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The Weissenberg effect, or rod-climbing phenomenon, occurs in non-Newtonian fluids
where the fluid interface ascends along a rotating rod. Despite its prominence, theoretical
insights into this phenomenon remain limited. In earlier work, Joseph & Fosdick (1973,
Arch. Rat. Mech. Anal. vol. 49, pp. 321-380) employed domain perturbation methods
for second-order fluids to determine the equilibrium interface height by expanding
solutions based on the rotation speed. In this work, we investigate the time-dependent
interface height through asymptotic analysis with dimensionless variables and equations
using the Giesekus model. We begin by neglecting inertia to focus on the interaction
between gravity, viscoelasticity and surface tension. In the small-deformation scenario,
the governing equations indicate the presence of a boundary layer in time, where the
interface rises rapidly over a short time scale before gradually approaching a steady
state. By employing a stretched time variable, we derive the transient velocity field
and corresponding interface shape on this short time scale, and recover the steady-state
shape on a longer time scale. In contrast to the work of Joseph and Fosdick, which
used the method of successive approximations to determine the steady shape of the
interface, we explicitly derive the interface shape for both steady and transient cases.
Subsequently, we reintroduce small but finite inertial effects to investigate their interaction
with viscoelasticity, and propose a criterion for determining the conditions under which
rod climbing occurs. Through numerical computations, we obtain the transient interface
shapes, highlighting the interplay between time-dependent viscoelastic and inertial effects.
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1. Introduction

The rod-climbing phenomenon, also known as the Weissenberg effect (Weissenberg 1947),
is one of the most iconic examples of non-Newtonian fluid behaviour in which the fluid’s
surface climbs along a rotating rod. Heuristically, this effect arises from the interplay
between elastic and viscous forces in complex fluids, where the unequal normal stresses
within the fluid generate a hoop stress around the rod, driving an upward motion (Bird,
Armstrong & Hassager 1987). Its visually compelling nature has made the rod-climbing
phenomenon a foundational concept in the study of non-Newtonian fluid flows, serving
as an essential tool in both pedagogical and research contexts (Ewoldt & Saengow 2022).
Although it is widely recognised, theoretical insights into this phenomenon remain limited,
owing to the challenges in modelling the constitutive equations for such fluids.

The earliest theoretical attempt to explain the rod-climbing phenomenon dates back
to the work of Serrin (1959), who derived the unidirectional Couette flow solution for
second-order fluids. By neglecting the non-equilibrated shear stress at the free surface,
Serrin calculated the rise height and identified the conditions under which the fluid’s
free surface would climb the rod. A similar calculation, introduced by Giesekus (1961)
two years after Serrin’s work, neglects inertial effects but applies to a wider range of
constitutive equations; however, the issue of non-equilibrated shear stress along the free
surface remains unresolved. Both Serrin and Giesekus asserted that their solutions would
remain valid, approximately, as long as the free surface remained relatively horizontal.
Building on this concept of small deformations, Joseph & Fosdick (1973) developed a
systematic framework for constructing the steady free-surface shape of second-order fluids
using the domain perturbation method. This solution involved a perturbation series for
both the flow profile and the fluid domain based on a prescribed (small) angular velocity
£2. In subsequent works, Joseph, Beavers & Fosdick (1973) and Beavers, Yoo & Joseph
(1980) compared their theoretical predictions with the experimental observations, finding
good agreement. In fact, the theoretical work of Joseph & Fosdick (1973), completed over
50 years ago, continues to be widely used for rheological measurements today (More et al.
2023). Building on the pioneering work of Joseph & Fosdick (1973), several studies have
extended the original framework using perturbative approaches. For example, Yoo, Joseph
& Beavers (1979) developed a higher-order theory of the rod-climbing phenomenon by
expanding the perturbation series to O (£2*). Meanwhile, Siginer (1984) analysed the free
surface of second-order fluids between vertical cylinders rotating about non-concentric
axes, utilising the domain perturbation method and bipolar coordinates to aid the analysis.

Beyond its theoretical significance, the rod-climbing phenomenon has substantial
practical applications in rheology. In particular, several studies highlighted its utility
in theometric applications to determine key material parameters, such as normal stress
coefficients and relaxation times, by analysing climbing heights and rates (Beavers &
Joseph 1975; Choi 1991; Choi & Kim 1992). More recently, More et al. (2023) revisited
rod-climbing rheometry with the aid of a modern torsional theometer. By integrating
rod-climbing experiments with small-amplitude oscillatory shear flow measurements and
steady-shear measurements from commercial rheometers, they successfully predicted the
normal stress coefficients of a polymer solution at low shear rates, extending below the
sensitivity range of conventional rheometers.

To date, all theoretical studies on the rod-climbing phenomenon have focused
exclusively on its steady-state behaviour and have been limited to second-order fluid
models. However, the use of second-order fluids comes with several limitations. First, the
retarded-motion expansion (e.g. second-order and third-order fluid models) is valid only
for small Deborah or Weissenberg numbers (Bird ez al. 1987); applying it beyond this range
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can lead to unphysical results. Second, second-order fluid models are highly unstable.
For instance, a steady shear flow in a second-order fluid is unstable to short-wavelength
perturbations, which, when combined with time-dependent flows, lead to local exponential
growth in stress (Morozov & Spagnolie 2015). In this work, we focus on investigating the
transient dynamics of the rod-climbing phenomenon. Access to a time-dependent shape
enables a more accurate application of rod-climbing rheometry, providing a valuable tool
for both advancing the theoretical understanding of the flows of non-Newtonian fluids and
leveraging the results to determine material properties.

As noted above, second-order fluid models suffer from a lack of well-posedness in
unsteady flows, making them unsuitable for modelling transient phenomena such as rod
climbing. One popular model that offers a more robust alternative by enabling stable
predictions in time-dependent settings is the Oldroyd-B model, which is used widely
for characterising the behaviour of constant shear-viscosity viscoelastic fluids, such as
Boger fluids (James 2009). The model also offers valuable physical intuition through
its connection to the kinetic theory of dilute polymer solutions, where the polymer is
represented as a dumbbell structure of two beads connected by a linear elastic spring.
However, the Oldroyd-B model assumes constant shear viscosity and isotropic drag,
which limits its ability to describe more complex viscoelastic fluids that exhibit nonlinear
rheological behaviour.

In this work, we instead adopt the Giesekus model (Giesekus 1982), a constitutive
equation for polymer solutions and melts that is able to predict several key features of
complex fluids, such as non-zero second normal stress differences, shear thinning, and
finite extensional viscosity (Giesekus 1982; Bird et al. 1987). The Giesekus model extends
the Oldroyd-B framework by introducing a quadratic nonlinear anisotrotopic mobility term
that reflects interactions among polymer chains (Giesekus 1982), thereby providing a more
realistic representation of microstructural dynamics in complex viscoelastic fluids.

To conclude this section, we summarise in table 1 the previous theoretical works
on flows near a rotating rod in complex fluids, with and without accounting for the
free surface. The remaining sections of this paper are organised as follows. In § 2, we
present the problem formulation, including the scalings for the variables and the governing
equations. In § 3, we outline the preliminary set-up and introduce the techniques used in
later sections, such as the distinguished limit of the problem, the perturbation expansion
in Weissenberg number, and the domain perturbation method for simplifying the interface
boundary conditions. In §4, we exclude inertial effects and derive the steady interface
shape that represents the long-time free-surface behaviour. In § 5, we extend the steady
interface analysis by examining the short time scale to obtain the transient dynamics and
the time-varying interface shapes. In § 6, we reintroduce small but finite inertial effects to
explore the interplay between inertia and viscoelasticity, and examine the conditions under
which the fluid climbs the rod. We conclude with a discussion of the results in § 7.

2. Problem formulation

We investigate the rotation of an infinitely long rod with angular velocity §2, where the
rod has radius a, and its axis is aligned along the z-direction, while immersed in a dilute
viscoelastic polymer solution with density p. We assume that the flow is axisymmetric,
and employ cylindrical coordinates (r, 6, z) to examine the time-dependent free-surface
shape h(r, t) of a viscoelastic fluid, with the reference height taken to be zero as r — oo,
as shown in figure 1. Our analysis primarily focuses on the case where the interface
deformation is considered ‘small’, i.e. |0h/0r| < 1, with the validity of this assumption
to be clarified below through asymptotic analysis.
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Model Flow field Rise height Remarks Reference
Steady Unsteady Steady Unsteady
Second-order Yes No Yes* No *Partial calculations  Serrin (1959),
fluid Giesekus (1961)
Yes No Yes No Include inertia and Joseph & Fosdick
surface tension (1973)
Yes No Yes No Higher-order Yoo et al. (1979)
approximation
Yes No Yes No Non-concentric Siginer (1984)
cylinders
Oldroyd-B Yes No No No Obtained vertical Oldroyd (1950,
normal stresses 1951)
Giesekus Yes Yes Yes Yes Current work

Table 1. Theoretical studies on flows around a vertically oriented rotating rod in complex fluids. The work of
Joseph & Fosdick (1973) has been reproduced using modern notation by More et al. (2023).

Giesekus fluid

Figure 1. Schematic illustration of an infinite rod with radius a rotating with angular speed £2 in a
viscoelastic fluid.

To model the viscoelastic contributions to the rod-climbing effect, we employ the
Giesekus constitutive equation (Giesekus 1982; Bird et al. 1987). In this model, the total
stress tensor o in the fluid can be expressed as

o=—pl+2usE+o,, 2.1

where the first term in (2.1) represents the pressure component, the second term in (2.1)
denotes the viscous stress from the solvent with viscosity s, where E= (1/2)(Vu +
(Vu)T) is the rate-of-strain tensor, and the last term in (2.1) accounts for the polymeric
contribution to the stress. As the polymer is suspended in the fluid, it experiences
stretching, reorientation and advection, which, in the Giesekus model, results in the
evolution of the polymeric stress according to
0o p T ad

op+A4 (7 +u-Vo,—-0,-Vu—(Vu) -ap) + M—pap cop,=2u,E, (22)
where u is the velocity vector, A is the relaxation time of the polymer, i, is the polymer
viscosity at zero shear rate, and « is the mobility factor, taking values between O and
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1/2, which describes the anisotropic hydrodynamic drag on a polymer. When « = 0, the
Giesekus model reduces to the Oldroyd-B constitutive model (Oldroyd 1950; Bird et al.
1987).
In §§ 4 and 5, we will assume that the Reynolds number defined by
2
2
Re=-P4"° 2.3)
Ms + Kp

is small, i.e. Re < 1. This assumption is valid, for instance, when the rod’s angular rotation
speed is low, in line with the assumption that the deformation along the free surface is
small. Neglecting inertial effects, the continuity and momentum equations become

V.u=0 and V.o =pge,, 2.4

where e, is directed vertically upwards. We will revisit the role of small but finite inertial
effects in § 6. Equations (2.1), (2.2) and (2.4) form the basis of the Giesekus constitutive
description and model flow equations that we investigate in the upcoming sections.

These equations are supplemented with boundary and initial conditions applied to
the rotating rod, the free surface, and the far-field region. First, we assume the no-slip
boundary condition along the surface of the rotating rod,

u=afley at r=a, (2.5)
and the contact angle boundary condition
oh
— =—cotgp at r=a, (2.6)
ar

where ¢ is the contact angle of the fluid—air interface at the rotating rod. To simplify our
analysis so that the interface shape can be derived analytically, we set ¢ = 7/2, which
results in cot ¢ = 0. This corresponds to the case where no static capillary rise occurs near
the rod’s surface when the rod is at rest, eliminating any ambiguity in defining the initial
condition of the interface shape. Quantitatively, our analysis provides a formula for the
additional rise height beyond the static capillary rise height.

In the far field, r — oo, we assume that the interface remains flat, the fluid velocity
decreases to zero, and the microstructure remains in its equilibrium state:

h—0, u—0, o0,—>0 as r— oo 2.7

Next, we impose both the stress and kinematic boundary conditions along the free
surface, z = h(r, t), which has unit outward normal n. The stress boundary condition along
the interface, referencing the fluid pressure to the ambient pressure, is

n-cg=—y(Vy-n)n at z=h(r1), (2.8)

where y denotes the surface tension, and V is the surface gradient operator. On the other
hand, the kinematic boundary condition along the interface is given by
oh oh
— =U, — U, —
ar - or

Finally, we assume that the interface is flat and the polymer is in its equilibrium state at
the initial time:

at z=nh(r1t). (2.9)

h=0, o0,=0 at t=0. (2.10)

It is important to note that by making the low-Reynolds-number assumption, we have
neglected the time derivative of the velocity field, which prevents us from specifying the
velocity at the initial time.
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2.1. Scalings and governing equations in dimensionless form

We now rescale all relevant variables. Specifically, we rescale lengths by a, velocities by
as2, stresses by (s + up)$2, and time by 1/£2:
h u

r=", w=" v=L rT1=:i0
a a as?

o p r_ o _ 9p
P=—— ¥=— Ep——.
(s + ,pr)~Q (s + Mp)-g (s + Mp)-Q

These dimensionless variables are accompanied by dimensionless parameters for
viscosity ratios

7 =

@2.11)

’

bl"’la«lN

HKp
Bp=—"— and B;=1-8,, (2.12)
b Ms + Up ’ b
the Weissenberg number Wi, the gravity parameter G, and the capillary number Ca:
2
Wi=A1%, g:&, a:M. (2.13)
(s + 1 p)-Q 14

The Weissenberg number Wi, defined as the product of the fluid’s relaxation time and
the characteristic shear rate, is commonly used to assess the viscoelastic properties of a
material, indicating whether its behaviour is more elastic or more viscous. In experiments,
Wi typically ranges from 1 to 10 or higher. In this work, however, we restrict attention
to sufficiently small Wi, allowing us to employ a regular perturbation expansion in Wi.
Although it is difficult to measure the interface height experimentally when Wi < 1, we
anticipate that our analysis may provide insights applicable to larger Wi. Another key
parameter is the Deborah number De, which represents the ratio of the material’s response
time to the characteristic time of the flow. In this problem, Wi and De are equivalent,
so no distinction is made between the two. Here, we focus on the case where Wi« 1,
corresponding to weak viscoelastic effects. The ranges of G and Ca will depend on the
value of Wi, so that we can derive analytical expressions for the small deformation of the
interface shape H, as will be discussed in § 3.1.

Using the scalings in (2.11), the governing equations (2.1), (2.2) and (2.4) become

V.-U=0, V.X =Ge, (2.14a)
Y =—PI+28,E+X,, (2.14b)
(09X, T a Wi
E,,+Wz(8—T+U-VEp—Ep-VU—(VU) -Ep)+ ; X, - X,=2B,E.
(2.14¢)
Similarly, the corresponding boundary and initial conditions (2.5)—(2.10) become
No-slip boundary condition: U =ey at R=1, (2.15a)
Contact angle boundary condition: z—I; =0 at R=1, (2.15b)

1
Stress boundary condition: n-.X = —C—(VS en)n at Z=H(R,T), (2.15¢)
a

oH oH
Kinematic boundary condition: T =U, — U, IR at Z=HR,T), (2.15d)
Far field: H—0, U—0, X,—-0 a R— oo, (2.15¢)
Initial condition: H =0, X,=0 at T =0. (2.151)
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To further simplify the momentum equation (2.14a), it is useful to introduce a modified
pressure variable above hydrostatic pressure and redefine the stress tensor to incorporate
the conservative gravitational force:

Y¥=3' -Gz, P=P+GZ. (2.16)

With these reformulated variables, the total stress equation in the fluid (2.14b) and the
momentum equation (2.14a) simplify to

Y=-PI+28,E+%, V-X=0. 2.17)

To account for the new variables, the stress boundary condition (2.15¢) becomes

n-E:—(QZ—FCL(VS-n))n at Z=H(R,T). (2.18)
a

3. Preliminary set-ups
3.1. Distinguished limit

We focus on three key non-dimensional parameters, i.e. the Weissenberg number Wi, the
gravity parameter G, and the capillary number Ca; we assume that the viscosity ratio 8, is
given. It is natural to examine the asymptotic limit where Wi <« 1 in which viscoelasticity
appears as a correction to the Newtonian flow. However, careful consideration of the ranges
of G and Ca is required, as different values of these parameters will lead to different
asymptotic regimes depending on Wi. Before advancing our analysis, we will investigate
how key quantities, e.g. velocity, pressure, polymeric stress and interface height, depend
on these non-dimensional parameters, to gain insight into the distinguished limit that forms
the foundation of our study.

First, we consider the relationship between the gravity parameter and the capillary
number. A natural dimensionless quantity that characterises the ratio of gravitational to
capillary forces is the Bond number, defined as

2
a
B:pg

=Cag. 3.1

In the following sections, we aim to incorporate both effects into our analysis. To this end,
we assume that the Bond number is of order unity, i.e. B = O(1). This allows us to write
the capillary number in terms of the Bond number and the gravity parameter, Ca = B/G.

Next, we consider the relationship between the Weissenberg number and the gravity
parameter. Initially, we assume that the polymers are in equilibrium. As the rod begins
rotating at a constant angular velocity, the fluid forms a vortex around the rod, causing the
suspended polymers to stretch. Once the polymers extend beyond their equilibrium state,
they induce additional polymeric stress of order O (Wi):

z, ~ Wi (3.2)

When viscoelasticity is absent from the flow, the Stokes flow only yields a flat
interface, i.e. in the absence of inertial effects. Therefore, we expect the normal stress
near the interface to arise from the polymeric stress. Using the normal stress boundary
condition (2.18), we find that the normal stress near the interface (deformation H), in the
limit of small deformation, behaves as

X ~X,~GH (near the interface). (3.3)
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Here, we have assumed that the gravitational and capillary effects are comparable when
B = 0(1). By combining (3.2) and (3.3), we anticipate that the typical interface height
will depend on both viscoelasticity and gravity as

Wi
H~—. 3.4
g (34)

As discussed earlier, the dynamics of the interface is driven by the (weak) viscoelasticity
of the fluid. Therefore, we expect the characteristic time scale for temporal changes in the
interface height to be determined by the polymer relaxation time, rather than the flow time
scale itself. With this in mind, we use the kinematic boundary condition (2.15d) and the
typical interface height (3.4) to estimate the typical magnitude of the upward fluid velocity
near the interface as
H 1
Wi G
Near the interface, we observe from (3.2) that the polymeric stress scales as Wi, whereas
from (3.5), the viscous stress scales like G~!. When 1> Wi>> G~!, the normal stress at
the interface comes mainly from the polymeric stress, as we had assumed to obtain (3.3).

However, when G = Wi~!, the upward flow near the interface induces a viscous stress
comparable to the polymeric stress, adding further complexity to the problem. The
distinguished limit G = Wi~!, where our qualitative analysis (3.2)—(3.5) begins to break
down, motivates us to explore the gravity parameter G within the range G > Wi~!. To
simplify the complexity of the double asymptotic expansion into a single expansion in
terms of Wi, based on the distinguished limit G = Wi~!, we introduce a rescaled gravity
parameter G by defining

(3.5)

Uinterface ~

G = Wig, (3.6)

where G is now taken to be of order O (1). Intuitively, when gravitational effects are large
(G > 1), the viscoelastic fluid has difficulty climbing the rotating rod, which leads to
only small deformations on the interface shape. This is precisely the small-deformation
situation that we aim to address in this study.

3.2. Perturbation expansion in Weissenberg number

In the following sections, we expand the velocity, pressure and the polymeric stress as
regular perturbations in Wi < 1,

P=PO L wip® 4 ... (3.7a)
E=E9 + WiE® +... (3.7b)
,=20+wizD+... (3.7¢)

where the superscript indicates the corresponding order in Wi. Along with the quantities
expressed as expansions in (3.7), we introduce an expansion of the interface shape in the
situation where the interface is slightly deformed:

HR, T)=W’H®P + WH® +... . (3.8)

Although it is more natural to start the expansion of H at order O(Wi), since the
interface remains flat in the absence of viscoelasticity, we have opted to express it as
in (3.8) for two reasons. First, we observe from our preliminary scaling argument (3.4)
that H ~WiG '~ Wit G~ ! = O(Wiz). Second, as we will see in § 3.3, expanding the
free-surface boundary condition to be consistent with the perturbation expansion in the
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Weissenberg number involves extensive calculations unless each term is scaled correctly.
By keeping the non-zero leading-order expansion of H, the derivations for the boundary
conditions at each order become more organised. In this work, we focus on obtaining an
analytical formula for the leading-order term of the interface shape H®, given in (3.8).

3.3. Domain perturbation method for the interface boundary condition

In § 2.1, we introduced the normal stress boundary condition (2.18) and the kinematic
boundary condition (2.15d), in which both boundary conditions are evaluated at the inter-
face Z = H. However, when expanding the interface shape H in terms of Wi (see (3.8)),
it is challenging to evaluate the boundary conditions using the full series expansion. To
resolve this issue, we take advantage of the assumption that the interface deformation
is small to simplify the boundary conditions using a domain perturbation expansion.
This step enables us to systematically write down the corresponding interface boundary
conditions for the velocity, pressure and polymeric stress fields at each order in Wi.

We start by expressing the normal stress boundary condition (2.18) at each order in
Wi. The assumption of small deformation of the interface provides two simplifications.
First, we can approximate the normal vector n at the interface as n ~ e, — (0H/dR)e, =
e. + O(Wi%)e,. Second, when evaluating the boundary condition at Z = H, the small
value of H allows us to perform a Taylor expansion around Z = 0. From these two remarks,
we may simplify the left-hand side of (2.18) as

on-X)
+H—=
z=0 IZ

1H282(n . X)

=n.Y 3
P 0Z

+ -
Z=0

e. - <—7?(O)I +28,E® 4 zg,‘)))

Z=0

+ Wi (eZ : (—73“)1 +28,ED + z;,”)

) + O(Wi?). (3.9)
Z=0

On the other hand, the small-deformation assumption allows us to simplify the curvature
of the interface (V; - n) so that the right-hand side of (2.18) becomes

—<gz+ é(Vs-n)>n :—(gﬂ—ili (R%>> e, + O(Wi%)

Z=H CaR IR \" 3R
, @ 1 0 ([ 9H® 5
=-WiG|H® = o — (R | | e+ O(Wi%).
(3.10)

Combining (3.9) and (3.10), we conclude that the stress boundary condition (2.18) at
O(1) and O (Wi) becomes
ecr (~POT+28EC+20)| =0, (3.11a)
Z=0

o 1 9 ( oH®
Z=0

At this stage, we choose not to express the kinematic boundary condition (2.15d) for
each order in Wi. As mentioned in § 3.1, the temporal evolution of the interface height
is expected to be governed by the polymer relaxation time, rather than the flow time
scale. This implies that, starting from a flat interface, the interface will rise rapidly
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on a time scale of order O(Wi) before approaching its steady state. This behaviour
suggests a boundary-layer-like structure in time, prompting the examination of two time
scales: T=0(1) and T = O(Wi). In §4, we focus on T = O(1), representing the outer
layer approximation, to recover the steady-state interface shape. In § 5, we analyse the
shorter time scale T = O (Wi) using a stretched time variable, corresponding to the inner
layer approximation, to study the transient interface shape. We will revisit the kinematic
boundary condition (2.15d) separately for each rescaled time in §§ 4 and 5.

4. Outer layer: the steady-state interface shape
4.1. Leading-order solution

In this subsection, we examine the interface dynamics for 7 = O(1), representing the state
when time has progressed beyond the initial start-up of the flow. To this point, we have
provided only a general qualitative outline explaining why a distinction in time scales is
necessary. Now we examine the evolution of the polymeric stress by writing (2.14¢) in
non-dimensional form as

Wi 7 +U-VE)—Z,) - VU-(VO)'- X+ 2%, %, | ==X, + 24, E.
p

oT

4.1)
Equation (4.1) features a first-order time derivative, with the highest-order term 0¥, /0T
being multiplied by a small parameter Wi. This structure frequently arises in boundary
layer problems, where singular perturbation analysis is required to understand the solution
behaviour. Typically, the analysis is split into two regions, one where (4.1) is used as is,
and another where time is rescaled to maintain the dominance of the highest-order term;

in this subsection, we focus on the former case.
Before proceeding further, we note that using (3.7), the right-hand side of (4.1) enables
us to express the leading-order polymeric stress in terms of the leading-order velocity field:

>0 =28,E©. 4.2)

In addition, when 7 = O(1) and H = O(Wi?), we can derive the kinematic boundary
conditions (2.15d) up to first-order terms, by employing a domain perturbation technique
similar to that used in § 3.3, as

©) M
U ‘ —U ‘ —0. 43
Z |z=0 Z |z=0 @3

To proceed with the problem solution, we substitute the leading-order polymeric
stress (4.2) into the leading-order momentum equation (2.17) to obtain

0=V (=PO1+28E0 + 50) =—vP" + V2V, (4.4)

where B + B, =1, and from (4.2), we have V . ¥ 5,0) =By V2U©. Further, substitut-
ing (4.2) into the leading-order stress boundary condition (3.11a) yields

e, (-POI+2E")| =0, 4.5)

The leading-order governing equation (4.4) is solved subject to the boundary
conditions (2.15a), (2.15¢), (4.3) and (4.5), which no longer depend on the viscoelastic
effects. At this order, the problem simplifies to the rotation of a rod in a Newtonian fluid
at low Reynolds number, which is known to produce an azimuthal vortex flow profile
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described by
1
vO = =€ PO =0, (4.6)

With this leading-order velocity profile, and (4.2), we can write down the leading-order
polymeric stress:

2B
>0 =26,E0 = ”(erea + egey). (4.7)

Notice that (4.7) does not satisfy the condition X 5, ) — 0 at the initial time; we will resolve
this point in § 5.

4.2. First-order correction to the solution

We now proceed to determine the first-order correction to the shape of the interface.
From (4.7), we observe that the leading-order polymeric stress appears as the rate-of-
strain tensor from the leading-order vortical flow. This tensor has zero diagonal elements,
resulting in no normal stress differences, which are typically responsible for the rod-
climbing effect. To reveal the ‘hoop stress’ that leads to the rod-climbing effect, we solve
for the first-order correction to the polymeric stress. Considering again the evolution of
the polymeric stress equation (4.1), and using (4.6) and (4.7), we obtain

I _ 0 0) ) 0 ONT, 3O _ ¥ 50, 5(0) (C))
Ep =-U -VEP —{—Ep VU™ +(VU™) -Z'p —ﬁpEp Z'p +2BpE

48 48 48«
= —R—p(erer —epeg) + R—f(erer + egeg) — 7 (ere, + epep) + 2,3,,E“)
;3,, (2 —a)eges —aere,) +28,EV. (4.8)

As in §4.1, we substitute (4.8) into the momentum equation (2.17) at first order, to find

0=—vVPV 44, vVUV +v.xP
2 -« o
—vPO 1 v2uW® 148, v. ( A €0¢0 — R4ere,>

8Bp(1 —2a)
RS

Although the anisotropic hydrodynamic drag in the Giesekus model contributes to both
shear-thinning behaviour and a non-zero second normal stress difference, we observe
from (4.8) and (4.9) that only the normal stress is responsible for the rod climbing at
this order. In particular, the second normal stress difference, represented by the terms
containing the mobility factor «, decreases the magnitude of the hoop stress in the final
term of (4.9), thereby reducing the rise height, while the shear-thinning behaviour of the
Giesekus fluid affects the interface shape at higher-order corrections.

Observe from (4.8) that e, - 25,1) =2pBpe; - EW. Thus we can rewrite the stress
boundary condition (3.115) at first order in Wi as

1 d dH®
(PO +2EY)|  =-G(HP - (RE ] e 4.10
¢ < P+ 7=0 BR dR ar )& (4.10)

An important observation in solving the problem at first order is that all
boundary conditions for the velocity field are constrained to be zero. Specifically,

vph 4 v — er. (4.9)
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the no-slip boundary condition (2.15a¢) imposes U =0 at R=1, the far-field
boundary condition (2.15¢) enforces U") =0 as R — oo, and the kinematic boundary
condition (4.3) gives U g) | 7—0=0. These features suggest U ) =0, reducing the
problem to solving for the pressure and interface height using (4.9) and (4.10) with the
corresponding boundary conditions. Specifically, (4.9) implies that PV (R), allowing
us to simplify (4.10) to PV =G(H®P — (1/BR)(d/dR)(RdH? /dR)). The far-field
boundary condition (2.15¢) then implies that the pressure decays to zero as the interface
flattens, i.e. P(D(R — 00) =0.

We can now integrate the momentum equation (4.9) once with respect to R to find the
pressure:

28,(1 —2a)

POR) ==

(4.11)

On the other hand, the free-surface shape H‘? is governed by the differential equation

@ _
g1 d (RdH ):2,3,,(1 20). @12

" BRdAR dR G R*

Equation (4.12) is subject to the contact angle boundary condition (2.15b) and the far-field
condition (2.15¢), yielding the solution

28,(1 — 2a)B
() 14
Hsteady(R) = G

(11 (VB)K (V) ( [ ~ s—SKO(ﬁs)ds) Ko(VBR)

1

+Io(VBR) /Roos_3Ko(x/Es)ds + Ko(VBR) /1Rs_3lo(\/§s)ds> :
(4.13)

where I, and K, are the first- and second-kind modified Bessel functions of order v,
respectively. In figure 2, we present the scaled steady interface shape H(R) G/[28,(1 —
2a) Wi] around an infinitely long rotating rod in a Giesekus fluid for different Bond
numbers.

Although it is not straightforward to visualise the height profile in (4.13), we can infer
from (4.12) that for R >> 1, the dominant balance is between the gravitational term and the
viscoelastic term:

28,(1 — 2a) Wi

Hvteady(R) ~ gR4

(R>1). (4.14)

A result similar to (4.14) was obtained previously for the second-order fluid model
(Joseph & Fosdick 1973; More et al. 2023), which is known to agree with the
Giesekus model at steady state for small Weissenberg numbers with o« = 0. However, in
earlier studies, domain perturbation methods were developed using dimensional rotation
speeds, without explicitly addressing the impact of individual dimensionless parameters.
In addition, instead of providing solutions in explicit form, a method of successive
approximations was used to estimate the final steady interface height. In §§5 and6,
we increase the complexity by introducing time-dependent and inertia terms, while
maintaining the same dimensionless analytical structure established here.
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Figure 2. Steady interface shape around an infinitely long rotating rod in a Giesekus fluid, with inertial
effects absent, displayed for different Bond numbers B =1, 5, 25.

5. Inner layer: the transient interface shape
5.1. Leading-order solution

In § 4, we examined the problem at an intermediate time scale 7= O (1), and observed
that the leading-order interface shape (4.13) is time-independent. This result occurs
because at 7 = O(1), substituting the polymeric stress expansion (3.7¢) into (4.1) has
corrections (4.7) and (4.8) that do not satisfy the initial condition ¥, =0 at T =0.
Physically, these features suggest that no transient changes in the polymeric stress are
observed at intermediate times, as the dynamics of these changes occurs on a much
shorter time scale. Therefore, we introduce a stretched time variable to balance the time
derivative term on the left-hand side of (4.1), Wi (0% ,/0T), with the right-hand side
of (4.1), - ¥, + 2B, E, by defining

T=—. 5.1
Wi SR
In terms of physical variables, time has now been scaled by the relaxation time. More
precisely, we rescale time by interpreting 7 = O (Wi) as T = O(1).
The evolution equation for the polymeric stress (4.1) in terms of the stretched time
variable T now becomes

0z,

Wi(U-VEP—E,,-VU—(VU)T-Ep—l-g—pEp.zp):_(?

+z, —2,BPE) ,

(5.2)
where we distinguish the polymeric stress in the inner layer with X', (R, Z, 7).
Following the approach in § 4.1, we express the leading-order polymeric stress in terms
of the leading-order velocity profile using (5.2) as

82(0) T
a—”+z§,0>=2ﬂ,,E<0> — zg’):zﬂpef/ E© ¢’ ds, (5.3)
T 0
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where we have used the condition ¥ E,O) =0 at T =0. We then substitute (5.3) into the
leading-order momentum equation (2.17) to arrive at

T
0=—VPO 4+ g VUO 1 8,e" /O VZU©O e ds. (5.4)

Equation (5.4) is solved subject to the no-slip boundary condition (2.15a), the far-field
boundary condition (2.15¢), the stress boundary condition (3.11a), and the kinematic
boundary condition (2.15d).

It is helpful to introduce a linear operator acting on the time-dependent vector field that
resembles the right-hand side of (5.4) by defining

LF(X, 1) =B, F(X, 1)+ Bpe " /r F(X,s)e' ds, (5.5)
0

so that (5.4) becomes 0 = — VPO 4 £(vV2U©). With this notation, we simplify the stress
boundary condition (3.11a) by substituting (5.3) to obtain

2L (ez . E(O)‘Z:O ) - 7><0>‘Z=0 e,. (5.6)

The kinematic boundary condition (2.15d), however, requires more careful examination,
as it involves a time derivative that is crucial to the analysis in this section. Nevertheless, at

leading order, we still find U éo) |Z= = 0. Since the flow begins at rest with a flat interface,
this absence of upward velocity suggests that the interface will remain flat throughout.

Therefore, we aim to find a solution where U éo) is identically zero, and the velocity field
U =UO(R, 1) is independent of Z. The continuity equation (2.14a), expressed in
cylindrical coordinates as (1/R)(3(RUS))/OR) + (3UY/8Z) =0, then forces U =
c(t)/R for some function ¢ =c(t). Applying the no-slip boundary condition (2.154a)
implies ¢(t) = 0, resulting in a purely azimuthal velocity field, U© = Ue(o)(R, T) eg.

Continuing this approach, the momentum equation (2.17), at leading order in the r-
and z-directions, yields 3P© /dR =3P © /8 Z =0, so that P (7) only, while the stress
boundary condition (5.6) in the z-direction further implies PO = 0. Thus under the flat
interface assumption, we have deduced that the pressure is absent from the leading-order
solution. The momentum equation (2.17) and the stress boundary condition (5.6) simplify
to

c (V2U<°>) .y (ez - E<0>‘Z:0 ) —0 — VUO=¢ .E® —0, (57

where we have used the fact that the kernel of the linear operator £ is null (see
Appendix A).

We observe that (5.7) has the same structure as the leading-order solution analysed in
§ 4.1; in the weak viscoelastic limit, the leading-order solution is effectively Newtonian.
Although the momentum equation (5.4) contains a time-dependent integral, the solution
remains time-independent. Specifically, the velocity field retains the form of a vortex
solution as in (4.6):

1
v© = =e0- (5.8)
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With this leading-order velocity profile, we can express the leading-order polymeric stress,
using (5.3), as

g 2B,(1—e"
xV =28, e—f/ EV e ds=28,(1-e HEV =—M(9ree +eqer).
0

R2
(5.9)
Starting from zero at 7 =0, ¥ E,O) increases monotonically towards the steady state (4.7),
approaching it with an exponential decay rate on the time scale of t. This behaviour
confirms our remark at the start of this subsection that transient changes in the polymeric
stress occur on a shorter time scale when T = O (Wi).

5.2. First-order correction solution

Hitherto, we have derived that for an inner layer in time where T = O (Wi), the leading-
order flow remains the same vortex solution as in the outer layer over times 7 = O(1).
Although the velocity fields are the same at the leading order, the leading-order polymeric
stresses differ: in the inner layer, EE,O) varies with time, whereas it does not in the outer
layer. Similarly, we anticipate the polymeric stress arising from 2(1), which defined the
interface shape in §4.2, to also be time-dependent, enabling us to capture the transient

interface shape. We can determine the time evolution of ¥ E,l) using calculations similar to
those in (4.8):

)
02p" Ly _yO.y50 L 5O yyO 4 (yyO)T. 5O
97T p p P p
_ Y50, 50 ¢))
ﬂ,,ZP - X)) +2B,E
48,(1 —e™7) 48,(1 —e™7)
= —PT(erer — epep) + pT(erer + epep)
4B,0(1 —e™7)2
- ”T(erer +egeg) + 2B, EV
4
= %((2(1 —e D —a(l—e )?)eges —a(l —e )’ee,)+28,EN.
(5.10)
Multiplying both sides by the integrating factor e’, we find ¥ 1(171) to be
T 4, (2 —a—2e T —(2—2a)Te " +ae” T
Z‘g) — 2,8[) e~ 7T / E(l) e ds + :BP ( 124 ) )8989
0
46,0 (1 =2te T —e™ 27
_ 4By ( )erer, (5.11)

R4

where we have used the initial condition X f,,l) =0 at T =0 to write the lower limit of the
integral. We then substitute (5.11) into the first-order momentum equation (2.17) to obtain

0=-vPY + 8, vUV +v.xP
88p (1 —2a —e™" — (1 —da)Te™" + 20e™27)
RS

=-vPW 4 £(viuW) - e-. (5.12)
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From (5.12), we observe that as the suspended polymers begin to stretch from their
relaxed state, the elastic response generates a time-dependent force per volume that acts
purely in the radial direction and is zero initially. This hoop stress is expected to drive the
fluid radially inwards towards the rod, which then, by conservation of mass, would lead
the interface to rise, resulting in the rod-climbing effect. Notably, the force induced by the
hoop stress is conservative. Thus it is convenient to define a new pressure variable that
includes the polymeric stress, by setting

2Bp (1 =20 —e™ " — (1 —da)Te " + 20e™27)
R* ’

P — p(h _ (5.13)

which allows (5.12) to be rewritten as
0=—vPD 41 (v2U<1>). (5.14)

In addition to the usual no-slip and far-field boundary conditions, we anticipate that the
free-surface boundary conditions at the interface are particularly crucial for this first-order
solution. We substitute (5.11) into the first-order normal stress boundary condition (3.115),
and express the equations using the newly defined pressure variable, leading to the
result

28, (1 =20 —e 7 — (1 —4a)te " + 2ae 27
PO o420 (e EV| )= ( o ( (1~ 40 )
7Z=0 7=0 R4

@
-G <H<2> — % E)iR (Rang ))) e.. (515

On the other hand, recall from (3.8) that H = O(Wi?). This implies that when T =
O (Wi), we have (0H /0T ) = O (Wi). In other words, temporal variations in the interface
shape will emerge in this first-order solution. Unlike for the steady interface shape (4.3),
the corresponding kinematic boundary condition (2.15d) at this order becomes

oH®
at

It is difficult to obtain exact analytical expressions for the velocity field that
satisfies (5.14), (5.15) and (5.16) for arbitrary values of G = O(1). However, when G > 1,
the method of dominant balance enables progress in determining the interface shape, with
the dominant terms in this limit being the terms on the right-hand side of (5.15),

(M
Uy'|,_o= (5.16)

1—20—e " — (1 —da)re " + 2" _

(@) 2 1

Htransient(R’ T) ~ ( 1 —2a Hsteady(R) =0 (G ) ’
(5.17)

with H S(tiil dy(R) given in (4.13). Note that (5.17) is regular at « = 1/2 because the steady-

state solution (4.13) is also proportional to 1 — 2«. To confirm the consistency of this
dominant balance, we need to assess the relative magnitudes of the pressure and velocities
in terms of the parameter G. From (5.17), the kinematic boundary condition (5.16) implies

that U él) =0(G™. According to the continuity equation (2.14a), Ul(el) must match

the order of Uél), giving UV = O(G™"). This, in turn, implies from the momentum

equation (5.14) that P() is also of order O(G~"). Consequently, both the pressure and
the rate of strain on the left-hand side of (5.15) are of order O(G '), while the right-hand
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Figure 3. Time-varying interface shape for a Giesekus fluid. (a) Time evolution of the interface shape around
an infinitely long rotating rod in a Giesekus fluid, with inertial effects absent, shown at times t =0, 1, 3, 10.
(b) Time evolution of the climbing height of a Giesekus fluid on the rotating rod, with inertial effects absent,
evaluated at R = 1. All calculations were performed using B =5 and o = 0.25.

side remains of order O(1). Therefore, as G > 1, so that G~! « 1, we conclude that the
right-hand side forms a consistent dominant balance as desired. In § 4, we have derived a
steady interface shape (4.13) for T = O (1), whereas in this section, we obtain a transient
interface shape (5.17) for T = O (Wi). We note that

lim Hpyansient(R, T) = Hvteady(R)a (5.18)
T—00

thus confirming that the interface dynamics occurs on a short time scale, with T = O (Wi),
and that the transient interface shape approaches the steady interface shape at long times.

Figure 3(a,b) show the time evolutions of the scaled interface shape H(R, t)G/
[2B8,(1 — 2a) Wi] and the scaled climbing height of a Giesekus fluid on the rotating rod,
H(R=1,7)G/[2B,(1 —2a) Wi], given in (5.17), with B =5 and a = 0.25. We observe
that the transient interface height reaches a steady state at T & 6, with the interface shape
becoming nearly flat for R £ 3.

6. Inclusion of small but finite inertial effects
6.1. Leading-order solution
As derived in § 5, the transient interface shape (5.17) remains positive, owing to the hoop
stress in the viscoelastic fluids, which drives the fluid radially inwards and is responsible
for rod climbing. However, introducing a small inertial effect may change the dynamics,
as the resulting centrifugal force would push the fluid radially outwards. This competition
between forces leads us to investigate how finite, small inertia may impact the interface
height when both effects are present. In this section, we continue to use the stretched time
scale T to examine the transient interface dynamics.
Incorporating inertial effects into our analysis, the momentum equation (2.17) is

R : 8U-l—U vU V.Y 6.1)
e —_— . = . . .
Wi ot

Rather than focusing our analysis on the Reynolds number, we find it more useful to base
our analysis on the elasticity number EIl, which represents the ratio of elastic stress to
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inertial stress (Denn & Porteous 1971):

Wi
El=—. 6.2
Re (6.2)
Consequently, the momentum equation (6.1) can be expressed as
oU
El"! (8—+WiU-VU) =V.J. (6.3)
T

Previously, we derived the interface shape for E/ — oo, and now aim to extend our
analysis to cases where E! is large. To isolate the nonlinear term U - VU from the leading-
order velocity profile, we assume that £/ is at least O (1), indicating small but finite inertial
effects with Re < Wi. When EI is finite, the time-derivative dU /9t of the velocity field
reappears, in contrast to the low-Reynolds-number approximation in §§ 4 and 5. To ensure
that the problem is well-posed, we specify the velocity field at the initial time:

U=0 at t=0. 6.4)

Besides the additional terms on the left-hand side of the momentum equation (6.3)
and the new initial condition (6.4), the remaining constitutive equations and boundary
conditions are identical to those in § 5. Specifically, the leading-order polymeric stress

X fno) can be expressed in terms of the leading-order rate-of-strain tensor, as shown in (5.3).
This expression, combined with the momentum equation (6.3), allows us to derive the
differential equation for the leading-order velocity field:

au®

BT S = VPO 4 £ (V2U©). 6.5)
T

Following the approach in § 5.1, we seek a solution where the leading-order interface

is flat. Using the same reasoning, we deduce that P® =0 and the velocity field is

purely azimuthal, U O = yO (R, 7) ey. This allows us to reduce the vector differential

equation (6.5) to a partial differential equation for an unknown scalar variable:

au©® 19 U@\ yo
El"! =L|=— (R -—. (6.6)
ot R 3R OR R?

Equation (6.6) is formulated on the semi-infinite domain R € [1, co) subject to the no-
slip boundary condition (2.15a), the far-field boundary condition (2.15¢), and the initial
condition (6.4), i.e.

vOt, =1, U900, 1)=0, UOR,0) =0. (6.7)

Since the vortex solution 1/R represents the steady-state solution of (6.6) along with the
specified no-slip and far-field boundary conditions, we decompose U (?) into a steady-state
component and a transient component:

1 -
UYR, 7)= = UO(R, 7). (6.8)

As (6.6) is linear, UO also satisfies (6.6) but with homogeneous spatial boundary
conditions:

- - ~ 1
091,7)=0, U9, 1)=0, U(O)(R,O):—E. (6.9)
We approach this problem using a Weber transform W of order one (Watson 1966;
Piessens 2000), an analogue of the Hankel transform on the semi-infinite domain [1, c0),
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by introducing

V[r;k]:W{U(O)(R,t)}:/ RUO(R, 1) Zi(k, R)dR, (6.10)
1

with the kernel Z; (k, R) given by
Zy(k, R) =J1(kR) Y1 (k) — Y1(kR) J1(k), (6.11)

where J1 and Y are the first- and second-kind Bessel functions of order one, respectively.
This transformation enables us to simplify the Bessel differential operator of order one
acting on U® on the right-hand side of (6.6), provided that U(?) decays to zero at infinity:

0

1o ( 000\ 0O o [ 2 .
— _—— = — (0) _ - (0 - _ 2 .
W{R R (R 3R ) e } Bw O (R 1)} - 20 (T 1) = V[T k]

(6.12)

Note that the operator W acts on the R variable, while £ acts on 7, which implies that the
two operators commute: W o £ = L o W. We apply the Weber transform to (6.6), yielding

aV[r: k T
El™! % =—k> L (V[t: k]) = —k> (ﬁs VIt; k1 +Bpe " / Vis: k)¢ ds) .
T 0
(6.13)
In this transformed variable, the initial condition becomes
- o0
V0, k] =W {U<0>(R,0)} =—/ Zi(k, R)dR
(0,0 : o0
=J1(k)/ Y1 (kR) dR—Yl(k)/ Ji1(kR)dR
1 1

1 2

=% (J1(k) Yo(k) — Jo(k) Y1 (k)) = el (6.14)

where the last equality follows from the Wronskian of the zero-order Bessel differential
equation. To solve (6.13), we first multiply both sides by e” and then differentiate with
respect to T, to obtain

2V v v

where we have used the relation B; + 8, = 1. Equation (6.15) is a constant-coefficient
second-order differential equation in time, which has solutions of the form

Vit k] =Ci(k) e"™ + Ca(k) e'7, (6.16)
where A4 and A_ are roots of the equations
2+ (1 +k2El,3s> A+ K2El=0. 6.17)

In particular,

—1—Kk2?ElBs ++/(1 + k2EIB,)? — 4k2EIl
. By £/ 2+ Bs) . .

Although A1 can be complex depending on the value of k, their real parts are always
negative, except at k =0, where one root is zero and the other is —1. In addition to the
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Figure 4. Time evolution of the leading-order velocity field ¥ (R, t) around an infinitely long rotating rod in
a Giesekus fluid, incorporating small but finite inertial effects, shown at times  =0.1, 1, 10, for (a) El =0.2,
(b) El =1, and (c) El = 5. All calculations were performed using 8, = 0.5.

initial condition (6.14), evaluating (6.13) at T = 0 provides an initial condition for 9V /9t:

v 2EIBq
8—[0; k)= —k>EIB; V[0; k] = — P . (6.19)
T T

Using (6.14), (6.16) and (6.19), and simplifying with (6.17), we find

2 ((A+ap)et" — Q4 )etT
Ve k=2 (I+ap)e (I+4-)e ’
T k2(Ay —A2)
where A4 and A_ are functions of k, El and S;. Finally, we take an inverse Weber transform

to obtain

(R, 1) =/OO Vs A R) 5,
o JZR+ Y2

2 /oo (A+ap)eH" =1 +a-)et7) Zi(k, R)
0 k(A — A2) (i) + Y{(K))

|

Although proceeding with (6.21) analytically is difficult, it is straightforward to handle
numerically. In figure 4, we show the time evolution of the leading-order velocity profile
UO(R, t) for various values of El. We observe that larger EI leads to a faster approach
to a steady state in the transient velocity profile. Intuitively, when E! is large, the elastic
effect (Wi) is larger than the inertial effect (Re). A larger viscoelasticity accelerates the
flow’s return to equilibrium by emphasising the elastic ‘spring-like’ properties over inertial
resistance, thus pushing the flow to a steady state faster.

(6.20)

dk. (6.21)

6.2. First-order correction solution
In §§4.2 andS5.2, we used the leading-order velocity field U © to calculate the

polymeric force V . ¥ ) which is then incorporated into the pressure gradient VP
to determine the transient interface shape. However, the leading-order velocity field (6.21)

is challenging to work with directly. To address this, we first express V - X g) in terms

of U, calculate the interface shape, and then transition to numerical computations as a
final step. We find (see Appendix B for more detailed calculations)

T
v.-xV=8, e—t/ V2UD e' ds — f(R, ) ey, (6.22)
0
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where

T o9 (UO S9 (UO
f(R,t):Z,BPer/ R— | — / — | —]efds ) dS
o OR\ R o R\ R
2
9 T S 9 U(O)
+appe T — / e S R? f — = )e'ds| ds|. (6.23)
aR \ Jo o R\ R

At first order, the momentum equation (6.3) becomes

aum
EI~ ( - +UO. VU<°>) VPO + g, ViU +v. D (6.24)

The second term on the left-hand side of (6.24) represents the centrifugal force generated
by the (start-up) vortex:

U©)?
R

v9.vy© - — e. (6.25)

Observe that both the centrifugal force (6.25) and the polymeric force induced by the
leading-order flow (second term of (6.22)) are directed radially. To simplify, we introduce
a modified pressure variable that combines these two conservative forces:

0) 2
PO(R, 1) = PD(R, )+/ (% — f(s, r)) ds. (6.26)

Combining (6.24) and (6.26) allows us to express the momentum equation as

| qu _
ot

El™ —vpD 41 (v2U<1>) . (6.27)

Following an argument similar to that in § 5.2, in the limit where G > 1, we argue
through the dominant balance that the interface shapes are determined by the pressure
contributions from the inertial and polymeric stresses in (6.26). We obtain a differential
equation

@ ) 0 2
1 9 ( oH, 1 WO . 1))
g® ’ .
inertia BR OR (R anzrtm> G /R <f(sa T) - Els ds := F(R, T).

(6.28)
The solution to this differential equation with the boundary conditions (2.15b) and (2.15¢)
is
o0
H® (R, v)=BL(VB)K;'(VB) (/1 s Ko(V/Bs)F(s, 7) ds) Ko(vBR)
o
+ BIy(VBR) / s Ko(v/Bs)F(s, T) ds
R

R
+BK0(JER)/ s Io(~V/Bs)F (s, 7) ds. (6.29)

1
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Figure 5. Phase diagram for the existence of the rod-climbing phenomenon around an infinitely long rotating
rod in a Giesekus fluid, incorporating small but finite inertial effects. All calculations were performed in the
range B € (0.2, 25).

Before we present numerical results to (6.29), we consider the steady interface shape in
the presence of inertial effects. We substitute U® ~ 1/R and let T — oo to find

1 1 28,(1—2
F(R,00) =7 (_2E1R2 + ﬂp(R“ a)). (€30

The steady interface shape is readily obtained by substituting (6.30) into (6.29).
At the rod (R = 1), the steady rise height can be simplified and is given by

) VB ~1(/B 1 < VB
Hinertia(l’oo):FKl ( B) _m . R K()( BR)dR

+28,(1 —2a) /Oo R™? Ko(«/ER)dR> : (6.31)
1

Rod climbing, at the steady state, occurs when this rise height is positive, which
corresponds to the criterion

[° R Ko(VBR)dR
[° R3Ko(vVBR) dR

Figure 5 illustrates a phase diagram as a function of the parameters A and B for the rod-
climbing criterion (6.32). When B = O(1), the right-hand side of (6.32) takes a value
approximately between 1 and 2, approaching 1 in the limit as B — 0o. A necessary
condition, but not sufficient, for the rod climbing at the steady state to occur, regardless
of surface tension effects, is that A > 1. For a given Bond number B, the climbing
criterion (6.32) requires viscoelastic effects to surpass inertial effects for climbing to
occur (represented by the elasticity number EI), though the effective viscoelasticity is
also reduced by the polymer solution’s diluteness (represented by 8,) and the polymer’s
chain mobility (represented by o). This highlights how the balance between viscoelasticity,
inertia, polymer concentration and polymer mobility governs the climbing behaviour.
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Figure 6. Steady-state interface shapes around an infinitely long rotating rod in a Giesekus fluid,
incorporating small but finite inertial effects, for (a) A=1, (b) A=1.5, (c¢) A=2, and Bond numbers
B=1,5,25.
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Figure 7. Time evolution of the transient interface shapes around an infinitely long rotating rod in a Giesekus
fluid, incorporating small but finite inertial effects, shown at times v =0.1, 1, 10, 25, for (a) E/ =0.5, (b)
El =1, and (c) El =2. All calculations were performed using 8, =0.5, « =0.25 and B =9.

Figure 6 shows the steady-state interface shape Hinerria(R, 00) scaled by 28,(1 —
2a) Wi/G, for various values of A and B. We consider three representative cases:
A =1, 1.5, 2, which illustrate typical steady interface behaviours. For A = 1, the interface
height is negative when B > 1; for A =2, it is positive in the same range. For A = 1.5,
the interface height may be either positive or negative depending on the Bond number: rod
climbing occurs for B 2 5, but not for smaller values.

To examine the interface dynamics before reaching the steady state, we present the
transient interface (6.29) obtained via numerical computations. In figures 7 and 8, we
show the time evolution of the free surface (scaled by 28, (1 — 2«) Wi/G) for different
elasticity numbers and Bond numbers. We observe that the impulsive motion of the rod
initially causes a sudden dip in the fluid interface near the rod, an effect that is more
pronounced at lower elasticity numbers due to stronger inertial forces. As time progresses,
inertia continues to drive the interface downwards, while viscoelastic stresses act to push it
upwards. When inertial effects outweigh viscoelastic effects, the interface height decreases
monotonically until reaching a steady state, as illustrated for E/ = 0.5 in figure 7. At higher
elasticity numbers, where viscoelastic effects are more dominant, the interface initially
climbs due to the stronger viscoelastic response. However, because viscoelastic stresses
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Figure 8. Time evolution of the transient interface shapes around an infinitely long rotating rod in a Giesekus
fluid, incorporating small but finite inertial effects, shown at times 7 =0.1, 1, 10, 25, for (a) B=1, (b) B=5,
and (c) B = 25. All calculations were performed using 8, = 0.5, « =0.25 and El =2.

relax faster than inertial effects, the climbing height eventually peaks and then decreases,
governed by the slower relaxation of inertia towards its steady-state behaviour.

Depending on the spatial location of the interface, the viscoelastic fluid rises at
varying rates due to the interplay between inertial and viscoelastic contributions. For
El=0.5,1, 2, we observe that the interface shape exhibits non-monotonic behaviour
primarily within the range 1 < R < 1.5. At larger values of R, the interface deformation
becomes smaller and more regular.

7. Conclusions

In this study, we explore the transient dynamics of the rod-climbing phenomenon, deriving
the transient interface shape in the small-deformation regime for a Giesekus fluid. We
show that normal stress differences drive the rod-climbing phenomenon, with the second
normal stress difference reducing the climbing height, while the shear-thinning behaviour
does not affect the leading-order rise. Our analysis emphasises the interplay between
viscoelasticity, gravity and surface tension, characterised respectively by the Weissenberg
number (Wi), the dimensionless gravity parameter (G), and the capillary number (Ca), and
we find that the small-deformation scenario corresponds to cases where Wi << 1, G > 1/Wi
and Ca G = O(1). These conditions enable us to employ a perturbation expansion for the
velocity field and the rise height in terms of Wi with the aid of the domain perturbation
method. Even though surface tension has been included in our analysis, we have assumed
the contact angle ¢ = 1t/2 to focus on the dynamics of the viscoelastic rise in absence of
the capillary rise. Approximately, our analysis provides a formula for the additional rise
height beyond the capillary rise height when the contact angle is ¢ < 1t/2. In contrast,
earlier work by Joseph & Fosdick (1973) developed expansions based on the (small)
angular rotation speed §2; see also More et al. (2023). From a theoretical point of view,
this approach is less desirable since §2 is a dimensional parameter, which complicates the
distinction between limits arising from other variables, such as gravity, surface tension
and inertia. Although our analysis is conducted specifically with the Giesekus model, the
approach can be applied to other viscoelastic models that exhibit a non-singular asymptotic
structure in viscometric flows in the limit Wi < 1.

Most experiments on the rod-climbing phenomenon focus on regimes where fluids rise
higher than predicted in this study, and form a thin film near the rod, deviating from
the small-deformation scenario. One potential research direction to better understand this
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behaviour is to analyse the phenomenon in the high-Weissenberg-number limit (Wi > 1),
as significant climbing heights are observed at high angular velocities. Recent studies
(Boyko, Hinch & Stone 2024; Hinch et al. 2024) have investigated Oldroyd-B fluid flows
in narrow, slowly varying contractions under conditions similar to Wi >> 1, using the ultra-
dilute limit and curvilinear transformations to simplify the equations. However, extending
these methods to the rod-climbing problem may present a challenge as the flow is not
unidirectional. Expanding our results to this high-Weissenberg-number scenario will help
to improve the alignment with experimental data, and enable more accurate rheological
measurements using the rod-climbing phenomenon. Another possible research direction
is to consider weak viscoelasticity (Wi <« 1) while incorporating moderate gravity effects
(G < 1/Wi), potentially revealing another distinguished limit where analytical solutions
may be possible using asymptotic methods.

The methods developed in §5 to analyse the boundary layer in time and in §6 to
account for finite inertial effects are broadly applicable and not limited to the rod-climbing
phenomenon. We anticipate that our approach for the Giesekus model will be valuable for
studying a wider range of time-dependent problems, such as start-up flows in complex
fluids. While most theoretical work on viscoelastic flows has focused on steady-state
scenarios, our study provides researchers with a versatile set of tools to gain deeper insight
into how suspended polymers, and other similar microstructural elements, respond to
unsteady flow fields.
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Appendix A. Kernel of a linear operator L

Here, we prove a proposition about the kernel of the linear operator £ used in §5.1.
Suppose that £ is a linear operator defined by

t
L(F(X,1)=ps F(X,t)+,3pe_t/ F(X,s)e'ds. (A1)
0

If L(F(X,1))=0 for all (X, 1) eR3 x [0, c0), then F(X,1)=0 for all (X,7)eR>?x
[0, c0).

The proof is as follows. Suppose that £(F(X,t))=0 for all X eR? and ¢ >0.
Evaluating the equation at t = 0, the second term on the right-hand side of (A1) vanishes,
leaving us with F (X, 0) =0 as B; # 0. We may now take a time derivative of the equation
e’ L(F(X, 1)) =0 to obtain

t
e m)=2 (,35 F(X, ¢ + ,3,,/ F(X.s5)e' ds)
dr dr 0

d
:ﬂsa (F(X,0)e')+ B, F(X,1)e' =0. (A2)
It follows that this first-order ordinary differential equation in terms of F (X, t) e yields
a solution of the form

F(X,)e' =F(X,0)e P/fs =0 = F(X,1)=0 forall X eR>andr €0, ).
(A3)
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Appendix B. Evaluating the hoop stress

Here, we provide detailed calculations for the expression V - X g,]) in (6.22). We begin
by noting that the leading-order velocity field takes the form U® = U (R, 1) ey. This
enables us to write down the rate-of-strain tensor associated with the leading-order
velocity field:

o 1 (ou® y©
E™ =3 ——— | (ereg +ege,) =

oR R

R o (UO®
R

23R —) (ereg +egey).  (BI)

Using (5.3), we express the leading-order polymeric stress as

0 T g U(O)
E;) = ﬁp e 'R /0 8_R T e’ ds (eree + eQer) . (BZ)

At first order, the evolution of the polymeric stress (5.2) is

(€]
ox o
() r _ _pO, ) ), (U] ONT, yO) _ = y© , 5O
x, —1—?— U VY, + 27 VU (VU)X ,3pr x,

+ Z,BPE(I). (B3)

Next, we calculate each term on the right-hand side of (B3). Since U ©) is azimuthal, we
derive

U0 gx® t 5 (UO
v©. VZ;O) =— P _ 2Bpe” " U(O)/ — | —— ) ¥ ds | (egeg —eye,) .

R 36 o OR\ R
(B4)
On the other hand,
O.vu® 1 (vuHT. g = 28, e R /Ti ve e* ds
p p P o R\ R
U U
X 3R egeg—Terer (BS)
and
a vy (U© 2
ﬂ—pE;O).E;O):aﬂpe_erZ /0 T2 |7 eds) (eves +erer). (B6)

Thus (B3) can now be rewritten as

) ) v ©

6D 3 (U 3 (U
>4 =P —2g EW 428, e " RZ— [ — /— —|e'd
Pty T ET A2 TR R o R\ R | &)

2
Ty (U©
—apf) e 2" R? (/ IR (T e’ ds| (egeq +ere;). (B7)
0
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Multiplying both sides of (B7) with e’ and then integrating with respect to 7, we arrive
at

3 (U© S 9 (U©
e / — ) e¥ds dSegeg
0

T T
efzgj)zzﬂp/o EWe’ ds+2/3pR2/()

3R \ R 3R
2
T S 0)
9 (U
—oz,BpRZ/ e’ / 57 | g | elds | dS(eves +erep). (B8)
0 0

Thus we conclude that

T
v.x V=g, ef/ ViU e ds
0

T 9 U(O) S 9 U(O)
—2ﬂpef/ R— [ — / — [ =—)e'ds)dSe,
o OR\ R o R\ R

2
9 v S0 (UO) |
—aﬁpe—fﬁ /e_SR2 / 2\ 7 e'ds| dS|e.. (B9
0 0
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