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ON LOCALLY SOLUBLE PERIODIC GROUPS WITH
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Let G be a locally soluble periodic group having a four-subgroup V. We show that if CG(V) is Chernikov then
G is hyperabelian-by-Chernikov, if CG( V) is finite then G is hyperabelian.
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1. Introduction

Centralizers play a very important role in locally finite group theory. In some cases
we can deduce information about a locally finite group G given only information about
CG{V) for some finite subgroup V of G (see [10]). It is known now that if G contains an
element v of prime power order with Chernikov centralizer then G is almost locally
soluble. The proof of this result in [11] depends on the classification of finite simple
groups. In [2] Asar has proved that if v above has order two then G is almost soluble.
This result does not depend on the classification but uses some essential parts of it.

In this article we turn our attention to groups G containing a four-subgroup V such
that CG(V) is Chernikov. These groups can be simple. Indeed, the example of an infinite
simple locally finite group having a four-subgroup with Chernikov centralizer is
provided by PSL(2, F) where F is an infinite locally finite field of odd characteristic. A
locally soluble periodic group with Chernikov centralizer of the four-subgroup also can
be non-soluble. To show this we use an example from [12].

Let p be an odd prime and let t denote the largest odd divisor of p — 1. Let Gk be the
group formed by the matrices

A = (U+pa pb

\ pc v + pd

of determinant 1, where a,b,c,d,u,v lie in the ring of residue classes (modp*+1) and
ut) = u*=l (modp). Then Gk is of derived length m o r m + 1 where m is the least integer
such that 2 m ^k+1. Let ak and p\ be the elements of AutGt such that A"k={A~l) and
(« %)""=( -a

a\ ~a\)- It is not difficult to verify that <at,p\> is a four-group acting
fixed-point-freely on Gk. Let G be the direct product of groups Gk; fc = l ,2, . . . . Then G
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admits a fixed-point-free four-group of automorphisms V. Clearly, the split extension of
G by V is the required group.

In this paper we prove:

Theorem. Let G be a periodic locally soluble group and V a four-subgroup of G.
(i) lfCG(V) is Chernikov then G is hyperabelian-by-Chernikov.
(ii) If CG(V) is finite then G is hyperabelian.

We recall that a group is said to be hyperabelian if it has an ascending invariant
series with abelian quotients. In [14] the author proved that a locally finite group
admitting a fixed-point-free four-group of automorphisms is hyperabelian. In the present
paper we use some important technic and ideas of [14].

2. Lemmas

Lemma 1. Let G be a locally soluble group containing a hyperabelian subgroup of
finite index. Then G is hyperabelian.

Proof. Clearly, G contains a normal hyperabelian subgroup H of finite index.
Suppose G is not hyperabelian. Then there exists a quotient G/R which does not possess
an abelian normal subgroup. Let the images of G and H in G/R be denoted again by G
and H respectively. Let A be a nontrivial normal abelian subgroup of H. Then <i4G> is
the product of finitely many abelian normal subgroups of H and so is nilpotent. Thus
Z<i4G> is a nontrivial normal abelian subgroup of G.

Lemma 2. Let n be a set of primes, G a locally finite n'-group acted on by a finite
n-group V.

(i) / / N is a normal V-invariant subgroup of G then CG/N(V) = CG(V)N/N.
(ii)[G,7] = [G,KK].
(iii) G = [G,K]CG(K).

Proof. Each of these facts follows immediately from the corresponding finite case [7].

Lemma 3. Let G be a locally finite group acted on by an involutory automorphism v in
such a manner that CG(v) is Chernikov. Let 0(G) be the largest normal 2'-subgroup of G,
and let F be a divisible abelian 2-subgroup of G such that x" = x~l for every xeF. Then
[O(G),F] = 1.

Proof. Since F£[G,t>], we have [0(G), F] £ [G, u] so by [2] and [9, Theorem B]
[0(G),F,F] is Chernikov whence, by [4], [0(G), F, F, F] = 1 and, by the preceding
lemma, [O(G),F] = 1, as required.

Throughout the remaider of this section let G stand for a locally finite 2'-group, V an

https://doi.org/10.1017/S0013091500018757 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018757


LOCALLY SOLUBLE PERIODIC GROUPS 135

elementary group of automorphisms of order 2". Let Vlt V2,...,V2n.l be the set of
maximal subgroups of V, Gi = CG(Vl), Ji = {xeGi;x" = x~l for ve V- K,}; 1 ^ i g 2 " - 1 .

Lemma 4. Let n = 2 and vt be the involution from V(; 1 ^ i ^ 3 . Suppose that x,yeG
and v3 sends x into x~l. Then

(i) there exists a unique pair of elements aeJt, beJ2 such that x = bab;
(ii) there exist elements y1 eGY, y2eG2, y3eG3 such that y=yiy2y3.

Proof. See [15, Lemmas 1.4 and 1.6].

Remark. Suppose that the x above is conjugate in G to some element of Gj. Then
bsG'.

Indeed, let z denote the image of z in G = G/G'. Then xeC^fj), whence x = d. So
5= 1 as required.

Lemma 5. If G = [G, V~\ then

(ii) CG(V) is generated by its subgroups CG(V) n <J,>, 1 ^ i ^ 2 " - l .

Proof. It is not hard to see that any element of G is contained in some finite
F-invariant subgroup which satisfies the conditions of the lemma. Thus it is sufficient to
consider the case in which G is finite. Let us prove (i). By [6, Lemma 2.1] we can
assume that G is a p-group for some prime p. By [15, Lemma 1.6] G = G1G2 ...G2n-i
and by [7, Lemma 10.4.1] G, = J,CG(F). It follows from G = [G,V~\ that C 6 ( F ) g G ' £

). So G = <J,;

Now consider (ii). By the Feit-Thompson Theorem [5] G is soluble. We shall prove
the lemma by induction on the derived length of G. Suppose that for [C, K] the
assertion is true. Put A = \JiJl, B=A—(G'nA), B, = BnJj. Let S denote the set of
finite formal sequences of elements of A, i.e.

S = {(a1,a2,...,ar);aieA}.

For each seS define numbers a(s) and /?(s) as follows. Let s={aua2,...,ar). Then
ot(s) = |{i; afeB}\. We put 0(s)=O if and only if for any me{l ,2 , . . . ,2"- l} s contains at
most one element of Bm. Otherwise, /?(s)=minm{|i— j\;i^j;at,ajeBm}. We denote by s
the element aia2...ar of G. By (i) G is generated by A therefore the mapping S-+G
defined by s-*s is surjective. Let h be an arbitrary element of H = CC{V). Then

a(li)=min{a(s); s=h}
3

fi(h)=min {/?(*); s = h, a(s) = «(*)}.
S

We note that if a(h) = 0 then h e [C, K] and consequently h belongs to Ho =
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<JJn<J, .>; lg i^2"- l>. Let us show that p(h) = O is possible only when ct(h)=O.
Suppose that /?(«)=0. Then there exists seS such that s = h, /?(s)=0. Let s=
(aua2,...,ar). Note that heG' as G = {G,V\. So in the factor group G/G' we have
b1b2,...,b2«-i = l where bm = akG' for akeBm. This immediately gives us b1=b2 = -- =
fc2"-i = l which implies a(h) = 0.

Suppose that a is the least number such that a(h)=a does not imply heH0 and /? is
the least number such that a(h) = a and /?(«) = /? does not imply heH0. As we have
shown above both a and /? are positive. Choose an element heH such that oc(n)=a,
/?(«) = /? and h$H0. There exists a sequence s=(al,a2,..,ar)eS such that s = h, a(s)=a,
P(s) = p. We have ai,aieBm where j—i = p. Denote by Si the initial segment of s
consisting of j — 2 elements, by s2 denote the final one consisting of r— j elements. First
suppose that aj-ieJm. By [7, Lemma 10.4.1] aJ-laj = bh1 where freBm, h^stir\(Jm}.
Then hhl1=slbh1s2hi1. Clearly, H^NG(Jk) for Jk = l,2 2" —1 so if i =7 — 1 then
a(fcfcf1)^a—1. If i#7 —1 then /?(fclif 1 )^ /S—1. In any case under our assumptions
Mi"1 e i / 0 , whence heH0.

Let now aj-i$Jm. By Lemma 4(i) there exist w1,m26{l,2,. . . ,2"—1} such that
aj~laJ-iaj = cdc for suitable elements ceJmir\G' and deJm2. Therefore h=slaJcdcs2,
whence we get that /?(/J)^/?— 1. Lemma 5 is now established.

Lemma 6. Suppose the hypotheses of Lemma 4 hold. Then for any element x of [G, K]
there exist elements xl,x2,x3 such that xfe<Jj> and x =

Proof. By [8, Lemma 4] there exist elements yi,y2,y3>h such that x=yly2y3h;
heCc(V). By the preceding lemma h = hlh2h3 for /i,eCG(F)n<J,>. Put Xj =

yi^i, x2 = hi1y2hlh2, x3 = h2
 lh^*y3hth2h3. Then x,e <•/,-> and x = XjX2x3.

Lemma 7. With the hypotheses of Lemma 4 assume that G = [G, K] and /? is a normal
V-invariant subgroup of G such that RnCo(V)=l. Then R possesses a GV-invariant
series all of whose quotients are abelian.

Proof. Suppose that R has no non-trivial abelian subgroup which is normal in GV.
By [14, Lemma 2.2] there exists an element aeRnGt such that <aG> n CG(a)^(aGy n
Gi for some ie{l,2,3}. We assume that aeGt. Put R^RnGi, T=<aG>, Ti =
D = CT(a),Di = DnGi,

Evidently,

So D1 = T1. By the choice of a we can assume that D 2 / l . Put K = CTl{D2),
L=CTs(K).

Let x be an arbitrary element of G. By Lemma 6 x=x x x 2 x 3 where x,e<J,>. We have
ax = ax2x> B y L e m m a 4(j) x2"1ax2 = ca1c where c e J 3 , QieJ^ By (*) (f 'eC^Dj),
whence aj e#C, ceCT(D2). Again by (*) x3eCG(c), therefore (calc)X3=cax

l
ic. By Lemma

4(i) a\i = ba2b where fceJ2, a2eJ1. We note that ai3eCT(L), whence i,a3eCr(L). This
argument shows that L^Z(T). Suppose that L=\. Then v3 acts fixed-point-freely on
CT(K) which gives us that T, £ CG(D2), that is K = 7 \ .
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Consequently, D 2 c C G « r 1 , T 2 » . By [14, Lemma 1.5, Corollary 1] <kT1,T2
y> = lT,v3'].

So

D2sCc([T,»3]). (*•)

Evidently,

(***)

Now let y be an arbitrary element of G. Again by Lemma 6 y = yiy3y2 where
ytS<J,>. We have ayt = a. Using (••) and (•••), we get D2eCG(ay>). By (*) [D2,y2] = 1,
whence D2 = D$2c CG(ay3y2) = CG(ay). Therefore l # D 2 s Z ( T ) . This contradicts the
assumption that R has no non-trivial abelian subgroup which is normal in GV. The
lemma is established.

3. Proof of theorem

Let C = CG(V) be Chernikov, and let S be some maximal 2-subgroup of G containing
V. By [13, Lemma 3.1] S is Chernikov. Let F be the minimal subgroup of finite index in
S. We denote by Q the maximal normal 2'-subgroup of G. First, let us prove that [_Q, V~\
is hyperabelian. By Lemma 2(i) it suffices to show that [Q, V~\ has a nontrivial normal
K-invariant abelian subgroup. Suppose that any such subgroup of [g, V~\ is trivial. Then
by Lemma 7 each normal K-invariant subgroup of [Q, V~\ has non-trivial intersection
with C. In this case [_Q, V~\ contains a minimal non-trivial normal F-invariant subgroup
M. By a theorem of McLain [13, p. 11] M is abelian and we obtain a contradiction.
Thus [Q, V~\ is hyperabelian. Therefore in order to prove (i) it suffices to show that
[Q, K] contains a subgroup R such that R is normal in G and G/R is Chernikov.

Let «!,v2,v3 be the involutions of V, Gk = CG(vk), Fk = FnGk, Qk = QnGk, Jk =
{xeGk; x"' = x - 1 for i/fc}; lgfe^3. Then F = F1F2F3 [3, Lemma 6] and Fk = CF(V)
(FnJk). We note that (FnJ() (F nJj)n(F nJk)=l implies that Fr> Jk is divisible. By
Lemma 5(i) [6,K] = < J l n g ; Igfcg3>. Let x be an element of FnJk for some
ke{1,2,3} and y an element ot J}r\Q for some je{1,2,3}. If j^k, then t^ inverts y*
whence y*e[Q,vk'] £ [Q, K]. Suppose 7 = fc. Then by Lemma 3, yx = y. Thus F n J ^
normalizes [Q, v]. Evidently so does QCF(V) and we have QF^ N = NG([Q, V~\). This
gives us [13, Theorem 3.17] that N is of finite index in G. Since by Lemma 2(iii)
6/C6. V~\ is Chernikov we have that N/[Q, V~\ is Chernikov. So R=f)xx~l[Q,V]x is
normal in G and G/R is Chernikov.

Let us now assume that CG(V) is finite. Then by Lemma 2(iii) [g, V~\ has finite index
in Q. Since [Q, K] is hyperabelian, by Lemma 1 QV is hyperabelian. Let r = rank(F). We
prove by induction on r that QFKis hyperabelian. If r=0 then F= 1 and QFV=QV is
hyperabelian. Let r ^ l . Since F = FlF2Fi [3, Lemma 6] without loss of generality we
can assume that rank(F2F3)^r— 1 and consequently by induction QF2F3V is hyper-
abelian. If QFV is not hyperabelian then there exists a quotient T of QFV such that T
does not possess a non-trivial normal abelian subgroup. For the sake of simplicity we
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assume that T=QFV. Let B be a non-trivial abelian subgroup of Q, which is normal in
QF2F3V. Put B^BnGi. If Bt = l then B c Z d & v J ) . By Asar's result [1] Q/lQ,vJ
is soluble so B centralizes some term of the derived series of Q. This shows that Q
possesses a non-trivial characteristic abelian subgroup and we obtain a contradiction.
Let B t # l . By Lemma 3 F^^CaiB^. whence f]XeFt

x~l Bx is a non-trivial abelian
subgroup which is normal in QFV. This contradicts our assumptions and proves that
QF is hyperabelian. As QF is of finite index in G [13, Theorem 3.17], by Lemma 1 G is
hyperabelian. The proof is now completed.
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