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Abstract

Let G be a finite group with soc(G) = A, for ¢ > 5. A characterization of the subgroups with square-free
index in G is given. Also, it is shown that a (G, 2)-arc-transitive graph of square-free order is isomorphic
to a complete graph, a complete bipartite graph with a matching deleted or one of 11 other graphs.
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1. Introduction

Let I be a graph with vertex set VI" and edge set EI. We use Autl’ to denote the
automorphism group of I'. For a positive integer s, an s-arc of I is an (s + 1)-tuple
(vo, v1,...,Vvs) of vertices such that {v,_;,v;} € ET for 1 <i < s and v;_; # v;y; for
I1<i<s-1

Let G < Autl’. The graph I is said to be (G, s)-arc-transitive if it has at least one
s-arc and G is transitive on both the vertices and the s-arcs of I', and I" is (G, s)-
transitive if it is (G, s)-arc-transitive but not (G, s + 1)-arc-transitive. For the case when
G = Autl’, a (G, s)-arc-transitive graph or a (G, s)-transitive graph is simply called
s-arc-transitive or s-transitive, respectively.

Praeger [24] gave a reduction for finite nonbipartite two-arc-transitive graphs into
four types, say, HA, AS, PA and TW. For the bipartite case, Praeger [25] gave a
reduction into five types. Praeger’s reductions indicate that a two-arc-transitive graph
involved in the nine types either has a complete bipartite quotient graph or admits
a group acting faithfully and quasiprimitively (of type HA, AS, PA or TW) on the
vertex set or on each of its two orbits. Since then, characterizing or classifying finite
two-arc-transitive graphs have been an active topic in algebraic graphtheory, which
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is highly attractive from the group-theoretic and combinatorial viewpoint and has
received considerable attention (see [1, 7, 8, 11, 13, 15, 16, 25] for more references).

Another main motivation stems from the recently increasing interest in the study of
permutation groups of square-free degree and their application to graphs. The class of
graphs of square-free order has been studied in some special cases. In 1967, Turner
[31] gave the classification of symmetric graphs with order a prime number p. The
classification of symmetric graphs with order 2p was not completed until 1987 by
Cheng and Oxley [3]. The classification of symmetric graphs with order 3p in [32]
and some other graphs with order a product of two distinct primes were classified in
[22, 27, 28]. The graphs of order a product of three distinct primes are determined by
a series of articles [10, 12, 23, 30]. Further, see [17, 19-21] for the case of order four
or more distinct primes.

In particular, the cases of two-arc-transitive graphs admitting a Suzuki simple group
and a Ree simple group are classified in [7, 8], and the case of two-arc-transitive graphs
admitting a two-dimensional projective linear group is studied in [11].

The object of this paper is to describe the subgroups of square-free index in G and
classify the (G, 2)-arc-transitive graphs of square-free order, where G is an almost
simple group with the alternating socle.

TueoreM 1.1. Let G be a finite group with soc(G) = A, for ¢ > 5. If H is a square-free
index subgroup of G, then H is described in Lemmas 3.6 and 3.7. If T is a connected
(G, 2)-arc-transitive graph of square-free order, then I is isomorphic to one of the
graphs given in Section 2.2: K, with square-free c; K. . — cK, with odd square-free c;
Keg with ¢ = 5; Ky with ¢ = 6; Tutte’s 8-cage with ¢ = 6, a symmetric coset graph with
¢ =1, the point-hyperplane incidence graph of PG(3,2) and its complement graph in
Kis.is with ¢ =17,8; and Oy with ¢ =2k — 1 for k € {3,4, 6,9, 10, 12, 36}.

In the following sections, bold-face ¢ always means the set {1,2,...,c}; for ACec,
we denote by Alt(A) or Sym(A), or sometimes just Ajpj or Sj, the alternating group or
symmetric group on A, respectively.

2. Coset graphs, examples and stabilizers

2.1. Coset graphs and examples. We sometimes represent a graph as a coset graph
introduced by Sabidussi [29]. Let G be a finite group and let H be a core-free subgroup
of G, that is, (,cg H* = 1. Let g € G\H be of order a power of two with gZ € H. Then
the symmetric coset graph Cos(G, H, HgH) is defined to be the graph with vertex set
[G : H] = {Hx | x € G} such that Hx and Hy are adjacent while yx~! € HgH. Then
Cos(G, H,HgH) is a well-defined G-arc-transitive graph, where G is viewed as a
subgroup of Autl’ acting on [G : H] by right multiplication. The follow lemma is
formulated from several well-known facts on coset graphs (see [ 18] for example).

Lemma 2.1. Let T be a connected graph and G < Autl'. Let {«,B} € ET, H = G, and
K = Gup. Assume that G acts transitively on both the vertices and the arcs of I'. Then
I' = Cos(G, H, HxH) for some x € Ng(K)\H of two-power order such that x> € K and
G ={(x,H).
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2.2. Examples. We collect several examples of two-arc-transitive graphs with
square-free order and admitting the alternating group A..

ExampLE 2.2. K,,, the complete graph of order n for a square-free n > 5. Assume that
G < AutK, acts transitively on the two-arcs of K,,. Then G is a three-transitive subgroup
of S,. Thus soc(G) = A, implies (c, n) = (c, ¢), (5, 6) or (6, 10).

ExampLE 2.3. K., — cK;, the complete bipartite graph with a matching deleted.
Cos(S¢, A, A(12)A,) = K, . — cK; with square-free order if ¢ is odd square-free.

ExawmpLE 2.4. Point-hyperplane incidence graph of the projective geometry PG(3, 2).
This graph and its complement graph in Kjs;s admit Sg = GL(4,2) - 2 acting
transitively on both their two-arcs.

ExawmprE 2.5. Tutte’s 8-cage. Let U consist of the two-subsets of 6 and let V consist of
the partitions of 6 into three parts with size 2. Then Tutte’s 8-cage may be defined as
the bipartite graph with vertex set U U V such that @ € U and 8 € V are joined by an
edge if  is a part of 5. This graph is a cubic five-transitive graph with automorphism
group Aut(Ag) = PTL(2,9).

ExampLE 2.6. Oy, odd graph for k € {3,4,6,9,10,12,36}. Let c=2k—1 for k>3
and let V consist of (k — 1)-subsets of ¢. Then O, is defined with vertex set V
such that @, € V are adjacent if and only if a NS =0 (see [2, 8f], for example).
Further, AutO; =S, and Oy is two-arc-transitive, and further, by Corollary 3.2,
|V| = c!/[k!(k — 1)!] is square-free if and only if k € {3,4,6,9, 10, 12, 36}.

ExampLE 2.7. Cos(A7,PSL(2,5),PSL(2,5)(1452)(67)PSL(2,5)), a two-arc-transitive
graph of valency six and order 42. We identify H = PSL(2,5) with a transitive
subgroup of Ag containing K = (o, 1), where o =(12345) and 7= (15)(24).
Then Nu,(K) = {0, 7), {m, H) = A; and n* e K, where 7 =(1452)(67). Thus
Cos(A7, H, HnH) is a connected two-arc-transitive graph.

2.3. Stabilizers. Let I' be a graph, G < Autl’ and {e, 8} € ET". Then the stabilizer

G, induces an action on the neighborhood I'(@) of @ in I'. Let Gg(a) denote the
permutation group on I'(@) induced by G,, let G' be the kernel of this action and
set G = G A GLl). Then

GNP 9GP =G, G, =6 Gy =@l - GG, @
where X - Y means a group extension of X by Y.

Lemma 2.8. If G is transitive on VT, then T is (G, 2)-arc-transitive if and only if Gl;(a)
is a two-transitive permutation group.

Lemma 2.9 [9, 34]. Let T be a (G, s)-transitive graph for s =2 or 3. Then, for an
edge {a,B} of T, either GSB], =1 or G[alﬁg is a nontrivial p-group for some prime p,
PSL(n,q) < GS‘” < PI'L(n, q) and |I'(a)| = ¢" — 1/q — 1 for some n > 2 and a power q
of p.
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TasLE 1. Stabilizers of s-transitive graph of valency k.

k s Go G‘Y,B
g+1 4 (¢ 1= Zg1yaq-1) PGL2,9) - Ze  [q°'] = (Zyo1 X Zig-1y3.g-1) - Ze
2/ +1 5 (4’1 x GL(2,9) - Z, [q*] x Zz_] 2,
3/+1 7 [¢°1% GL(2,q) - Z, (1= Z; |- Z

All finite two-transitive permutation groups are precisely known; the reader is
referred to [14] for a complete list. Then, by Equation (2.1) and Lemmas 2.8 and
2.9, we have shown the following result.

Cororrary 2.10. If T is a (G, 2)-arc-transitive graph, then the stabilizer G, has at
most two insoluble composition factors. Further, if there are two insoluble factors,
then either they are not isomorphic when Gg((’) is almost simple or they are isomorphic

when Gg(“) is an affine group.

Proor. By Lemma 2.9, Gglg is a p-group. Then, by (2.1), all possible insolvable

composition factors are involved in (G!)'® and GL'®. Note that (GL)'® « Ggﬁ(ﬂ) ~

Gg};’) = (Gg(“))ﬁ. Then the two-transitive permutation group Gg(”) and its a stabilizer

acting on I'(@) give all possible insolvable composition factors of G,. Thus our result
follows from checking the two-transitive permutation groups one by one. O

Lemma 2.11 [33, 35]. Suppose that T is a connected (G, s)-transitive graph of valency
kwiths>4. Thenk=q+ 1, s=4, 5 or7, and, for an edge {«, B}, the vertex stabilizer
G, and arc stabilizer Gop are listed in Table 1, where g = p! is a power of some prime
p and e is a divisor of f.

The structure of stabilizers for cubic s-transitive graphs is explicitly known due
to Tutte’s result (see [2, 18f], for example). For the four-valent case, we have the
following result, which is a consequence from Lemmas 2.9 and 2.11.

Lemma 2.12. Let T be a four-valent (G, s)-transitive graph with s =2 or 3. Let « € VT.
Then either s =2 and Ay < G, <Ssors=3and Ay X Z3 < G, <S4 X S3.
3. Subgroups with square-free index in S, or A,

The purpose of this section is to describe the subgroups of square-free index in
G, where soc(G) = A, for ¢ > 5. Several results on elementary number theory are
necessary. The first lemma is formulated from [21].

Levva 3.1. Leta > 2 and b > 2 be two integers. Then (ab)!/[(a!)’b!] is not square-free
except that eithera =2 and b e (3,4} orb=2and a € {2,3,4,6,9, 10, 12, 36}.

CoroLLARY 3.2. If a > 2, then (2a—1)!/[a!(a — 1)!] is not square-free except for
aef{2,3,4,6,9,10,12,36}.
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Lemma 3.3. Let p(d, t) = [1'_,(d + i) be the product of t consecutive positive integers.
Then the following statements hold.

(1) Ifp(d,4)/8 is square-free, then d =0, 1,3,4 mod 9.

(2) Ifp(d,5)/20 is square-free, then d = 6m with m =0, 3,12, 15mod 8.

(3) Ifp(d,6)/48 is square-free, then d = 4m withm = 0,14,25mod 9, ord = 4n + 1
withn=0,16,20mod 9.

@) Ifd=2andp(d,6)/24 is square-free, then d = 8m withm =7,17,27mod 9, or
d=8n+1withn=38,10,27 mod 9.

(5) Ifp(d,6)/120 is square-free, then d = 8m with m=0,7,8mod 9, ord =8n + 1
withn=0,1,8mod 9.

(6) Ifp(d,6)/72 is square-free, then d = 0,1 mod 8.

(7) Ifp(d,7)/168 is square-free, then d = T2m withm > 3 and m = 0,3,6 mod 5, or
d=T2n+64 withn>1andn =1,3,4mod 5.

8) Ifp(d,7)/120 is square-free, then d = 8m with m = 0,8 mod 9.

) Ifp(d,7)/72 is square-free, then d = 8m with m = 0,2,9 mod 5.

(10) Ifp(d,7)/48 is square-free, then d = 4m with m = 0,25 mod 9.

(11) Ifp(d,8)/(2° - 3 -7) is square-free, then d = 45m or d = 45n + 36 for m,n > 0.

(12) If p(d,8)/(2%-3%) is square-free, then 15n + 6 with n=2,3,4,5,15,17,
22mod 16, ord = 15m withm = 0,9, 10, 12, 14, 15,27,29 mod 16.

(13) Ifp(d,8)/(27 - 3) is square-free, then d = 15m with m =0 or m>9, or 15n+ 6
withn >2,5,17.

(14) If p(d,12)/[(6!)* - 2] is square-free, then d = Tm with m =0 or m > 21, or
d=Tn+1withn=0o0rn>23.

(15) Ifp(d,24)/[(12!)? - 2] is square-free, then d = 0 or d > 99.

(16) Ifp(d,2a)/[(a")? - 2] is square-free, then d = 0,1 or d > 99, where a € {9, 10,36}.

Proor. As examples, we prove (7) and (12) only; the others can be proved by similar
arguments and (or) checking by GAP.

Assume that p(d,7)/168 is square-free. If 8 divides some d + i, then 2° divides
p(d,7) by noting that at least three of seven consecutive integers are even, and so
4 divides p(d,7)/168, which contradicts the hypothesis. It follows that d = 8k for
some k. If 9 divides some d + i, then 3° divides p(d,7), so 3* divides p(d,7)/168,
which contradicts the hypothesis. Then d = 9/ or 9/ + 1 for some /. It yields d = 72m
ord=T2n+64 withm,n>0. If0#m<2orn=0 then 5% divides p(d,7), which
contradicts the hypothesis. Thus (7) follows by noting that 5 does not divide both
d+1andd+2.

Assume that p(d, 8)/(2° - 3%) is square-free. Then none of d + 1,d +2 and d + 3 is
divisible by 5, and hence d = 5/ or 5/ + 1. If 3 divides one of d + 1 and d + 2, then
three of these eight consecutive integers are divisible by 3. This yields that 3* divides
p(d, 8), which contradicts the hypothesis. Thus d = 3k. Then d = 15m or 151 + 6.
If 2* divides some d + i, then 2% divides p(d, 8), which contradicts the hypothesis.
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It yields m=0,9,10,11,12,13,14,15mod 16 and n=1,2,3,4,5,6, 15 mod 16.
Noting that both 52 and 72 do not divide p(d, 8), (12) follows. O

Let ¢ be a positive integer and P a partition of ¢ into positive parts. We define
f(c; P) = (X 4ep @)/ 11 4ep d!. Then the following result holds.

Lemmva 3.4. Let k> 2 and ¢ > 5 be integers. Let ¢ = Zle ¢; and ¢; = Z;f:] d;j
for 1 <i<k and positive integers d;j. Then f(c;dy,...,dy) =1(c;c1,...,cp)
H;‘zl f(cis dit, . ... dir,). Assume, further, that f(c;dy, ..., dw,) is square-free. Then
the following statements hold.

(1) f(c;scr,...,c) and f(cisdyy, . . ., diy,), 1 < i<k, are pairwise coprime square-free
numbers; so at most one of them is even.

(2) Ifd,']j] = diz,iz fOI” (il, ]1) # (iz, jz), then diljl = d,'m = 4, 2orl.

(3)  Ifl, ifthe number of d;j with value r, then [ <2, 13 < 1,1, <2,1; <3, Zle [, <4
and ¥}, rl, < 8.

Proor. Note that S > S, X -+- X S, and S.; > Sy, X -+ xSy, . Then the first part
of this lemma holds by checking that |S, : (S‘d11 X e X Sdkzk)l' And then (1) follows.
Assume that d;, ;, = d;,;, := a for some (i, ji) # (i, j2). Then f(2a; a, a) is square-free
by (1). Of course, f(2a; a, a)/2 is odd square-free. By Lemma 3.1, a is known. It yields
a=4or2ifa# 1, and (2) follows. Let ¢’ be one of Zd”:r d;j and Zdug d;j. Then (3)
follows from (1). ' O

The following facts about primitive permutation groups (see [6, Theorem 3.3.A,
Example 3.3.1]) are known.

LemmA 3.5. Let G be a primitive subgroup of S.. If G contains one of (ij), (ijk) and
(ij)(kl), then either G > A. or ¢ < 8.

Lemma 3.6. Let ¢ > 5 be an integer. Let G be almost simple with soc(G) = A, and let
H < G with |G : H| being square-free. If either G £ S, or H is transitive on ¢, then one
of the following holds.

(1) G =PGL(2,9), My or PTL(2,9) and H = Z32 > Zg, Z% = Qg or Zg = [24],
respectively, where [2*] is a 2-group of order 2°.

(2) Either soc(G) = soc(H) = Ag or (G, H) is one of (PGL(2,9),S4), Mg, S4), and
(PT'L(2,9),S4 X Z5).

(3) (G,H)isoneof (S¢,Ac), (As,Dio), (Ss,Zs > Zs), (Ae, PSL(2,5)), (Se, PGL(2,5)),
(S7,PSL(3,2)) (A7,PSL(3,2)), (Sg,Zg = PSL(3,2)) and (Ag, Zg = PSL(3,2)).

(4) H is not primitive on ¢, and either ¢ < 8 and H is a {2, 3}-group or ¢ = 2a and
H=(S5,15)NG foraci{6,9,10,12,36}.

Proor. If G £ S, then ¢ = 6, and so (1) and (2) follow from checking the subgroups of
G of square-free indices in [5]. Thus, in the following, assume that A. < G < S, and
H is transitive on c.

Assume that H is primitive on c. Since |G : H| is square-free, H contains a maximal
subgroup of a Sylow two-subgroup of A.. Then H contains a permutation with the
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form of (ij)(kl) and (3) follows from Lemma 3.5 and checking the primitive groups of
degree no more than eight.

Assume that H is not primitive on ¢. Then A, <G < S.. Let B be a nontrivial
H-invariant partition on ¢ with minimal block size, say, a. Then H < (S, S,) N G :=
M < G, where b = c/a. Since |G : H|is square-free, |G : M| and |M : H| are also square-
free. It is easy to see that [S. : (S, ¢ Sp)| =|G : M|. Then S, : (S, ¢ Sp)| is square-free
and (a, b) is given in Lemma 3.1. Clearly, if both a and b are no more than four, then
H is a {2,3}-group. Thus assume that b =2 and a € {6, 9, 10, 12, 36}. In particular, it is
easy to know that |S. : (S, ¢ Sp)| = |G : M| is even square-free.

Set B = {A;, Ay}. Without loss of generality, assume that A; =a and let S, S; =
(Sym(Ap) X Sym(A3)) = (), where & = [T (ia + i). In particular, m € A, if a is even.
Let N = Alt(A;) x Alt(A,). Then N < M and so HN is a subgroup of M. Thus
IN:(HNN)|=|HN : H|is adivisor of [M : H|. Then [N : (H N N)| is square-free. It is
easily shown that H N N contains a maximal subgroup Q of a Sylow two-subgroup
P of N. Then Q<P and |P: Q| =2. Without loss of generality, assume that P
contains (1234)(56) and (a + la + 2a + 3a + 4)(a + 5a + 6). It follows that (12)(34),
(a+1la+2)a+3a+4)e Q. Thus(12)(34) € Hﬁl‘ and(a+ la+2)(a+3a+4) € Hﬁj.

By the choice of 5, Hﬁ: is a primitive subgroup of Sym(A;). Then, similarly as in (2),
either Hy' > Alt(A;) or PSL(2,5) < H,’ < PGL(2,5). But the latter case yields four
dividing |G H|. Thus H > Alt(A)). Notmg that 1 #(HNN)Y < HY, (HNN)» =
Alt(A;). Tt follows from [6 Lemma 4.3A] that H NN = Alt(A;) X Alt(Az) =N. It
is easy to check that a Sylow two-subgroup of N has index 22 in some Sylow two-

subgroup of A.. Then N is properly contained in H. Noting that |M : H| divides
M : N| =22 or 2% and |G : M| is even square-free, it follows that |M : H| = 1. Then (4)

holds. O
Lemma 3.7. Let ¢ > 5 be an integer. Let A, < G < S, and let H < G with |G : H| being
square-free. Assume that H has t orbits Ay, ...,A; on ¢, wheret > 2. Let d; = |A}| for
1 <j<t Letrbesuchthatb,.,=---=b,=1andb;>1for j<r. Setc; =) d;

(1) Ifr=2andc) 25, then, reordering d; if necessary, either H is one of (Sq, X - -+ X
Sa,, X Ay) NG and (Sy, X -+ X Sq,) N G or, for each d; > 1, the pair (d;, H*)
is as described in Tables 2, 3, 4 and 5 for r = t and as in Tables 8, 9, 10 and 11
forr<t.

(2) Ifr=1orc, <5, then (d;, H*) is as described in Tables 6 and 7.

Proor. Set My := (HY x -+ x H*)NG and M, := (Sy, X - -+ X S4) N G. Then H < M,
and H < M. Since |G : H| is square-free, |M; : H|, |[M, : M| and |G : M;| are all square-
free, where i = 1, 2.

Case 1. Assume that H is fixed-point-free on ¢, thatis, d; > 2 forall j <t.

Assume that H < Alt(Aj)forall1 < j<t. Then H < A.and M; = H x - x H™
as A, <G.If G =S, then |G : H| is divisible by 2/, which contradicts the hypothesis.
Thus G = A.. Then M, = (Ay X --- X Ag) = Z5", and hence 7 =2 and |Ay4, : HY| is
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TaBLE 2. Pairs of orbit length and subgroup transitive restriction Case 1.

c d; d, HM H Remark

di+d >5 >3 Ad] Adz di—dr,>2
p(di, d»)/d,! odd square-free

di+8 >36 8 A, Z3=PSL(3,2) p(d,8)/(2°-3-7) square-free
di+8 =36 8 Ay 73S, p(di,8)/(2° - 3) square-free
di+8 236 8 Ay (S4:S2)NAg  p(di,8)/(2° - 3%) square-free
di+7 =136 T Ay PSL(3,2) p(d1,7)/168 square-free
di+6 >56 6 Ay Sy p(d, 6)/24 square-free
d+4 29 4 Ay zZ p(dy,4)/4 square-free

7 4 3 Ay Az

7 4 3 I As

TasLE 3. Pairs of orbit length and subgroup transitive restriction Case 2.

di d HM H» Remark
>99  2a Sy Sa1S,,a=06,9,10,12,36 p(d;,2a)/[2 - (a!)?] square-free
‘ S4S, p(d;, 8)/[2 - (4!)?] square-free
(S41S7) N Ag p(d;, 8)/[(4!)?] square-free
>36 8 Sy Z3=S4,Zy=[22-3],Zy=As  p(d;,8)/(3-2°) square-free
Z3 =S, p(d;,8)/(3 - 27) square-free
Z3 < PSL(3,2) p(d;,8)/(3 - 7 - 2%) square-free
>136 7 Sy PSL(@3,2) p(d;, /37 23) square-free
>36 6 Sd‘j S4 X7 p(d;, 6)/48 square-free
>56 Sy p(d;, 6)/24 square-free
>9 PGL(2,5) p(d;, 6)/120 square-free
>8 75 =Dy p(d;, 6)/72 square-free
=18 5 Sy Z5 =7y p(d;,5)/20 square-free
>9 4 Sy Dg p(d;,4)/8 square-free
[22] p(d;,4)/4 square-free

odd square-free for i = 1 and 2. Thus either H* = Ay or H?%i is known as in (2) or (3)
as it is transitive on A;. Calculating |Ay; : H?j| shows that H% is one of Ag;, PSL(3,2)
for d; =17, Zg’ = PSL(3,2) for d;j =8, (Sg21S2) N Ay, for d; € {12, 18,20, 24, 72},
Zg’ =S4 ford; =8, (S4S2) N Ag ford; =8, S4 for d; = 6, orZ% ford; = 4.

Since |A. : M;| and |[M; : M| = 2|Ay, : HAlllAd2 : H™| are square-free, with the
help of Lemma 3.1, Corollary 3.2 and Lemma 3.3, (c, d;, dy; H%', H) are listed in
Table 2. Assume that H® £ Alt(A;) for some 1 <i <t Then M; has index two
or one in L; := H* x --- x H* depending on G = A, or not, respectively; and the
same thing occurs for M, and L, := Sy, X --- X Sy,. Thus [Ly : Ly, [S¢ : Lal, [Sc : Ly
and Sy, : H%| are all square-free. Then (d s H"™)) is one of the following pairs:
(d},Saq)), (dj, Ag)), (S7,PSL(3,2)), (Sg,Zg =~ PSL(3,2)), (5,75 x«Z4), (6,PGL(2,5)),
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TaBLE 4. Pairs of orbit length and subgroup transitive restriction Case 3.

di dy d, HMN H H Remark
>36  >36 8 S; A4, S41S2 p(d;,8)/[2- (41)?] odd square-free
' Zy=Ss  p(d;,8)/(27 - 3) odd square-free
236 236 6 Sy Ay, SiX2 p(d;, 6)/48 odd square-free
>9 >9 4 Sy Ay Dg p(d;,4)/8 odd square-free
>36 4 4 S, S Dy p(d;, 8)/(3 - 2°) square-free
>36 4 4 Sy, A4 Dg p(d;,8)/(3 - 2°) square-free
>36 4 3 Sy Dg Ss3 p(d;, 7)/48 square-free
>136 4 3 Sg Dg Aj p(d;, 7)/24 square-free
[2°] S3
TaBLE 5. Pairs of orbit length and subgroup transitive restriction Case 4.
c dy, dy dy HM H*» HY Remark
di+7 d =36 4 3 Ay Dg Ss3 p(dy, 7)/48 odd square-free
di+8 di>236 4 4 Ay Dg Ss  pdi, 8)/(2° - 3) odd square-free
di+8 d;>36 8 Az S4Sy p(di,8)/[(4))? - 2] odd square-free
d+8 d =36 8 Ay Zy =Sy p(di,8)/(27 - 3) odd square-free
di+6 di>36 6 Ay S X7, p(di,6)/48 odd square-free
di+4 di =9 4 Ay Dg p(di,4)/8 odd square-free
8 4 4 Sy Dg
7 4 3 Dg  S3, Aj
7 4 3 221 S
TaBLE 6. Pairs of orbit length and subgroup transitive restriction Case 5.
c d, c—Cy G H Remark
c d; <3 Se S, p(c1, ¢ — c1) square-free
c c—1 1 Se A, ¢ odd square-free
d; <3 A, A, p(cy, ¢ — c1) square-free
2a +1 2a 1 Sous1 SatS, a€{6,9,10,36}
A2a+l (Su l SZ) N A2u
7 6 1 S; PGL(2,5)
Z§ x Dyg
S4 X7, Sy
Ar  Z2xZy Ay Sy
PSL(2,5)

(2a,841Sy) for a € {6,9,10, 12,36}, (8,541 S2), (8,(Ss 1 S2) N Ag), (8,Z5 > [2% - 3)),
(8,25 = S4), (8,Z; = Ay), (8,Z3 % S4), (6,54), (6,72 < D), (6,54 X Z»), (4,S4), (4,Dg)
or (4,[2%]). Noting that |L, : L;| = H§=1 ISq; : H%i|, all ISa; : H"/| are pairwise coprime,
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TaBLE 7. Pairs of orbit length and subgroup transitive restriction Case 6.

c d dy dy ds HM HY HMS M G H
5 3 1 1 S;3 1 1 As S3
2 2 1 Z, 7 1 Ss zZ;
Z 7 1 As 7
5 4 1 Sy 1 Ss Sy
Ay 1 Ss Ay
Dy |1 Ss Dg
2’1 1 Ss [2%]
Ay 1 As Ay
z 1 Ss z
6 4 1 1 Sy 1 1 Se Sy
Ay 1 1 Ag Ay
7 4 2 1 Sy Z 1 Ny S4 XSy, Sy
Ay Z 1 Sy Ay xS,
S4 Zg 1 A7 S4, A4
7 4 1 1 1 Sy 1 1 1 S7 Sy
Ay 1 1 A Ay

TasLE 8. Pairs of orbit length and subgroup transitive restriction Case 7.

¢ t—r d d, HM HY Remark
di+dr+1 1 >5 >3 Ay Ay dy—d, >2
p(d:,d, + 1)/d! odd square-free
dy+7 1 >136 6 Ay Sy p(di,7)/24 square-free
di+5 1 >18 4 Ay Zg p(di,5)/4 square-free

TaBLE 9. Pairs of orbit length and subgroup transitive restriction Case 8.

di d, HY H Remark

>99  2a Sy S41S2,a=6,9,10,36 p(d),2a+ 1)/[2(a")?] square-free
236 6 Sy S4 X7, p(d;, 7)/48 square-free
>136 ' S4 p(d;, 7)/24 square-free

>64 6 Sy PGL(2,5) p(d;, 7)/120 square-free
>16 72 %Dy p(d;,7)/72 square-free

>9 4 Sy Dsg p(d;,5)/8 square-free

>18 [22] p(d;, 5)/4 square-free

and so at most one of them is even square-free. If HY > Ay, for all j, then H =
(Sa, X -+ X S4) NG or, reordering d; if necessary, H = (S4 X --- X Sy, X Az)NG.
For the other cases, with the help of Lemma 3.1, Corollary 3.2 and Lemmas 3.3
and 3.4, (d;, H%) is as described in Tables 3, 4 and 5.
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TasLe 10. Pairs of orbit length and subgroup transitive restriction Case 9.

d; d_, d. HY H H> Remark
>136 =136 6 S; A4, SiXZy p(dj,7)/48 odd square-free
>18 218 4 S, Ay Dg p(d;,5)/8 odd square-free

TaBLE 11. Pairs of orbit length and subgroup transitive restriction Case 10.

c d d, dy H™ HA H% Remark
di+7 di>=136 6 1 Ay Sux2, 1 p(dy,7)/48 odd square-free
di+5 4218 4 1 Ay Dg 1 p(d;,5)/8 odd square-free
Case 2. Assume that H fixes at least one point in ¢. Assume thatd,,; =---=d; =1

and d; > 1 for 1 < j<r. Then, asc>5,r>1and t-r<3 by Lemma 3.4. If
i1 di <4, then t <4 and Zle d; <8, and then (c¢;dy,...,d;; G, H) is as listed in
Table 7. Assume that ¢; := )’ ,d; >5. Then H<G,:=S, NG and |G : H| =
clc=1)---(c—t+r+1)G,: H =p(c1,t —r—1)|G; : H|is square-free.

Assume that r =1, that is, ¢c; =d; and t —r =c —d;. Then, by Lemma 3.6,
either 5 <c¢; =d; <8 and H is a transitive {2, 3}-subgroup of square-free index
in Gy or (G, H) is one of (S, S¢,), (S¢;sAc))s (Acy, Acy), (As, Dio), (Ss,Zs = Zy),
(A6, PSL(2,5)), (S¢, PGL(2,5)), (S7,PSL(3,2)) (A7, PSL(3,2)), (Sg,Z; = PSL(3,2)),
(Ag,Zg > PSL(3,2)), (Sa4, Su 1 S2) or (Agy, (Sa 1S2) N Az,), where a € {6,9, 10, 12, 36}.
Noting that c|G : H| is square-free, then (c; ¢, ¢ — ¢1; G, H) is as listed in Table 6.

Assume that r > 2. Consider the restrictions of H on A; for 1 < j <r. Then, by
Case 1, consider all possible pairs (d;, HY). If a pair (d s H") appears in Tables 2 to 5,
then p(dy,d;)/|IH| - p(d\ + d;,t — r — 1) = p(dy, ¢ — dy)/|H"| should be square-free,
and then we get Tables 8—11. If HY > Ay, for all j < rand H% =S, for some i <r,
then H = (Sg, X --- X S4) N G or, reordering d; if necessary, H = (Sg, X -+ X Sy X
Az) N G. This concludes the proof. ]

4. Proof of Theorem 1.1

Let G be a finite group with soc(G) = A, for ¢ > 5. The first part of Theorem 1.1
follows form Lemmas 3.6 and 3.7. In the following, assume that I" is a connected
(G, 2)-arc-transitive graph on square-free number vertices and sometimes, setting
H =G, for some a € VI, write I' = Cos(G, H, HxH) for some x € G satisfying
Lemma 2.1. Then the second part of Theorem 1.1 follows from Lemmas 4.1, 4.2,
4.3,4.4 and 4.5.

Lemma 4.1. Assume that G is one of PGL(2,9), My and PIL(2,9). Then T is
isomorphic to Ky or the Tutte’s 8-cage.

Proor. If G is primitive on VT, then, by [26, Main-Theorem (1)], we know that G is
three-transitive on VI and I" = K.
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Thus we assume that H is not maximal in G. Then(G, H) is one of (PGL(2,9), Sy4),
(Mo, S4) and (PT'L(2,9), S4 X Z,). Further, for these three cases, G has a subgroup of
index two which contains H, say, X = Sg for G = PI'L(2,9) and X = Ag for the other
two cases. Thus I' is a bipartite graph with two parts, say, U and V, each having size
15. It is easy to see that X acts primitively on both U and V. In particular, X acts
transitively on the edges of I. We claim that the actions of X on U and V are not
permutation equivalent; otherwise, X will have a primitive permutation representation
of degree 15 with a two-transitive subconstituent, which contradicts the main theorem
of [26]. Thus assume that U consists of two-subsets of 6 while V is the set of partitions
of 6 into three parts with the same size. Let {a,} be an edge of I with @ € U and
B € V. Then two possible cases arise. If @ is not a part of 3, then it is easily shown that
I'(a) =" = {8" | h € H} contains 12 partitions of 6, but H cannot act two-transitively
on I'(@), which contradicts the hypothesis. Thus @ must be a part of 5 and, in this case,
I' is isomorphic to Tutte’s 8-cage. O

Lemma 4.2. If H is a transitive subgroup of S, then ¢ =5,6 and T = Kg; or c =6
and I = Ky, or ¢ =7,8 and T or its complement graph in Kis 5 is isomorphic to the
point-hyperplane incidence graph of PG(3, 2).

Proor. Assume that H is transitive on ¢ with respect to the natural action of S.. Since
I"is (G, 2)-arc-transitive, |H| = |G,| has at least one odd prime divisor. It follows from
Lemma 3.6 and checking the imprimitive groups of degrees six and eight that one of
the following three cases occurs: (i) H is maximal in G and H is one of (S, S;) NG
for c =2a and a € {6,9, 10, 12,36}, (Z5 < Z4) N G for ¢ = 5, PGL(2,5) N G for ¢ = 6,
(Z§ = Dg) NG for c =6, (S4 XZ,) NG for ¢ =6, PSL(3,2) for c =7 and G = A7,
(S4282) NG for ¢ =8, and Z; = Sy for ¢ =8, Z3 « PSL(3,2) for ¢ = 8 and G = As;
(i1) H is not maximal in G and (G, H) is one of (S7, PSL(3,2)) and (Sg, Z; = PSL(3,2));
and (iii) H is not maximal in G and (G, H) is one of (Ag, A4), (S¢, S4), (S¢, Ag X Z»),
(Ag,Z3 % S4), (Ag, Z3 > Ay), (Sg, Z; = S4) and (Sg, Z; = Ay).

Case 1. Assume, first, that H is maximal in G. Then G is primitive on VI'. Noting
that H is transitive on ¢, it follows from [26] that ¢ =5 and I' = K¢, or ¢ = 6,
G =PZL(2,9) =S¢ and I" = Ky (noting that this case was missed in [26]), or H is
almost simple and primitive on ¢, so H is one of PGL(2,5) N G and PSL(3,2). If
H =PGL(2,5) NG, then I" = K4. Suppose that G = A; and H = PSL(3,2). Then
[V =|G : H| =15 is odd and T is of even valency. It yields |['(@)| = 8, and hence
Hg = Gop = Z7 = Z3 for some 8 € I'(@). It is easily shown that Ng(G.p) = Gos. Then
there is no x € Ng(G,pg) with (H, x) = G, which contradicts the hypothesis.

Case 2. Assume that G = S7 or Sg and H = PSL(3,2) or Zg > PSL(3, 2), respectively.
Then H < soc(G) = A., c =7 or 8. Then I is a bipartite graph with two parts, say, U
and V, each having size 15. Further, A, is primitive on both U and V and transitive
on ET.

Assume that the actions of A, on U and on V are permutation equivalent. Then
A, is a primitive permutation group with degree 15 and a suborbit of size |['(@)|.
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It is known that such a primitive permutation group is two-transitive. Thus |[['(@)| = 14
and I' = K;5,15 — 15K, but such a graph cannot admit S, acting transitively on its two-
arcs, which contradicts the hypothesis.

Therefore, assume that U is the point set while V is the hyperplane set of the
projective geometry PG(3, 2), respectively. (Note that A; is viewed as a transitive
subgroup of PSL(4,2) = Ag on projective points or on hyperplanes.) Then I' or its
complement graph in Kjs ;s is isomorphic to the point-hyperplane incidence graph of
PG(3,2).

Case 3. Assume that ¢ = 6 or 8 and H is soluble. Then H'@ is a two-transitive affine
group. Further, by checking one by one the possible H = G, here, I' is of valency three
or four.

Suppose that I' is of valency three. Note that the stabilizers for cubic two-arc-
transitive graphs are explicitly known (see [2, 18f], for example). Then the only
possible case is (G, H) = (S¢, S4), and so I is (S¢), 4)-arc-transitive. By [4], all cubic
two-arc-transitive graphs of order 30 are isomorphic and five-transitive. Thus I' is
isomorphic to the graph given in Example 2.5, but such a graph cannot admit S¢ acting
transitively on vertices, which contradicts the hypothesis.

Now let I be of valency four. If " is (G, s)-transitive for s > 4, then H should contain
a subgroup with quotient GL(2, 3) by checking the stabilizers listed in Table 1, which
is impossible. Thus I is (G, 2)-transitive or (G, 3)-transitive. Then, by Lemma 2.12,
(G, H) = (As, A4) or (Se, S4).

Suppose that G = S¢ and H = S4 <soc(G) = Ag. Then I is a bipartite graph with
Ag acting primitively on both two parts, say, U and V. If the actions of Ag on U and V
are not permutation equivalent, then a similar argument as in Lemma 4.1 yields that I’
is of valency three, which contradicts the hypothesis. Thus the actions of Ag on U and
V are permutation equivalent. So A, is a primitive group with degree 15 and a suborbit
of size four, which is impossible.

The above argument implies that I is (Ag, 2)-arc-transitive, and it is easily shown
that (A¢)e = H N Ag = Ay is transitive on 6. Then, replacing G by Ag if necessary,
assume that H = (o, 7) and G.p = (o), where o =(123)(456) and 7 = (14)(25).
Calculation indicates that there is no x € Ng(Ggg) = ((123),(4 56)) = ((23)(4 5)) with
{x, Hy = G, which contradicts the hypothesis. O

By Lemmas 4.1 and 4.2, assume that G < S, and H is intransitive on ¢ in the
following three lemmas. Let Ay, ..., A, be H-orbits on ¢, where t > 2. Let d; = |A|]
for 1 < j <t. Then Lemma 3.7 is available for our further argument. By Lemma 2.10,
H = G, has at most two insoluble composition factors. It follows that at most two of
H% are insoluble.

Lemma 4.3. If H is soluble, then T is isomorphic to one of Ks, Oz and Kss — 5K, for
c=15,o0rtoQq4forc="7.

Proor. Assume that G < S, and H is a soluble intransitive subgroup of S..

https://doi.org/10.1017/51446788717000040 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788717000040

140 G. X. Wang and Z. P. Lu [14]

Case 1. H is fixed-point-free on ¢. In this case, it is shown thatd; <4 for 1 < j <t by
checking all possible H*/ in Lemma 3.7. Thus t <4 and ¢ = 23:1 < 8 by Lemma 3.4.
Further, I is of valency three or four by considering the possible two-transitive affine
group H'®, and the fact that I is not (G, s)-transitive for s > 4, by Lemma 2.11, if T
is of valency four.

Assume that T" is valency three. Then (c, G, H) is one of (5,Ss,S3 X S,), (5, As,
(S3 X $2) N As), (6, Aq, (S4 X S3) N Ag), (6,S6,Ss X S5) and (7, A7, ([2°] X S3) N A7).
If ¢ =7, then |VI| = |G : H| = 210, but there is no cubic arc-transitive graph with order
210 by [4], which contradicts the hypothesis. Each of the first four triples imply that
G is primitive on VT, so then, by [26], the only possible case is that ¢ = 5 and I" = Os.

Assume that T is valency four. Then (c, G, H) is one of (6, Ag, (S4 X Sp) N Ag),
(7,87,84 X S3), (7,A7,(S4 X S3) N A7), (7,A7, A4 X A3), (7,57,A4 X S3), (7,5,
S4 X Az) and (7, A7, A4 X A3). Each of the first three triples imply that G is primitive
on VT, so then, by [26], ¢ =7 and I = Q4. Each of the last four triples imply that I
is (A7, 3)-transitive. Thus suppose that G = A7 and H = A4 X Ajz. Then, for 8 € I'(@),
calculation shows that G = Z3, Ng(Gap) = Z3 > Z4 and there is no x € Ng(Gop) with
x*e Gyp and (x, H) = G, which contradicts the hypothesis.

Case 2. H fixes exactly one point in ¢ and (¢, G, H) is one of (5, Ss, Sy), (5, As, Ayg),
(5,85, A4), (7,87, 25 % Dy), (7, A7,Z5 = Z4), (7,87,54 X $2), (7,57, A4 X 1), (7,57, S4),
(7,A7,S4), (7,A7,Aq). The first two triples yield G = Ks. The third triple yields
I'= K5’5 - 5K2

Thus assume that ¢ = 7. The first two triples for ¢ = 7 imply that I is of valency
nine, while the others yield that I" is of valency three or four and H # A4 X S;. Assume
that H fixes the point 7 in 7.

Suppose that I' is of valency nine. Then, for § € I'(@), Hg = G,5 = Dg or Z; and
Ng(Gop), contained in Sg, is a Sylow two-subgroup of S;. Thus (x, H) < S¢ and so
(x, H) # G for each x € N(G,p), which contradicts the hypothesis.

Suppose that I is of valency three. Then |VI| is even. By inspecting the stabilizers
of cubic arc-transitive graphs, the only possible case is that G = S; and H = S4, which
leads to a similar contradiction to that above by considering the normalizer of an arc
stabilizer in G.

Suppose that I" is of valency four. Then there are three triples, say, (7, S7, S4),
(7,A7,84), (7,A7,A4). Since H fixes 7 and is transitive on 6, so G,z fixes 7 and
has two orbits on 6 with size three. Then each x € Ng(G,p) also fixes 7, yielding
(x, H) # G, which contradicts the hypothesis.

Case 3. H fixes at least two points in ¢ and (¢, G, H) is one of (7,S7,S4), (7, A7, Ag),
(6, S6,S4), (6,A¢, Ag). Let B € I'(@). Each of these four cases yields that H < S4 and
Ng(Gop) < S4 X Sc_4. Thus there is no x € Ng(G,p) with (x, H) = G, which contradicts
the hypothesis. O

Lemma 4.4. If H is intransitive on ¢ and H has only one insoluble composition factor,
then T = K., K.. — cKy or the graph in Example 2.7.
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Proor. Assume that G < S., H is intransitive on ¢ and H has only one insoluble
composition factor. Assume that H* is insoluble and each H% is soluble for j > 2.
Then, by Lemmas 3.4 and 3.7, ¢, := thzz <8.

Case 1. Assume that d; > 9, or d; =9 and ¢; < d; — 2. In this case, since Ay, is
not a simple group of Lie type, H'@ = Gg(“) = S, or Ay, by checking possible H2!
in Lemma 3.7. In particular, I' is of valency d;. Further, by Lemma 2.11, I" is not
(G, s)-transitive for s > 4. Let § € I'(@). Then G([j[; =1 by Lemma 2.9. Recalling that

GP G P =G and Gy = GUY) - (G- Gy = G, Gap = Sy 01 Ay, 1.

Suppose that some d; # 1. Assume thatd, >--->d, >d,y1 =---=d;,=1fora
suitable r > 2. Then H =T fixes set-wise a subset A = Ay U --- U A, of ¢. Noting that
Al<8<d —1,L:=(H™x---xHMNH<G!< Gop < H and L has no fixed point
on A, this implies that each x € Ng(G,p) also fixes A set-wise, and hence (x, H) # G,
which contradicts the hypothesis.

Assume that d; =1 for > j > 2. Then H = G5, and G,p fixes a 6 in A;. Let
Ay =dj and 6 = d;. Then Ng(Gop) < Sy, 1xSym({dy, 61 + 1,...,c}). Thus (x, H) # G
for x € Ng(Gyp) with e Gop unless ¢ — dy = 1. It follows that ¢ = d; + 1 and either
F=K..if H=A. and G =S, orI' = K, otherwise.

Case 2. Assume that 5 <d; <8, or di =9 and ¢, = 8. By Lemma 3.7, noting that
|G : H| is square-free, d; < 8 and three cases arise.

(1) H is maximal in G and H is one of S._; NG for ¢ = 6 and 7, (S5 X S») N G for
c=17,(S¢xS4) NG forc =10, (S7xS4) NG or Sg X S; for ¢ = 11. Then T = K, for
¢ = 6,7 follows from [26].

(2)t=2o0r3,d,>1and H is one of (Sg xZ%ng)ﬂGforc: 14, (Ag X S3)NG
or (Sg XA3)NG for c =11, (S¢ XxS4) NG for ¢ =11, and A5 X S, for ¢ =7. Then
G'"@ = A, = PSL(m, g) for suitable m and ¢, and I is of valency d; or ¢" — 1/(q - 1).
It is easily shown that Ng(G,pg) < Sym(c\A;) X Sym(A). Thus there is no x € Ng(Gyp)
with (x, H) = G, which contradicts the hypothesis.

(3)t=2o0r3,d;=1for j>1, c=c and either (G, H) = (S7, Ag) or H is one of
PGL(2,5) N G for t = 2, and S5 N G for ¢ = 3. The first case, that is, (G, H) = (S7, Ag),
yields I' = K77 — 7K,.

Suppose that # = 3. Then either Ng(Gqp) < Sym(A;) X Sym(7\A{) when I is of
valency six or, for some § € Aj, Ng(Gop) < Sym(A1\{6}) X Sym((7\A)) U {6}) when
I' is of valency five. It is easily shown that there is no x € Ng(Ggp) with x’e Ng(Gep)
and (x, H) = G, which contradicts the hypothesis.

Assume that t =2 and H = PGL(2,5) N G. Then H < Sym(A). If " is of valency
five, then Go5 = S4 or A4 is transitive on Aj, and so Ng(Gyp) < Sym(A,) yields a
similar contradiction to that above. Thus I' is of valency six. It is easy to see that I'
is (A7, 2)-arc-transitive. Then, replacing G by soc(G) if necessary, G5 = Zs < Z», and
Gp fixes a point 0 € Aj. Set A; =6, 6 = 6 and G5 = (0, 7), where o = (1234 5) and
T =(15)24). Then Ng(Gp) = (0, ) = Zs < Z,, where 1 = (1452)(67). It is easy
to show (x, HY = A; and x* € Gyp for x € Ng(Gop)\H, and x = hrr for some h € G .
Then I' = Cos(A7; As, AsmAs), as in Example 2.7. O
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Lemmva 4.5. If H is an intransitive subgroup of S. and H has at least two insoluble
composition factors, then T = Oy, k € {6,9, 10, 12, 36}.

Proor. Assume that H is intransitive on ¢ and H has at least two insoluble composition
factors. By Corollary 2.10, H has exactly two insoluble composition factors. Consider
the restrictions of H on its orbits A; on ¢. Then one or two of those restrictions are
insoluble, and the others are soluble.

Suppose that H has two isomorphic insoluble composition factors. Then H'® =
Gg(“) is an affine two-transitive group. By Lemmas 3.4 and 3.7, ¢t = 2,d; =2a,d; =1,
H=(,15)NGand G = Sy,41 or Ay,y1, where a € {6,9, 10, 36}. But such an H can
not have an insoluble affine quotient, which contradicts the hypothesis.

Therefore, H has two nonisomorphic insoluble composition factors. Then H'® =
Gg(“) is an almost simple two-transitive group. Further, by Lemma 3.7, assume
that H*' and H* is insoluble and any other H* is soluble. Assume, further, that
dy =|A1| =2 d» = |Az|. Noting that H < S, X --- X Sy NG and |G : H| is square-free,
f(c;dy, ..., d,) is square-free. Then d; > d, and H®' = Ay or Sy by Lemma 3.4. So
Gy = Ay orSy,.

Assume that d; < 8. Then either Ay, X --- XAy < H <S4 X---x S, for some
2<r<tsuchthatd,...,d, >2 and d; = 1 for j > r or the pair (H*', H*?) appears
in Table 2 for ¢ = d; + d, and in Table 8§ for ¢ = d; + d, + 1. By calculation, these
two cases yield t =2 =r, H=(S¢ X S5) NG for c =11 and Ag X Ag < H < Sg X S¢
for ¢ = 14. If ¢ = 14, then SOC(GE(Q)) =~ Ag and the other insoluble composition factor
of H should be A; or PSL(3,2), which contradicts the hypothesis. Thus ¢ = 11, and
H = (S¢ X S5) N G is maximal in G. Then I" = Og follows from [26].

Assume that d; > 9. Then I' is of valency d;, and T is not (G, s)-transitive for
s >4 by Lemma 2.11, so Gglg =1 by Lemma 2.9. Then, by (2.1), we conclude that

H=G,= GE:[; A(GIHT® . GE@ = (Ay, X Ag,_1) Z) for some [ < 2. In particular,
d» =d; — 1. By Lemma 3.4, {(d| + d»;d,,d») = 2d, — 1)!/(d;!(d; — 1)!) is square-
free. Then d; € {9, 10, 12,36} by Corollary 3.2. It is easy to see that |G : H| =
c!/(di\(d; — 1)! - 27"y for i = 1 or 2. Since |G : H| is square-free, calculation indicates
that 1 <i</and c =2d, — 1. It implies that H = (S4, X Sg,-1) N G is maximal in G.
ThenI" = Oy, follows from [26]. |
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