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Abstract

Let G be a finite group with soc(G) = Ac for c ≥ 5. A characterization of the subgroups with square-free
index in G is given. Also, it is shown that a (G, 2)-arc-transitive graph of square-free order is isomorphic
to a complete graph, a complete bipartite graph with a matching deleted or one of 11 other graphs.
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1. Introduction
Let Γ be a graph with vertex set VΓ and edge set EΓ. We use AutΓ to denote the
automorphism group of Γ. For a positive integer s, an s-arc of Γ is an (s + 1)-tuple
(v0, v1, . . . , vs) of vertices such that {vi−1, vi} ∈ EΓ for 1 ≤ i ≤ s and vi−1 , vi+1 for
1 ≤ i ≤ s − 1.

Let G ≤ AutΓ. The graph Γ is said to be (G, s)-arc-transitive if it has at least one
s-arc and G is transitive on both the vertices and the s-arcs of Γ, and Γ is (G, s)-
transitive if it is (G, s)-arc-transitive but not (G, s + 1)-arc-transitive. For the case when
G = AutΓ, a (G, s)-arc-transitive graph or a (G, s)-transitive graph is simply called
s-arc-transitive or s-transitive, respectively.

Praeger [24] gave a reduction for finite nonbipartite two-arc-transitive graphs into
four types, say, HA, AS, PA and TW. For the bipartite case, Praeger [25] gave a
reduction into five types. Praeger’s reductions indicate that a two-arc-transitive graph
involved in the nine types either has a complete bipartite quotient graph or admits
a group acting faithfully and quasiprimitively (of type HA, AS, PA or TW) on the
vertex set or on each of its two orbits. Since then, characterizing or classifying finite
two-arc-transitive graphs have been an active topic in algebraic graphtheory, which
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is highly attractive from the group-theoretic and combinatorial viewpoint and has
received considerable attention (see [1, 7, 8, 11, 13, 15, 16, 25] for more references).

Another main motivation stems from the recently increasing interest in the study of
permutation groups of square-free degree and their application to graphs. The class of
graphs of square-free order has been studied in some special cases. In 1967, Turner
[31] gave the classification of symmetric graphs with order a prime number p. The
classification of symmetric graphs with order 2p was not completed until 1987 by
Cheng and Oxley [3]. The classification of symmetric graphs with order 3p in [32]
and some other graphs with order a product of two distinct primes were classified in
[22, 27, 28]. The graphs of order a product of three distinct primes are determined by
a series of articles [10, 12, 23, 30]. Further, see [17, 19–21] for the case of order four
or more distinct primes.

In particular, the cases of two-arc-transitive graphs admitting a Suzuki simple group
and a Ree simple group are classified in [7, 8], and the case of two-arc-transitive graphs
admitting a two-dimensional projective linear group is studied in [11].

The object of this paper is to describe the subgroups of square-free index in G and
classify the (G, 2)-arc-transitive graphs of square-free order, where G is an almost
simple group with the alternating socle.

Theorem 1.1. Let G be a finite group with soc(G) = Ac for c ≥ 5. If H is a square-free
index subgroup of G, then H is described in Lemmas 3.6 and 3.7. If Γ is a connected
(G, 2)-arc-transitive graph of square-free order, then Γ is isomorphic to one of the
graphs given in Section 2.2: Kc with square-free c; Kc,c − cK2 with odd square-free c;
K6 with c = 5; K10 with c = 6; Tutte’s 8-cage with c = 6; a symmetric coset graph with
c = 7; the point-hyperplane incidence graph of PG(3, 2) and its complement graph in
K15,15 with c = 7, 8; and Ok with c = 2k − 1 for k ∈ {3, 4, 6, 9, 10, 12, 36}.

In the following sections, bold-face c always means the set {1, 2, . . . , c}; for ∆ ⊆ c,
we denote by Alt(∆) or Sym(∆), or sometimes just A|∆| or S|∆|, the alternating group or
symmetric group on ∆, respectively.

2. Coset graphs, examples and stabilizers
2.1. Coset graphs and examples. We sometimes represent a graph as a coset graph
introduced by Sabidussi [29]. Let G be a finite group and let H be a core-free subgroup
of G, that is,

⋂
x∈G Hx = 1. Let g ∈ G\H be of order a power of two with g2 ∈ H. Then

the symmetric coset graph Cos(G,H,HgH) is defined to be the graph with vertex set
[G : H] = {Hx | x ∈ G} such that Hx and Hy are adjacent while yx−1 ∈ HgH. Then
Cos(G, H, HgH) is a well-defined G-arc-transitive graph, where G is viewed as a
subgroup of AutΓ acting on [G : H] by right multiplication. The follow lemma is
formulated from several well-known facts on coset graphs (see [18] for example).

Lemma 2.1. Let Γ be a connected graph and G ≤ AutΓ. Let {α, β} ∈ EΓ, H = Gα and
K = Gαβ. Assume that G acts transitively on both the vertices and the arcs of Γ. Then
Γ � Cos(G,H,HxH) for some x ∈ NG(K)\H of two-power order such that x2 ∈ K and
G = 〈x,H〉.
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2.2. Examples. We collect several examples of two-arc-transitive graphs with
square-free order and admitting the alternating group Ac.

Example 2.2. Kn, the complete graph of order n for a square-free n ≥ 5. Assume that
G ≤ AutKn acts transitively on the two-arcs of Kn. Then G is a three-transitive subgroup
of Sn. Thus soc(G) = Ac implies (c, n) = (c, c), (5, 6) or (6, 10).

Example 2.3. Kc,c − cK2, the complete bipartite graph with a matching deleted.
Cos(Sc,Ac,Ac(1 2)Ac) � Kc,c − cK2 with square-free order if c is odd square-free.

Example 2.4. Point-hyperplane incidence graph of the projective geometry PG(3, 2).
This graph and its complement graph in K15,15 admit S8 � GL(4, 2) · 2 acting
transitively on both their two-arcs.

Example 2.5. Tutte’s 8-cage. Let U consist of the two-subsets of 6 and let V consist of
the partitions of 6 into three parts with size 2. Then Tutte’s 8-cage may be defined as
the bipartite graph with vertex set U ∪ V such that α ∈ U and β ∈ V are joined by an
edge if α is a part of β. This graph is a cubic five-transitive graph with automorphism
group Aut(A6) = PΓL(2, 9).

Example 2.6. Ok, odd graph for k ∈ {3, 4, 6, 9, 10, 12, 36}. Let c = 2k − 1 for k ≥ 3
and let V consist of (k − 1)-subsets of c. Then Ok is defined with vertex set V
such that α, β ∈ V are adjacent if and only if α ∩ β = ∅ (see [2, 8f], for example).
Further, AutOk = Sc and Ok is two-arc-transitive, and further, by Corollary 3.2,
|V | = c!/[k!(k − 1)!] is square-free if and only if k ∈ {3, 4, 6, 9, 10, 12, 36}.

Example 2.7. Cos(A7,PSL(2,5),PSL(2,5)(1 4 5 2)(6 7)PSL(2,5)), a two-arc-transitive
graph of valency six and order 42. We identify H = PSL(2, 5) with a transitive
subgroup of A6 containing K = 〈σ, τ〉, where σ = (1 2 3 4 5) and τ = (1 5)(2 4).
Then NA7 (K) = 〈σ, π〉, 〈π, H〉 = A7 and π2 ∈ K, where π = (1 4 5 2)(6 7). Thus
Cos(A7,H,HπH) is a connected two-arc-transitive graph.

2.3. Stabilizers. Let Γ be a graph, G ≤ AutΓ and {α, β} ∈ EΓ. Then the stabilizer
Gα induces an action on the neighborhood Γ(α) of α in Γ. Let GΓ(α)

α denote the
permutation group on Γ(α) induced by Gα, let G[1]

α be the kernel of this action and
set G[1]

αβ = G[1]
α ∩G[1]

β . Then

(G[1]
α )Γ(β) EGΓ(β)

αβ � GΓ(α)
αβ , Gα = G[1]

α ·G
Γ(α)
α = (G[1]

αβ · (G
[1]
α )

Γ(β)
) ·GΓ(α)

α , (2.1)

where X · Y means a group extension of X by Y .

Lemma 2.8. If G is transitive on VΓ, then Γ is (G, 2)-arc-transitive if and only if GΓ(α)
α

is a two-transitive permutation group.

Lemma 2.9 [9, 34]. Let Γ be a (G, s)-transitive graph for s = 2 or 3. Then, for an
edge {α, β} of Γ, either G[1]

αβ = 1 or G[1]
αβ is a nontrivial p-group for some prime p,

PSL(n, q) ≤ GΓ(α)
α ≤ PΓL(n, q) and |Γ(α)| = qn − 1/q − 1 for some n ≥ 2 and a power q

of p.
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Table 1. Stabilizers of s-transitive graph of valency k.

k s Gα Gαβ

q + 1 4 [q2] o Z(q−1)/(3,q−1) · PGL(2, q) · Ze [q3] o (Zq−1 × Z(q−1)/(3,q−1)) · Ze

2 f + 1 5 [q3] × GL(2, q) · Ze [q4] × Z2
q−1 · Ze

3 f + 1 7 [q5] o GL(2, q) · Ze [q6] o Z2
q−1 · Ze

All finite two-transitive permutation groups are precisely known; the reader is
referred to [14] for a complete list. Then, by Equation (2.1) and Lemmas 2.8 and
2.9, we have shown the following result.

Corollary 2.10. If Γ is a (G, 2)-arc-transitive graph, then the stabilizer Gα has at
most two insoluble composition factors. Further, if there are two insoluble factors,
then either they are not isomorphic when GΓ(α)

α is almost simple or they are isomorphic
when GΓ(α)

α is an affine group.

Proof. By Lemma 2.9, G[1]
αβ is a p-group. Then, by (2.1), all possible insolvable

composition factors are involved in (G[1]
α )Γ(β) and GΓ(α)

α . Note that (G[1]
α )Γ(β) CGΓ(β)

αβ �

GΓ(α)
αβ � (GΓ(α)

α )β. Then the two-transitive permutation group GΓ(α)
α and its a stabilizer

acting on Γ(α) give all possible insolvable composition factors of Gα. Thus our result
follows from checking the two-transitive permutation groups one by one. �

Lemma 2.11 [33, 35]. Suppose that Γ is a connected (G, s)-transitive graph of valency
k with s ≥ 4. Then k = q + 1, s = 4, 5 or 7, and, for an edge {α, β}, the vertex stabilizer
Gα and arc stabilizer Gαβ are listed in Table 1, where q = p f is a power of some prime
p and e is a divisor of f .

The structure of stabilizers for cubic s-transitive graphs is explicitly known due
to Tutte’s result (see [2, 18f], for example). For the four-valent case, we have the
following result, which is a consequence from Lemmas 2.9 and 2.11.

Lemma 2.12. Let Γ be a four-valent (G, s)-transitive graph with s = 2 or 3. Let α ∈ VΓ.
Then either s = 2 and A4 ≤ Gα ≤ S4 or s = 3 and A4 × Z3 ≤ Gα ≤ S4 × S3.

3. Subgroups with square-free index in Sc or Ac

The purpose of this section is to describe the subgroups of square-free index in
G, where soc(G) = Ac for c ≥ 5. Several results on elementary number theory are
necessary. The first lemma is formulated from [21].

Lemma 3.1. Let a ≥ 2 and b ≥ 2 be two integers. Then (ab)!/[(a!)bb!] is not square-free
except that either a = 2 and b ∈ {3, 4} or b = 2 and a ∈ {2, 3, 4, 6, 9, 10, 12, 36}.

Corollary 3.2. If a ≥ 2, then (2a − 1)!/[a!(a − 1)!] is not square-free except for
a ∈ {2, 3, 4, 6, 9, 10, 12, 36}.
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Lemma 3.3. Let p(d, t) =
∏t

i=1(d + i) be the product of t consecutive positive integers.
Then the following statements hold.

(1) If p(d, 4)/8 is square-free, then d ≡ 0, 1, 3, 4 mod 9.
(2) If p(d, 5)/20 is square-free, then d = 6m with m ≡ 0, 3, 12, 15 mod 8.
(3) If p(d, 6)/48 is square-free, then d = 4m with m ≡ 0, 14, 25 mod 9, or d = 4n + 1

with n ≡ 0, 16, 20 mod 9.
(4) If d ≥ 2 and p(d, 6)/24 is square-free, then d = 8m with m ≡ 7, 17, 27 mod 9, or

d = 8n + 1 with n ≡ 8, 10, 27 mod 9.
(5) If p(d, 6)/120 is square-free, then d = 8m with m ≡ 0, 7, 8 mod 9, or d = 8n + 1

with n ≡ 0, 1, 8 mod 9.
(6) If p(d, 6)/72 is square-free, then d ≡ 0, 1 mod 8.
(7) If p(d, 7)/168 is square-free, then d = 72m with m ≥ 3 and m ≡ 0, 3, 6 mod 5, or

d = 72n + 64 with n ≥ 1 and n ≡ 1, 3, 4 mod 5.
(8) If p(d, 7)/120 is square-free, then d = 8m with m ≡ 0, 8 mod 9.
(9) If p(d, 7)/72 is square-free, then d = 8m with m ≡ 0, 2, 9 mod 5.
(10) If p(d, 7)/48 is square-free, then d = 4m with m ≡ 0, 25 mod 9.
(11) If p(d, 8)/(26 · 3 · 7) is square-free, then d = 45m or d = 45n + 36 for m, n ≥ 0.
(12) If p(d, 8)/(26 · 32) is square-free, then 15n + 6 with n ≡ 2, 3, 4, 5, 15, 17,

22 mod 16, or d = 15m with m ≡ 0, 9, 10, 12, 14, 15, 27, 29 mod 16.
(13) If p(d, 8)/(27 · 3) is square-free, then d = 15m with m = 0 or m ≥ 9, or 15n + 6

with n ≥ 2, 5, 17.
(14) If p(d, 12)/[(6!)2 · 2] is square-free, then d = 7m with m = 0 or m ≥ 21, or

d = 7n + 1 with n = 0 or n ≥ 23.
(15) If p(d, 24)/[(12!)2 · 2] is square-free, then d = 0 or d > 99.
(16) If p(d, 2a)/[(a!)2 · 2] is square-free, then d = 0, 1 or d > 99, where a ∈ {9, 10, 36}.

Proof. As examples, we prove (7) and (12) only; the others can be proved by similar
arguments and (or) checking by GAP.

Assume that p(d, 7)/168 is square-free. If 8 divides some d + i, then 25 divides
p(d, 7) by noting that at least three of seven consecutive integers are even, and so
4 divides p(d, 7)/168, which contradicts the hypothesis. It follows that d = 8k for
some k. If 9 divides some d + i, then 33 divides p(d, 7), so 32 divides p(d, 7)/168,
which contradicts the hypothesis. Then d = 9l or 9l + 1 for some l. It yields d = 72m
or d = 72n + 64 with m, n ≥ 0. If 0 , m ≤ 2 or n = 0 then 52 divides p(d, 7), which
contradicts the hypothesis. Thus (7) follows by noting that 5 does not divide both
d + 1 and d + 2.

Assume that p(d, 8)/(26 · 32) is square-free. Then none of d + 1, d + 2 and d + 3 is
divisible by 5, and hence d = 5l or 5l + 1. If 3 divides one of d + 1 and d + 2, then
three of these eight consecutive integers are divisible by 3. This yields that 34 divides
p(d, 8), which contradicts the hypothesis. Thus d = 3k. Then d = 15m or 15n + 6.
If 24 divides some d + i, then 28 divides p(d, 8), which contradicts the hypothesis.
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It yields m ≡ 0, 9, 10, 11, 12, 13, 14, 15 mod 16 and n ≡ 1, 2, 3, 4, 5, 6, 15 mod 16.
Noting that both 52 and 72 do not divide p(d, 8), (12) follows. �

Let c be a positive integer and P a partition of c into positive parts. We define
f(c; P) = (

∑
d∈P d)!/

∏
d∈P d!. Then the following result holds.

Lemma 3.4. Let k ≥ 2 and c ≥ 5 be integers. Let c =
∑k

i=1 ci and ci =
∑ti

j=1 di j
for 1 ≤ i ≤ k and positive integers di j. Then f(c; d11, . . . , dktk ) = f(c; c1, . . . , ck)∏k

i=1 f(ci; di1, . . . , diti ). Assume, further, that f(c; d11, . . . , dktk ) is square-free. Then
the following statements hold.

(1) f(c; c1, . . . , ck) and f(ci; di1, . . . , diti ), 1 ≤ i ≤ k, are pairwise coprime square-free
numbers; so at most one of them is even.

(2) If di1 j1 = di2 j2 for (i1, j1) , (i2, j2), then di1 j1 = di2 j2 = 4, 2 or 1.
(3) If lr if the number of di j with value r, then l4 ≤ 2, l3 ≤ 1, l2 ≤ 2, l1 ≤ 3,

∑4
r=1 lr ≤ 4

and
∑4

r=1 rlr ≤ 8.

Proof. Note that Sc ≥ Sc1 × · · · × Sck and Sc j ≥ Sdi1 × · · · × Sditi
. Then the first part

of this lemma holds by checking that |Sc : (Sd11 × · · · × Sdktk
)|. And then (1) follows.

Assume that di1 j1 = di2 j2 := a for some (i1, j1) , (i2, j2). Then f(2a; a, a) is square-free
by (1). Of course, f(2a; a, a)/2 is odd square-free. By Lemma 3.1, a is known. It yields
a = 4 or 2 if a , 1, and (2) follows. Let c′ be one of

∑
di, j=r di j and

∑
di, j≤4 di j. Then (3)

follows from (1). �

The following facts about primitive permutation groups (see [6, Theorem 3.3.A,
Example 3.3.1]) are known.

Lemma 3.5. Let G be a primitive subgroup of Sc. If G contains one of (i j), (i jk) and
(i j)(kl), then either G ≥ Ac or c ≤ 8.

Lemma 3.6. Let c ≥ 5 be an integer. Let G be almost simple with soc(G) = Ac and let
H < G with |G : H| being square-free. If either G 6≤ Sc or H is transitive on c, then one
of the following holds.

(1) G = PGL(2, 9), M10 or PΓL(2, 9) and H = Z2
3 o Z8, Z2

3 o Q8 or Z2
3 o [24],

respectively, where [24] is a 2-group of order 24.
(2) Either soc(G) = soc(H) = A6 or (G,H) is one of (PGL(2, 9),S4), (M10,S4), and

(PΓL(2, 9),S4 × Z2).
(3) (G,H) is one of (Sc,Ac), (A5,D10), (S5,Z5 o Z4), (A6,PSL(2,5)), (S6,PGL(2,5)),

(S7,PSL(3, 2)) (A7,PSL(3, 2)), (S8,Z3
2 o PSL(3, 2)) and (A8,Z3

2 o PSL(3, 2)).
(4) H is not primitive on c, and either c ≤ 8 and H is a {2, 3}-group or c = 2a and

H = (Sa o S2) ∩G for a ∈ {6, 9, 10, 12, 36}.

Proof. If G 6≤ Sc, then c = 6, and so (1) and (2) follow from checking the subgroups of
G of square-free indices in [5]. Thus, in the following, assume that Ac ≤ G ≤ Sc and
H is transitive on c.

Assume that H is primitive on c. Since |G : H| is square-free, H contains a maximal
subgroup of a Sylow two-subgroup of Ac. Then H contains a permutation with the
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form of (i j)(kl) and (3) follows from Lemma 3.5 and checking the primitive groups of
degree no more than eight.

Assume that H is not primitive on c. Then Ac ≤ G ≤ Sc. Let B be a nontrivial
H-invariant partition on c with minimal block size, say, a. Then H ≤ (Sa o Sb) ∩G :=
M ≤G, where b = c/a. Since |G : H| is square-free, |G : M| and |M : H| are also square-
free. It is easy to see that |Sc : (Sa o Sb)| = |G : M|. Then |Sc : (Sa o Sb)| is square-free
and (a, b) is given in Lemma 3.1. Clearly, if both a and b are no more than four, then
H is a {2, 3}-group. Thus assume that b = 2 and a ∈ {6, 9, 10, 12, 36}. In particular, it is
easy to know that |Sc : (Sa o Sb)| = |G : M| is even square-free.

Set B = {∆1,∆2}. Without loss of generality, assume that ∆1 = a and let Sa o S2 =

(Sym(∆1) × Sym(∆2)) o 〈π〉, where π = Πa
i=1(ia + i). In particular, π ∈ Ac if a is even.

Let N = Alt(∆1) × Alt(∆2). Then N E M, and so HN is a subgroup of M. Thus
|N : (H ∩ N)| = |HN : H| is a divisor of |M : H|. Then |N : (H ∩ N)| is square-free. It is
easily shown that H ∩ N contains a maximal subgroup Q of a Sylow two-subgroup
P of N. Then Q E P and |P : Q| = 2. Without loss of generality, assume that P
contains (1 2 3 4)(5 6) and (a + 1a + 2a + 3a + 4)(a + 5a + 6). It follows that (1 2)(3 4),
(a + 1a + 2)(a + 3a + 4) ∈ Q. Thus (1 2)(3 4) ∈ H∆1

∆1
and (a + 1a + 2)(a + 3a + 4) ∈ H∆2

∆2
.

By the choice of B, H∆i
∆i

is a primitive subgroup of Sym(∆i). Then, similarly as in (2),
either H∆i

∆i
≥ Alt(∆i) or PSL(2, 5) ≤ H∆i

∆i
≤ PGL(2, 5). But the latter case yields four

dividing |G : H|. Thus H∆i
∆i
≥ Alt(∆i). Noting that 1 , (H ∩ N)∆i E H∆i

∆i
, (H ∩ N)∆i =

Alt(∆i). It follows from [6, Lemma 4.3A] that H ∩ N = Alt(∆1) × Alt(∆2) = N. It
is easy to check that a Sylow two-subgroup of N has index 22 in some Sylow two-
subgroup of Ac. Then N is properly contained in H. Noting that |M : H| divides
|M : N| = 22 or 23 and |G : M| is even square-free, it follows that |M : H| = 1. Then (4)
holds. �

Lemma 3.7. Let c ≥ 5 be an integer. Let Ac ≤ G ≤ Sc and let H < G with |G : H| being
square-free. Assume that H has t orbits ∆1, . . . ,∆t on c, where t ≥ 2. Let d j = |∆ j| for
1 ≤ j ≤ t. Let r be such that br+1 = · · · = bt = 1 and b j > 1 for j ≤ r. Set c1 =

∑r
i=1 d j.

(1) If r ≥ 2 and c1 ≥ 5, then, reordering d j if necessary, either H is one of (Sd1 × · · · ×

Sdr−1 × Adr ) ∩G and (Sd1 × · · · × Sdr ) ∩G or, for each d j > 1, the pair (d j,H∆ j )
is as described in Tables 2, 3, 4 and 5 for r = t and as in Tables 8, 9, 10 and 11
for r < t.

(2) If r = 1 or c1 ≤ 5, then (d1,H∆1 ) is as described in Tables 6 and 7.

Proof. Set M1 := (H∆1 × · · · × H∆t ) ∩G and M2 := (Sd1 × · · · × Sdt ) ∩G. Then H ≤ M1

and H ≤ M2. Since |G : H| is square-free, |Mi : H|, |M2 : M1| and |G : Mi| are all square-
free, where i = 1, 2.

Case 1. Assume that H is fixed-point-free on c, that is, d j ≥ 2 for all j ≤ t.
Assume that H∆ j ≤ Alt(∆ j) for all 1 ≤ j ≤ t. Then H ≤ Ac and M1 = H∆1 × · · · × H∆t

as Ac ≤ G. If G = Sc, then |G : H| is divisible by 2t, which contradicts the hypothesis.
Thus G = Ac. Then M2 = (Ad1 × · · · × Adt ) o Zt−1

2 , and hence t = 2 and |Ad j : H∆ j | is
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Table 2. Pairs of orbit length and subgroup transitive restriction Case 1.

c d1 d2 H∆1 H∆2 Remark
d1 + d2 ≥5 ≥3 Ad1 Ad2 d1 − d2 ≥ 2

p(d1, d2)/d2! odd square-free
d1 + 8 ≥36 8 Ad1 Z3

2 o PSL(3, 2) p(d1, 8)/(26 · 3 · 7) square-free
d1 + 8 ≥36 8 Ad1 Z3

2 o S4 p(d1, 8)/(26 · 3) square-free
d1 + 8 ≥36 8 Ad1 (S4 o S2) ∩ A8 p(d1, 8)/(26 · 32) square-free
d1 + 7 ≥136 7 Ad1 PSL(3, 2) p(d1, 7)/168 square-free
d1 + 6 ≥56 6 Ad1 S4 p(d1, 6)/24 square-free
d1 + 4 ≥9 4 Ad1 Z4

2 p(d1, 4)/4 square-free
7 4 3 A4 A3
7 4 3 Z2

2 A3

Table 3. Pairs of orbit length and subgroup transitive restriction Case 2.

d j dt H∆ j H∆t Remark
>99 2a Sd j Sa o S2, a = 6, 9, 10, 12, 36 p(d j, 2a)/[2 · (a!)2] square-free

S4 o S2 p(d j, 8)/[2 · (4!)2] square-free
(S4 o S2) ∩ A8 p(d j, 8)/[(4!)2] square-free

≥36 8 Sd j Z3
2 o S4, Z4

2 o [22 · 3], Z4
2 o A4 p(d j, 8)/(3 · 26) square-free

Z4
2 o S4 p(d j, 8)/(3 · 27) square-free

Z3
2 o PSL(3, 2) p(d j, 8)/(3 · 7 · 26) square-free

≥136 7 Sd j PSL(3, 2) p(d j, 7)/(3 · 7 · 23) square-free
≥36 6 Sd j S4 × Z2 p(d j, 6)/48 square-free
≥56 S4 p(d j, 6)/24 square-free
≥9 PGL(2, 5) p(d j, 6)/120 square-free
≥8 Z2

3 o D8 p(d j, 6)/72 square-free
≥18 5 Sd j Z5 o Z4 p(d j, 5)/20 square-free
≥9 4 Sd j D8 p(d j, 4)/8 square-free

[22] p(d j, 4)/4 square-free

odd square-free for i = 1 and 2. Thus either H∆ j = Adi or H∆ j is known as in (2) or (3)
as it is transitive on ∆i. Calculating |Ad j : H∆ j | shows that H∆ j is one of Ad j , PSL(3, 2)
for d j = 7, Z3

2 o PSL(3, 2) for d j = 8, (Sdi/2 o S2) ∩ Adi for di ∈ {12, 18, 20, 24, 72},
Z3

2 o S4 for d j = 8, (S4 o S2) ∩ A8 for d j = 8, S4 for d j = 6, or Z2
2 for d j = 4.

Since |Ac : M1| and |M2 : M1| = 2|Ad1 : H∆1 ||Ad2 : H∆2 | are square-free, with the
help of Lemma 3.1, Corollary 3.2 and Lemma 3.3, (c, d1, d2; H∆1 ,H∆2 ) are listed in
Table 2. Assume that H∆i 6≤ Alt(∆i) for some 1 ≤ i ≤ t. Then M1 has index two
or one in L1 := H∆1 × · · · × H∆t depending on G = Ac or not, respectively; and the
same thing occurs for M2 and L2 := Sd1 × · · · × Sdt . Thus |L2 : L1|, |Sc : L2|, |Sc : L1|

and |Sd j : H∆ j | are all square-free. Then (d j, H∆ j ) is one of the following pairs:
(d j, Sd j ), (d j,Ad j ), (S7, PSL(3, 2)), (S8, Z3

2 o PSL(3, 2)), (5, Z5 o Z4), (6, PGL(2, 5)),
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Table 4. Pairs of orbit length and subgroup transitive restriction Case 3.

d j dt−1 dt H∆ j H∆t−1 H∆t Remark
≥36 ≥36 8 Sd j Adt−1 S4 o S2 p(d j, 8)/[2 · (4!)2] odd square-free

Z4
2 o S4 p(d j, 8)/(27 · 3) odd square-free

≥36 ≥36 6 Sd j Adt−1 S4 × Z2 p(d j, 6)/48 odd square-free
≥9 ≥9 4 Sd j Adt−1 D8 p(d j, 4)/8 odd square-free
≥36 4 4 Sd j S4 D8 p(d j, 8)/(3 · 26) square-free
≥36 4 4 Sd j A4 D8 p(d j, 8)/(3 · 25) square-free
≥36 4 3 Sd j D8 S3 p(d j, 7)/48 square-free
≥136 4 3 Sd j D8 A3 p(d j, 7)/24 square-free

[22] S3

Table 5. Pairs of orbit length and subgroup transitive restriction Case 4.

c d1 d2 d3 H∆1 H∆2 H∆3 Remark
d1 + 7 d1 ≥ 36 4 3 Ad1 D8 S3 p(d1, 7)/48 odd square-free
d1 + 8 d1 ≥ 36 4 4 Ad1 D8 S4 p(d1, 8)/(26 · 3) odd square-free
d1 + 8 d1 ≥ 36 8 Ad1 S4 o S2 p(d1, 8)/[(4!)2 · 2] odd square-free
d1 + 8 d1 ≥ 36 8 Ad1 Z4

2 o S4 p(d1, 8)/(27 · 3) odd square-free
d1 + 6 d1 ≥ 36 6 Ad1 S4 × Z2 p(d1, 6)/48 odd square-free
d1 + 4 d1 ≥ 9 4 Ad1 D8 p(d1, 4)/8 odd square-free

8 4 4 S4 D8
7 4 3 D8 S3, A3
7 4 3 [22] S3

Table 6. Pairs of orbit length and subgroup transitive restriction Case 5.

c d1 c − c1 G H Remark
c d1 ≤3 Sc Sc1 p(c1, c − c1) square-free
c c − 1 1 Sc Ac1 c odd square-free

d1 ≤3 Ac Ac1 p(c1, c − c1) square-free
2a + 1 2a 1 S2a+1 Sa o S2 a ∈ {6, 9, 10, 36}

A2a+1 (Sa o S2) ∩ A2a

7 6 1 S7 PGL(2, 5)
Z2

3 o D8
S4 × Z2, S4

A7 Z2
3 o Z4, A4, S4

PSL(2, 5)

(2a, Sa o S2) for a ∈ {6, 9, 10, 12, 36}, (8, S4 o S2), (8, (S4 o S2) ∩ A8), (8, Z4
2 o [22 · 3]),

(8,Z4
2 o S4), (8,Z4

2 oA4), (8,Z3
2 o S4), (6,S4), (6,Z2

3 oD8), (6,S4 × Z2), (4,S4), (4,D8)
or (4, [22]). Noting that |L2 : L1| =

∏t
i=1 |Sd j : H∆ j |, all |Sd j : H∆ j | are pairwise coprime,
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Table 7. Pairs of orbit length and subgroup transitive restriction Case 6.

c d1 d2 d3 d4 H∆1 H∆2 H∆3 H∆4 G H
5 3 1 1 S3 1 1 A5 S3

2 2 1 Z2 Z2 1 S5 Z2
2

Z2 Z2 1 A5 Z2
5 4 1 S4 1 S5 S4

A4 1 S5 A4
D8 1 S5 D8
[22] 1 S5 [22]
A4 1 A5 A4
Z2

2 1 S5 Z2
2

6 4 1 1 S4 1 1 S6 S4
A4 1 1 A6 A4

7 4 2 1 S4 Z2 1 S7 S4 × S2, S4
A4 Z2 1 S7 A4 × S2
S4 Z2 1 A7 S4, A4

7 4 1 1 1 S4 1 1 1 S7 S4
A4 1 1 1 A7 A4

Table 8. Pairs of orbit length and subgroup transitive restriction Case 7.

c t − r d1 d2 H∆1 H∆2 Remark
d1 + d2 + 1 1 ≥5 ≥3 Ad1 Ad2 d1 − d2 ≥ 2

p(d1, d2 + 1)/d2! odd square-free
d1 + 7 1 ≥136 6 Ad1 S4 p(d1, 7)/24 square-free
d1 + 5 1 ≥18 4 Ad1 Z4

2 p(d1, 5)/4 square-free

Table 9. Pairs of orbit length and subgroup transitive restriction Case 8.

d j dr H∆ j H∆r Remark
>99 2a Sd j Sa o S2, a = 6, 9, 10, 36 p(d j, 2a + 1)/[2(a!)2] square-free
≥36 6 Sd j S4 × Z2 p(d j, 7)/48 square-free
≥136 S4 p(d j, 7)/24 square-free
≥64 6 Sd j PGL(2, 5) p(d j, 7)/120 square-free
≥16 Z2

3 o D8 p(d j, 7)/72 square-free
≥9 4 Sd j D8 p(d j, 5)/8 square-free
≥18 [22] p(d j, 5)/4 square-free

and so at most one of them is even square-free. If H∆ j ≥ Ad j for all j, then H =

(Sd1 × · · · × Sdt ) ∩G or, reordering d j if necessary, H = (Sd1 × · · · × Sdt−1 × Adt ) ∩G.
For the other cases, with the help of Lemma 3.1, Corollary 3.2 and Lemmas 3.3
and 3.4, (d j,H∆ j ) is as described in Tables 3, 4 and 5.
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Table 10. Pairs of orbit length and subgroup transitive restriction Case 9.

d j dr−1 dr H∆ j H∆r−1 H∆r Remark
≥136 ≥136 6 Sd j Adt−1 S4 × Z2 p(d j, 7)/48 odd square-free
≥18 ≥18 4 Sd j Adt−1 D8 p(d j, 5)/8 odd square-free

Table 11. Pairs of orbit length and subgroup transitive restriction Case 10.

c d1 d2 d3 H∆1 H∆2 H∆3 Remark
d1 + 7 d1 ≥ 136 6 1 Ad1 S4 × Z2 1 p(d1, 7)/48 odd square-free
d1 + 5 d1 ≥ 18 4 1 Ad1 D8 1 p(d1, 5)/8 odd square-free

Case 2. Assume that H fixes at least one point in c. Assume that dr+1 = · · · = dt = 1
and d j > 1 for 1 ≤ j ≤ r. Then, as c ≥ 5, r ≥ 1 and t − r ≤ 3 by Lemma 3.4. If∑r

i=1 di ≤ 4, then t ≤ 4 and
∑t

i=1 di ≤ 8, and then (c; d1, . . . , dt; G,H) is as listed in
Table 7. Assume that c1 :=

∑r
i=1 di ≥ 5. Then H ≤ G1 := Sc1 ∩ G and |G : H| =

c(c − 1) · · · (c − t + r + 1)|G1 : H| = p(c1, t − r − 1)|G1 : H| is square-free.
Assume that r = 1, that is, c1 = d1 and t − r = c − d1. Then, by Lemma 3.6,

either 5 ≤ c1 = d1 ≤ 8 and H is a transitive {2, 3}-subgroup of square-free index
in G1 or (G1, H) is one of (Sc1 , Sc1 ), (Sc1 ,Ac1 ), (Ac1 ,Ac1 ), (A5,D10), (S5, Z5 o Z4),
(A6, PSL(2, 5)), (S6, PGL(2, 5)), (S7, PSL(3, 2)) (A7, PSL(3, 2)), (S8, Z3

2 o PSL(3, 2)),
(A8,Z3

2 o PSL(3, 2)), (S2a,Sa o S2) or (A2a, (Sa o S2) ∩A2a), where a ∈ {6, 9, 10, 12, 36}.
Noting that c|G : H| is square-free, then (c; c1, c − c1; G,H) is as listed in Table 6.

Assume that r ≥ 2. Consider the restrictions of H on ∆ j for 1 ≤ j ≤ r. Then, by
Case 1, consider all possible pairs (d j,H∆ j ). If a pair (d j,H∆ j ) appears in Tables 2 to 5,
then p(d1, d j)/|H∆ j | · p(d1 + d j, t − r − 1) = p(d1, c − d1)/|H∆ j | should be square-free,
and then we get Tables 8–11. If H∆ j ≥ Ad j for all j ≤ r and H∆i = Sdi for some i ≤ r,
then H = (Sd1 × · · · × Sdr ) ∩G or, reordering d j if necessary, H = (Sd1 × · · · × Sdr−1 ×

Adr ) ∩G. This concludes the proof. �

4. Proof of Theorem 1.1

Let G be a finite group with soc(G) = Ac for c ≥ 5. The first part of Theorem 1.1
follows form Lemmas 3.6 and 3.7. In the following, assume that Γ is a connected
(G, 2)-arc-transitive graph on square-free number vertices and sometimes, setting
H = Gα for some α ∈ VΓ, write Γ = Cos(G, H, HxH) for some x ∈ G satisfying
Lemma 2.1. Then the second part of Theorem 1.1 follows from Lemmas 4.1, 4.2,
4.3, 4.4 and 4.5.

Lemma 4.1. Assume that G is one of PGL(2, 9), M10 and PΓL(2, 9). Then Γ is
isomorphic to K10 or the Tutte’s 8-cage.

Proof. If G is primitive on VΓ, then, by [26, Main-Theorem (1)], we know that G is
three-transitive on VΓ and Γ � K10.

https://doi.org/10.1017/S1446788717000040 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000040


138 G. X. Wang and Z. P. Lu [12]

Thus we assume that H is not maximal in G. Then(G,H) is one of (PGL(2, 9), S4),
(M10, S4) and (PΓL(2, 9), S4 × Z2). Further, for these three cases, G has a subgroup of
index two which contains H, say, X = S6 for G = PΓL(2, 9) and X = A6 for the other
two cases. Thus Γ is a bipartite graph with two parts, say, U and V , each having size
15. It is easy to see that X acts primitively on both U and V . In particular, X acts
transitively on the edges of Γ. We claim that the actions of X on U and V are not
permutation equivalent; otherwise, X will have a primitive permutation representation
of degree 15 with a two-transitive subconstituent, which contradicts the main theorem
of [26]. Thus assume that U consists of two-subsets of 6 while V is the set of partitions
of 6 into three parts with the same size. Let {α, β} be an edge of Γ with α ∈ U and
β ∈ V . Then two possible cases arise. If α is not a part of β, then it is easily shown that
Γ(α) = βH = {βh | h ∈ H} contains 12 partitions of 6, but H cannot act two-transitively
on Γ(α), which contradicts the hypothesis. Thus α must be a part of β and, in this case,
Γ is isomorphic to Tutte’s 8-cage. �

Lemma 4.2. If H is a transitive subgroup of Sc, then c = 5, 6 and Γ � K6; or c = 6
and Γ � K10; or c = 7, 8 and Γ or its complement graph in K15,15 is isomorphic to the
point-hyperplane incidence graph of PG(3, 2).

Proof. Assume that H is transitive on c with respect to the natural action of Sc. Since
Γ is (G, 2)-arc-transitive, |H| = |Gα| has at least one odd prime divisor. It follows from
Lemma 3.6 and checking the imprimitive groups of degrees six and eight that one of
the following three cases occurs: (i) H is maximal in G and H is one of (Sa o S2) ∩G
for c = 2a and a ∈ {6, 9, 10, 12, 36}, (Z5 o Z4) ∩G for c = 5, PGL(2, 5) ∩G for c = 6,
(Z2

3 o D8) ∩ G for c = 6, (S4 × Z2) ∩ G for c = 6, PSL(3, 2) for c = 7 and G = A7,
(S4 o S2) ∩G for c = 8, and Z4

2 o S4 for c = 8, Z3
2 o PSL(3, 2) for c = 8 and G = A8;

(ii) H is not maximal in G and (G,H) is one of (S7,PSL(3, 2)) and (S8,Z3
2 o PSL(3, 2));

and (iii) H is not maximal in G and (G,H) is one of (A6,A4), (S6, S4), (S6,A4 × Z2),
(A8,Z3

2 o S4), (A8,Z3
2 o A4), (S8,Z3

2 o S4) and (S8,Z4
2 o A4).

Case 1. Assume, first, that H is maximal in G. Then G is primitive on VΓ. Noting
that H is transitive on c, it follows from [26] that c = 5 and Γ � K6, or c = 6,
G = PΣL(2, 9) = S6 and Γ � K10 (noting that this case was missed in [26]), or H is
almost simple and primitive on c, so H is one of PGL(2, 5) ∩ G and PSL(3, 2). If
H = PGL(2, 5) ∩ G, then Γ � K6. Suppose that G = A7 and H = PSL(3, 2). Then
|VΓ| = |G : H| = 15 is odd and Γ is of even valency. It yields |Γ(α)| = 8, and hence
Hβ = Gαβ � Z7 o Z3 for some β ∈ Γ(α). It is easily shown that NG(Gαβ) = Gαβ. Then
there is no x ∈ NG(Gαβ) with 〈H, x〉 = G, which contradicts the hypothesis.

Case 2. Assume that G = S7 or S8 and H = PSL(3, 2) or Z3
2 o PSL(3, 2), respectively.

Then H ≤ soc(G) = Ac, c = 7 or 8. Then Γ is a bipartite graph with two parts, say, U
and V , each having size 15. Further, Ac is primitive on both U and V and transitive
on EΓ.

Assume that the actions of Ac on U and on V are permutation equivalent. Then
Ac is a primitive permutation group with degree 15 and a suborbit of size |Γ(α)|.
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It is known that such a primitive permutation group is two-transitive. Thus |Γ(α)| = 14
and Γ � K15,15 − 15K2, but such a graph cannot admit Sc acting transitively on its two-
arcs, which contradicts the hypothesis.

Therefore, assume that U is the point set while V is the hyperplane set of the
projective geometry PG(3, 2), respectively. (Note that A7 is viewed as a transitive
subgroup of PSL(4, 2) � A8 on projective points or on hyperplanes.) Then Γ or its
complement graph in K15,15 is isomorphic to the point-hyperplane incidence graph of
PG(3, 2).

Case 3. Assume that c = 6 or 8 and H is soluble. Then HΓ(α) is a two-transitive affine
group. Further, by checking one by one the possible H = Gα here, Γ is of valency three
or four.

Suppose that Γ is of valency three. Note that the stabilizers for cubic two-arc-
transitive graphs are explicitly known (see [2, 18f], for example). Then the only
possible case is (G,H) = (S6, S4), and so Γ is (S6), 4)-arc-transitive. By [4], all cubic
two-arc-transitive graphs of order 30 are isomorphic and five-transitive. Thus Γ is
isomorphic to the graph given in Example 2.5, but such a graph cannot admit S6 acting
transitively on vertices, which contradicts the hypothesis.

Now let Γ be of valency four. If Γ is (G, s)-transitive for s ≥ 4, then H should contain
a subgroup with quotient GL(2, 3) by checking the stabilizers listed in Table 1, which
is impossible. Thus Γ is (G, 2)-transitive or (G, 3)-transitive. Then, by Lemma 2.12,
(G,H) = (A6,A4) or (S6,S4).

Suppose that G = S6 and H = S4 ≤ soc(G) = A6. Then Γ is a bipartite graph with
A6 acting primitively on both two parts, say, U and V . If the actions of A6 on U and V
are not permutation equivalent, then a similar argument as in Lemma 4.1 yields that Γ

is of valency three, which contradicts the hypothesis. Thus the actions of A6 on U and
V are permutation equivalent. So Ac is a primitive group with degree 15 and a suborbit
of size four, which is impossible.

The above argument implies that Γ is (A6, 2)-arc-transitive, and it is easily shown
that (A6)α = H ∩ A6 � A4 is transitive on 6. Then, replacing G by A6 if necessary,
assume that H = 〈σ, τ〉 and Gαβ = 〈σ〉, where σ = (1 2 3)(4 5 6) and τ = (1 4)(2 5).
Calculation indicates that there is no x ∈ NG(Gαβ) = 〈(1 2 3), (4 5 6)〉 o 〈(2 3)(4 5)〉 with
〈x,H〉 = G, which contradicts the hypothesis. �

By Lemmas 4.1 and 4.2, assume that G ≤ Sc and H is intransitive on c in the
following three lemmas. Let ∆1, . . . ,∆t be H-orbits on c, where t ≥ 2. Let d j = |∆ j|

for 1 ≤ j ≤ t. Then Lemma 3.7 is available for our further argument. By Lemma 2.10,
H = Gα has at most two insoluble composition factors. It follows that at most two of
H∆ j are insoluble.

Lemma 4.3. If H is soluble, then Γ is isomorphic to one of K5, O3 and K5,5 − 5K2 for
c = 5, or to O4 for c = 7.

Proof. Assume that G ≤ Sc and H is a soluble intransitive subgroup of Sc.
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Case 1. H is fixed-point-free on c. In this case, it is shown that d j ≤ 4 for 1 ≤ j ≤ t by
checking all possible H∆ j in Lemma 3.7. Thus t ≤ 4 and c =

∑t
j=1 ≤ 8 by Lemma 3.4.

Further, Γ is of valency three or four by considering the possible two-transitive affine
group HΓ(α), and the fact that Γ is not (G, s)-transitive for s ≥ 4, by Lemma 2.11, if Γ

is of valency four.
Assume that Γ is valency three. Then (c,G,H) is one of (5, S5, S3 × S2), (5,A5,

(S3 × S2) ∩ A5), (6,A6, (S4 × S2) ∩ A6), (6, S6, S4 × S2) and (7,A7, ([22] × S3) ∩ A7).
If c = 7, then |VΓ| = |G : H| = 210, but there is no cubic arc-transitive graph with order
210 by [4], which contradicts the hypothesis. Each of the first four triples imply that
G is primitive on VΓ, so then, by [26], the only possible case is that c = 5 and Γ � O3.

Assume that Γ is valency four. Then (c,G,H) is one of (6,A6, (S4 × S2) ∩ A6),
(7, S7, S4 × S3), (7, A7, (S4 × S3) ∩ A7), (7, A7, A4 × A3), (7, S7, A4 × S3), (7, S7,
S4 × A3) and (7,A7,A4 × A3). Each of the first three triples imply that G is primitive
on VΓ, so then, by [26], c = 7 and Γ � O4. Each of the last four triples imply that Γ

is (A7, 3)-transitive. Thus suppose that G = A7 and H = A4 × A3. Then, for β ∈ Γ(α),
calculation shows that Gαβ = Z2

3 , NG(Gαβ) = Z4
3 o Z4 and there is no x ∈ NG(Gαβ) with

x2 ∈ Gαβ and 〈x,H〉 = G, which contradicts the hypothesis.

Case 2. H fixes exactly one point in c and (c,G,H) is one of (5, S5, S4), (5,A5,A4),
(5,S5,A4), (7,S7,Z2

3 oD8), (7,A7,Z2
3 o Z4), (7,S7,S4 × S2), (7,S7,A4 × S2), (7,S7,S4),

(7,A7, S4), (7,A7,A4). The first two triples yield G = K5. The third triple yields
Γ � K5,5 − 5K2.

Thus assume that c = 7. The first two triples for c = 7 imply that Γ is of valency
nine, while the others yield that Γ is of valency three or four and H , A4 × S2. Assume
that H fixes the point 7 in 7.

Suppose that Γ is of valency nine. Then, for β ∈ Γ(α), Hβ = Gαβ = D8 or Z4 and
NG(Gαβ), contained in S6, is a Sylow two-subgroup of S7. Thus 〈x,H〉 ≤ S6 and so
〈x,H〉 , G for each x ∈ NG(Gαβ), which contradicts the hypothesis.

Suppose that Γ is of valency three. Then |VΓ| is even. By inspecting the stabilizers
of cubic arc-transitive graphs, the only possible case is that G = S7 and H = S4, which
leads to a similar contradiction to that above by considering the normalizer of an arc
stabilizer in G.

Suppose that Γ is of valency four. Then there are three triples, say, (7, S7, S4),
(7,A7, S4), (7,A7,A4). Since H fixes 7 and is transitive on 6, so Gαβ fixes 7 and
has two orbits on 6 with size three. Then each x ∈ NG(Gαβ) also fixes 7, yielding
〈x,H〉 , G, which contradicts the hypothesis.

Case 3. H fixes at least two points in c and (c,G,H) is one of (7, S7, S4), (7,A7,A4),
(6, S6, S4), (6,A6,A4). Let β ∈ Γ(α). Each of these four cases yields that H ≤ S4 and
NG(Gαβ) ≤ S4 × Sc−4. Thus there is no x ∈ NG(Gαβ) with 〈x,H〉 = G, which contradicts
the hypothesis. �

Lemma 4.4. If H is intransitive on c and H has only one insoluble composition factor,
then Γ � Kc, Kc,c − cK2 or the graph in Example 2.7.
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Proof. Assume that G ≤ Sc, H is intransitive on c and H has only one insoluble
composition factor. Assume that H∆1 is insoluble and each H∆ j is soluble for j ≥ 2.
Then, by Lemmas 3.4 and 3.7, c2 :=

∑t
j=2 ≤ 8.

Case 1. Assume that d1 > 9, or d1 = 9 and c2 ≤ d1 − 2. In this case, since Ad1 is
not a simple group of Lie type, HΓ(α) = GΓ(α)

α � Sd1 or Ad1 , by checking possible H∆1

in Lemma 3.7. In particular, Γ is of valency d1. Further, by Lemma 2.11, Γ is not
(G, s)-transitive for s ≥ 4. Let β ∈ Γ(α). Then G[1]

αβ = 1 by Lemma 2.9. Recalling that

(G[1]
α )Γ(β) EGΓ(β)

αβ �GΓ(α)
αβ and Gα = G[1]

αβ · (G
[1]
α )Γ(β) ·GΓ(α)

α = GΓ(α)
α , Gαβ � Sd1−1 or Ad1−1.

Suppose that some d j , 1. Assume that d2 ≥ · · · ≥ dr > dr+1 = · · · = dt = 1 for a
suitable r ≥ 2. Then H = Γ fixes set-wise a subset ∆ = ∆2 ∪ · · · ∪ ∆r of c. Noting that
|∆| ≤ 8 < d1 − 1, L := (H∆2 × · · · × H∆r ) ∩ H ≤G[1]

α ≤Gαβ ≤ H and L has no fixed point
on ∆, this implies that each x ∈ NG(Gαβ) also fixes ∆ set-wise, and hence 〈x,H〉 , G,
which contradicts the hypothesis.

Assume that d j = 1 for t ≥ j ≥ 2. Then H = G∆1 and Gαβ fixes a δ in ∆1. Let
∆1 = d1 and δ = d1. Then NG(Gαβ) ≤ Sd1−1×Sym({d1, δ1 + 1, . . . , c}). Thus 〈x,H〉 , G
for x ∈ NG(Gαβ) with x2 ∈ Gαβ unless c − d1 = 1. It follows that c = d1 + 1 and either
Γ � Kc,c if H = Ac−1 and G = Sc or Γ = Kc otherwise.

Case 2. Assume that 5 ≤ d1 ≤ 8, or d1 = 9 and c2 = 8. By Lemma 3.7, noting that
|G : H| is square-free, d1 ≤ 8 and three cases arise.

(1) H is maximal in G and H is one of Sc−1 ∩G for c = 6 and 7, (S5 × S2) ∩G for
c = 7, (S6 × S4) ∩G for c = 10, (S7 × S4) ∩G or S8 × S3 for c = 11. Then Γ = Kc for
c = 6, 7 follows from [26].

(2) t = 2 or 3, d2 > 1 and H is one of (S8 × Z2
3 o D8) ∩G for c = 14, (A8 × S3) ∩G

or (S8 × A3) ∩G for c = 11, (S6 × S4) ∩G for c = 11, and A5 × S2 for c = 7. Then
GΓ(α) � Ad1 = PSL(m, q) for suitable m and q, and Γ is of valency d1 or qm − 1/(q − 1).
It is easily shown that NG(Gαβ) ≤ Sym(c\∆2) × Sym(∆2). Thus there is no x ∈ NG(Gαβ)
with 〈x,H〉 = G, which contradicts the hypothesis.

(3) t = 2 or 3, d j = 1 for j > 1, c = c and either (G,H) = (S7,A6) or H is one of
PGL(2, 5) ∩G for t = 2, and S5 ∩G for t = 3. The first case, that is, (G,H) = (S7,A6),
yields Γ � K7,7 − 7K2.

Suppose that t = 3. Then either NG(Gαβ) ≤ Sym(∆1) × Sym(7\∆1) when Γ is of
valency six or, for some δ ∈ ∆1, NG(Gαβ) ≤ Sym(∆1\{δ}) × Sym((7\∆1)) ∪ {δ}) when
Γ is of valency five. It is easily shown that there is no x ∈ NG(Gαβ) with x2 ∈ NG(Gαβ)
and 〈x,H〉 = G, which contradicts the hypothesis.

Assume that t = 2 and H = PGL(2, 5) ∩G. Then H ≤ Sym(∆1). If Γ is of valency
five, then Gαβ � S4 or A4 is transitive on ∆1, and so NG(Gαβ) ≤ Sym(∆1) yields a
similar contradiction to that above. Thus Γ is of valency six. It is easy to see that Γ

is (A7, 2)-arc-transitive. Then, replacing G by soc(G) if necessary, Gαβ � Z5 o Z2, and
Gαβ fixes a point δ ∈ ∆1. Set ∆1 = 6, δ = 6 and Gαβ = 〈σ, τ〉, where σ = (1 2 3 4 5) and
τ = (1 5)(2 4). Then NG(Gαβ) = 〈σ, π〉 � Z5 o Z4, where π = (1 4 5 2)(6 7). It is easy
to show 〈x,H〉 = A7 and x2 ∈ Gαβ for x ∈ NG(Gαβ)\H, and x = hπ for some h ∈ Gαβ.
Then Γ � Cos(A7; A5,A5πA5), as in Example 2.7. �
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Lemma 4.5. If H is an intransitive subgroup of Sc and H has at least two insoluble
composition factors, then Γ � Ok, k ∈ {6, 9, 10, 12, 36}.

Proof. Assume that H is intransitive on c and H has at least two insoluble composition
factors. By Corollary 2.10, H has exactly two insoluble composition factors. Consider
the restrictions of H on its orbits ∆ j on c. Then one or two of those restrictions are
insoluble, and the others are soluble.

Suppose that H has two isomorphic insoluble composition factors. Then HΓ(α) =

GΓ(α)
α is an affine two-transitive group. By Lemmas 3.4 and 3.7, t = 2, d1 = 2a, d2 = 1,

H = (Sa o S2) ∩G and G = S2a+1 or A2a+1, where a ∈ {6, 9, 10, 36}. But such an H can
not have an insoluble affine quotient, which contradicts the hypothesis.

Therefore, H has two nonisomorphic insoluble composition factors. Then HΓ(α) =

GΓ(α)
α is an almost simple two-transitive group. Further, by Lemma 3.7, assume

that H∆1 and H∆2 is insoluble and any other H∆ j is soluble. Assume, further, that
d1 = |∆1| ≥ d2 = |∆2|. Noting that H ≤ Sd1 × · · · × Sdt ∩G and |G : H| is square-free,
f(c; d1, . . . , dt) is square-free. Then d1 > d2 and H∆1 = Ad1 or Sd1 by Lemma 3.4. So
GΓ(α)
α � Ad1 or Sd1 .
Assume that d1 ≤ 8. Then either Ad1 × · · · × Adr ≤ H ≤ Sd1 × · · · × Sdr for some

2 ≤ r ≤ t such that d1, . . . , dr ≥ 2 and d j = 1 for j > r or the pair (H∆1 ,H∆2 ) appears
in Table 2 for c = d1 + d2 and in Table 8 for c = d1 + d2 + 1. By calculation, these
two cases yield t = 2 = r, H = (S6 × S5) ∩G for c = 11 and A8 × A6 ≤ H ≤ S8 × S6
for c = 14. If c = 14, then soc(GΓ(α)

α ) � A8 and the other insoluble composition factor
of H should be A7 or PSL(3, 2), which contradicts the hypothesis. Thus c = 11, and
H = (S6 × S5) ∩G is maximal in G. Then Γ � O6 follows from [26].

Assume that d1 ≥ 9. Then Γ is of valency d1, and Γ is not (G, s)-transitive for
s ≥ 4 by Lemma 2.11, so G[1]

αβ = 1 by Lemma 2.9. Then, by (2.1), we conclude that

H = Gα = G[1]
αβ · (G

[1]
α )Γ(β) · GΓ(α)

α � (Ad1 × Ad1−1) o Zl
2 for some l ≤ 2. In particular,

d2 = d1 − 1. By Lemma 3.4, f(d1 + d2; d1, d2) = (2d1 − 1)!/(d1!(d1 − 1)!) is square-
free. Then d1 ∈ {9, 10, 12, 36} by Corollary 3.2. It is easy to see that |G : H| =
c!/(d1!(d1 − 1)! · 2l−i) for i = 1 or 2. Since |G : H| is square-free, calculation indicates
that 1 ≤ i ≤ l and c = 2d1 − 1. It implies that H = (Sd1 × Sd1−1) ∩G is maximal in G.
Then Γ � Od1 follows from [26]. �
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