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Heisenberg and Carnot Groups

For an introduction to Heisenberg and Carnot groups, see, for example, [87] or
[71]. Nice surveys related to rectifiability are given by Serapioni [395] and by
Serra Cassano [396]. Both Euclidean spaces and Heisenberg groups are special
cases of Carnot groups. Except for the Euclidean case, they are non-Abelian
and have a structure similar to Heisenberg groups, but instead of two levels
there can be any finite number of levels with different dilation exponents. I do
not discuss them explicitly, but I make some comments about them along the
way.

8.1 The Heisenberg Group Hn

Heisenberg group Hn is R2n+1 as a set but with a different metric and non-
Abelian group structure. We denote the points of Hn by p = (z, t) = (x, y, t), z =
(x, y) ∈ Rn × Rn, t ∈ R, and define the non-Abelian group operation by

p · p′ = (
z + z′, t + t′ + ω(p, p′)

)
,

where

ω(p, p′) = ω(z, z′) = −2
n∑

i=1

(xiy
′
i − yix

′
i ).

We shall use the Koranyi metric d given by

d(p, p′) =
(

|z − z′|4 + (t − t′ − ω(z, z′))2
) 1

4 . (8.1)

Then the ball of radius r at the origin

B(0, r) =
{

p : (|z|4 + t2)
1
4 ≤ r

}

is like a cylinder of width 2r and height 2r2, soL2n+1(B(0, r)) ∼ r2n+2. The ball
B(p, r) is the image of B(0, r) under the left translation τp; τp(q) = p · q. The
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64 Heisenberg and Carnot Groups

metric is left invariant, that is, τp is an isometry. Moreover, L2n+1 = c(n)H2n+2
d

is a Haar measure of the group, soL2n+1(B(p, r)) = c′(n)r2n+2. In particular, we
see that the Hausdorff dimension of Hn is 2n + 2. We also define the dilations
δr, r > 0, by

δr(z, t) =
(

rz, r2t
)

.

Then d(δr(p), δr(q)) = rd(p, q).
In Hn the metric on all horizontal lines Le := {te, 0) : t ∈ R}, e ∈ S 2n−1,

and their left translates is Euclidean, so their subsets are 1-rectifiable. There
are many other 1-rectifiable sets; any two points of Hn can be joined with a
rectifiable curve. This fact also leads to the geodesic metric which is equivalent
to the one we have chosen.

When n > 1, there are many m-rectifiable sets for m = 1, . . . , n in the same
way. Define the horizontal plane H = {t = 0} identified with R2n and define the
space of horizontal subgroups V ⊂ H:

Gh(2n,m) = {V ∈ G(2n,m) : ω(p, q) = 0 for all p, q ∈ V}.

The metric on each V ∈ Gh(2n,m) is Euclidean, so they are nice m-rectifiable
sets. The unitary transformations act transitively on Gh(2n,m) and lead to an in-
variant measure μn,m. Not all linear subspaces ofH of dimension 1 < m ≤ n are
subgroups, and no linear subspaces of dimension bigger than n are subgroups.

The vertical subgroups of linear dimension m − 1, 1 ≤ m − 1 ≤ 2n and
Hausdorff dimension m are the vertical planes V × R,V ∈ G(2n,m − 2). They,
together with the horizontal subgroups, are the only non-trivial homogeneous
subgroups of Hn, that is, they are closed and invariant under the dilations. But
the narrower collection of complementary subgroups will be more relevant for
us.

The subgroups V ∈ Gh(2n,m) and W = V⊥ are complementary: V∩W = {0},
and they span Hn in the sense that V ·W = Hn. In particular, any p ∈ Hn has a
unique decomposition

p = pV · pW , pV ∈ V, pW ∈ W. (8.2)

DefineG(Hn,m) as the set of V ∈ Gh(2n,m), when 1 ≤ m ≤ n, and V×R,V ∈
G(2n,m− 2),V⊥ ∈ Gh(2n, 2n+ 2−m), when n+ 2 ≤ m ≤ 2n+ 1. They are the
homogeneous subgroups of Hausdorff dimension m which admit a complement
in the sense of (8.2).

Also the vertical subgroups in G(Hn,m) will be m-rectifiable, but we have to
change the definition, as we shall soon do.
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8.3 Definitions of Rectifiability 65

8.2 Some Analytic Tools in Heisenberg and Carnot Groups

The analytic structure of Hn is generated by the following vector fields:

Xi = ∂xi + 2yi∂t,Yi = ∂yi − 2xi∂t, i = 1, . . . n,∇H = (X1, . . . , Xn,Y1, . . . ,Yn).

These vector fields at the origin span the horizontal plane H and at p the
plane τp(H). The tangent vectors of rectifiable curves are spanned by them.
We say that a continuous function u on an open subset U of Hn belongs to C1

H

if ∇Hu is continuous.
There is a very general Rademacher theorem due to Pansu [379]. It says that

Lipschitz maps f between Carnot groups are almost everywhere differentiable.
Now the derivative dH f (p) is a homogeneous (it commutes with the dilations)
homomorphism between the groups such that

lim
q→p

d
(

f (p)−1 · f (q), dH f (p)(p−1 · q)
)

d(p, q)
= 0.

Franchi, Serapioni and Serra Cassano proved an implicit function theorem
for real-valued functions on subsets of Hn and a Whitney extension theorem
for Euclidean-valued (or values in the horizontal subbundle) functions on sub-
sets of Hn, see [212, 213]. But a Whitney extension theorem for Hn valued
functions is missing, and hence also approximation of Lipschitz maps with
differentiable maps.

There also are several versions of the area and coarea formulas, see [24, 268,
430] and the references given there.

8.3 Definitions of Rectifiability

There are several natural ways to define rectifiable sets in Heisenberg and
Carnot groups. Some of them are known to be equivalent in some cases, for
some the relations are unknown. We begin with the definition we have already
used in metric spaces:

Definition 8.1 Let 1 ≤ m ≤ n. A set E ⊂ Hn is m-rectifiable if there are
Lipschitz maps fi : Ai → Hn, Ai ⊂ Rm, i = 1, 2, . . . such that

Hm
d

⎛
⎜⎜⎜⎜⎜⎝E \

∞⋃

i=1

fi(Ai)

⎞
⎟⎟⎟⎟⎟⎠ = 0.

The corresponding notion for measures is defined as in 4.2. I only gave this
definition for low-dimensional sets for a good reason: there are no non-trivial
m-rectifiable subsets of Hn for m > n by the following result. In H1 it was
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66 Heisenberg and Carnot Groups

proved by Ambrosio and Kirchheim in [16]. A very general statement in Carnot
groups is due to Magnani [300].

Theorem 8.2 If m = n + 1, . . . , 2n + 2 and f : A → Hn, A ⊂ Rm is Lipschitz,
thenHm

d ( f (A)) = 0. In particular, Hn is purely (2n + 2)-unrectifiable.

To get an idea why this is true, suppose that n = 1 and f = ( f1, f2) maps
R

3 into the vertical plane W = {y = 0}. The metric in W is given by the
‘norm’ (|x|4 + t2)1/4. Then | f2(u) − f2(v)| � |u − v|2, so f2 is constant and
H3

d ( f (R3)) = 0 follows. Of course, f need not map into a vertical plane, but its
Pansu differentials dH f (u) must because they are group homomorphisms and
thus dH f (u)(R3) is an Abelian subgroup. From this one can argue similarly.

Are there any non-trivial m-rectifiable subsets when m > n? The answer is
no with our present definition, as we saw above. But there are many with an
alternate definition. Recall that Euclidean rectifiable sets can be defined using
level sets of regular functions. Based on this we first define regular surfaces
S . If 1 ≤ m ≤ n, this means that S is locally the image of an open subset of
R

m under an injective continuously differentiable (in Pansu’s sense) map with
injective derivative. If n + 2 ≤ m ≤ 2n + 1, we say that S is regular if for every
p ∈ S there are an open set U with p ∈ U and a function u : U → R2n+2−m,

whose coordinate functions belong to C1
H such that S ∩U = {q ∈ U : u(q) = 0}

and for q ∈ U the Pansu derivative dHu(q) is surjective. These surfaces are
also regular in the sense that they have tangent subgroups, in the first case via
Pansu derivative and in the second via the kernel of dH f (p). Notice that when
m ≥ n + 2, the topological dimension of S is m − 1.

Definition 8.3 Let m = 1, . . . , n, n + 2, . . . , 2n + 1. A set E ⊂ Hn is (m,H)-
rectifiable if there are m-regular surfaces S i, i = 1, 2, . . . such that Hm

d (E \
⋃∞

i=1 S i) = 0.

This definition in codimension 1 is due to Franchi, Serapioni and Serra Cas-
sano [212]. They introduced this concept and used it to develop De Giorgi’s
theory of sets of finite perimeter in Heisenberg groups. We shall return to this in
Section 12.4. For general dimensions and Carnot groups, see [215, 301].

As an example, consider the vertical plane W = {y = 0} ⊂ H1. Then
u(x, y, t) = y belongs to C1

H with Y1u � 0 on W. Hence W is a regular surface
and a (3,H)-rectifiable set. As another example, the horizontal plane
H in Hn is not a regular surface because it has a singularity, a characteristic
point, at 0. But it is regular outside 0, and hence a (2n + 1,H)-rectifiable set.

In fact, all C1 smooth Euclidean m-dimensional, n + 1 ≤ m ≤ 2n, surfaces
are (m + 1,H)-rectifiable. They have positive and locally finiteHm+1

d measure,
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8.3 Definitions of Rectifiability 67

and they are regular outside the set of characteristic points, which has Hm+1
d

measure zero by results of Balogh [53] for m = 2n and Magnani [301] for
general m. A point p is a characteristic point of a hypersurface S if the tan-
gent space (in Heisenberg sense) at p is spanned by the horizontal vector fields
Xi,Yj. More generally, the Euclidean m-rectifiable sets, n + 1 ≤ m ≤ 2n, are
(m + 1,H)-rectifiable since Hm(A) = 0 implies Hm+1

d (A) = 0 for A ⊂ Hn.
The converse is false because (2n + 1,H)-rectifiable sets can have Euclidean
Hausdorff dimension bigger than 2n, see [278] for an example in H1 of Haus-
dorff dimension 2.5. General comparisons of Euclidean and Carnot Hausdorff
measures can be found in [55].

When 1 ≤ m ≤ n, clearly (m,H)-rectifiable sets are m-rectifiable, but it is not
known if the converse holds. Although Lipschitz maps are almost everywhere
differentiable by Pansu’s theorem, one would need something like Whitney’s
extension theorem to go to C1

H from Lipschitz. This is not known for Heisen-
berg-valued maps.

Intrinsic differentiable graphs and intrinsic Lipschitz graphs have recently
been investigated intensively. They provide another definition for rectifiability.
In Euclidean spaces, cones were used to characterize rectifiability in terms of
the approximate tangent planes, and they are directly connected to Lipschitz
maps as in the argument preceding Theorem 3.3. In Heisenberg groups, the
situation is more complicated but we can define a class of Lipschitz maps ge-
ometrically in terms of cones. This was done by Franchi, Serapioni and Serra
Cassano in [214] in Heisenberg groups and in [211] in general Carnot groups.

For a homogeneous subgroup G, define the cone

X(p,G, s) =
{

q ∈ Hn : d(p−1 · q,G) < sd(p, q)
}

= p {q ∈ Hn : d(q,G) < sd(q, 0)} .
(8.3)

Geometrically these cones look rather different from the Euclidean cones.
Let V and W be complementary subgroups of Hn; V ∩W = {0} and V ·W =
H

n, with V horizontal and W vertical. For much that follows, they could also
be complementary homogeneous subgroups of a general Carnot group. We say
that S ⊂ Hn is a (vertical) intrinsic Lipschitz graph if there is s > 0 such that
for all p ∈ S ,

S ∩ X(p,V, s) = ∅.

We say that a function f : A → V, A ⊂ W is (vertical) intrinsic Lipschitz if
gr( f ) := {p · f (p) : p ∈ A} is an intrinsic Lipschitz graph. In Euclidean spaces,
this just means that f is Lipschitz. But now the intrinsic Lipschitz functions
need not be Lipschitz in the metric sense, and vice versa, see [27, Example
3.21].
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68 Heisenberg and Carnot Groups

Changing the roles of V and W, we get horizontal intrinsic Lipschitz graphs
and functions. Arena and Serapioni proved in [27, Proposition 3.20] that a
horizontal function f is intrinsic Lipschitz if and only if p �→ p · f (p) is metric
Lipschitz.

Intrinsic Lipschitz graphs over the whole planes have positive and locally
finite Hausdorff measure (in the appropriate dimension); they are even AD-
regular. This holds in general Carnot groups, see [211, Theorem 3.9].

Definition 8.4 Let m = 1, . . . , n, n+ 2, . . . , 2n+ 1. A set E ⊂ Hn is (m,HintL)-
rectifiable if there are m-dimensional (in terms of Hausdorff dimension) intrin-
sic Lipschitz graphs S i, i = 1, 2, . . . such thatHm

d (E \⋃∞
i=1 S i) = 0.

There is a slightly more complicated notion of intrinsic differentiable func-
tions and graphs, see [27, 214]. Arena and Serapioni proved in [27, Theorem
4.2] that regular surfaces and intrinsic differentiable graphs are the same lo-
cally. So the rectifiable sets defined in terms of intrinsic differentiable graphs
are the same as (m,H)-rectifiable sets. To get to intrinsic Lipschitz, one would
need a Rademacher-type theorem for intrinsic Lipschitz functions. Such a theo-
rem was proved by Franchi, Serapioni and Serra Cassano [216] in the codimen-
sion 1 case (m = 2n + 1) in Heisenberg groups. For this they used their results
on sets of finite perimeter. Franchi, Marchi and Serapioni [210] extended this to
some Carnot groups. In [430], Vittone proved that intrinsic Lipschitz functions
f : A → V, A ⊂ W,W vertical, are almost everywhere intrinsic differentiable.
From this using Whitney-type arguments he further showed that intrinsic Lip-
schitz graphs can be approximated in measure by regular surfaces. This leads
to part (2) of the following theorem, see [430, Corollary 7.4]. Part (1) follows
from the above-mentioned result [27, Proposition 3.20] together with the fact
the m-rectifiable sets have approximate tangent subgroups (Theorem 8.6) and
positive lower density (Theorem 7.7).

Theorem 8.5 Let E ⊂ Hn beHm
d measurable withHm

d (E) < ∞. Then

(1) If 1 ≤ m ≤ n, E is (m,HintL)-rectifiable if and only if it is m-rectifiable.
(2) If n + 2 ≤ m ≤ 2n + 1, E is (m,HintL)-rectifiable if and only if it is (m,H)-

rectifiable.

There are several ingredients of independent interest in Vittone’s proof. He
introduced an alternative equivalent definition. According to that, S is a vertical
intrinsic Lipschitz W-graph if and only if there exist δ > 0 and a Lipschitz
map g : Hn → W⊥ such that g(x) = 0 on S and g satisfies the ellipticity-type
condition (g(p · v) − g(p)) · v ≥ δ|v|2 for v ∈ W⊥, p ∈ Hn (the second · is
the inner product). In the main part of the argument, he used currents (in a
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8.3 Definitions of Rectifiability 69

Heisenberg sense) to show that the blow-ups of S converge to a vertical plane
locally uniformly.

Counterexamples to Rademacher’s theorem for intrinsic Lipschitz graphs in
some Carnot groups were given by Julia, Nicolussi Golo and Vittone in [269].
In [270], they proved the almost everywhere tangential differentiability of Eu-
clidean-valued functions on C1

H
submanifolds of Hn yielding on H-rectifiable

sets a Lusin-type approximation of Lipschitz functions and a coarea formula.
As mentioned previously, there are no Lipschitz maps from Euclidean spaces

to parametrize higher-dimensional non-trivial sets. But perhaps one could con-
sider Lipschitz maps from other spaces. For instance, in H1 could three-
dimensional rectifiable sets be defined using Lipschitz maps from a fixed ver-
tical plane? Although an intrinsic Lipschitz map need not be metric Lipschitz,
maybe some other Lipschitz map could be used to parametrize an intrinsic
Lipschitz graph? Such a definition of rectifiability and its consequences, in
the generality of Carnot groups, was studied by Pauls [380] and by Cole and
Pauls [121]. Let (G1, d1) and (G2, d2) be Carnot groups and G a subgroup of
G1 with Hausdorff dimension m. Let us say that E ⊂ G2 is G-rectifiable if up to
Hm

d2
measure zero it can be covered with countably many Lipschitz images of

subsets of G. Except for the cases where G1 is Euclidean, not much is known
about the relation of G-rectifiability to other concepts of rectifiability, but some
partial information exists.

Fix a vertical subgroup Wn ∈ G(Hn, 2n + 1). It does not matter which – they
all are isometric. Recall that C1 Euclidean hypersurfaces in Hn are (2n+ 1,H)-
rectifiable. Cole and Pauls proved in [121] that the C1 hypersurfaces in H1

are W1-rectifiable too. Di Donato, Fässler and Orponen [177] proved that the
C1,α, α > 0, hypersurfaces in Hn are Wn-rectifiable; moreover, they have big
pieces of bi-Lipschitz images of Wn, recall Section 5.2. Earlier the rectifiability
was proved by Antonelli and Le Donne [22] for C∞ surfaces.

Antonelli and Le Donne showed in [22] that there exists a Carnot group
containing a C∞ hypersurface without characteristic points which is not G-
rectifiable for any Carnot group G, but it is rectifiable in the sense of Franchi,
Serapioni and Serra Cassano.

The papers [177] and [22] show more than rectifiability. Instead of Lips-
chitz maps, they use bi-Lipschitz maps. Antonelli and Le Donne discuss more
generally definitions of rectifiability based on bi-Lipschitz maps. Bigolin and
Vittone [65] give a counterexample concerning bi-Lipschitz parametrizations.
Orponen [373] shows that bi-Lipschitz images of W1 in H1 admit a corona
decomposition by intrinsic bi-Lipschitz graphs.

In [286], Le Donne and Young proved that a sub-Riemannian manifold that
has a Carnot group G as a constant Gromov–Hausdorff limit, see Section 7.7,
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70 Heisenberg and Carnot Groups

is G-rectifiable with bi-Lipschitz parametrizations. The converse also holds by
Pansu’s Rademacher theorem.

A possibly weaker notion of rectifiability with cones was proposed by Don,
Le Donne, Moisala and Vittone in [179]. They applied it to finite perimeter sets
in general Carnot groups.

Julia, Nicolussi Golo and Vittone [268] investigated a very general notion of
rectifiability covering with level sets of C1

H maps between Carnot groups.
For the P-rectifiability of Antonelli and Merlo, see Section 8.5.

8.4 Rectifiable Sets and Tangent Subgroups

Next we shall give a characterization of rectifiability in terms of approxi-
mate tangent subgroups and tangent measures. They are defined as in the Eu-
clidean case but using the Heisenberg structure. Recall the definition of the
cone X(p,G, s) from (8.3).

We say that G ∈ G(Hn,m) is an approximate tangent subgroup of E ⊂ Hn at
a point p ∈ Hn if Θ∗m(E, p) > 0 and for all 0 < s < 1,

lim
r→0

r−mHm
d (E ∩ B(p, r) \ X(p,G, s)) = 0.

To define the tangent measures, we now set

Ta,r(p) = δ1/r(a
−1 · p), p, a ∈ Hn, r > 0.

Then, as before, if μ is a Radon measure on Hn, a non-zero Radon measure ν
is called a tangent measure of μ at a ∈ Hn if there are sequences (ci) and (ri)
of positive numbers such that ri → 0 and ciTa,ri#μ → ν weakly. We denote the
set of tangent measures of μ at a by Tan(μ, a). The following theorems were
proven in [330]:

Theorem 8.6 Let 1 ≤ m ≤ n and let E ⊂ Hn be Hm
d measurable with

Hm
d (E) < ∞. Then the following are equivalent:

(1) E is m-rectifiable.

(2) E has an approximate tangent subgroup Gp ∈ G(Hn,m) at Hm
d almost all

p ∈ E.

(3) ForHm
d almost all p ∈ E there is Gp ∈ G(Hn,m) such that

Tan
(

Hm
d E, p

)

=
{

cHm
d Gp : 0 < c < ∞

}

.

(4) ForHm
d almost all p ∈ E Hm

d E has a unique tangent measure at p.
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8.5 Densities and Tangent Measures 71

Theorem 8.7 Let n+2 ≤ m ≤ 2n+1 and let E ⊂ Hn beHm
d measurable with

Hm
d (E) < ∞. Suppose also that Θm

∗ (E, p) > 0 for Hm
d almost all p ∈ E. Then

the following are equivalent:

(1) E is (m,H)-rectifiable.
(2) E has an approximate tangent subgroup Gp ∈ G(Hn,m) at Hm

d almost all
p ∈ E.

(3) ForHm
d almost all p ∈ E there is Gp ∈ G(Hn,m) such that

Tan
(

Hm
d E, p

)

=
{

cHm
d Gp : 0 < c < ∞

}

.

(4) ForHm
d almost all p ∈ E Hm

d E has a unique tangent measure at p.

That (4) implies (3) follows from Theorem 4.7. There the uniqueness means
uniqueness up to multiplication by positive constants. By results of Antonelli
and Merlo, see [25, Theorem 1.1], the assumption on positive lower density can
be relaxed; it is only needed to derive from (2) the other conditions. Probably
it is not really needed there either, but this seems to be unknown.

It is not known if we can replace m-rectifiable by (m,H)-rectifiable in The-
orem 8.6(1). As mentioned before, the problem here is the lack of Whitney’s
extension theorem for Hn valued functions.

A few words about the proofs. The case m ≤ n is proved by arguments
similar to those used in the Euclidean case. But the cones now are harder to
deal with if the lower density is 0. This is overcome by proving first that the
existence of tangent subgroups implies positive lower density. When m ≥ n +
2, the implication (1) =⇒ (2) follows from [215]. The key for proving that
approximate tangents imply rectifiability is the Whitney extension theorem for
R

k valued maps of Franchi, Serapioni and Serra Cassano [212].
Theorem 8.6 was generalized by Idu, Magnani and Maiale [248] to general

homogeneous groups, which need not be Carnot groups. For the extensions
by Antonelli and Merlo of both theorems to general Carnot groups, see the
discussion at the end of the next section.

8.5 Densities and Tangent Measures

For low-dimensional sets (m ≤ n) we can apply Kirchheim’s Theorem 7.7
to conclude that m-rectifiable subsets of Hn with finite measure have density 1
almost everywhere. The converse is not known, except for m = 1, see Theorem
8.12.

Recently there has been remarkable progress on densities by Merlo in
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72 Heisenberg and Carnot Groups

two papers [342, 343]. He proved Preiss’s density characterization of
rectifiability for codimension 1 subsets of Hn, recall Theorems 4.10 and 4.11:

Theorem 8.8 Let μ ∈ M(Hn) be such that the positive and finite limit
limr→0 r−2n−1μ(B(p, r)) exists for μ almost all p ∈ Hn. Then μ is (2n + 1,H)-
rectifiable.

As a corollary, we have

Theorem 8.9 Let E ⊂ Hn beH2n+1
d measurable withH2n+1

d (E) < ∞. Then E
is (2n + 1,H)-rectifiable if and only if Θ2n+1(E, p) exists for H2n+1

d almost all
p ∈ E.

The existence of density essentially follows from [215], and in much more
general settings from the results of Julia, Nicolussi Golo and Vittone [268,
Corollary 3.6] and Antonelli and Merlo [24, Theorem 1.3].

Often the density of high-dimensional Heisenberg rectifiable sets is strictly
less than 1, but for many metrics the density of the spherical Hausdorffmeasure
is 1 almost everywhere, while for some others it also is strictly less than 1,
see [302].

As in the Euclidean case, the proof of Theorem 8.8 splits into two parts. In
the first part [343], Merlo proves that the tangent measures are flat:

Theorem 8.10 Let μ ∈ M(Hn) be such that the positive and finite limit
limr→0 r−2n−1μ(B(p, r)) exists for μ almost all p ∈ Hn. Then for μ almost all
p ∈ Hn,

Tan(μ, p) ⊂
{

cH2n+1
d V : V ∈ G(Hn, 2n + 1), 0 < c < ∞

}

.

Again an easy argument shows that the tangent measures ν are uniform;

ν(B(p, r)) = cr2n+1 for p ∈ spt ν, r > 0.

Using moments in the spirit of [382] and [281], Merlo proves that their sup-
ports are contained in quadratic conical surfaces. Then disconnectedness is
verified by saying that vertical flat uniform measures are separated from the
others. As in the Euclidean case, this implies that typically only vertical flat
uniform tangent measures exist. Although many of the arguments run as in the
Euclidean case, many essential changes have to be made, in particular, replac-
ing algebraic computations by geometric arguments. I find it surprising that
Preiss’s proof can be followed at all, since it heavily used the fact that the met-
ric is given by an inner product. Merlo overcomes this by cleverly applying the
polarization

V(p, q) =
(

‖p‖4 + ‖q‖4 − ‖p−1 · q‖4
)

/2.
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8.5 Densities and Tangent Measures 73

It can be written, with a rather complicated formula, in terms of the inner
product in R2n involving for p = (w, s), q = (z, t) all the coordinates w, z, s, t in
various combinations.

In the second paper [342], Merlo proves that the flatness of the tangent
measures implies rectifiability. This is the case m = 2n + 1 in the following
theorem:

Theorem 8.11 Let μ ∈ M(Hn) be such that for μ almost all p ∈ Hn, 0 <

Θm
∗ (μ, p) ≤ Θ∗m(μ, p) < ∞ and

Tan(μ, p) ⊂
{

cHm
d V : V ∈ G(Hn,m), 0 < c < ∞

}

.

Then μ is (2n+ 1,H)-rectifiable, if m = 2n+ 1, and m-rectifiable, if 1 ≤ m ≤ n.

The proof for m = 2n + 1 is very complicated. It is given in general Carnot
groups. As for Theorem 4.9 one of the ideas is to use big projections implied,
but not easily, by the assumptions. For this, some ideas of David and Semmes
[147] in uniform rectifiability help. But now projections mean the splitting
projections p �→ pW , recall (8.2), which are much more complicated to handle
than the Euclidean projections. They are not even Lipschitz. Big projection
on W improves the information given by the assumption: the approximating
planes have to be rather close to W. Then one can proceed to show that some
intrinsic Lipschitz graph intersects spt μ in positive measure.

The proof for low dimensions was given by Antonelli and Merlo in [24]. It
follows similar patterns, but now the projections are Lipschitz, which helps.
On the other hand, serious difficulties are caused by the fact that they prove
this in quite general Carnot settings (see below); it is assumed that the tangent
subgroups admit at least one normal complementary subgroup.

There is also interesting information about the uniform measures inH1: they
are just the flat measures on horizontal lines, the t-axis and vertical planes.
The first two cases are due to Chousionis, Magnani and Tyson [104], the
third to Merlo [343], using also some results from [104]. It seems to be open
whether there can be non-flat uniform measures in higher-dimensional Heisen-
berg groups.

Combining the case m = 1 with Theorem 8.11, we get the Besicovitch–
Preiss theorem for one-dimensional measures in H1. More generally Bate has
proved (recall Theorem 7.4):

Theorem 8.12 Equip Hn with any homogeneous norm. Let μ ∈ M(Hn) be
such that the positive and finite limit limr→0 r−1μ(B(p, r)) exists for μ almost
all p ∈ Hn. Then μ is 1-rectifiable.

In [342], Merlo introduced Pm-rectifiable measures on a Carnot group G.
They were thoroughly investigated by Antonelli and Merlo in [23], [24] and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009288057.009
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 29 Aug 2025 at 14:08:46, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009288057.009
https://www.cambridge.org/core


74 Heisenberg and Carnot Groups

[25]. Let 0 < m < dim G and let G(G,m) be the set of all homogeneous sub-
groups of Hausdorff dimension m which have a complementary subgroup, as
in (8.2). The latter condition can sometimes be relaxed to get weaker results.
A Radon measure μ on G is called Pm-rectifiable if for μ almost all p ∈ Hn,
0 < Θm

∗ (μ, p) ≤ Θ∗m(μ, p) < ∞ and

Tan(μ, p) = {cHm V(p) : 0 < c < ∞}, V(p) ∈ G(G,m). (8.4)

μ is called P∗m-rectifiable if (8.4) is replaced by

Tan(μ, p) ⊂ {cHm V : V ∈ G(G,m), 0 < c < ∞}. (8.5)

In G = Hn compare with Theorems 8.6, 8.7 and 8.11. By Theorem 4.7 the
condition (8.4) can be replaced by

Tan(μ, p) = {cν(p) : 0 < c < ∞}, ν(p) ∈ M(G).

So from this point of view this is a very general definition: it just requires
that at almost all points the measure looks the same at all small scales without
caring what it looks like.

Actually these authors use a somewhat different definition, but it is easy to
see that they are equivalent. However, in [25, Theorem 1.1] there is a related
deeper fact: they show that assuming only positive and finite upper density
(8.4) implies that the lower density is positive almost everywhere and whence
the measure is Pm-rectifiable.

Antonelli and Merlo have many interesting results generalizing a lot of ear-
lier rectifiability theory. I mention here a few of them. In [24], they proved
that the Pm-rectifiability is equivalent to covering with intrinsic differentiable
graphs. There they also proved the rectifiability of the level sets of Lipschitz
functions. In [25], they proved that the Pm-rectifiability is equivalent to the
P∗m-rectifiability, provided the tangents have normal complementary subgroups,
which in Hn corresponds to the low-dimensional case, m ≤ n.

For the next discussion, recall Conjecture 7.8. Let us have a look at the full
group Hn from the point of view of general metric spaces. We know that it
has positive and locally finiteH2n+2

d measure and it is purely unrectifiable. The
density of the spherical measure Θ2n+2(S2n+2

d , p) = 1 but Θ2n+2(H2n+2
d , p) =

c(n) < 1 for every p ∈ Hn, see [302]. This difference comes from the fact
that balls are not isodiametric, that is, extremals for the isodiametric inequality
(recall Section 1.2) in Hn. In fact, if Q is the Hausdorff dimension of a Carnot
group G, then the balls in G are isodiametric if and only if ΘQ(G, p) = 1 for
all p ∈ G by Proposition 4.1 in [267]. In particular, the Heisenberg group does
not give a counterexample to the Hausdorff measure Conjecture 7.8.

Let G be a Carnot group, or somewhat more general as in [267]. Julia and
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8.7 Uniform Rectifiability 75

Merlo showed that there exists a homogeneous left invariant metric d on G
such that Conjecture 7.8 holds in the metric space (G, d). They proved that
if E has m-density one, then E is m-rectifiable. Isodiametric inequality again
plays a central role. When G is not Euclidean, the metric is constructed so that
the balls are far from being isodiametric. Then, by what was said above, E
cannot be the full group and a proper choice of the metric makes it look
Euclidean. In particular, in Hn we must have m ≤ n. So for high-dimensional
sets the conjecture holds in the sense that they are purely unrectifiable and
density cannot be one.

8.6 Projections

Recall from (8.2) that if the subgroups V ∈ Gh(2n,m) and W = V⊥ are com-
plementary, then any p ∈ Hn has a unique decomposition p = pV · pW , pV ∈
V, pW ∈ W. So we have the projections PV (p) = pV and QW (p) = pW . Here V
is horizontal and PV is just the standard orthogonal projection onto V , but QW is
more awkward, in particular, it is not Lipschitz. The effect of these projections
on the Hausdorff dimension (Marstrand-type theorems) was studied in [54].

Very little is known about the relations between projections and rectifiabil-
ity. There is a bit of that in the proof of Theorem 8.11, as briefly explained
above. As mentioned in Section 4.5, Hovila, E. and M. Järvenpää and Ledrap-
pier [242] proved the Besicovitch–Federer projection theorem for transversal
families of linear maps Rn → Rm. In [241], Hovila proved that the family
{PV : V ∈ Gh(2n,m)} is transversal. Thus the Besicovitch–Federer projection
theorem holds in R2n for Gh(2n,m), which is strictly lower dimensional than
the whole G(2n,m) when m > 1. This immediately leads to the following result
in Hn. There π(z, t) = z.

Theorem 8.13 Let 1 ≤ m ≤ n and let E ⊂ Hn be a Borel set withHm(π(E)) <
∞. Then Hm(PV (E)) = 0 for μn,m almost all V ∈ Gh(2n,m) if and only if π(E)
is purely m-unrectifiable.

8.7 Uniform Rectifiability

The above results on rectifiability could give a starting point for uniform recti-
fiability. So far it is not nearly fully developed, but there are many interesting
results. However, as far as I know, this is the case only in the cases of dimen-
sion 1 and codimension 1. Some of the terminology here is analogous to that
in Chapter 5.
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76 Heisenberg and Carnot Groups

For one-dimensional sets the question again is about travelling salesman–
type results. Define βE(x, r) as in (3.1), but the infimum is taken only over
the horizontal lines, that is, the left translates of the lines through 0 in the
horizontal plane.

Theorem 8.14 Let G be a step-two Carnot group of Hausdorff dimension Q.
If Γ ⊂ G is a rectifiable curve, then

∫

G

∫ ∞

0
r−QβΓ(x, r)4 dr dx � H1(Γ).

Theorem 8.15 If p < 4 and E ⊂ H1 is compact and such that

βp(E) :=
∫

H1

∫ ∞

0
r−4βE(x, r)p dr dx < ∞,

then E is contained in a rectifiable curve Γ for whichH1(Γ) � d(E) + βp(E).

Theorem 8.14 was first proved in H1 by Li and Schul [293] and then ex-
tended by Chousionis, Li and Zimmerman [102], with a modified statement, to
arbitrary Carnot groups. Theorem 8.15 was proved by Li and Schul in [294].
The exponent 4 of β comes from the geometry of H1.

It is not known if Theorem 8.15 holds with p = 4. However, Li [291] pro-
duced a Carnot group where there is a gap for the exponents. He then defined
modified β numbers, based on the stratification of the group, and proved that
they give a necessary and sufficient condition in arbitrary Carnot groups; the
analogues of Theorems 8.14 and 8.15 hold with the exponent 2s, where s is
the step of the group.

As we have seen, intrinsic Lipschitz graphs play an important role in low-
codimensional rectifiability, so they probably should be basic examples of uni-
formly rectifiable sets. Here are some results in this direction for codimension
1 subsets of Hn. The β numbers are defined as before but restricting the ap-
proximation to vertical planes.

Chousionis, Fässler and Orponen proved in [97] that an AD-3-regular set
in H1 has big pieces of intrinsic Lipschitz graphs if and only if it satisfies the
weak geometric lemma and has big vertical projections. The projections here
are the group projections QW onto vertical planes defined above.

Let E ⊂ Hn be Lebesgue measurable such that E andHn \E are AD-(2n+2)-
regular and ∂E is AD-(2n+1)-regular. Then Naor and Young [360] established
a corona decomposition with intrinsic Lipschitz graphs for ∂E. This led to an
isoperimetric-type inequality, which was used to solve a fundamental combi-
natorial problem. See also [361]. By [198, Section 8] the set ∂E as above is a
particular case of a Semmes surface, that is, a closed set F such that for every
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8.7 Uniform Rectifiability 77

p ∈ F and 0 < r < r0, there are balls of radius cr in different components
of B(p, r) \ F. Partially using techniques of [360], Fässler, Orponen and Rigot
proved in [198] that Semmes surfaces have big pieces of intrinsic Lipschitz
graphs. David [134] had earlier proved the corresponding Euclidean result for
which this paper gives a new proof.

Di Donato, Fässler and Orponen proved in [177] that C1,α, α > 0, codi-
mension 1 intrinsic graphs have big pieces of bi-Lipschitz images of vertical
hyperplanes in Hn.

Chousionis, Li and Young proved in [101] that intrinsic Lipschitz graphs in
H

n satisfy the geometric lemma when n ≥ 2. They used a Dorronsoro inequal-
ity of Fässler and Orponen [196] and reduction to lower-dimensional groups
by slicing. This slicing technique does not work when n = 1 and the problem
is open.

We shall return to Heisenberg groups in connection with singular integrals.
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