Then A' is a locally compact separable space,
but JSfis not Lindelof. Let X be the one-point compactification of X; then j*is an
SL-space since Jt is compact. X is an open subset of X but X is not an SL-space
as (1) in Example 4.3.
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Next we treat the products of SL-spaces. Note that the class of SL-spaces is not
closed for the products. In fact, although the Sorgenfrey line S is an SL-space, the
product Sx S is not an SL-space as we have shown in Example 4.3. Still we have

THEOREM 4.6. Let Xbe an SL-space and Ybe a a-compact space; then the product
space Xx Y is also an SL-space.

PROOF. Let /x be a Borel measure on Xx Y of which support S^ is not empty.
By Theorem 2.11 we have

where px (resp. pY) is the projection to X (resp. Y). From the assumption,
SPx(/l) is Lindelof and SPr(/l) is cr-compact. Then SPll/l) x SPr(/l) is a Lindelof space
since the product of a compact space and a Lindelof space is also Lindelof in
general. Thus 5 ,̂ is a Lindelof space, which completes the proof.

Finally we show that SL-spaces are not transferred by a continuous map or an
open map.

EXAMPLE 4.7. (1) We take a topological space Y which is not an SL-space and
let Xbe a topological space which is equal to Yas a set and has the discrete topology.
Then the identity map of X to Y is a continuous bijection. Y is not an XL-space
though X is an SL-space.

(2) Let X be the Euclidean plane and Y be the product of the Sorgenfrey lines.
Then the identity map of A' to Y is an open bijective map. Y is not an SL-space,
whereas X is an SL-space.
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