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1. Introduction
When an elastic solid is subjected to a dynamical system of surface or body

forces, not all of the work done by these forces is employed in deforming the
material. The remainder is converted into heat energy producing a distribution
of temperature throughout the body. Similarly the application of a surface
temperature distribution, or the introduction of heat sources within the body,
produces elastic as well as thermal effects. Thus we see that in the dynamical
case there is a link between these two types of condition—thermal and elastic.
The mathematical laws expressing this physical interaction take the form

V2«+(/?2-l)grad A-bgra.d9+X = aii, (1.1)

(1.2)

where u and 0 represent respectively the displacement vector and the temper-
ature distribution, X and © are respectively the body forces and heat sources,
V2 is the Laplacian operator, A = uu t and /?, b, a,/and g are constants. These
equations are due to Biot (1) and have been written in a particular dimensionless
form due to Sneddon and Berry (6). Equation (1.2), which is a modified form
of the classical heat conduction equation, was previously derived by Voigt (8)
and by Jeffreys (4).

There are two special cases of the thermoelastic equations which have
received considerable attention in the literature. The first is the steady-state
problem for which the right-hand sides of equations (1.1) and (1.2) are taken
to be zero, and the second is the classical problem in which the term dAjdt
is omitted from equation (1.2), i.e. the classical heat conduction equation is
used. Both of these special classes of problem are simpler than the one posed
by the complete interlinked equations (1.1) and (1.2), since the special cases
can be solved in two steps—the determination of 9 from (1.2) followed by the
evaluation of u from (1.1). In the linked theory this is not possible, and
equations (1.1) and (1.2) have to be solved simultaneously.

For the infinite medium, solutions to these equations, have been given by
Eason and Sneddon (3) in the case of heat sources, and by Sneddon and
Lockett (7) in the case of transient body forces. The results of these two
papers may be summarised by saying that the displacement field u = (ut, u2, w3)
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and temperature distribution 9 due to a combination of body forces X = (Xlt

X2, X3) and heat sources 0 are given by

_ = Xj _ {(P-m-w>f)-i<>>bg}teX iK?5
"' f-aco2 {f-aco2)® 9 ' ^ " '

-aco2)e
2

where

® = (p2l;2-a(02)(l;2-i(of)-i(obgZ2, (1.6)

and the bar denotes the four-dimensional complex Fourier transform

= 4~M

These results assume that all the unknowns and their derivatives vanish at
infinity.

Using the system of units adopted in equations (1.1) and (1.2), the normal
components of stress are given by

xi .(1.8)

(no summation implied in the last term), and the shear components are

Tij = dujdxj + duj/dXi (1.8)

2. Statement of the Problem
In this paper we shall consider the semi-infinite medium x 3 ^ 0 subjected

to body forces F = (Fls F2, F3) and a heat source distribution cj>. Further
there may be any set of physically possible ordinary boundary conditions on
the boundary x3 = 0. We shall therefore look for solutions to the linked
equations (1.1) and (1.2) subject to the specification on x3 = 0 of three of the
quantities uu u2, u3, a3, x3U T32 plus one of the quantities 6, d9jdx3, (dO/dx3+h9).

The standard method of using a four-dimensional integral transform on
the given equations (a sine or cosine transform in the x3-direction) will only
work in certain special cases, because of our lack of knowledge of the behaviour
of many of the unknowns and their derivatives at x3 — 0. (For an example
where this does work see Eason and Sneddon (3).) Further, the method of
transforming the equations with respect to xt, x2 and t, and then solving the
resulting four differential equations in the single variable x3, is too cumber-
some. Instead, we shall use the method described in the next section.
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3. Method of Solution
We wish to find expressions for u and 9 which, in the region x3>0, satisfy

the equations (1.1) and (1.2) with X = F and 0 = <t> and which satisfy the
given boundary conditions on x3 = 0. Instead we look for solutions which
satisfy equations (1.1) and (1.2) in the whole space — oo ^x3g oo when

, x2, t)S(x3)

where 8(x) is the Dirac Delta function. Thus we consider the infinite medium
subjected to F and <J> in the region JC3>0 and to additional body forces (in^P
and heat sources (27t)*4/ concentrated on the plane x3 = 0. We shall then
choose P and ¥ in such a way that the boundary conditions of the original
problem are satisfied on x3 = 0.

Within the region x3>0 the solutions to the modified problem satisfy
the equations (1.1), (1.2) with X = F and 0 = O (since <5(x3) = 0 for x3>0)
and on the plane x3 = 0 the given boundary conditions are satisfied. Thus
for x3>0 the solutions to the modified problem are the solutions to the original
problem. The concentrated forces and sources P and *¥ could have been
taken off the boundary x3 = 0 by considering the Dirac Delta functions in
the form <5(x3+d) where d>0, so that they lie on the plane x3 = —d. However,
when the analysis is carried through, we find that the solutions are independent
of d, which we would expect on physical grounds, and so we content ourselves
here with the case d = 0.

The method described above is a particular case of a method due to Lockett
(5) for solving a wider class of problems.

4. Solution in Rectangular Cartesian Coordinates
For the expressions (3.1) we find that

f (4.1)

where/ is defined by (1.7) a n d / 0 is the transform with respect to xu x2, t
only. That is

f° = CTJ]j ^exP {K<tixl + ̂ x2 + <of)}dxldx2dt (4.2)

It is obvious from (1.7) and (4.2) that

so that
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Using the expressions (1.3), (1.4) and (4.1) we can write the solutions to
the modified problem in the form

where

"a = Ti l—i 77i T^, ' zz~~>
" — aw ( £ — o c o )zS %v

B _<o0tfq + (fi*?-a*>)* (4"5)

and

"i2 = Y^2 ($2-aco2)7 9 +1~9~'
(og£qP°q + (P 2£, 2-aoi1)yV° K '

2 9 '

Since in any particular problem Ft and <1> are known, un and Bi can be evaluated
and can therefore be treated as known functions. From (4.3) and (4.6)

(2«)*«?2

+ ib*i>° f" ^e >tlX3 dti, (4.7)

J — CO J — 00 * ^

since Pf and *F° are not functions of £3. If we now write

$2-flai2 = Z\ + k\ (4.8)

so that k\ = rj2 — aa)2 where r\2 = ^,\ + £,l (4.9)

and put
Qi = p2(^l + kl)(^l + kj), (4.10)

the integrals in (4.7) can be evaluated by reducing the integrands by partial
fractions. If we evaluate the integrals for x3>0 (the only range in which we
are interested) and, for convenience, introduce new unknowns A, B, C and
D which depend on Pf and *P°, then we find that

u°22 =

9°2 =
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Thus, using (4.4), the three-dimensional transforms of the displacement field
and the temperature distribution are given by

M ° =

0° = 1 (P

where uj\ and 6° can be found using (4.3) and (4.5).
In any particular problem we have only now to apply (4.12) to the trans-

formed boundary conditions to obtain four equations giving the values of A,
B, C and D. Substituting these values back into (4.12) and applying the
transform inverse to (4.2) we obtain expressions for the required quantities
u and 9.

Transforms of stress components. Since the boundary conditions to many
problems specify one or more of the components of stress a3, T31, T32 we give
here their three-dimensional transforms:

) - be0 + p2du°3/dx3,

(4.13)

5. Example
As an example of the use of the equations derived above we shall consider

the problem considered by Eason and Sneddon (3). Here F = 0 and the
boundary conditions are ut = u2 = a3 = 0, 9 — 90(x1, x2, t) on x3 = 0. A
heat source 3>(x1; x2, x3, t) is assumed to be acting in the medium x3>0.

Thus from (4.5)

9 (5.1)
and the boundary conditions can be written

TThl(2*0* J -
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from which we find that A = B = 0 and

J-» ® T
.(5.3)

- 0 0 -"

We may now use (4.12) and the inverse transforms to show that

u = — grad \p,
where

^ ) ! ' (5-4)

This is a formal solution to the problem, and it can be shown that it is
equivalent to the result obtained by Eason and Sneddon. However, it should
be noted that the present method will produce formal solutions to any of the
problems mentioned earlier.

6. Solutions for the Axially Symmetrical Problem
The solutions to this problem could be found by running through a similar

procedure to the one outlined in § 4, using the forms of the equations
when expressed in cylindrical polar coordinates. However, it is not a difficult
matter to obtain them directly from the results expressed in rectangular
coordinates.

We denote by wr and w the components of displacement in the r and z
directions, and use \j/ to denote the polar coordinate. The components of the
body force are denoted by Fr and Fz and the temperature distribution and
heat sources are represented by 0 and O as before.

We define the transforms

(«r°, F?) = - i - f°° e'o'dt f" r(Mr, Fr)J^r)dr, (6.1)
(27t)*J_0o Jo

ei0"dt ^ r(w, 6, Fz, <S>)J0^r)dr (6.2)

J
f"

and

A r f°^dz (6.3)
_00

If we make the following substitutions from the rectangular system to the
polar system

xx = r cos ij/, x2 = r sin \j/, x3 = z

w, = Mr cos i/', u2 = ur sin i/', M3 = w

Fj = F r cos ip, F2 = F r sin ip, F3 = Fz

.(6.4)
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and put
£ , = £, cos 4>, £2 = £ s in <j>,

then we find that, for instance

1

(27t) JJJJ-00

-iff-.*.•-*

= ^ f f" e^+«%
2rtJJ_00

f" ZFrrdr— f2

Jo 27T J o

f" rFr/,«r)dr.
Jo

Therefore

Similarly (6.5)

= " 3 .

and 0 and 3> defined by (6.2) and (6.3) are identical to the definitions given
by (1.7). A similar set of relations holds where / is replaced b y / 0 . From
these expressions and equations (4.5) and (4.12) it is easily seen that ur, w
and 9 are given by

u° = u^

...(6.6)

where

and u°!, vv°, 6° are obtained from (4.3) and the expressions

n

_ =
1

g _
1

?-an2)

Fz -1)(^2 + e - icof) - ia>bg}(itFr + CFZ) <
(Z2 t 2 2 ) 2

9

..(6.8)
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The final results to any particular problem can now be found by
(i) applying the transformed boundary conditions to equations (6.6) to

obtain L, M and N.
(ii) calculating u°n, w°u 0? from (4.3) and (6.8)

(iii) substituting these values into (6.6)
(iv) inverting (6.6) using the transforms inverse to (6.1) and (6.2).
Transforms of the stress components. With the notation used above the

two-dimensional transforms of the components of stress az and r r z are

(2TE)T J -co Jo10

, Too foo (6.9)
Tr°2 = — ^ e(a"dt rxr2J^r)dr = du?/dz-l;w0.

7. Simple Numerical Example
With the equations derived above it is possible to write down a formal

solution to any of the problems mentioned in § 2. However, in most
problems, it will be necessary to use numerical methods to put the results in
a meaningful form. We shall be satisfied here to look at the result of taking
into account the coupling effects for a problem which, though not of obvious
practical interest, reduces the numerical work to a minimum.

Consider a semi-infinite elastic medium resting upon a rigid frictionless
foundation, so that w = zrz = 0 on z = 0. We suppose too that the rate of
change of temperature across the boundary is known, i.e. dO/dz = <j>{r, t) on
z = 0. We wish to find the pressure exerted by the solid onto the foundation.
(It is assumed that the medium is prevented from separating from the founda-
tion.) The equations for the evaluation of L, M and N take the form

£L+bk2M+bk3N = 0,

-(P2Z2 -aco2 - p2k2)k2M -(p2Z2 -aw2 - p2k2
3)k3N = 0°,

so that
L = 0 , k2M = -k3N = <t>°lp\k2

2-k\) (7.1)

We now choose the problem in which (f> is equal to
PBeAtJ0(Br)

(where P, A, B are constants), which is obtained by placing

in the formula for <j> in terms of its transform. Using (6.6), (7.1) and (7.2)
we find the solutions
u, = PB2b{p2(k2

2-k
2
3)k2k3}-l(k3e-k2Z-k2e-k3!)eAlJ1(Br),

w = PBb{p2(k2
2-k\)}-l{e-klz-e-k3Z)eA'J0(Br), (7.3)

{kl\p2B2-aA2-p2k2)e-klZ-k3\p
2B2-aA2-p2k\)e-kiZ}eA'J0{Br),
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where k2 and k3, are to be evaluated for co = iA, £ = B. This is not a rigorous
derivation of these results, but it can be verified that they satisfy all the required
equations and conditions (remembering that k2 and k3 satisfy (6.7)).

Using (6.9) it is also easily seen that on the boundary z = 0

Thus, in this solution, the discrepancy between the result obtained using the
linked equations and that obtained using the uncoupled equations (g = 0)
occurs only in the constant multiplying factor, and the ratio of these constants is

It is more convenient to use now the system of units due to Chadwick
and Sneddon (2), which corresponds to placing a = fi2, f = 1, e = bgjp2.
In this system the units of length and time are very small (~ 10~8). Thus in
formulating a problem which may be encountered in practice, we need to
take A, B<^1. Otherwise the variations of the physical quantities with time
would be too rapid, and the r-dependence would be too localised.

The ratio can now be written as

+ kz)k2k3),,
k2 + k3)k2k3

« «

where k2 and k3 are given by

(7.7)

The following table shows, for a range of values of A and B, and with £ = 0-05
(the value for copper is 0-017 and the value for lead is 0-073), the percentage
error of the uncoupled solution with respect to the solution obtained from the
linked equations (error = 100(1 — R)).

\ A

B N.

io-5

lO-io
io-1 5

jQ-20
10"25

10-30

Percentage errors

io-5

3-6
2-4
2-4
2-4
2-4
2-4

,0-10

1-9
3-6
2-4
2-4
2-4
2-4

in the surface value of az

i o - 1 5

0
4-8
3-6
2-4
2-4
2-4

j O -2O

0
1-9
4-8
3-6
2-4
2-4

10"25

0
0
4-8
4-8
3-6
2-4

1Q-30

0
0
1-9
4-8
4-8
3-6
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From this table it is obvious that, as long as A, B< 1, the error depends only
on a quantity c denned by the relation Bc = A. It is easily seen that the
maximum error is approximately 4-8 per cent, and occurs through the range
l < c < 2 . Further for c>2 the error is negligible and it is approximately
2-4 per cent, for c<\ (but c must not be so small as to violate the condition
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