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Introduction

Real analytic torsion is a spectral invariant of a compact Riemannian manifold equipped

with a flat Hermitian vector bundle; it was introduced by Ray and Singer [44]. For

odd-dimensional manifolds, this invariant does not depend on the metric data. Ray and

Singer conjectured that, for unitarily flat vector bundles, this invariant coincides with the

Reidemeister torsion, a topological invariant. This conjecture was established by Cheeger

[28] and Müller [41], and extended by Müller [42] for unimodular flat vector bundles, and

by Bismut and Zhang [22] to arbitrary flat vector bundles. A fundamental property of

these invariants is that they are well defined for manifolds that are not oriented.

The purpose of this paper is to use Toeplitz operators to study asymptotic properties of

the Ray–Singer real analytic torsion [44]. More specifically, if X is a compact Riemannian

manifold, and if Fp|p∈N is a certain family of flat Hermitian vector bundles on X , we

obtain the asymptotics of their Ray–Singer torsion as p→+∞. We express the leading

term of the asymptotic torsion as the integral of a differential form that is obtained by a

universal construction that uses the Berezin integral formalism introduced by Mathai and

Quillen [39]. For compact odd-dimensional manifolds, we obtain in this way an infinite

number of invariants that are computable using local data.

Let us now give the background to the results obtained in this paper. For holomorphic

torsion, this study was initiated by Bismut and Vasserot [20, 21]. For real analytic torsion,

Bergeron and Venkatesh [3] have studied the asymptotics of the analytic torsion of

quotients of symmetric spaces by a decreasing sequence of lattices in the underlying

Lie group. Their motivation was to understand the behaviour of the torsion subgroup

in the cohomology of compact quotients. Müller [43] studied in detail the case where

X is a compact quotient of the three-dimensional hyperbolic space SL2(C)/SU(2), and

Fp = S p F , where F is the two-dimensional flat vector bundle associated with the

tautological representation of SL2(C) on C2, and S p denotes the pth symmetric power.

The arguments of [43] are based on Selberg’s trace formula. Marshall and Müller [38] have

used the results of [43] to study the asymptotics of torsion subgroups in the cohomology

of hyperbolic 3-manifolds.

Our approach to the asymptotics of Ray–Singer torsion for the vector bundles Fp is

valid for an arbitrary compact manifold X . Moreover, we work in a more general context

than the one above, since we also obtain the asymptotics as p→+∞ of the analytic

torsion forms of Bismut and Lott [18]. In that context, let π : M → S be a submersion

of smooth manifolds with compact fibre X . Our flat bundles Fp are obtained as direct

images by a proper map q : N → M of the pth power of a holomorphic positive line

bundle L along the compact Kähler fibre N , under a nondegeneracy assumption that is

ultimately related to geometric quantization, and to the corresponding Toeplitz operators

in the sense of [23, 25, 34].

Let us now give more details on the main points that are covered in the paper.

0.1. The flat vector bundles Fp

In the paper, we work under two kinds of assumption. In the first eight sections of

the paper, we assume that G is a reductive Lie group acting holomorphically on the
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manifold N , and that PG → M is a flat G-principal bundle on M , so that Fp is the flat

vector bundle on M that is obtained via the action of G on H (0,0)(N , L p). Then we can

transfer the analysis of the asymptotic torsion to the fibre bundle PG , which does not

depend on p. The results are ultimately formulated in terms of generalized characteristic

forms on M , which are expressed in terms of differential operators acting on the Lie

algebra g of G.

In § 9, we consider the case where G is an arbitrary Lie group. In this more general case,

the answer is expressed as the integral along the fibre N of an explicit differential form on

N . This differential form is constructed using deformations of the Poisson algebra along

the fibre N . Some key properties of the algebra of Toeplitz operators are used to obtain

the final formula.

0.2. A nondegeneracy condition

In both cases, our main result applies to the family of flat Hermitian vector bundles

Fp|p∈N under a natural nondegeneracy condition that guarantees that, for p ∈ N large

enough, H ·(X, Fp) = 0.

Let us give more details when G is a reductive group with Lie algebra g. Let K be a

maximal compact subgroup with Lie algebra k. Let g = p⊕ k be the Cartan decomposition

of g. Let U be the compact form of G, with Lie algebra u = ip⊕ k. We assume that U
acts holomorphically on N , and that its action lifts to L. Let µ : N → u∗ denote the

corresponding moment map.

Let PK be a reduction of PG to the subgroup K . Let θg be the connection form on the

flat bundle PG , and let θk be the connection form on PK that is induced by θg via the

Cartan decomposition g = p⊕ k. Let θp be the p component of θg on PK . Then 〈µ, iθp〉
is a well-defined section of q∗T ∗X . Our nondegeneracy assumption says that this section

does not vanish on N .

When (F,∇F , gF ) is a flat vector bundle on M , an important special case is when N
is the projective bundle PF and L is the canonical hyperplane line bundle on N . In this

case, Fp = S p F∗. Let ω(∇F , gF ) be the variation of gF with respect to the flat connection

∇F , as defined in (5.1). Our nondegeneracy condition says that, if z ∈ PF , the section

〈ω(∇F , gF )z, z〉/|z|2 of q∗T ∗X should not vanish.

In the general case, let gL be a Hermitian metric on the line bundle L on N , and let

T̂ X be another copy of T X . The nondegeneracy condition is equivalent to the fact that
a section σϑ̂ of q∗T̂ ∗X does not vanish on N . The section σϑ̂ is obtained by varying the

metric of L with respect to the flat connection of PG .

0.3. V -invariant and W -invariant

Our main result states that the asymptotics of the analytic torsion can be evaluated

by integration on X of a locally computable differential form W . Since analytic torsion

verifies natural functorial properties with respect to the composition of submersions, the

integral of W should verify similar properties.

In [16, §3], Bismut and Goette considered a related problem. Namely they gave a

local formula for the difference of two natural versions of equivariant analytic torsion.
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The corresponding local object, the V -invariant, which is naturally associated with a

Killing vector field on X , was shown directly to verify the same functorial properties as

analytic torsion. Its construction relies on the Berezin integral formalism of Mathai and

Quillen [39]. Another copy 3·(T̂ ∗X) of 3·(T ∗X) is used in the construction. The natural

involution exchanging 3·(T ∗X) and 3·(T̂ ∗X) plays a key role in explaining the properties

of the V -invariant. The intuition given in [16] for the construction of the V -invariant is

that analytic torsion itself can be viewed formally as the V -invariant of the loop space L X
of X equipped with its canonical action of S1 by rotations, so that any of its ‘localizations’

has to follow the same algebraic pattern.

The same algebraic formalism reappears here. Our W -invariant is a close analogue of

the V -invariant, which, instead of being associated with a Killing vector field, is now

obtained via the local variation of a nonflat Hermitian metric. The underlying paradigm

is that the analytic torsion of a flat vector bundle can be viewed formally as the pairing

of the V -invariant of L X and the W -invariant of L X . In the context of [16], only the V
part contributes to the localization. Here it is only the W part that contributes to the

large-p asymptotics.

Our construction of the W -invariant in §§ 2 and 9 is self-contained; it does not

necessitate any knowledge of the V -invariant of [16], and the above considerations on

the loop space will remain in the shadow. The construction is only possible under the

assumption of nondegeneracy. In the case where G is reductive, the W -invariant, defined

in Definition 2.11, is expressed in terms of the action of the heat kernels of certain

operators with constant coefficients on gC acting on the Duistermaat–Heckman integral

[29, 30] on N . For a general Lie group, the W -invariant is obtained in Definition 9.22 as

the integral of a differential form on N . Of course, we show that the two constructions

are compatible.

Let ϑ be the 1-form on N which is minus half of the horizontal variation of the metric

gL with respect to the flat connection, so that σϑ̂ is the restriction of ϑ to q∗T̂ X . As we

saw before, the nondegeneracy assumption asserts that the section σϑ̂ does not vanish.

If m = dim X , let ψ be the (m− 1)-form on the total space of T̂ X \{0} that transgresses

the Euler form e(T X,∇T X ). Let c1(L , gL) be a natural first Chern form for (L , gL). In

Theorems 2.12 and 9.23, we establish the explicit formula

W = q∗
[
ϑσ ∗

ϑ̂
ψ exp

(
c1
(
L , gL))]. (0.1)

A very special case is when N is reduced to a point, so that (L ,∇L) is a flat line bundle

on M . If ω(∇L , gL) = (gL)−1∇L gL , then ϑ = −ω(∇L , gL)/2 is a closed 1-form on M , and

ϑ̂ is its restriction to T̂ X . By (0.1),

W = ϑσ ∗
ϑ̂
ψ. (0.2)

When m = dim X is odd, then W is a closed form on M . Set T X⊥ = T X/{ϑ}, and let

e(T X⊥) be the Euler class of T X⊥. In this case, by [22, equation (6.20)], the cohomology

class [W ] of W is given by

[W ] = − 1
2 [ϑ] ∧ e

(
T X⊥

)
, (0.3)

so that
∫

X W is the integral over X of a classical cohomology class. When N is arbitrary,

there is no clear cohomological interpretation of W .
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0.4. Nondegeneracy, Toeplitz operators, and the spectral gap

Under our assumptions of nondegeneracy, we show in Theorem 4.4 and in § 9.10 that

the lowest eigenvalue of the corresponding Hodge–de Rham Laplacian DX,2
p grows like

p2. This estimate is obtained by giving a lower bound on the constant term of the

Weitzenböck formula for DX,2
p , by expressing this constant term as a Toeplitz operator

acting on C∞(N , L p).

When G is reductive, this is the only use we make of Toeplitz operators. In the general

case, which is dealt with in § 9, key results on the algebra of Toeplitz operators play a

much more important role. Subtle properties of the Poisson algebra of the fibres N , which

is a degeneration of the Toeplitz algebra, are used to calculate the W -invariant in this

more general case. Results by Boutet de Monvel and Guillemin [25] on Toeplitz operators,

and further developments by Bordemann, Meinrenken, and Schlichenmaier [23] and Ma

and Marinescu [34, 35] play an important role in the proofs.

0.5. Analytic torsion, analytic torsion forms, and 0-torsion

One reason for working with analytic torsion forms instead of the simpler analytic torsion

is that the formalism incorporates the variation of the usual analytic torsion. As was

shown in [18], the anomaly formulae for the usual Ray–Singer torsion are consequences

of basic properties of analytic torsion forms. Also, the analytic torsion forms formalism

provides a better control of the local cancellations in the small-time asymptotics of

supertraces of heat kernels.

Take the case of one single fibre X , and let X̂ denote a 0 cover of X , where 0 is a

discrete group. Our nondegeneracy assumption also implies a lower bound for the Hodge

Laplacian D X̂ ,2
p that grows like p2. For p ∈ N, one can then define the corresponding 0

analytic torsion of X̂ . Modulo O(e−cp), c > 0, the asymptotics of the 0 analytic torsion are

shown to be the same as the asymptotics of the analytic torsion itself, in close resemblance

with Atiyah’s index theorem for coverings [1].

0.6. Asymptotic torsion and the trace formula

In § 8, we relate our methods to the Selberg trace formula as used by Müller [43], when

X is a compact quotient of a symmetric space. The conditions under which the analytic

torsion associated with our flat bundles vanishes, which are stated in Theorem 8.6 and

Remark 8.7, are still the ones found by Moscovici and Stanton [40], [11, Chapter 7] for

the trivial flat bundle. Also, when X is instead a symmetric space, we use the results of

[11] to compute the asymptotics of the semisimple orbital integrals that are associated

with the heat operator exp(−t DX,2
p /2). In the case where the flat bundle F is associated

with an irreducible representation of U and with the corresponding coadjoint orbit of

its highest weight λ, a condition on λ is given in Proposition 8.12 so that it verifies our

nondegeneracy condition. Moreover, we compute directly the asymptotics of the orbital

integrals as p→+∞, and we recover in this special case our asymptotic formula in terms

of Berezin integrals.
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0.7. The main result

We assume that the nondegeneracy condition is verified. Let Th
(
gT X ,∇Fp , gFp

)
be the

Ray–Singer analytic torsion [44] associated with the de Rham complex
(
�·(X, Fp), d X ).

For the precise definition, we refer to (5.49) and (5.50). Set n = dim N . The main result,

which is established in Theorems 7.1 and 9.32, is as follows.

Theorem 0.1. As p→+∞,

p−n−1Th
(
gT X ,∇Fp , gFp

) = ∫
X

W +O
(

p−1). (0.4)

Note that, if m = dim X is odd, for any p ∈ N, Th
(
gT X ,∇Fp , gFp

)
is a topological

invariant, so that all the terms in its asymptotic expansion as p→+∞ are topological

invariants. Equation (0.4) identifies the first term.

0.8. The organization of the paper

This paper is organized as follows. In § 1, we introduce the Berezin integral formalism.

Also, given a reductive group G, a G-bundle PG on M , and a compact Kähler manifold

N , under an assumption of nondegeneracy, we construct natural transgressions of the

Euler form of certain vector bundles.

In § 2, given the fibration π : M → S, using the formalism of § 1, we construct the forms

W on M and the corresponding invariants π∗W .

In § 3, given a compact Kähler manifold N , we express certain operators acting on

H (0,0)(N , L) as Toeplitz operators, and we compute the asymptotics of the character for

the action of G on H (0,0)(N , L p) near the identity in G.

In § 4, we obtain an asymptotic estimate for the lowest eigenvalue of certain Hodge

Laplacians.

In § 5, we summarize the main results of Bismut and Lott [18] on the odd closed

superconnection forms on S that are associated with a flat vector bundle on M , and the

corresponding even analytic torsion forms on S.

In § 6, we compute the leading term in the asymptotics as p→+∞ of the above odd

forms that are associated with Fp.

In § 7, we obtain our main result, which gives the leading term in the asymptotics as

p→+∞ of the analytic torsion forms associated with Fp.

In § 8, we evaluate the asymptotics as p→+∞ of certain orbital integrals, and we

relate the asymptotics to the more general results that were obtained in §§ 6 and 7.

Finally, in § 9, we consider the case where G is a general Lie group. We extend the

results of §§ 1–7 to this more general case.

In the whole paper, if E = E+⊕ E− is a Z2-graded vector space, and τ = ±1 defines

the Z2-grading, if A ∈ End(E), we denote by Trs[A] the supertrace of A; i.e.,

Trs[A] = Tr[τ A]. (0.5)

The results contained in this paper were announced in [19]. In [19], the normalizations

of differential forms by powers of 2iπ or 2π were eliminated for simplicity.
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1. Multidimensional transgressions of the Euler form

Let M be a smooth manifold, and let
(
Ê, g Ê ,∇ Ê) be a Euclidean vector bundle with

connection. Let G be a reductive group with compact maximal subgroup K . Let g be

the Lie algebra of G, and let g = p⊕ k be its Cartan decomposition. Let PG be a flat

principal G-bundle on M , let PK be a reduction of PG to a principal K -bundle, and

let gr = pr ⊕ kr be the corresponding bundle of Lie algebras. If β is a smooth section of

Ê∗⊗ pr , we construct a family of associated closed forms at on M , which turn out to be

a natural extension of forms constructed by Mathai and Quillen [39] when G = R.

This section is organized as follows. In § 1.1, we introduce the reductive group G, its

compact form U , its complexification GC, and the enveloping algebra Ug.

In § 1.2, if Ê is an Euclidean vector space, we recall elementary results on the Clifford

algebras c(Ê), ĉ(Ê).
In § 1.3, we consider the algebra Ug⊗ ĉ(Ê).
In § 1.4, if u is the Lie algebra of U , we consider certain Ad-invariant analytic functions

R(A) on u, and their extension as holomorphic functions on gC. In what follows,

these functions will be obtained as integrals on a compact complex U -manifold N of

Duistermaat–Heckman equivariant forms [5, 29, 30].

In § 1.5, we recall simple facts on Berezin integration.

In § 1.6, we introduce the manifold M , and the corresponding geometric data, the vector

bundle Ê , and the flat principal bundle PG .

In § 1.7, over M , given a section β of Ê∗⊗ pr , we construct a superconnection At , t > 0,

with coefficients in ĉ(Ê)⊗Ugr . Its principal symbol σ(A2
t ) is a section of 3·(Ê∗)⊗ Sgr .

In § 1.8, we obtain σ(A2
t ) from A2

t by a rescaling procedure at the identity along the

fibres of PG ×G G.

In § 1.9, we establish a Bianchi-like identity for σ(A2
t ).

In § 1.10, we define the exponential exp(−σ(A2
t )), which should be viewed as a heat

operator acting along the fibres of gr .

In § 1.11, we introduce the Mathai–Quillen forms at on the total space Ê of Ê , and the

corresponding angle form −ψ .

Finally, in § 1.12, we construct the closed forms at on M , and we evaluate these forms

in terms of the forms at .

1.1. Reductive groups

Let G be a connected reductive group, let g be its Lie algebra, and let 2 be the Cartan

involution on G. Let K ⊂ G be the maximal compact subgroup of G of the points of G
that are fixed by 2, and let k be its Lie algebra. Let G/K be the associated symmetric

space. Let

g = p⊕ k (1.1)

be the Cartan decomposition of g. Let B be a real-valued nondegenerate bilinear

symmetric form on g which is invariant under the adjoint action of G, and also under

2. We may and we will assume that 〈 〉 = −B(·,2·) is a K -invariant scalar product on

g that is such that (1.1) is an orthogonal splitting. We denote by | | the corresponding

norm.
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Let U be the compact form of G, and let u = ip⊕ k be its Lie algebra. Let GC be

the complexification of G, and let gC = g⊗R C be its Lie algebra. Then GC is also the

complexification of U , and gC = uC. By [32, Proposition 5.6], GC is still reductive, and

G and U are closed subgroups of GC. Also, U is a maximal compact subgroup in GC.

If E is a finite-dimensional complex vector space, and if ρ : U → Aut(E) is a

representation of U , then ρ extends uniquely to a representation of G, and to a

holomorphic representation of GC. Also, recall that, by Weyl’s unitary trick [32,

Proposition 5.7], if U is simply connected, it is equivalent to consider representations

of G, of U on E , or holomorphic representations of GC on E , or representations of g, of

u, or complex representations of gC on E .

Let Ug denote the enveloping algebras of g. Then g is a Lie subalgebra of Ug. Also,

G acts on Ug by the adjoint representation. Moreover, Ug can be identified with the

algebra of real left-invariant scalar differential operators on G. Also, Ug is equipped with

an increasing filtration. Its Gr is the commutative algebra Sg, the symmetric algebra

of g. Moreover, Ug and Sg are canonically isomorphic as Z-graded vector spaces, and

this isomorphism induces the identity on Sg. We denote by σ : Ug→ Sg the canonical

isomorphism, which is also called the symbol map. For instance, if A, B ∈ g,

σ(AB) = 1
2 (AB+ B A)+ 1

2 [A, B]. (1.2)

Also, Sg can be identified with the algebra of real differential operators with constant

coefficients on g.

In what follows, when we want to emphasize that elements of g are considered as

elements of Ug, and that their products are taken in Ug, they will be underlined. They

will not be underlined in the case where just Lie brackets in g are considered.

Moreover, gC can be identified with the Lie algebra of holomorphic left-invariant

vector fields on GC, and the enveloping algebra UgC with the algebra of left-invariant

complex holomorphic differential operators on GC, which acts naturally on holomorphic

functions on GC. Similarly, SgC can be identified with the algebra of complex

holomorphic differential operators on gC with constant coefficients, which acts naturally

on holomorphic functions on gC.

Let E be a finite-dimensional complex Hermitian vector space, and let ρ : U → U(E)
be a unitary representation. We obtain corresponding representations of K ,G,GC. In

particular, ρ maps k and p to skew-adjoint and self-adjoint elements of End(E).

1.2. Clifford algebras

Let Ê be a real finite-dimensional Euclidean vector space of dimension m, and let 〈 〉 be

the corresponding scalar product.

Let c(Ê) be the Clifford algebra associated with the bilinear form 〈 〉. Then c(Ê) is the

algebra generated by 1, ê ∈ Ê , and the commutation relations

ê ê ′+ ê ′̂e = −2〈̂e, ê ′〉. (1.3)

Let ĉ(Ê) be the Clifford algebra associated with the bilinear form −〈 〉, i.e., by just

changing the sign in the right-hand side of (1.3). If ê ∈ Ê , we denote by c(̂e), ĉ(̂e) the

corresponding elements in c(Ê), ĉ(Ê).
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The algebras c(Ê), ĉ(Ê) are Z2-graded. Also, they are equipped with an increasing

filtration. The corresponding Gr· is just the exterior algebra 3·(Ê) ' 3·(Ê∗). In what

follows, we denote by [ ] a supercommutator.

If ê ∈ Ê , let ê∗ ∈ Ê∗ correspond to ê by the metric. Set

c(̂e) = ê ∗ ∧−iê, ĉ(̂e) = ê ∗ ∧+iê. (1.4)

If ê, f̂ ∈ Ê , then[
c(̂e), c( f̂ )

] = −2〈̂e, f̂ 〉, [̂
c(̂e), ĉ( f̂ )

] = 2〈̂e, f̂ 〉, [
c(̂e), ĉ( f̂ )

] = 0. (1.5)

The maps ê ∈ Ê → c(̂e), ĉ(̂e) ∈ End(3·(Ê∗)) extend to representations c : c(Ê)→
End(3·(Ê∗)), ĉ : ĉ(Ê)→ End(3·(Ê∗)).

If H ∈ ĉ(Ê), set

σ(H) = ĉ(H)1 ∈ 3·(Ê∗). (1.6)

The map σ gives a canonical isomorphism of filtered vector spaces ĉ(Ê) ' 3·(Ê∗) which

induces the identity at the level of the Gr·. The map σ is also called the symbol map.

1.3. The algebra ĉ(Ê)⊗Ug

The algebra ĉ(Ê)⊗Ug is a Z2-graded algebra, which is equipped with a filtration. Its Gr
is the supercommutative algebra 3·(Ê∗)⊗ Sg. By the above, we get a symbol map σ :
ĉ(Ê)⊗Ug→ 3·(Ê∗)⊗ Sg which is an identification of filtered Z2-graded vector spaces.

Let β ∈ Ê∗⊗ p. Then β ∈ Ê∗⊗ g, and β ∈ Ê∗⊗ iu. Let ê1, . . . , êm be an orthonormal

basis of Ê , and let ê1, . . . , êm be the corresponding dual basis of Ê∗. Then

β =
m∑

i=1

ê iβ(̂ei ). (1.7)

Moreover, β2 ∈ 32(Ê∗)⊗ k is given by

β2 = 1
2 ê i ê j [β(̂ei ), β(̂e j )

]
. (1.8)

Let |β|2 ∈ S2g be given by

|β|2 =
m∑

i=1

β(̂ei )
2. (1.9)

Then |β|2 ∈ S2g∩ S2u. Also,

|β|2 = −|iβ|2 in S2gC. (1.10)

Let β ∈ Ê∗⊗Ug be given by

β =
m∑

i=1

ê iβ(̂ei ). (1.11)

Then β2 ∈ 32(Ê∗)⊗Ug coincides with β2 in (1.8). Set

|β|2 =
m∑

i=1

β(̂ei )
2. (1.12)
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Then

σ(|β|2) = |β|2. (1.13)

Since β ∈ Ê∗⊗ iu, |β|2 ∈ Ug∩Uu. More precisely,

|β|2 = −|iβ|2 in UgC. (1.14)

Let ĉ(β) ∈ ĉ(Ê)⊗Ug be given by

ĉ(β) =
m∑

i=1

ĉ(̂ei )β(̂ei ). (1.15)

Then

σ (̂c(β)) = β. (1.16)

1.4. A complex G-manifold and the function R

Recall that uC = u⊕ iu. If A ∈ gC = uC, let Im A denote the component of A in iu.

Let A ∈ u→ R(A) ∈ C be a smooth function which is the Fourier transform of a

compactly supported finite measure 9 on u. Then R extends to a holomorphic function

gC → C, and moreover there exist c > 0,C > 0 such that, if A ∈ uC,

|R(A)| 6 C exp(c|Im A|). (1.17)

The bounds in (1.17) extend to the derivatives of R of any order. Let A be the algebra

of such functions, and let A U denote the subalgebra of the R ∈ A that are U -invariant.

Then A U is also the subalgebra of the R ∈ A that are GC-invariant.

Take β ∈ Ê∗⊗ p as in § 1.3. Then −|iβ|2 ∈ S2u can be viewed as a nonnegative

differential operator on u with constant coefficients.

For t > 0, the operator exp(−t |β|2) acts on A . Let Cb(u,C) be the vector space

of complex-valued continuous functions on u. By the above, the operator exp(t |iβ|2)
also acts on Cb(u,C). Note that R(A) ∈ A ∩Cb(u,C), and that the actions of

exp(−t |β|2), exp(t |iβ|2) on R(A) coincide.

If λ ∈ u∗, since β ∈ Ê∗⊗ iu, 〈λ, iβ〉 ∈ Ê∗. Let |〈λ, iβ〉| denote the norm of 〈λ, iβ〉 in Ê∗.
Then exp(2iπ〈λ, u〉) ∈ A , and, moreover,

exp
(−t |β|2) exp(2iπ〈λ, u〉) = exp

(−4π2t |〈λ, iβ〉|2) exp(2iπ〈λ, u〉). (1.18)

Let N be a compact complex manifold of complex dimension n. Let H (N ) be the

finite-dimensional Lie algebra of holomorphic vector fields on N . Let η be a smooth real

closed nondegenerate (1, 1)-form on N . We assume that the group U acts holomorphically

on N and preserves the form η. If A ∈ u, let AN ∈H (N ) be the corresponding

holomorphic vector field on N , so that A ∈ u→−AN ∈H (N ) is a morphism of Lie

algebras. Also, we assume there is a moment map µ : N → u∗ attached to this action

such that, if u ∈ U , then

µ(ux) = t Ad−1(u)µ(x), (1.19)

and, moreover, if A ∈ u,

d〈µ, A〉− i AN η = 0. (1.20)
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By (1.19), (1.20), we deduce that, if A, B ∈ u,

〈µ, [A, B]〉 = η(AN , B N ). (1.21)

Equation (1.20) is equivalent to

∂〈µ, A〉− i AN (1,0)η = 0. (1.22)

Classically, the action of U extends to a holomorphic action of GC on N . If A ∈ gC, the

corresponding vector field AN ∈H (N ) is still characterized by (1.22).

If A ∈ u, set

R(A) =
∫

N
exp(2iπ〈µ, A〉+ η). (1.23)

By (1.23), we find that R ∈ A U . Also, if A ∈ u, R(A) can be computed using the

localization formulae of [5, 29, 30]. By (1.18), (1.23), we obtain

exp
(−t |β|2)R(A) = ∫

N
exp

(−4π2t |〈µ, iβ〉|2+ 2iπ〈µ, A〉+ η). (1.24)

Definition 1.1. Let σβ be the smooth section of Ê∗ on N ,

σβ = 2π〈µ, iβ〉. (1.25)

Then β is said to be nondegenerate if σβ does not vanish on N . Equivalently, there exists

a > 0 such that

|σβ |2 > a. (1.26)

By (1.24)–(1.26), if β is nondegenerate, there exist c > 0,C > 0 such that, if A ∈ uC,∣∣exp
(−t |β|2)R(A)∣∣ 6 C exp(−ta+ c|ImA|). (1.27)

1.5. The Berezin integral

Let V be a real finite-dimensional vector space of dimension m′.
Let ê1, . . . , êm be an orthonormal basis of Ê , and let ê1, . . . , êm be the corresponding

dual basis of Ê∗. Suppose that Ê is oriented and that ê1, . . . , êm is an oriented basis

of Ê . Let
∫ B̂

be the linear map from 3·(V ∗) ⊗̂ 3·(Ê∗) into 3·(V ∗) such that, if α ∈
3·(V ∗), α′ ∈ 3(Ê∗), ∫ B̂

αα′ = 0 if degα′ < m,∫ B̂
αê1 ∧ · · · ∧ êm = (−1)m(m+1)/2

πm/2 α.

(1.28)

More generally, let o(Ê) be the orientation line of Ê . Then
∫ B̂

defines a linear map from

3·(V ∗) ⊗̂ 3·(Ê∗) into 3·(V ∗) ⊗̂ o(Ê), which is called a Berezin integral.

Let A be an antisymmetric endomorphism of Ê . We identify A with ωA ∈ 32(Ê∗) that

is given by

ωA = 1
2

∑
16i, j6m

〈̂ei , Aê j 〉̂e i ∧ ê j . (1.29)
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By definition, the Pfaffian Pf [ A
2π ] of A

2π is given by∫ B̂
exp(−ωA/2) = Pf

[
A

2π

]
. (1.30)

Then Pf [ A
2π ] vanishes if m is odd. Moreover,

det
[

A
2π

]
= Pf

[
A

2π

]2

. (1.31)

1.6. The manifold M

Let M be a smooth manifold. Let p : PG → M be a principal G-bundle. From the

embedding G → GC, we get a corresponding principal GC-bundle p : PGC → M .

Since G/K is contractible, there are smooth sections of the fibre bundle PG ×G G/K .

Let S be the set of these smooth sections. Then S is an infinite-dimensional connected

Fréchet manifold.

Let h ∈ S. To h corresponds a reduction of the principal G-bundle p : PG → M to a

principal K -bundle p : PK → M . From the embedding K → U , we obtain the associated

principal U -bundle PU . More generally, on M ×S, the G-bundle PG can be reduced to a

K -bundle PK .

Since G acts on the right on PG , Ug maps into differential operators acting on the

right along the fibre of PG .

From the action of G on itself by conjugation, we get the bundle of Lie groups

Gr = PG ×G G. (1.32)

The corresponding bundle of Lie algebras gr is given by

gr = PG ×G g. (1.33)

Moreover, B induces a corresponding bilinear form on gr . Also, Gr acts on the left on PG
by an action which commutes with the right action of G on PG . The bundle of enveloping

algebras

Ugr = PG ×G Ug (1.34)

can be identified with the algebra of right-invariant differential operators along the fibres

of Gr . Equivalently, it can be identified with the algebra of differential operators along

the fibres of PG which are invariant under the right action of G. For the identification to

preserve the Lie bracket, A ∈ gr maps into the vector field associated with −A along the

fibre of PG .

Since

gr = PK ×K g, (1.35)

the scalar product of g induces a scalar product on gr , and the splitting (1.1) of g induces

the corresponding splitting of gr ,

gr = pr ⊕ kr . (1.36)
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In what follows, we assume that PG is equipped with a flat connection. Let θg denote

the g-valued connection form on PG . By projection of θg on k with respect to the Cartan

decomposition (1.1), we get a connection form θk on PK . If θp is the projection of θg on

p, we have the identity

θg = θp+ θk. (1.37)

Similarly, from θg, we get connection forms θu, θgC on PU , PGC . In what follows, θp will

be considered as a section of T ∗M ⊗ pr .

Let 2k be the curvature of the connection θk. Since θg is flat, from (1.37), we get

2k = − 1
2

[
θp, θp

]
,

[
d + θk, θp] = 0. (1.38)

In what follows, we will write the first equation in (1.38) in the form

2k = −θp,2. (1.39)

Moreover, [
θp, θp,2

] = 0. (1.40)

Let ∇gr ,u be the connection on gr which is induced by the connection θk. This

connection preserves the splitting (1.36) of gr . Moreover, the second equation in (1.38)

can be written in the form

∇gr ,uθp = 0. (1.41)

The curvature 2u of the connection θu is given by

2u = −2θp,2. (1.42)

1.7. A superconnection over M

Let
(
Ê, g Ê) be a real Euclidean vector bundle of dimension m on M , which is equipped

with an Euclidean connection ∇ Ê , whose curvature is denoted R Ê .

Let e
(
Ê,∇ Ê) be the Euler form of

(
Ê,∇ Ê), and let e(Ê) be the corresponding Euler

class. Then

e
(
Ê,∇ Ê) = Pf

[
R Ê

2π

]
. (1.43)

By (1.30), we can rewrite (1.43) in the form

e
(
Ê,∇ Ê) = ∫ B̂

exp
(
−1

4

〈̂
ei , R Ê ê j

〉
ê i ê j

)
. (1.44)

We define the bundle of Clifford algebras ĉ(Ê) as in § 1.2, and we use the corresponding

notation.

Let Q be the O(m)-bundle of orthogonal frames in Ê . Then Q is equipped with an

so(m)-valued connection form θ so(m). Since so(m) embeds as a Lie subalgebra of ĉ even(Rm),

it will be convenient to view θ so(m) as taking values in ĉ even(Rm).

Set

RG = PG ×M Q. (1.45)
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Then RG is a G×O(m)-bundle, and θk+ θ so(m) is a connection form on RG . Of course,

G can be replaced by any of the groups already considered in § 1.1. Let ∇ Ê⊗gr ,u be

the connection on Ê ⊗ gr that is induced by ∇ Ê ,∇gr ,u . We still denote by ∇ Ê⊗gr ,u the

corresponding connection on ĉ(Ê)⊗Ugr .

Let β be a smooth section of Ê∗⊗ pr . We will use the notation of § 1.3. In particular,

ê1, . . . , êm is an orthonormal basis of Ê , and ê1, . . . , êm is the dual basis. Then β2 in (1.8)

is now a section of 32(Ê∗)⊗ kr , and |β|2 in (1.9) is a section of S2gr ∩ S2ur . Moreover,

ĉ(β) is a section of ĉ(Ê)⊗Ugr .

Definition 1.2. For t > 0, let At be the superconnection

At = ∇ Ê⊗gr ,u +√t ĉ(β). (1.46)

Then At is just the superconnection A1 which is associated with the metric g Ê/t . The

curvature A2
t is a smooth section of [3·(T ∗M) ⊗̂ ĉ(Ê)]even⊗Ugr , and σ(A2

t ) is a section

of [3·(T ∗M) ⊗̂ 3·(Ê∗)]even⊗ Sgr .

Theorem 1.3. The following identities hold:

A2
t =

1
4

〈̂
ei , R Ê ê j

〉
ĉ(̂ei )̂c(̂e j )− θp,2−

√
t ĉ(̂ei )∇ Ê⊗gr ,u· β(̂ei )

+ t |β|2+ t
2

ĉ(̂ei )̂c(̂e j )β
2(̂ei , ê j ), (1.47)

σ(A2
t ) = 1

4

〈̂
ei , R Ê ê j

〉
ê i ê j − θp,2+√t∇ Ê⊗gr ,u· β + t |β|2+ tβ2.

Proof. By (1.39), we get

∇ Ê⊗gr ,u,2 = 1
4

〈̂
ei , R Ê ê j

〉
ĉ(̂ei )̂c(̂e j )− θp,2. (1.48)

The first identity in (1.47) follows from (1.46), (1.48). By applying the symbol map to

this identity, and using (1.13), we get the second identity.

We will write σ(A2
t ) as a sum of components of degree 0 to 2 in Sgr ; i.e.,

σ(A2
t ) =

2∑
i=0

σ(A2
t )
(i). (1.49)

By (1.47) and (1.49), we get

σ(A2
t )
(0) = 1

4

〈̂
ei , R Ê ê j

〉
ê i ê j ,

σ (A2
t )
(1) = −θp,2+√t∇ Ê⊗gr ,uβ + tβ2, (1.50)

σ(A2
t )
(2) = t |β|2.
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1.8. The principal symbol as a rescaled limit

If ê ∈ Ê , the action of ĉ(̂e) on 3·(Ê∗) was defined in (1.4). We will not distinguish ĉ(̂e)
from its action on 3·(Ê∗).

For a > 0, let ψa be the automorphism of 3·(T ∗M) that is such that, if α ∈ 3q(T ∗M),
then

ψaα = aqα. (1.51)

For s > 0, t > 0, set

As,t = ψ√sAs2tψ1/
√

s . (1.52)

Let N3·(Ê∗) be the number operator of 3·(Ê∗). For s > 0, ê ∈ Ê , set

ĉs (̂e) = s−N3·(Ê∗)/2ĉ(̂e)s N3·(Ê∗)/2. (1.53)

Then

ĉs (̂e) = 1√
s

ê ∗ ∧+√siê. (1.54)

Set

Bs,t = s−N3·(Ê∗)/2As,t s N3·(Ê∗)/2. (1.55)

By (1.47), (1.52), and (1.53), we get

B2
s,t =

s
4

〈̂
ei , R Ê ê j

〉
ĉs (̂ei )̂cs (̂e j )− sθp,2−√st ĉs (̂ei )∇ Ê⊗gr ,usβ(̂ei )

+ ts2|β|2+ ts
2

ĉs (̂ei )̂cs (̂e j )sβ2(̂ei , ê j ). (1.56)

By identifying Ugr to the algebra of right-invariant differential operators on Gr , B2
s,t

can be viewed as a differential operator along the fibres of Gr . Similarly, by identifying

Sgr to the algebra of differential operators with constant coefficients on gr , σ(A2
t ) can be

viewed as a differential operator along the fibres of gr .

We use the exponential map to identify a neighbourhood of 0 in gr with a

neighbourhood of 1 ∈ Gr . For a ∈ R, if h ∈ C∞(g,C), put

δah( f ) = h(a f ). (1.57)

Of course δa also acts fibrewise on C∞(gr ,C).
For s > 0, t > 0, set

Cs,t = δsBs,tδ1/s . (1.58)

Then Cs,t can be viewed as a differential operator defined on a neighbourhood of 0 ∈ g.

The same is true for C2
s,t .

We will say that a sequence of differential operators with smooth coefficients on gr
converges if the corresponding coefficients converge uniformly on compact sets of the

total space of gr together with their derivatives of any order.

Proposition 1.4. As s → 0,

C2
s,t → σ(A2

t ). (1.59)

Proof. We use equations (1.47), (1.54), and (1.56), and we get (1.59).
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1.9. The Bianchi identity

If A ∈ gr , A and ad(A) act on Sgr , respectively increasing the degree by 1 and preserving

the degree. We use the notation

ad(β) =
m∑

i=1

ê i ad(β(̂ei )), iβ =
m∑

i=1

β(̂ei )iêi . (1.60)

These operators act as odd derivations of the algebra 3·(T ∗M) ⊗̂ 3·(Ê∗)⊗ Sgr . We still

denote by ∇ Ê⊗gr ,u the obvious connection on 3·(Ê∗)⊗ Sgr .

Definition 1.5. Let Lt be the differential operator

Lt = ∇ Ê⊗gr ,u· + 2i√tβ + ad
(√

tβ
)
. (1.61)

Theorem 1.6. The following identities hold:

Ltσ(A2
t ) = 0,

∂

∂t
σ(A2

t ) = Lt
β

2
√

t
. (1.62)

Proof. We use equation (1.47) for σ(A2
t ). We grade the left-hand side of (1.62) by its

degree in
√

t . In degree 0, the first identity in (1.62) is trivial. The coefficient of
√

t is

given by

−R Êβ + R Êβ − [β, θp,2]− [θp,2, β] = 0. (1.63)

The coefficient of t is given by

2β(̂ei )∇ Ê⊗gr ,uβ(̂ei )−
[
β,∇ Ê⊗gr ,uβ

]− 2β(̂ei )∇ Ê⊗gr ,uβ(̂ei )+
[
β,∇ Ê⊗gr ,uβ

] = 0.

(1.64)

Clearly,

ad(β)β2 = 0. (1.65)

By (1.65), the coefficient of t3/2 is given by

ad(β)|β|2+ 2iββ2 = 0. (1.66)

This completes the proof of the first identity in (1.62).

By (1.47), we get
∂

∂t
σ(A2

t ) =
1

2
√

t
∇ Ê⊗gr ,uβ + |β|2+β2, (1.67)

which is equivalent to the second identity in (1.62). The proof of our theorem is completed.

Remark 1.7. When G = R, (1.62) is an identity of Mathai and Quillen [39, §6]. The

second identity in (1.62) is a consequence of the first one. Indeed, replace M by M ×R∗+.

Over M ×{t}, we replace β by
√

tβ. Let A1 be the analogue of A1 over the enlarged

space. Then one has the easy identity,

σ(A2
1) = σ(A2

t )+
dt

2
√

t
β. (1.68)
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By the first identity in (1.62), we get(
∇ Ê⊗gr ,u· + dt

∂

∂t
+ 2i√tβ + ad

(√
tβ
))
σ(A2

1) = 0, (1.69)

which gives both identities in (1.62).

Another more geometric approach which we will use later is to keep β fixed, and, over

the fibre M ×{t}, to equip Ê with the metric g Ê/t . We obtain in this way a new metric

on Ê over M ×R∗+. Then ∇ Ê + dt ( ∂
∂t − 1

2t ) is a Euclidean connection on Ê . We trivialize

Ê over R∗+ by parallel transport with respect to this Euclidean connection. The ultimate

effect is that, once this trivialization is done, β is replaced by
√

tβ. We can now proceed

as before.

1.10. The exponential of σ(A2
t )

Let Sgr be the formal completion of Sgr . The exponential exp(−σ(A2
t )) lies naturally in

(3·(T ∗M) ⊗̂ 3·(Ê∗))even⊗ Sgr . By (1.49), we get

exp
(−σ(A2

t )
) = 2∏

i=0

exp
(−σ(A2

t )
(i)). (1.70)

Because, for 0 6 i 6 1, σ(A2
t )
(i) is of positive degree in 3·(T ∗M) ⊗̂ 3·(Ê∗), the

corresponding exponential just contains a finite number of terms, and they lie in

3·(T ∗M) ⊗̂ 3·(Ê∗)⊗ Sgr . By (1.50),

exp
(−σ(A2

t )
(2)) = exp

(−t |β|2). (1.71)

The proper interpretation of exp(−t |β|2) as an operator has been given in § 1.4. In

particular, exp(−σ(A2
t )) acts naturally on the algebra A U . More precisely, if R ∈ A U ,

then exp(−σ(A2
t ))R(0) ∈ 3·(T ∗M) ⊗̂ 3·(Ê∗).

1.11. The Mathai–Quillen forms at , bt

In what follows, we identify Ê and Ê∗ by the metric g Ê .

We follow Mathai and Quillen [39]. Let τ : Ê → M be the total space of the vector

bundle Ê on M . Let Ŷ denote the tautological section of τ ∗ Ê on Ê . Then τ ∗∇ Ê Ŷ is a

section of 3·(T ∗Ê)⊗ τ ∗ Ê . Let o(Ê) be the orientation bundle of Ê .

For t > 0, set

At = 1
4

〈̂
ei , R Ê ê j

〉
ê i ê j + τ ∗∇ Ê√t Ŷ + t |Ŷ |2. (1.72)

By [39, §6], we get(
τ ∗∇ Ê + 2i√t Ŷ

)
At = 0,

∂

∂t
At =

(
τ ∗∇ Ê + 2i√t Ŷ

) Ŷ
2
√

t
. (1.73)

The identities in (1.73) are special cases of the ones in Theorem 1.6.

Definition 1.8. Let at , bt be the forms on Ê with values in o(Ê),

at =
∫ B̂

exp(−At ), bt =
∫ B̂ Ŷ

2
√

t
exp(−At ). (1.74)
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By Mathai and Quillen [39, §6], the form at is of degree m, it is closed, and its

cohomology class does not depend on t , and is equal to τ ∗e(Ê). Also, the form bt is

of degree m− 1. Finally, by [39, §7], [22, Theorem 3.4], for t > 0, we have the identity

∂

∂t
at = −dbt . (1.75)

The above properties of at , bt are easy consequences of (1.73).

We embed M into Ê as the zero set of Ŷ . Let δM be the current of integration on M .

If K is a compact subset of Ê , let ‖ ‖C1
K (Ê)

be a natural norm on the Banach space of

C1 forms on Ê with coefficients in the orientation bundle o(T M) of T M with support

included in K . By [22, Theorem 3.5], if K is a compact subset of Ê , there exists C > 0
such that, if ν is a smooth form on Ê with values in o(T M), for t > 1,∣∣∣∣∫

Ê
ν(at − δM )

∣∣∣∣ 6 C√
t
‖ν‖C1

K (Ê)
,

∣∣∣∣∫
Ê
νbt

∣∣∣∣ 6 C
t3/2 ‖ν‖C1

K (Ê)
. (1.76)

Now, we follow [22, Definition 3.6].

Definition 1.9. Let ψ be the current on Ê with values in o(Ê),

ψ =
∫ +∞

0
bt dt. (1.77)

The restriction of the current ψ to the sphere bundle of Ê was first constructed in

[39, §7].

By [22, Theorem 3.7], we have the equation of currents on Ê ,

dψ = τ ∗e
(

Ê,∇ Ê
)
− δM . (1.78)

Moreover, ψ is smooth on Ê \{0}, and the restriction of −ψ to the fibres Ê coincides with

the solid angle form associated with the metric g Ê .

1.12. The forms at , bt on M

We use the same notation as in § 1.4. In particular, we take N as in that subsection, and

we assume that R ∈ A U is given by (1.23).

We fix once and for all a square root (2iπ)1/2 of 2iπ . Our formulae will not depend on

this choice.

Definition 1.10. Let ϕ be the endomorphism of 3·(T ∗M)⊗R C which maps α ∈
3k(T ∗M)⊗R C into (2iπ)−k/2α.

Definition 1.11. Let α be the even form on M ,

α = ϕR
(
θp,2

)
. (1.79)
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Proposition 1.12. The following identity holds:

α = R(0). (1.80)

Proof. Using (1.40) and the fact that R is Ad-invariant, for s ∈ R, we get

∂

∂s
exp

(
sθp,2

)
R(0) = θp,2 exp

(
sθp,2

)
R(0)

= 1
2

(
ad(θp)

[
θp exp

(
sθp,2

)])
R(0) = 0, (1.81)

from which we get (1.80).

Set

N = PK ×K N . (1.82)

In (1.82), we can as well replace K by U,G,GC. Then q : N → M is a proper submersion

with compact fibre N . Also, from the connection θk on PK , we get a horizontal subbundle

T HN ⊂ TN . The closed 2-form η on N can be viewed as a vertical 2-form on N . By

(1.19), µ can be viewed as a smooth map from N into q∗u∗r . Let κ be the 2-form on N ,

κ = η+ 〈µ, θp,2〉. (1.83)

By (1.20), (1.39), the 2-form κ is closed on N .

We still define σβ as in (1.25). Then σβ is a smooth section of q∗ Ê∗ on N .

Definition 1.13. We will say that β is nondegenerate if σβ does not vanish on N .

Definition 1.14. For t > 0, set

at = (2iπ)m/2ϕ
∫ B̂

exp
(−σ(A2

t )
)
R(0),

bt = (2iπ)(m−1)/2ϕ

∫ B̂ β

2
√

t
exp

(−σ(A2
t )
)
R(0).

(1.84)

Then at , bt are smooth forms on M , and, mod 2, the degrees of at , bt are equal to

dim Ê, dim Ê − 1.

By (1.23), (1.47), we get

at=
∫ B̂

[
exp

(
−1

4

〈̂
ei , R Ê ê j

〉
ê i ê j

)(
exp

(−t |β|2)R)(θp,2
2iπ
−√t∇ Ê⊗gr ,uβ − 2iπ tβ2

)]
.

(1.85)

A similar formula can be given for bt . Therefore at , bt are real forms.

We identify Ê and Ê∗ by the metric g Ê , so that σβ is a section of q∗ Ê on N . Then

σ ∗βat , σ
∗
βbt are smooth forms on N . By (1.74), we have the identities

σ ∗βat =
∫ B̂

exp
(
−1

4

〈̂
ei , R Ê ê j

〉
ê i ê j −∇ Ê√tσβ − t |σβ |2

)
,

σ ∗βbt =
∫ B̂ σβ

2
√

t
exp

(
−1

4

〈̂
ei , R Ê ê j

〉
ê i ê j −∇ Ê√tσβ − t |σβ |2

)
.

(1.86)

Moreover, σ ∗βat is a closed form.
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We will now extend these results to the forms at , bt . Note that the connection ∇ Ê⊗gr ,u

on Ê ⊗ gr lifts to N .

If αt |t>0 is a family of smooth forms on M , and if K is a compact subset of M , given

cK > 0, we will say that, on K , as t →+∞, αt = O(e−cK t ) if the sup norm of αt and of

its derivatives of arbitrary order over K are O(e−cK t ).

Theorem 1.15. For any t > 0, the form at is closed, and its cohomology class does not

depend on t > 0. We have the identity

∂

∂t
at = −dbt . (1.87)

The following identities hold:

at =
∫ B̂[∫

N
exp

(
−1

4

〈̂
ei , R Ê ê j

〉̂
e i ê j

+
〈
µ, θp,2− 2iπ

√
t∇ Ê⊗gr ,uβ + 4π2tβ2

〉
− 4π2t |〈µ, iβ〉|2+ η

)]
,

bt =
∫ B̂[∫

N

2π〈µ, iβ〉
2
√

t
exp

(
−1

4

〈̂
ei , R Ê ê j

〉
ê i ê j

+
〈
µ, θp,2− 2iπ

√
t∇ Ê⊗gr ,uβ + 4π2tβ2

〉
− 4π2t |〈µ, iβ〉|2+ η

)]
.

(1.88)

Moreover,

at = q∗[σ ∗βat exp(κ)], bt = q∗[σ ∗βbt exp(κ)]. (1.89)

Also,

a0 = e
(

Ê,∇ Ê
)
ϕR
(
θp,2

) = e
(

Ê,∇ Ê
)

q∗[exp(κ)] = e
(

Ê,∇ Ê
)

R(0). (1.90)

If β is nondegenerate, for any compact set K ⊂ M, there exists cK > 0 such that, on

K , as t →+∞,

at = O(e−cK t ), bt = O(e−cK t ). (1.91)

If β is nondegenerate, the Euler class e(Ê) vanishes. Also, σ ∗βψ is a smooth (m− 1)-form

on N with values in o(Ê) such that

d(σ ∗βψ) = q∗e
(

Ê,∇ Ê
)
. (1.92)

Proof. The operator ∇ Ê⊗gr ,u· + 2i√tβ + ad
(√

tβ
)

is a derivation acting on the smooth

sections of 3·(T ∗M) ⊗̂ 3·(Ê∗)⊗ Sgr . By the first identity in (1.62), we get(
∇ Ê⊗gr ,u· + 2i√tβ + ad

(√
tβ
))

exp
(−σ (A2

t
)) = 0. (1.93)

Clearly, ∫ B̂
iβ exp

(−σ (A2
t
))

R(0) = 0. (1.94)
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Moreover, since R is Ad-invariant, we get∫ B̂
ad(β) exp

(−σ (A2
t
))

R(0) = 0. (1.95)

By (1.84), (1.94), and (1.95), we get

dat = 0. (1.96)

Since at is obtained from a1 by replacing β by
√

tβ, by the universality of the construction

of at , the cohomology class of at does not depend on t . By the second identity in (1.62), we

get (1.87). Another proof is to observe that, by (1.68), the analogue a1 of a1 on M ×R∗+
is given by

a1 = at − dt ∧ bt . (1.97)

Since a1 is closed, from (1.97), we get (1.87).

By (1.47), we get

σ(A2
t ) exp(2iπ〈µ, A〉) =

(
1
4

〈̂
ei , R Ê ê j

〉
ê i ê j

+ 2iπ
〈
µ,−θp,2+√t∇ Ê⊗gr ,uβ + tβ2

〉
+ 4π2t |〈µ, iβ〉|2

)
× exp(2iπ〈µ, A〉). (1.98)

By (1.23), (1.84), and (1.98), we get (1.88).

Clearly, ∇ Êσβ is a 1-form on N . This form can be split into its horizontal and vertical

components. Let dVµ denote the fibrewise derivative of µ. By (1.25), we get

∇ Êσβ = 2π
〈
µ,∇ Ê⊗gr ,uiβ

〉+ 2π
〈
dVµ, iβ

〉
. (1.99)

By (1.20), (1.99), and checking signs carefully, we obtain

∇ Êσβ = 2π
〈
µ,∇ Ê⊗gr ,uiβ

〉− 2π i(iβ)N η. (1.100)

Now, we evaluate the integral q∗[σ ∗βat exp(κ)] using (1.86). By (1.83), (1.100), the only

nonhorizontal form that appears in the exponential is just η+ 2π
√

ti(iβ)N η. Using an

elementary reduction of squares, in the fibre integral, the form η+ 2π
√

ti(iβ)N η can be

replaced by η− 4π2 t
2η((iβ)

N , (iβ)N ). By (1.21),

η
(
(iβ)N , (iβ)N ) = −2

〈
µ, β2〉. (1.101)

By (1.101), in (1.89), we can replace η+ 2π
√

ti(iβ)N η by η+〈µ, 4π2tβ2〉. Therefore, the

right-hand sides of (1.88) and (1.89) coincide.

By (1.30), (1.79), (1.80), (1.85), (1.86), and (1.89), we get (1.90).

If the section σβ does not vanish, by (1.24)–(1.27), and by (1.85), (1.86), and (1.88)

or (1.89), we get (1.91). Therefore the common cohomology class of the at vanishes

identically. Since R(0) 6= 0, by (1.90), the class e(Ê) vanishes. By the results of § 1.11,

and in particular by (1.78), we get the last statement of our theorem, whose proof is

completed.

Remark 1.16. Our results on the forms at , bt also follow from (1.75), (1.89).
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2. The W -invariant

Let π : M → S be a projection of smooth manifolds with compact fibre X . We assume

that M is equipped with the same geometric data as in § 1, with Ê being T̂ X , another

copy of the relative tangent bundle T X . The purpose of this section is to construct odd

closed forms π∗ct on the base S, and by transgression an even form π∗W on S. Also, we

prove the compatibility of the integral π∗W with respect to natural functorial operations,

which make it to behave in a way that is similar to the analytic torsion forms of Bismut

and Lott [18].

This section is organized as follows. In § 2.1, we introduce the smooth fibration π :
M → S.

In § 2.2, we define various tensors associated with the fibration.

In § 2.3, in the context of § 1, we take Ê = T̂ X , β = θ̂ p.

In § 2.4, we exchange the roles of the exterior variables in 3·(T ∗X) and 3·(T̂ ∗X), so

as to get refined Bianchi-like identities on σ(A2
t ). We show that π∗at is concentrated in

degree 0, and that π∗bt vanishes identically.

In § 2.5, we construct forms ct on M such that π∗ct is an odd closed form whose

cohomology class does not depend on t .
In § 2.6, by transgression of the forms π∗ct , if θ̂ p is nondegenerate, we obtain an even

form π∗W on S, which is closed if the fibres X are odd dimensional.

In § 2.7, we study the behaviour of π∗W under adiabatic limits.

Finally, in § 2.8, we study the rigidity of certain cohomology classes under deformation

of the flat connection on PG .

2.1. A smooth fibration

Let π : M → S be a submersion of smooth manifolds with compact fibre X of

dimension m. Let r be the dimension of S. Let T X ⊂ T M be the tangent bundle to

the fibres X .

Let T H M ⊂ T M be a horizontal subbundle, so that

T M = T H M ⊕ T X. (2.1)

Let PT X : T M → T X be the projection associated to the splitting (2.1). Observe that

T H M ' π∗T S. (2.2)

By (2.1), (2.2), we have the identification of bundles of algebras

3·(T ∗M) ' π∗3·(T ∗S) ⊗̂ 3·(T ∗X). (2.3)

If U ∈ T S, let U H ∈ T H M be the horizontal lift of U , so that π∗U H = U .

Definition 2.1. If U, V are smooth sections of T S, set

T H (U, V ) = −PT X [U H , V H ]. (2.4)

2.2. A metric on T X and the tensors T and S

Let gT X be an Euclidean metric on T X . In what follows, we identify T X and T ∗X by

the metric gT X .
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By [8, §1], (T H M, gT X ) determines an Euclidean connection ∇T X on T X . Let gT S be a

Euclidean metric on T S. We equip T M with the metric gT M = π∗gT S ⊕ gT X . Let ∇T M,L

be the Levi-Civita connection on
(
T M, gT M). Then ∇T X is given by

∇T X = PT X∇T M,L . (2.5)

Note that ∇T X does not depend on gT S .

Let ∇T S be the Levi-Civita connection on (T S, gT S). Let ∇T M be the connection on

T M given by

∇T M = π∗∇T S ⊕∇T X . (2.6)

Let T be the torsion of ∇T M . Put

S = ∇T M,L −∇T M . (2.7)

Then S is a 1-form on M with values in antisymmetric elements of End(T M). If A, B,C ∈
T M , then

S(A)B− S(B)A+ T (A, B) = 0,

2〈S(A)B,C〉+ 〈T (A, B),C〉+ 〈T (C, A), B〉− 〈T (B,C), A〉 = 0.
(2.8)

By [8, Theorem 1.9], we know that the following hold.

• The connection ∇T X and the tensors T and 〈S(·)·, ·〉 do not depend on gT S .

• The tensor T takes its values in T X , and vanishes on T X × T X .

• For any A ∈ T M , S(A) maps T X into T H M .

• For any A, B ∈ T H M , S(A)B ∈ T X .

• If A ∈ T H M , S(A)A = 0.

By (2.8), we find that if A ∈ T H M , B,C ∈ T X ,

〈T (A, B),C〉 = 〈T (A,C), B〉 = −〈S(B)C, A〉. (2.9)

If U is a smooth section of T S, let LU H denote the Lie derivative associated with the

vector field U H on M . Then LU H acts on the tensor algebra of T X , and this action is

tensorial in U ∈ T S. In particular, (gT X )−1LU H gT X is a self-adjoint section of End(T X).
Now, we recall a simple result stated in [9, Theorem 1.1].

Theorem 2.2. The connection ∇T X on (T X, gT X ) is characterized by the following two

properties.

• Along the fibres X , ∇T X is just the Levi-Civita connection of (T X, gT X ).

• If U ∈ T S, then

∇T X
U H = LU H + 1

2

(
gT X )−1LU H gT X . (2.10)

If U, V ∈ T S, then

T
(
U H , V H ) = T H (U, V ). (2.11)

If U ∈ T S, A ∈ T X , then

T
(
U H , A

) = 1
2

(
gT X )−1LU H gT X A. (2.12)
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We denote by RT X the curvature of ∇T X .

Let dvX be the volume form along X . If U ∈ T S, let divX (U ) be defined by

LU H dvX = divX (U )dvX . (2.13)

By [13, Proposition 1.4] or by (2.9), (2.12), if e1, . . . , em is an orthonormal basis of T X ,

then

divX (U ) = −
〈
S(ei )ei ,U H 〉. (2.14)

2.3. The case where Ê = T̂ X , β = θ̂ p

We make the same assumptions as in §§ 2.1 and 2.2. Also, we assume that G is a reductive

group as in § 1.1, and that the formalism developed in §§ 1.1–1.6 applies to our manifold

M . We will use the notation of these subsections without further mention.

Recall that S denotes the manifold of smooth sections h of PG ×G G/K . Let S ′ denote

the manifold of smooth choices (h, T H M, gT X ). In what follows, we will often replace

M, S by M ×S ′, S×S ′.
In what follows, we fix h ∈ S, so that the principal G-bundle p : PG → M can be

reduced to a principal K -bundle p : PK → M .

Let T̂ X be another copy of T X . Let gT̂ X be the metric on T̂ X which corresponds to

gT X , and let ∇ T̂ X be the Euclidean connection corresponding to ∇T X . We will use the

formalism of § 1.7 with (Ê, g Ê ,∇ Ê ) = (T̂ X , gT̂ X ,∇ T̂ X ). We denote by
∫ B̂

the Berezin

integral of § 1.5, which maps 3·(T ∗M) ⊗̂ 3·(T̂ ∗X) into 3·(T ∗M)⊗ o(T X).
Let e1, . . . , em be an orthonormal basis of T X , and let ê1, . . . , êm be the corresponding

orthonormal basis of T̂ X . Let f1, . . . , fr be a basis of T S. The associated dual bases will

be denoted with upper indices.

Recall that θp is a smooth section of T ∗M ⊗ pr . Set

θp,X =
m∑

i=1

eiθp(ei ), θp,H =
r∑
α=1

f αθp
(

f H
α

)
, (2.15)

so that

θp = θp,X + θp,H . (2.16)

Set

θ̂ p =
m∑

i=1

ê iθp(ei ). (2.17)

In the context of § 1.7, we take

β = θ̂ p. (2.18)

We can now use the notation and results of § 1, while replacing β by θ̂ p.

By (1.47), (2.18), we get

σ(A2
t ) = 1

4

〈
ei , RT X e j

〉
ê i ê j − θp,2+∇ T̂ X⊗gr ,u

√
t θ̂ p+ t |θ̂ p|2+ t θ̂p,2. (2.19)

By (1.61), the operator Lt is given by

Lt = ∇ T̂ X⊗gr ,u + 2i√t θ̂ p + ad
(√

t θ̂ p
)
. (2.20)
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By (1.62), (2.18), we get

Ltσ(A2
t ) = 0,

∂

∂t
σ(A2

t ) = Lt
θ̂ p

2
√

t
. (2.21)

2.4. Exchanging the hatted and unhatted variables

We will exchange the roles of 3·(T ∗X) and 3·(T̂ ∗X). In particular, 3·(T̂ ∗X) will be

considered as the standard exterior algebra of the cotangent bundle T̂ ∗X of the fibre X .

We denote by d̂ X the fibrewise de Rham operator acting on smooth sections of3·(T̂ ∗X).
Also, π∗3·(T ∗S) is treated as a fibrewise trivial vector bundle, so that d̂ X also acts on

smooth sections of π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X).
Let ∇̂T X be the restriction of ∇T X to a given fibre. Then ∇̂T X is a fibrewise connection

on T X . Its curvature, R̂T X , is a smooth section of 32(T̂ ∗X)⊗End(T X). The connection

∇̂T X acts on smooth fibrewise sections of 3·(T̂ ∗X) ⊗̂ 3·(T ∗X). Its action on sections of

3·(T̂ ∗X) is just given by the de Rham operator d̂ X . Of course, ∇̂T X also acts on smooth

sections of π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X) ⊗̂ 3·(T ∗X).
As in [16, equation (3.61)], set

T̂ H = 1
2

〈
T
(

f H
α , f H

β

)
, ei

〉
ê i ∧ f α ∧ f β ,

T 0 = f α ∧ ê i ∧ T
(

f H
α , ei

)
.

(2.22)

Then T̂ H and d̂ X T̂ H are sections of π∗32(T ∗S) ⊗̂ 3·(T̂ ∗X). Moreover, T 0 is a section of

π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X) ⊗̂ 3·(T X). We will view T 0 as a section of π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X)
with values in T X . The operator iT 0 decreases by 1 the degree in 3·(T ∗X), and increases

by 2 the degree in π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X).
As in [16, equation (3.63)], set ∣∣T 0∣∣2 = 〈T 0, T 0〉. (2.23)

Then

∣∣T 0∣∣2 = m∑
j=1

 ∑
16i6m
16α6r

〈
T
(

f H
α , ei

)
, e j

〉
f α ∧ ê i


2

, (2.24)

where the square in the right-hand side of (2.24) is taken in 3·(T ∗S) ⊗̂ 3·(T̂ ∗X). Then

|T 0|2 is a section of 32(T ∗S) ⊗̂ 32(T̂ ∗X).
When identifying T X and T ∗X by the metric gT X , T 0 can be viewed as a section of

π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X) ⊗̂ 3·(T ∗X), which is given by

T 0 = 〈T ( f H
α , ei

)
, e j

〉
f α ∧ ê i ∧ e j . (2.25)

By the above, ∇̂T X· T 0 is well defined.

By [16, Theorem 3.26], we get

1
2

〈
ei , RT X e j

〉̂
e i ∧ ê j = 1

2

〈
ei , R̂T X e j

〉
ei ∧ e j +∇̂T X· T 0+ 1

2

∣∣T 0∣∣2− 1
2 d̂ X T̂ H . (2.26)

If the metric gT X is replaced by gT X/t , equation (2.26) is divided by t .
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Let N3·(T ∗M), N3·(T̂ ∗X) be the number operators of 3·(T ∗M),3·(T̂ ∗X) that act by

multiplication by the corresponding degrees. Set

N d = N3·(T ∗M)− N3·(T̂ ∗X). (2.27)

Definition 2.3. Let L̂t be the fibrewise differential operator

L̂t = ∇̂T X⊗gr ,u + 2i−√tθp,X+ 1
2 T 0 + ad(θp)√

t
. (2.28)

Theorem 2.4. The following identity holds:

σ
(
A2

t
) = 1

4

〈
ei , R̂T X e j

〉
ei e j +∇̂T X⊗gr ,u

(−√tθp,X + 1
2 T 0)

+ ∣∣−√tθp,X + 1
2 T 0∣∣2+ t θ̂p,2− θp,2−∇̂T X⊗gr ,u

√
tθp,H − 1

4 d̂ X T̂ H . (2.29)

Moreover, for t > 0, we have the identities

L̂tσ
(
A2

t
) = 0,

∂

∂t
σ
(
A2

t
) = −L̂t

θp

2
√

t
+ θ̂ p,2+ θ

p,2

t
, (2.30)

∂

∂t
σ
(
A2

t
)+ 1

2t

[
N d , σ (A2

t )
] = −L̂t

θp

2
√

t
.

Finally, the following identities hold:

Ltθ
p = tL̂t θ̂

p = √t
[
θ̂ p, θp

]
, (2.31)

Lt θ̂
p+ L̂tθ

p = 2

(√
t θ̂ p,2+ θ

p,2
√

t

)
.

Proof. We use the notation of § 2.2. Let ∇T M be the connection on T M that was defined

in (2.6). We still denote by ∇T M its action on smooth sections of3·(T ∗M), which increases

the total degree by 1. Since T is the torsion of ∇T M , we have the well-known identity,

d M = ∇T M + iT . (2.32)

Let ∇3·(T ∗M)⊗gr ,u be the connection on 3·(T ∗M)⊗ gr which is induced by the

connections ∇T M ,∇gr ,u . By (1.41), (2.32), we get(∇3·(T ∗M)⊗gr ,u + iT
)
θp = 0. (2.33)

By (2.16), (2.33), we get

∇ T̂ X⊗gr ,u θ̂ p = −(∇̂T X⊗gr ,u + iT 0
)
θp,X −∇̂T X⊗gr ,uθp,H . (2.34)

By (2.19), (2.26), and (2.34), we get (2.29).
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Now, we establish (2.30). By (1.39), (1.73), we get(
∇̂T X⊗gr ,u + 2i−√tθp,X+ 1

2 T 0

) (
1
4

〈
ei , R̂T X e j

〉
ei e j

+∇̂T X⊗gr ,u
(−√tθp,X + 1

2 T 0)+ |−√tθp,X + 1
2 T 0|2

)
=
[
θ̂p,2,
√

tθp,X
]
. (2.35)

By (1.41), we obtain

∇̂T X⊗gr ,u θ̂ p = 0. (2.36)

Moreover,

∇̂T X⊗gr ,uθp,2 = [∇̂T X⊗gr ,uθp, θp
]
. (2.37)

Also, we have the easy identity

−2i−√tθp,X+ 1
2 T0
θp,2+

[
θp√

t
,

∣∣∣∣−√tθp,X + 1
2

T 0
∣∣∣∣2
]
= 0. (2.38)

By (2.29), and (2.34)–(2.38), we get the first identity in (2.30).

By (2.29), we obtain

∂

∂t
σ
(
A2

t
) = − 1

2
√

t
∇̂T X⊗gr ,uθp− 1√

t
i−√tθp,X+ 1

2 T 0θ
p+ θ̂p,2, (2.39)

which is equivalent to the second identity in (2.30). The third identity in (2.30) follows

from (2.19) and from the second identity in (2.30).

By (1.41), (2.20), we get one identity in the first line of (2.31). By (2.28), (2.36), we

obtain the second identity. By (2.21), (2.30), we get the last identity in (2.31). The proof

of our theorem is completed.

Let χ(X) be the Euler characteristic of the fibre X . By the Chern–Gauss–Bonnet

theorem, we get

χ(X) =
∫

X
e(T X). (2.40)

If m is odd, χ(X) = 0, and e(T X) = 0.

Let R ∈ A U be the function given by (1.23). Recall that, for a ∈ R, the action of ψa on

3·(T ∗M) was defined in (1.51). We use the same notation for the corresponding action

on 3·(T ∗S).

Theorem 2.5. For any t > 0, the following identities hold:

π∗at = χ(X)R(0), π∗bt = 0. (2.41)

Proof. To establish (2.41), we may as well replace 2iπ by 1 in equation (1.84) for at , bt .

Let
∫̂

X denote the standard integral along X , in which the exterior algebra is now

generated by ê1, . . . , êm . Let
∫ B

denote Berezin integration with respect to the variables

e1, . . . , em . By (1.84), we get

π∗at = π∗
∫ B̂

exp
(−σ(A2

t )
)
R(0) = (−1)m

∫ ̂
X

∫ B
exp

(−σ(A2
t )
)
R(0). (2.42)

The sign (−1)m comes from the interchange between the two kinds of integral.
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Set

Rt = tN
d/2σ

(
A2

t
)
t−N

d/2. (2.43)

Using (2.42) and the fact that T X and T̂ X have the same dimension, we get

ψ√tπ∗at = (−1)m
∫ ̂

X

∫ B
exp(−Rt )R(0). (2.44)

By the third equation in (2.30), and by (2.43), we obtain

∂

∂t
Rt = −tN

d/2
(
L̂t

θp

2
√

t

)
σ
(
A2

t
)
t−N

d/2. (2.45)

By (2.44), (2.45), for t > 0, we get

∂

∂t
ψ√tπ∗at = (−1)mψ√t

∫ ̂
X

∫ B (
L̂t

θp

2
√

t

)
exp

(−σ(A2
t )
)
R(0). (2.46)

Using (2.30), we can rewrite (2.46) in the form

∂

∂t
ψ√tπ∗at = (−1)mψ√t

∫ ̂
X

∫ B
L̂t

[
θp

2
√

t
exp

(−σ(A2
t )
)]

R(0). (2.47)

Since R is Ad-invariant, by (2.47), we get

∂

∂t
ψ√tπ∗at = 0. (2.48)

By (2.48), we deduce that, in positive degree, π∗at vanishes, and that

[π∗at ](0) = [π∗a0](0). (2.49)

By (1.90), (2.40), we get

[π∗a0](0) = π∗
[
e
(

T̂ X ,∇ T̂ X
)]

R(0) = χ(X)R(0). (2.50)

By the above, we get the first equation in (2.41).

We use the notation in the proof of Theorem 1.15. Then π∗a1 vanishes in positive

degree. By (1.97), this implies the vanishing of π∗bt , which completes the proof of our

theorem.

2.5. The forms ct , dt on M

Definition 2.6. Set

γ = −θp exp
(
θp,2/2iπ

)
R(0). (2.51)

Equivalently, we have

γ = −〈R′(θp,2/2iπ
)
, θp

〉
. (2.52)

Then γ is a real odd form on M .

Proposition 2.7. The form γ is closed on M.
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Proof. This follows from (1.38), (2.51).

Remark 2.8. By replacing M, S by M ×S, S×S, by Proposition 2.7, we also deduce that

the cohomology class [γ (h)] ∈ H ·(M,R) of γ (h) does not depend on the choice of h ∈ S.

Moreover, if h, h′ ∈ S, there are canonical forms γ̃ (h, h′) ∈ �·(M)/d�·−1(M) such that

dγ̃
(
h, h′

) = γ (h′)− γ (h). (2.53)

Let e1, . . . , em still denote an orthonormal basis of T X . Set

L =
m∑

i=1

ei ∧ ê i . (2.54)

Recall that the map ϕ was defined in Definition 1.10.

Definition 2.9. For t > 0, set

ct = −(2iπ)(m+1)/2ϕ

∫ B̂
θp exp

(−σ(A2
t )
)
R(0),

dt = −(2iπ)m/2ϕ
∫ B̂ √

t
θp ∧ θ̂ p

2
exp

(− σ(A2
t )
)
R(0), (2.55)

et = (2iπ)m/2ϕ
∫ B̂ L

4
√

t
exp

(−σ(A2
t )
)
R(0).

Then ct , dt , et are smooth real forms on M .

Let X̂ be the total space of T̂ X . Recall that the forms at , bt on X̂ were defined in

Definition 1.8. By (1.25), σθ̂ p is the section of q∗T̂ ∗X that is given by

σθ̂ p = 2π
〈
µ, i θ̂ p

〉
. (2.56)

We identify T̂ X and T̂ ∗X by the metric gT̂ X , so that σθ̂ p can be viewed as a section of

q∗T̂ X .

Theorem 2.10. The forms π∗ct are odd, they are closed, and their cohomology class does

not depend on t > 0. The forms π∗dt , π∗et are even. Moreover,

π∗c0 = π∗
[
e(T X,∇T X )γ

]
. (2.57)

Also,
∂

∂t
π∗ct = 1

t
dπ∗dt ,

(
1+ 2t

∂

∂t

)
ψ√tπ∗et = ψ√tπ∗dt . (2.58)

The following identities hold:

ct = −q∗
[〈
µ, 2iπθp

〉(
σ ∗
θ̂ pat

)
exp(κ)

]
, dt = −tq∗

[〈
µ, 2iπθp

〉(
σ ∗
θ̂ pbt

)
exp(κ)

]
. (2.59)

If θ̂ p is nondegenerate, and if K is a compact subset of M, there exists cK > 0 such

that, on K , as t →+∞,

ct = O(e−cK t ), dt = O(e−cK t ), et = O(e−cK t ). (2.60)
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Proof. It is easy to see that the forms π∗ct are odd. Until further notice, we may as well

make 2iπ = 1, so as to disregard the normalization of the forms involving ϕ. By (2.20),

(2.21), and (2.31), we get

dct = −
∫ B̂ √

t
[
θ̂ p, θp

]
exp

(−σ(A2
t )
)
R(0). (2.61)

By (2.61), we get

dπ∗ct = −π∗
∫ B̂ √

t
[
θ̂ p, θp

]
exp

(−σ(A2
t )
)
R(0). (2.62)

Proceeding as in (2.42), and using (2.62), we obtain

dπ∗ct = −(−1)m
∫ ̂

X

∫ B √
t
[
θ̂ p, θp

]
exp

(−σ(A2
t )
)
R(0). (2.63)

By (2.30), (2.31), we can rewrite (2.63) in the form

dπ∗ct = −(−1)m
∫ ̂

X

∫ B
tL̂t

[
θ̂ p exp

(−σ(A2
t )
)]

R(0). (2.64)

Using the Ad-invariance of R, we deduce from (2.64) that

dπ∗ct = −(−1)m
∫ ̂

X
d̂ X

∫ B
t θ̂ p exp

(−σ(A2
t )
)
R(0) = 0. (2.65)

We have proved that the forms π∗ct are closed. By universality, their cohomology class

does not depend on t . By (2.19), (2.51), and (2.55), we get (2.57).

Now, we proceed as in Remark 1.7, while using the corresponding notation. Namely,

we enlarge M, S to M ×R∗+, S×R∗+, and, over M ×{s}, we equip T̂ X with the metric

gT̂ X/s. In this way, we have a new metric gT̂ X on the vector bundle T̂ X . Let At be the

corresponding superconnection on M ×R∗+. Set

ct = −
∫ B̂

θp exp
(−σ(A2

t )
)
R(0). (2.66)

Then ct is the analogue of ct on M ×R∗+. By the above, the form π∗ct is closed on S×R∗+.

Using (1.68), (2.18), we rewrite (2.66) in the form

ct = −
∫ B̂

θp exp
(
−σ(A2

st )−
√

tds
2
√

s
θ̂ p

)
R(0). (2.67)

By (2.55), (2.67), we obtain

ct = cst + ds
s

dst . (2.68)

Since π∗c1 is closed, by (2.68), we get the first identity in (2.58).
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By proceeding as in the proof of Theorem 2.5, and using (2.30), (2.55), we get(
1+ 2t

∂

∂t

)
ψ√tπ∗et = (−1)mψ√t

∫ ̂
X

∫ B L
2(

∇̂T X⊗gr ,u + 2i−√tθp,X+ 1
2 T 0 + ad(θp)√

t

)[
θp

2
exp

(−σ(A2
t )
)]

R(0). (2.69)

Since R is Ad-invariant, we can ignore the term ad(θp)√
t

in the right-hand side of (2.69).

Also, by (2.9), (2.22), we get

iT 0 L = 0. (2.70)

By (2.69), (2.70), we obtain(
1+ 2t

∂

∂t

)
ψ√tπ∗et = ψ√tπ∗

∫ B̂ √t
2
(iθp,X L)∧ θp exp

(−σ(A2
t )
)
R(0). (2.71)

Also,

iθp,X L = θ̂ p. (2.72)

By (2.55), (2.71), and (2.72), we get the second identity in (2.58).

By proceeding as in the proof of equation (1.89) in Theorem 1.15, we get (2.59).

If θ̂ p is nondegenerate, by proceeding as in the proof of Theorem 1.15, we get (2.60).

The proof of our theorem is completed.

2.6. The W -invariant

In this section, we assume that θ̂ p is nondegenerate. In particular, equation (2.60) in

Theorem 2.10 holds. Let o(T X) be the orientation bundle of T X . Recall that the form

ψ on the total space of T̂ X \{0} was defined in Definition 1.9. Then σ ∗
θ̂ pψ is a smooth

(m− 1)-form on N with values in o(T X). By equation (1.92) in Theorem 1.15,

d
(
σ ∗
θ̂ pψ

) = q∗e
(
T X,∇T X ). (2.73)

By (1.77), by equation (1.89) in Theorem 1.15, and by Theorem 2.5, we obtain

(πq)∗
[(
σ ∗
θ̂ pψ

)
exp(κ)

] = 0. (2.74)

Definition 2.11. Set

W = −
∫ +∞

0
dt

dt
t
. (2.75)

Then W is a smooth form on M with values in o(T X).

Theorem 2.12. The following identity holds:

W = q∗
[〈
µ, 2iπθp

〉(
σ ∗
θ̂ pψ

)
exp(κ)

]
. (2.76)

The even form π∗W on S is such that

dπ∗W = π∗
[
e
(
T X,∇T X )γ ]. (2.77)

If dim X is odd, the form π∗W is closed, and its cohomology class [π∗W ] ∈ H ·(S,R) does

not depend on (T H M, gT X ) or on infinitesimal variations of h.
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Proof. The first part of our theorem follows from (1.77), from Theorem 2.10, and from

(2.75). If m is odd, the right-hand side of (2.77) vanishes, and π∗W is closed. Replacing

M, S by M ×S ′, S×S ′, it is also obvious that the cohomology class of π∗W does not

depend on the data. The proof of our theorem is completed.

Remark 2.13. If dim X is even, by replacing M, S by M ×S ′, S×S ′, we deduce from

(2.77) that the infinitesimal variation of π∗W in �·(S)/d�·(S) with respect to the data in

S ′ can be evaluated in terms of the Chern–Simons secondary classes associated with the

Euler class of T X , and of the secondary class of forms described in Remark 2.8. Details

are left to the reader.

2.7. The forms π∗W and adiabatic limits

Let π ′ : M ′→ S be another smooth submersion on S with compact fibre Z . Let τ : M →
M ′ be a smooth submersion with compact fibre Y such that

π = π ′τ. (2.78)

Then τ induces a fibrewise projection X → Z with compact fibre Y . Let i : Y → X be

the obvious embedding. Let gT Y be the metric induced by gT X on T Y , and let T H X be

the bundle orthogonal to T Y in T X with respect to gT X . Then T H M ⊕ T H X plays the

role of T H M for the submersion τ : M → M ′.
To the projection τ : M → M ′ we can associate exactly the same objects as we did for

the projection π : M → S. In particular, the form i∗θ̂ p is the exact analogue of θ̂ p. If

i∗θ̂ p is nondegenerate, then θ̂ p is nondegenerate.

Let gT Z be a metric on T Z . For ε > 0, let gT X
ε be the metric on T X = T Y ⊕ T H X ,

gT X
ε = gT Y ⊕ 1

ε
τ ∗gT Z . (2.79)

Assume that i∗θ̂ p is nondegenerate. To the projection π : M → S, and to (T H M, gT X
ε ),

we can associate the even form Wε on M as in Definition 2.11. Similarly, to the projection

τ : M → M ′, and to (T H M ⊕ T H X, gT Y ), we can associate the even form W on M .

If X is odd dimensional and Z is even dimensional, τ∗W is a closed form on M ′, and

so π ′∗[e(T Z)τ∗W ] ∈ H even(S,R) is well defined. If Z is odd dimensional, e(T Z) = 0. If X
is odd dimensional and Z is odd dimensional, we adopt the natural convention

e(T Z)τ∗W = 0. (2.80)

As before, convergence of forms means here uniform convergence of the forms and their

derivatives of arbitrary order over compact subsets.

Theorem 2.14. As ε → 0, then

Wε → W0 = τ ∗
[
e
(
T Z ,∇T Z )]W . (2.81)

If X is odd dimensional, then

[π∗W ] = π ′∗[e(T Z)τ∗W ] in H even(S,R). (2.82)
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Proof. We add the extra subscript ε to the objects considered in the previous subsections

to mark their dependence on the metric gT X
ε . By (2.75), we get

Wε = −
∫ +∞

0
dt,ε

dt
t
. (2.83)

Let d t be the form on M that is attached to τ and to (T H M ⊕ T H X, gT Y ). We claim

that, as ε → 0, we have the uniform convergence over compact subsets of M ×R+ of

smooth forms and their derivatives on M of arbitrary order

dt,ε

t
→ τ ∗

[
e
(
T Z ,∇T Z )]d t

t
, (2.84)

and also that, if K ⊂ M is compact, there exist cK > 0,CK > 0 such that, on K , for

t > 0, 0 < ε 6 1,

|dt,ε | 6 CK exp(−cK t). (2.85)

Then (2.81) follows from (2.84), (2.85). So we concentrate on the proof of these two

equations.

We consider the analogue of equation (2.55) for dt,ε . Let e1, . . . , em′ be an

orthonormal basis of T Y , and let em′+1, . . . , em be an orthonormal basis of T Z . Then

e1, . . . , em′ ,
√
εeH

m′+1, . . . ,
√
εeH

m is an orthonormal basis of T X with respect to the metric

gT X
ε . Let

∫ B̂,Y
,
∫ B̂,Z

denote the Berezin integrals on 3·(T̂ ∗Y ),3·(T̂ ∗Z) with respect to

the metrics gT̂ Y , gT̂ Z . Let
∫ B̂
ε

denote the Berezin integral on 3·(T̂ ∗X) with respect to the

metric gT̂ X
ε . One has the obvious formula∫ B̂

ε

= ε(m−m′)/2
∫ B̂,Y ∫ B̂,Z

. (2.86)

Let ∇T X
ε be the Euclidean connection on T X attached to (T H M, gT X

ε ), let ∇T Y be

the Euclidean connection on T Y attached to (T H M ⊕ T H X, gT Y ), and let ∇T Z be the

Euclidean connection on T Z attached to T H M ′, gT Z . By proceeding as in [6, pp. 116–117],

[12, §1.2], as ε → 0, we have the convergence of connections on T X = T Y ⊕ T H X '
T Y ⊕ τ ∗T Z ,

∇T X
ε → ∇T X

0 =
[∇T Y ∗

0 τ ∗∇T Z

]
. (2.87)

In (2.87), the precise value of ∗ is irrelevant.

Moreover, as ε → 0, one has the easy∣∣θ̂ p
∣∣2
ε
→ ∣∣i∗θ̂ p

∣∣2, (2.88)

and also ∣∣θ̂ p
∣∣2
ε
>
∣∣i∗θ̂ p

∣∣2 > 0. (2.89)

Using (2.19), (2.55), and the above considerations, it is now easy to get (2.84) and

(2.85). We have completed the proof of (2.81).

If X is odd dimensional, by Theorem 2.12, the cohomology class of π∗W does not

depend on (T H M, gT X ). By (2.81), as ε → 0, we get

π∗Wε → π ′∗
[
e
(
T Z ,∇T Z )τ∗W ]

, (2.90)

from which we get (2.82). The proof of our theorem is completed.
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Remark 2.15. If X is even dimensional, by Theorem 2.12 and Remark 2.13, in

�·(S)/d�·−1(S), the dependence of π∗W on the metrics can be explicitly calculated in

terms of secondary classes. By proceeding as in the proof of Theorem 2.14, we can give

an explicit formula for π∗W −π ′∗[e(T Z ,∇T Z )τ∗W ] in �·(S)/d�·−1(S) in terms of such

secondary classes. Details are left to the reader.

Let T H M ′ be a horizontal subbundle of T M ′, and let gT Z be a metric on T Z . Let

p′ : P ′G → M ′ be a principal G-bundle having the same properties as p : PG → M . We

denote with a prime the objects constructed before that are associated with the projection

π ′. We assume that

PG = τ ∗P ′G . (2.91)

Then

θ̂ p = τ ∗θ̂ p′. (2.92)

If θ̂ p′ is nondegenerate, then θ̂ p is nondegenerate.

Assume that θ̂ p′ is nondegenerate. Let W ′ be the form on M ′ that is associated with

(T H M ′, gT Z ). For ε > 0, we equip T X = T Y ⊕ T H X with the metric gT X,ε that is given

by

gT X,ε = εgT Y ⊕ τ ∗gT Z . (2.93)

Let W ε be the form on M that is associated with (T H M, gT X,ε).

Theorem 2.16. As ε → 0, then

W ε → W 0 = e(T Y,∇T Y )τ ∗W ′. (2.94)

If X is odd dimensional, then

[π∗W ] = χ(Y )
[
π ′∗W ′

]
in H even(S,R). (2.95)

Proof. We add the extra superscript ε to the objects considered in the previous

subsections to mark their dependence on the metric gT X,ε . By (2.75), we get

W ε = −
∫ +∞

0
dεt

dt
t
. (2.96)

We claim that, as ε → 0, we have the convergence of forms

dεt
t
→ e

(
T Y,∇T Y )τ ∗ d ′t

t
, (2.97)

and also that the analogue of (2.85) holds; i.e., for t > 0, 0 < ε 6 1,

|dεt | 6 CK exp(−cK t). (2.98)

Then (2.94) follows from (2.97), (2.98). Now, we will prove these two equations.

Note that

gT X,ε = εgT X
ε . (2.99)
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We use the same notation as in the proof of Theorem 2.14. Let
∫ B̂,ε

be the Berezin

integral on 3·(T̂ ∗X) with respect to the metric gT X,ε . Instead of (2.86), we get∫ B̂,ε
= ε−m′/2

∫ B̂,Y ∫ B̂,Z
. (2.100)

By (2.99), ∇T X
ε is the connection on T X that is associated with (gT X,ε, T H M), and (2.87)

still holds. Also, by (2.92), ∣∣θ̂ p
∣∣ε,2 = τ ∗∣∣θ̂p′∣∣2. (2.101)

Using (2.19), (2.55), and the above considerations, we get (2.97), (2.98).

If X is odd dimensional, proceeding as in the proof of Theorem 2.14, and using (2.94),

we get

[π∗W ] = π ′∗
[
τ∗
[
e
(
T Y,∇T Y )]W ′] in H even(S,R). (2.102)

By (2.102), we get (2.95). The proof of our theorem is completed.

2.8. Rigidity

Up to now, the flat structure on the principal G-bundle PG was fixed. Let F be the

Fréchet manifold of such flat structures. We will replace M, S by M ×S ′×F , S×S ′×F .

The restriction of PG to the fibres over F of M ×S ′×F is equipped with a flat connection.

However, the principal G-bundle PG is no longer flat on M ×S ′×F .

Proposition 2.17. In degree >3, the cohomology class of γ is invariant under deformation

of the flat structure on PG .

Proof. We may as well make 2iπ = 1. We proceed as in [15, Proof of Theorem 2.1]. Let

dF be the de Rham operator on F . By (2.51), we get

dFγ = (−dFθp+ θp(dFθp,2
))

exp
(
θp,2

)
R(0). (2.103)

By (1.39), we have the identity

dFθp,2 = [d + θk, dFθk
]
. (2.104)

By (1.38), (2.104), and using the Ad-invariance of R, we get

θp
(
dFθp,2

)
exp

(
θp,2

)
R(0) = −d

[
θpdFθk exp

(
θp,2

)]
R(0). (2.105)

Set

k(x) = exp(x2)− 1
x2 . (2.106)

Then [(
dFθp

)
exp(θp,2)R(0)

](>3) = (dFθp
)
θp,2k

(
θp,2

)
R(0). (2.107)

Also, since R is Ad-invariant, we get(
dFθp

)
θp,2k

(
θp,2

)
R(0) = − 1

2

[
θp, dFθp

]
θpk

(
θp,2

)
R(0). (2.108)
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By (1.38), (2.104), and (2.108), we obtain(
dFθp

)
θp,2k

(
θp,2

)
R(0) = 1

2

(
dFθp,2

)
θpk

(
θp,2

)
R(0)

= 1
2 d
[(

dFθk
)
θpk

(
θp,2

)]
R(0). (2.109)

Our proposition follows from (2.103), (2.105), (2.107), and (2.109).

Remark 2.18. The proof of Proposition 2.17 shows that, if ` ∈ [0, 1] → f` ∈ F is a smooth

path, there is an even form γ̃ on M of degree >2 such that

dγ̃ = γ ( f1)
(>3)− γ ( f0)

(>3). (2.110)

By proceeding as in [15, Proof of Theorem 2.5], one can show that, in degree >4, the

class of γ̃ ∈ �·(M)/d�·−1(M) does not depend on the path.

By Theorem 2.10, and by Proposition 2.17, in degree >3, the common cohomology

class of the π∗ct , t > 0 is invariant under deformation of the flat structure on PG . As we

shall see in Theorem 7.6, it is a consequence of the main result of this paper that, if dim X
is odd, in degree >2, the cohomology class of π∗W is also invariant under deformation of

the flat structure on PG .

3. A class of Toeplitz operators

Let N be a compact Kähler manifold taken as in § 1.4. Assume that there is a

U -equivariant holomorphic Hermitian line bundle L such that c1(L , gL) = η. The purpose

of this section is to express the action of elements of length 62 in UgC on H (0,0)(N , L p)

as Toeplitz operators. We obtain in this way the asymptotics of this action as p→+∞.

We also compute the asymptotics of the trace of g = eA/p, A ∈ gC on H (0,0)(N , L p) in

terms of the function R(A) that was introduced in § 1.4.

This section is organized as follows. In § 3.1, we introduce the line bundle L, and we

express certain Lie derivative operators coming from u and acting on H (0,0)(N , L), and

the composition of two of these, as Toeplitz operators.

In § 3.3, if β ∈ Ê∗⊗ p is nondegenerate, we give a lower bound for the action of |β|2 on

H (0,0)(N , L p) as p→+∞.

In § 3.4, we obtain the asymptotics of the trace of eA/p on H (0,0)(N , L p) using the

Kirillov formula.
Finally, in § 3.5, we compute the asymptotics as p→+∞ of the action of certain heat

operators.

3.1. A line bundle on N

We use the assumptions and notation of §§ 1.1 and 1.4. In particular, N denotes a compact

complex manifold, η is a smooth real closed U -invariant (1, 1)-form on N , and µ : N → u∗
is the moment map associated with the action of the compact Lie group U on N . Let

gT N be a U -invariant Hermitian metric on the holomorphic tangent bundle T N , and let

dvN be the associated volume form on N .

In what follows, we assume that η is positive; i.e., if A ∈ T N , then −iη(A, A) defines

a Hermitian metric on T N .
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Let L be a holomorphic line bundle on N , let gL be a Hermitian metric on L, and let

∇L denote the corresponding holomorphic Hermitian connection. Let r L be the curvature

of ∇L . Let c1(L , gL) be the corresponding first Chern form; i.e.,

c1
(
L , gL) = − r L

2iπ
. (3.1)

We assume that

c1
(
L , gL) = η. (3.2)

Also, we assume that the holomorphic action of U on N lifts to a holomorphic unitary

action on L.

We equip C∞(N , L) with the Hermitian product associated with the metrics gT N , gL ,

so that, if s, s′ ∈ C∞(N , L), 〈
s, s′

〉 = (2π)−n
∫

N

〈
s, s′

〉
LdvN . (3.3)

Then the action of U on C∞(N , L) is unitary. We equip H (0,0)(N , L) with the Hermitian

metric induced by (3.3), so that U acts unitarily on H (0,0)(N , L).
If A ∈ u, let LL

A denote the natural action of A on the smooth sections of L. Then LL
A

is a lift of the holomorphic vector field AN on N . Finally, we assume that, if A ∈ u,

LL
A = ∇L

AN − 2iπ〈µ, A〉. (3.4)

Equation (1.20) on µ follows from (3.4). Set

LL
A(1,0) = ∇L

AN (1,0) − 2iπ〈µ, A〉, LL
A(0,1) = ∇L

AN (0,1) . (3.5)

Then

LL
A = LL

A(1,0) +LL
A(0,1) . (3.6)

Also, if A, B ∈ u,[
LL

A,LL
B
] = −LL

[A,B],
[
LL

A(1,0) ,LL
B(0,1)

] = 0, (3.7)[
LL

A(1,0) ,LL
B(1,0)

] = −LL
[A,B](1,0) ,

[
LL

A(0,1) ,LL
B(0,1)

] = −LL
[A,B](0,1) .

By (1.21), (3.2), if A, B ∈ u,

〈µ, [A, B]〉 = c1
(
L , gL)(AN , B N ). (3.8)

As explained in § 1.4, the action of U on N extends to a holomorphic action of GC on

N . In the same way, the action of U on L extends to a holomorphic action of GC on L.

If A ∈ gC = u⊗R C, the corresponding Lie derivative operator L A is given by (3.4), and

the identities in (3.5), (3.7) still hold.

If A ∈ u, the action of LL
A on C∞(N , L) is formally skew-adjoint, and the action of LL

i A
is formally self-adjoint. By (3.4), we see that, if A ∈ u,(

gL)−1LL
AgL = 0,

(
gL)−1LL

i AgL = −4π〈µ, A〉. (3.9)
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3.2. Lie derivatives and Toeplitz operators

The action of GC on C∞(N , L) induces a corresponding action on H (0,0)(N , L). As we

saw before, the action of U on H (0,0)(N , L) is unitary. If A ∈ gC, the operator LL
A acts

on H (0,0)(N , L). By (3.5),

LL
A|H (0,0)(N ,L) = L L

A(1,0) |H (0,0)(N ,L). (3.10)

Let P be the orthogonal projection operator from C∞(N , L) on H (0,0)(N , L).
Let ∇T N be the holomorphic Hermitian connection on T N , and let RT N be its

curvature. If A ∈ u, ∇T N ′AN (1,0) is a skew-adjoint endomorphism of T N .

Set

d = det T N . (3.11)

The metric gT N induces a Hermitian metric gd on d. Let ∇d denote the corresponding

holomorphic Hermitian connection on d. Then

c1
(
d, gd) = − 1

2iπ
Tr
[
RT N ]. (3.12)

The group U acts holomorphically and isometrically on d, and this action extends to

a holomorphic action of GC. Let ν : N → u∗ be the map such that, if A ∈ u,

〈ν, A〉 = 1
2iπ

Tr
[∇T N ′AN (1,0)]. (3.13)

We use the same notation as in (3.4)–(3.7) for d as for L. Then ν is a moment map

associated with the action of U on d. As in (3.4), if A ∈ gC, we get

Ld
A = ∇d

AN − 2iπ〈ν, A〉. (3.14)

Also, the analogues of (3.5)–(3.7) hold. Instead of (1.22), if A ∈ gC, we have

∂〈ν, A〉− i AN (1,0)c1
(
d, gd) = 0. (3.15)

Also, the analogue of (3.8) says that, if A, B ∈ u,

〈ν, [A, B]〉 = c1
(
d, gd)(AN , B N ). (3.16)

Theorem 3.1. If A ∈ u, the following identity holds:

LL
A|H (0,0)(N ,L) = −2iπ P〈µ+ ν, A〉P. (3.17)

If A, B ∈ u, then

LL
ALL

B |H (0,0)(N ,L) = P
(−4π2〈µ+ ν, A〉〈µ+ ν, B〉
+ 2iπc1

(
L ⊗ d, gL⊗d)(AN (0,1), B N (1,0)))P. (3.18)

Proof. To establish (3.17), we use the first equation in (3.5). The formal adjoint ∇L∗
AN (1,0)

of ∇L
AN (1,0) acting on C∞(N , L) is given by

∇L∗
AN (1,0) = −∇L

AN (0,1) −Tr
[∇T N ′′AN (0,1)]. (3.19)
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Also, ∇L
AN (0,1) vanishes on H (0,0)(N , L), so that, if s, s′ ∈ H (0,0)(N , L), then〈∇L

AN (1,0)s, s′
〉 = 〈− 2iπ〈ν, A〉s, s′

〉
. (3.20)

Equation (3.17) follows from the above considerations.

If s, s′ ∈ H (0,0)(N , L), by (3.17), we get〈
LL

ALL
Bs, s′

〉 = −2iπ
〈〈µ+ ν, A〉LL

Bs, s′
〉
. (3.21)

By (3.5), we obtain

−2iπ〈µ+ ν, A〉LL
Bs = −4π2〈µ+ ν, A〉〈µ, B〉s

+ (∇B N (1,0)2iπ〈µ+ ν, A〉)s−∇L
B N (1,0)(2iπ〈µ+ ν, A〉s). (3.22)

By (1.22), (3.15), we get

∇B N (1,0)〈µ+ ν, A〉 = c1
(
L ⊗ d, gL⊗d)(AN (0,1), B N (1,0)). (3.23)

Using (3.19), we also have〈−∇L
B N (1,0)(2iπ〈µ+ ν, A〉s), s′

〉 = 〈−4π2〈µ+ ν, A〉〈ν, B〉s, s′
〉
. (3.24)

By (3.21)–(3.24), we get (3.18). The proof of our theorem is completed.

Remark 3.2. By (3.8), (3.16), equation (3.18) is compatible with (3.7). Moreover, the

operators in (3.17), (3.18) are Toeplitz operators. Equation (3.18) expresses the product of

two Toeplitz operators of the type (3.17) as a Toeplitz operator. By (3.17), the operators

L L
A|H (0,0)(N ,L) form a finite-dimensional Lie algebra of Toeplitz operators. Questions

connected with Toeplitz operators will be dealt with in much more detail in § 9.

For p ∈ N, in Theorem 3.1, we can replace L by L p, so that µ is replaced by pµ. Let Pp
be the corresponding orthogonal projection operator from C∞(N , L p) on H (0,0)(N , L p).

By Kodaira’s vanishing theorem, for p ∈ N such that c1(L p ⊗ d, gL p⊗d) > 0, for i > 0,

H (0,i)(N , L p) vanishes.

3.3. The action of β2 on H (0,0)(N , L)

We make the same assumptions as in §§ 1.3 and 1.4, and we use the corresponding

notation. We still take β ∈ Ê∗⊗ p. Recall that |β|2 was defined in (1.12), that |β|2 ∈
Ug∩Uu, and that (1.14) holds.

For p ∈ N, let ρp be the representation of GC on H (0,0)(N , L p). For p ∈ N, ρp|β|2 is

self-adjoint and nonnegative in End(H (0,0)(N , L p)), and, moreover,

ρp|β|2 =
m∑

i=1

LL p,2
β(ei )

∣∣∣∣
H (0,0)(N ,L p)

. (3.25)

Theorem 3.3. There exist C ′ > 0,C ′′ > 0 such that, for p ∈ N,

ρp|β|2 > p2 Pp|σβ |2Ê∗ Pp −C ′ p−C ′′. (3.26)

If β is nondegenerate, there exist c > 0,C > 0 such that, for p ∈ N,

ρp|β|2 > cp2−C. (3.27)
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Proof. By equation (3.18) in Theorem 3.1, and by (3.25), we get

ρp|β|2 = 4π2 Pp

m∑
j=1

|〈pµ+ ν, iβ(e j )〉|2 Pp

− Pp

m∑
j=1

2iπc1
(
L p ⊗ d, gL p⊗d)(β(e j )

N (0,1), β(e j )
N (1,0))Pp. (3.28)

From (3.28), we get (3.26). If β is nondegenerate, (3.27) follows from (3.26). The proof

of our theorem is completed.

Remark 3.4. If T is a maximal torus in U , if N = U/T , and if L is the holomorphic line

bundle on N associated with the weight λ, from (3.28), one recovers the formula for the

action of the Casimir operator of U on H (0,0)(N , L p).

3.4. The asymptotics of the trace of eA/p

If B is a complex (m,m) matrix, put

|B| = sup
λ∈Sp(B)

|λ|. (3.29)

If B is such that |B| < 2π , set

Td(B) = det
[

B
1− e−B

]
. (3.30)

If B is self-adjoint, no condition on B is necessary to define Td(B).
From the above, there exists ε > 0 such that, if A ∈ gC, |A| < ε, the form

TdA
(
N , gT N ) = Td

[
− RT N

2iπ
+∇T N ′AN (1,0)

]
(3.31)

is well defined. Note that, if A ∈ iu, no condition on A is needed.

For g ∈ GC, set

χp(g) = TrH (0,0)(N ,L p)[g]. (3.32)

We now give a form of Kirillov’s formula.

Theorem 3.5. For p ∈ N large enough, for A ∈ gC, |A| 6 ε,
χp[eA] =

∫
N

TdA
(
T N , gT N ) exp

(
2iπp〈µ, A〉+ pc1

(
L , gL)). (3.33)

Proof. For A ∈ u, this is just the Kirillov formula [4, Theorem 8.2]. Equation (3.33)

extends by analytic continuation to the general case.

Recall that, for A ∈ gC, R(A) was defined in (1.23). Using (3.2), we get

R(A) =
∫

N
exp

(
2iπ〈µ, A〉+ c1

(
L , gL)). (3.34)

As in § 1.8, we identify a neighbourhood of 0 in gC with a neighbourhood of 1 in GC.
For a ∈ R, we define the action of δa on C∞(gC,C) as in (1.57).
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Theorem 3.6. As p→+∞,

(δ1/pχp)(A) = pn R(A)+O
(

pn−1). (3.35)

Proof. This is a trivial consequence of equation (3.33) in Theorem 3.5.

3.5. A heat operator acting on χp

Let H (GC) be the vector space of complex-valued holomorphic functions on GC. As in

§ 1.1, we identify UgC with the algebra of left-invariant complex holomorphic differential

operators on GC, which acts on H (GC). Similarly, Uu can be identified with the algebra

of left-invariant real differential operators on U , which acts on C∞(U,R).
The functions χp in (3.32) lie in H (GC). For p ∈ N, if g ∈ GC, we have the obvious

identity,

|β|2χp(g) = TrH (0,0)(N ,L p)
[
gρp|β|2

]
. (3.36)

By (1.14), since −|iβ|2 is a nonnegative second-order differential operator on U , for

t > 0, the action of the operator exp(−t |β|2) on χp is well defined. By (3.36), we get

exp
(−t |β|2)χp(g) = TrH (0,0)(N ,L p)

[
g exp

(−tρp|β|2
)]
. (3.37)

Theorem 3.7. If β is nondegenerate, there exist C > 0,C ′ > 0 such that, for p ∈ N large

enough, for g ∈ U, t > 0,∣∣∣∣exp
(
− t

p2 |β|2
)
χp(g)

∣∣∣∣ 6 Cpn exp
(−C ′t

)
. (3.38)

If β is nondegenerate, there exist c > 0,C > 0,C ′ > 0 such that, for p ∈ N large enough,

for A ∈ gC, t > 0, ∣∣∣∣δ1/p exp
(
− t

p2 |β|2
)
χp(A)

∣∣∣∣ 6 Cpn exp
(
c|A| −C ′t

)
. (3.39)

Proof. If g ∈ U , g acts as a unitary operator on H (0,0)(N , L p). If β is nondegenerate, by

equation (3.27) in Theorem 3.3, and by (3.37), we get∣∣∣∣exp
(
− t

p2 |β|2
)
χp(g)

∣∣∣∣ 6 exp
(−(c−C/p2)t)χp(1). (3.40)

By (3.35), as p→+∞,

χp(1) = O
(

pn). (3.41)

By (3.40), (3.41), we get (3.38).

Take A ∈ gC. By equation (3.17) in Theorem 3.1, we get∣∣eA/p|H (0,0)(N ,L p)

∣∣ 6 exp(c|A|). (3.42)

By proceeding as before, we get (3.39). The proof of our theorem is completed.
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Remark 3.8. For ε > 0, let Bu(0, ε) be the open ball of centre 0 and radius ε in u. For

ε > 0 small enough, the exponential map identifies Bu(0, ε) with an open neighbourhood

of 1 in U . As in § 1.8, for ε > 0 small enough, we can view |β|2 = −|iβ|2 as a second-order

differential operator acting on C∞(Bu(0, ε),C).
Set

|β|2p = δ1/p
|β|2
p2 δp. (3.43)

By proceeding as in § 1.8, we find that, as p→+∞,

|β|2p → |β|2. (3.44)

Also,

δ1/p exp
(
− t

p2 |β|2
)
χp = exp

(−t |β|2p
)
(δ1/pχp). (3.45)

By (3.44), as p→+∞,

exp(−t |β|2p)→ exp(−t |β|2). (3.46)

By (3.35), (3.46), as p→+∞,

p−n exp
(−t |β|2p

)
(δ1/pχp)(A)→ exp

(−t |β|2)R(A). (3.47)

By (3.39), (3.47), if β is nondegenerate, we get∣∣exp
(−t |β|2)R(A)∣∣ 6 C exp

(
c|A| −C ′t

)
. (3.48)

Equation (3.48) fits nicely with (1.27).

4. A lower bound for the Hodge Laplacian

We make the same assumptions as in §§ 2 and 3, with S reduced to a point. The purpose

of this section is to obtain a lower bound as p→+∞ for the Hodge Laplacian �X
p acting

on �·(X, Fp), with Fp = H (0,0)(N , L p) when θ̂ p is nondegenerate. The method of proof

consists in expressing a part of �X
p as a Toeplitz operator, to which the results of § 3 can

be applied.

This section is organized as follows. In § 4.1, we construct the flat bundle F =
H (0,0)(N , L) on X .

In § 4.2, we give a formula for the associated Hodge–de Rham Laplacian.

Finally, in § 4.3, when θ̂ p is nondegenerate, we give a lower bound for �X
p as p→+∞.

4.1. A flat vector bundle

We make the same assumptions as in §§ 2 and 3.

Recall that the manifold N was defined in (1.82), and fibres over M with fibre N . We

denote by ρ the representation GC → Aut[H (0,0)(N , L)]. Since K ,U,G,GC also act on

the line bundle L on N , L induces a corresponding line bundle on N , which we also

denote by L.

Set
F = PK ×K H (0,0)(N , L). (4.1)
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In (4.1), we may as well replace K by U,G,GC. Then F can be identified with the

Dolbeault cohomology of L along the fibres N . Also, F is a Hermitian vector bundle on

M . The connection θg induces a flat connection ∇F on F , and the connection θk induces

a corresponding unitary connection ∇F,u on F . Recall that θp is a section of T ∗M ⊗ pr .

By (1.37),

∇F,u = ∇F − ρθp. (4.2)

Note that ρθp is a 1-form on M taking its values in self-adjoint elements of End(F). It

will be convenient to use the notation

ω
(∇F , gF) = −2ρθp. (4.3)

By (4.2),

ω
(∇F , gF) = (gF)−1∇F gF . (4.4)

Let RF,u be the curvature of ∇F,u . By (1.38), (4.3), we get

RF,u = −ρθp,2 = − 1
4ω
(∇F , gF)2. (4.5)

Let (�·(X, F |X ), d X ) be the fibrewise de Rham complex of smooth forms along the

fibres X with values in F |X , equipped with the fibrewise de Rham operator d X . Then

(�·(X, F |X ), d X ) can be viewed as a family of infinite-dimensional complexes on S. Let

H ·(X, F |X ) be the cohomology of the complex (�·(X, F |X ), d X ). Then H ·(X, F |X ) is a

finite-dimensional Z-graded complex vector bundle on S.

Recall that dvX is the volume form along X . We equip �·(X, F |X ) with the metric

g�
·(X,F |X ) associated with the L2 Hermitian product〈

s, s′
〉 = ∫

X

〈
s, s′

〉
3·(T ∗X)⊗R F dvX . (4.6)

Let d X,∗ be the fibrewise adjoint of d X with respect to the Hermitian product (4.6). Set

DX = d X + d X,∗. (4.7)

By Hodge theory,

ker DX ' H ·(X, F |X ). (4.8)

Moreover, if �X is the Hodge Laplacian, we get

DX,2 = [d X , d X,∗] = �X . (4.9)

4.2. A formula for the Hodge Laplacian

Here we assume that S is just a point, so that M consists of a single fibre X .

Let ∇T X be the Levi-Civita connection on (T X, gT X ), and let RT X be its curvature.

Let ∇3·(T ∗X) be the connection on 3·(T ∗X) that is induced by ∇T X . Let ∇3·(T ∗X)⊗R F,u

be the unitary connection on 3·(T ∗X)⊗R F that is induced by ∇3·(T ∗X),∇F,u . Let K X

be the scalar curvature of X . Let 1X,u be the Bochner Laplacian acting on �·(X, F),
which is associated with the connection ∇3·(T ∗X)⊗R F,u .

Let e1, . . . , em be an orthonormal basis of T X , and let e1, . . . , em be the corresponding

dual basis of T ∗X . We use the notation of § 1.2 with respect to the Euclidean vector

bundle (T X, gT X ). For the moment, the forms θp and θ̂p are identified.
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Theorem 4.1. The following identities hold:

DX = (
ei − iei

)∇3·(T ∗X
)
⊗R F

ei + 2ieiρθ̂
p(ei ),

DX = c(ei )∇3
·(T ∗X

)
⊗R F,u

ei + ĉ(ei )ρθ̂
p(ei ).

(4.10)

Moreover,

DX,2 = −1X,u + K X

4
− 1

8

〈
RT X (ei , e j )ek, e`

〉
c(ei )c(e j )̂c(ek )̂c(e`)

+ ρ∣∣θ̂ p
∣∣2− 1

2

(
c(ei )c(e j )− ĉ(ei )̂c(e j )

)
ρθp,2(ei , e j )

+ c(ei )̂c(e j )ρ∇T X⊗gr ,u
ei

θ̂ p(e j ). (4.11)

Proof. This follows from (4.3), (4.4), and from [22, Theorem 4.13].

Remark 4.2. For the moment, the fact that we wrote θ̂ p instead of θp in some of the

terms in (4.11) is a matter of taste. Still the similarity of the right-hand sides of (1.47)

and (4.11) is not accidental.

4.3. Nondegeneracy of θ̂ p and gap in the spectrum

Definition 4.3. Set

2 = K X

4
− 1

8

〈
RT X (ei , e j )ek, e`

〉
c(ei )c(e j )̂c(ek )̂c(e`)

+ ∣∣̂θ p
∣∣2− 1

2
(c(ei )c(e j )− ĉ(ei )̂c(e j ))θ

p,2(ei , e j )

+ c(ei )̂c(e j )∇T X⊗gr ,u
ei

θ̂ p(e j ). (4.12)

Then 2 is a section of End(3·(T ∗X))⊗Ugr .

Equation (4.11) can be rewritten in the form

DX,2 = −1X,u + ρ2. (4.13)

By (4.13), we deduce that, if s ∈ �·(X, F),〈
DX,2s, s

〉
> 〈ρ2s, s〉. (4.14)

By Theorem 3.1, we can re-express ρ2 as a Toeplitz operator acting on the vector

bundle 3·(T ∗X)⊗R C∞(N , L) over X .

When replacing L by L p, we denote with an extra subscript p the above objects. In

particular,

Fp = PK ×K H (0,0)(N , L p). (4.15)

In what follows, we will use the notation of § 3 with respect to the fibre N . As in (1.25),

(2.56), set

σθ̂ p = 2π
〈
µ, i θ̂ p

〉
. (4.16)
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Then σθ̂ p is a section on N of q∗T̂ ∗X . Recall that θ̂ p is said to be nondegenerate if σθ̂ p

does not vanish on N . Equivalently, there is a > 0 such that

|σθ̂ p |2 > a. (4.17)

Theorem 4.4. If θ̂ p is nondegenerate, there exist c > 0,C > 0 such that, for p ∈ N,

ρp2 > cp2−C. (4.18)

If θ̂ p is nondegenerate, there exist c > 0,C > 0 such that, for p ∈ N,

DX,2
p > cp2−C. (4.19)

If θ̂ p is nondegenerate, for p ∈ N large enough, DX,2
p is invertible; i.e. H ·(X, Fp) = 0.

Proof. If θ̂ p is nondegenerate, since X is compact, by Theorem 3.3, there exist c > 0,C >

0 such that

ρp
∣∣̂θ p

∣∣2 > cp2−C. (4.20)

By equation (3.17) in Theorem 3.1, and by (4.12), there exist C ′ > 0,C ′′ > 0 such that∥∥ρp
(
2− ∣∣̂θ p

∣∣2)∥∥ 6 C ′ p+C ′′. (4.21)

By (4.20), (4.21), we get (4.18). By (4.14), (4.18), we get (4.19). The proof of our theorem

is completed.

Remark 4.5. The estimate (4.19) remains valid on a Galois cover X̂ of X . This fact will

be used in § 6.6 and in § 8.

5. The analytic torsion forms

The purpose of this section is to summarize the main results on the analytic torsion

forms of Bismut and Lott [18], which, in degree 0, coincide with the classical Ray–Singer

analytic torsion [44]. Given a proper submersion π : M → S with compact fibre X , a flat

vector bundle F on M , a horizontal subbundle T H M of T M , and metrics gT X , gF , the

analytic torsion forms are even forms on S.

This section is organized as follows. In § 5.1, we introduce odd closed forms on M that

are associated with the flat Hermitian vector bundle F .
In § 5.2, we interpret the de Rham operator d M as a flat superconnection A′ on the

vector bundle �·(X, F |X ) over S.

In § 5.3, we obtain the adjoint superconnection A′′ to A′ in the sense of [18], and also

the superconnection A = 1
2 (A
′′+ A′).

In § 5.4, we replace gT X by gT X/t , and we construct the corresponding superconnection

At .

In § 5.5, as in [18], we construct odd closed forms h(A′, g�
·(X,F |X )

t ) on S.

In § 5.6, we establish a transgression formula.

In § 5.7, we construct the analytic torsion forms, and we state some of their properties.

In § 5.8, we specialize the construction of § 5.1 to the case where F = H (0,0)(N , L).
Finally, in § 5.9, we state the Lichnerowicz formula of [18].
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5.1. The odd forms associated with a flat vector bundle

We make the same assumptions as in §§ 2.1 and 2.2, and we use the corresponding

notation. Also, F denotes a complex vector bundle of dimension k on M , and ∇F is

a flat connection on F . Also, gF is a Hermitian metric on F . Let R be the GL(k,C)
bundle of frames in F , and let RU be the U(k)-bundle of unitary frames in F . With

G = GL(k,C), K = U(k), we are in the situation that was described in §§ 1.1 and 1.6. We

could as well borrow our notation from these two subsections.

As in (4.4), set

ω
(∇F , gF) = (gF)−1∇F gF . (5.1)

Let ∇F,u be the unitary connection on (F, gF ),

∇F,u = ∇F + 1
2ω
(∇F , gF). (5.2)

Let RF,u be the curvature of ∇F,u . One verifies that

RF,u = − 1
4ω
(∇F , gF)2, (5.3)

which fits with (4.5).

By [18, Proposition 1.3], we get

Tr
[
exp(−RF,u)

] = dim F. (5.4)

By (5.3), we can rewrite (5.4) in the form

Tr
[
exp

(
ω
(∇F , gF)2/4)] = dim F. (5.5)

Equation (5.5) is also a consequence of Proposition 1.12.

Set

h(x) = xex2
. (5.6)

Then

h′(x) = (1+ 2x2) exp
(
x2). (5.7)

We define the action of ϕ on 3·(T ∗M)⊗R C as in Definition 1.10.

Definition 5.1. Set

h
(∇F , gF) = (2iπ)1/2ϕTr

[
h
(
ω
(∇F , gF)/2)]. (5.8)

Now, we recall results by Bismut and Lott [18, Theorems 1.8 and 1.11].

Proposition 5.2. The odd form h(∇F , gF ) is real and closed, and its cohomology class

does not depend on gF , and will be denoted h(∇F ).

Remark 5.3. This result is also a consequence of Proposition 2.7. By a construction of

Bismut and Lott [18, Theorems 1.9 and 1.11], as explained in Remark 2.8, given two

metrics gF , gF ′ on F , there is a uniquely defined class of even forms h̃(∇F , gF , gF ′) ∈
�·(M)/d�·−1(M) such that

dh̃
(∇F , gF , gF ′) = h

(∇F , gF ′)− h
(∇F , gF). (5.9)
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By Proposition 2.17, in degree >3, the cohomology class of h(∇F , gF ) is rigid under

deformation of the flat connection ∇F , which is also a result of [15, Theorem 2.5 and

Remark 2.6]. More precisely, given a smooth path of flat connections ` ∈ [0, 1] → ∇F
` on

F , one can construct an even form h̃(∇F
` , gF ) such that

dh̃
(∇F

` , gF)(>2) = (h(∇F
1 , gF)− h

(∇F
0 , gF))(>3)

. (5.10)

Moreover, the class h̃(∇F
` , gF )(>4) ∈ �·(M)/d�·−1(M) does not depend on the path ` ∈

[0, 1] → ∇F
` .

5.2. A flat superconnection on �·(X, F |X )
By (2.3), we have the identification of Z-graded vector spaces,

�·(M, F) ' �·(S, �·(X, F |X )). (5.11)

We follow [18, §3(b)]. Let d M be the de Rham operator acting on �·(M, F). By (5.11),

A′ = d M can be considered as a flat superconnection of �·(X, F |X ).

Definition 5.4. Let ∇�·(X,F |X ) be the connection on �·(X, F |X ) such that, if U ∈ T S and

if s is a smooth section of �·(X, F |X ), then

∇�·(X,F |X )U s = LU H s. (5.12)

The connection ∇�·(X,F |X ) preserves the Z-grading of �·(X, F |X ).

Recall that T H was defined in Definition 2.1. The interior multiplication iT H acts

naturally on 3·(T ∗M)⊗R F . We have the simple result of [18, Proposition 3.4].

Proposition 5.5. The following identity of operators acting on �·(M, F) holds:

A′ = d X +∇�·(X,F |X )+ iT H . (5.13)

5.3. The adjoint superconnection

Let ∇3·(T ∗X) ⊗̂ R F,u be the unitary connection on 3·(T ∗X) ⊗̂ R F induced by ∇T X and

∇F,u . We equip the vector bundle �·(X, F |X ) with the metric g�
·(X,F |X ) defined as

in (4.6).

Let A′′ be the adjoint of the superconnection A′ with respect to the metric g�
·(X,F |X )

in the sense of [18, §1(d)]. The adjoint d X,∗ is just the fibrewise adjoint of d X . Let

∇�·(X,F |X ),∗ be the connection on �·(X, F |X ) which is adjoint to ∇�·(X,F |X ) with respect

to g�
·(X,F |X ). Since T X and T ∗X are identified by gT X , we can consider T H as a section

of 32(T ∗S) ⊗̂ T ∗X . Then T H∧ acts on 3·(T ∗S) ⊗̂ R�
·(X, F |X ).

Then we have the result stated in [18, Proposition 3.7].

Proposition 5.6. The following identity holds:

A′′ = d X,∗+∇�·(X,F |X ),∗− T H ∧ . (5.14)
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Set

A = 1
2

(
A′′+ A′

)
, B = 1

2

(
A′′− A′

)
. (5.15)

Then A is a superconnection on �·(X, F |X ), and B is a smooth section of(
3·(T ∗S) ⊗̂ REnd

(
�·(X, F |X )

))odd
.

5.4. A rescaling of the metric on T X

For a ∈ R, let ψa be the endomorphism of 3·(T ∗S) that is defined as in (1.51). Here, ψa
only acts on 3·(T ∗S) and not on 3·(T ∗M).

For t > 0, set

gT X
t = gT X

t
. (5.16)

Let g�
·(X,F |X )

t be the metric on �·(X, F |X ) associated to gT X
t .

Recall that m = dim X . Let N3·(T ∗X) be the number operator of 3·(T ∗X). Then

N3·(T ∗X) acts by multiplication by k on �k(X, F |X ). One verifies easily that

g�
·(X,F |X )

t = t N3·(T∗X)−m/2g�
·(X,F |X ). (5.17)

Let A′′t be the adjoint of A′ with respect to g�
·(X,F |X )

t . Clearly A′′ = A′′1. Moreover,

A′′t = t−N3·(T∗X)
A′′t N3·(T∗X)

. (5.18)

Set

At = 1
2

(
A′′t + A′

)
, Bt = 1

2

(
A′′t − A′

)
. (5.19)

Definition 5.7. For t > 0, set

C ′t = t N3·(T∗X)/2 A′t−N3·(T∗X)/2, C ′′t = t−N3·(T∗X)/2 A′′t N3·(T∗X)/2. (5.20)

Then C ′t is a flat superconnection on �·(X, F |X ), and C ′′t is its adjoint with respect to

g�
·(X,F |X ). Set

Ct = 1
2

(
C ′′t +C ′t

)
, Dt = 1

2

(
C ′′t −C ′t

)
. (5.21)

Clearly,

Ct = t N3·(T∗X)/2 At t−N3·(T∗X)/2, Dt = t N3·(T∗X)/2 Bt t−N3·(T∗X)/2. (5.22)

Proposition 5.8. For t > 0, the following identities hold:

Ct = ψ−1√
t

√
t Aψ√t , Dt = ψ−1√

t

√
t Bψ√t . (5.23)

Proof. Our proposition follows easily from the fact that A′ = d M increases by 1 the total

degree of the forms on M .
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5.5. The odd closed forms h(A′, g�
·(X,F |X )

t )

Let χ(X, F) be the Euler characteristic of F |X ; i.e.,

χ(X, F) =
m∑

j=0

(−1) j dim H j (X, F |X ). (5.24)

By the Chern–Gauss–Bonnet theorem,

χ(X, F) = dim F
∫

X
e(T X). (5.25)

First, we state a result established in [18, Theorem 3.15].

Proposition 5.9. For any t > 0,

Trs
[

exp(−A2
t )
] = χ(X, F). (5.26)

We define the action of ϕ on 3·(T ∗S)⊗R C as in Definition 1.10.

Definition 5.10. For t > 0, set

h
(

A′, g�
·(X,F |X )

t

)
= (2iπ)1/2ϕTrs[h(Bt )], (5.27)

h
(
C ′t , g�

·(X,F |X )) = (2iπ)1/2ϕTrs[h(Dt )].
By (5.22),

h
(

A′, g�
·(X,F |X )

t

)
= h

(
C ′t , g�

·(X,F |X )). (5.28)

The Z-graded vector bundle H ·(X, F |X ) on S is equipped with the flat Gauss–Manin

connection ∇H ·(X,F |X ). By identifying H ·(X, F |X ) with the fibrewise harmonic forms in

�·(X, F |X ), H ·(X, F |X ) inherits a Hermitian metric gH ·(X,F |X ) from the metric g�
·(X,F |X ).

Set

h
(∇H ·(X,F |X ), gH ·(X,F |X )) = (2iπ)1/2ϕTrs

[
h
(
ω
(
H ·(X, F |X ), gH ·(X,F |X ))/2)]. (5.29)

We state a result that was established in [18, Theorem 3.16].

Theorem 5.11. The forms h(A′, g�
·(X,F |X )

t ) are real, odd, closed, and their cohomology

class does not depend on t > 0. Moreover, as t → 0,

h
(

A′, g�
·(X,F |X )

t

)
= π∗

[
e
(
T X,∇T X )h(∇F , gF)]+O

(√
t
)
. (5.30)

As t →+∞,

h
(

A′, g�
·(X,F |X )

t

)
= h

(∇H ·(X,F |X ), gH ·(X,F |X ))+O
(
1/
√

t
)
. (5.31)

The following identity holds:

h
(∇H ·(X,F |X )) = π∗[e(T X)h(∇F )

]
in Hodd(S,R). (5.32)
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5.6. A transgression formula

Definition 5.12. For t > 0, set

h∧
(

A′, g�
·(X,F |X )

t

)
= ϕTrs

[(
N3·(T ∗X)

2
− m

4

)
h′(Bt )

]
,

h∧
(
C ′t , g�

·(X,F |X )) = ϕTrs

[(
N3·(T ∗X)

2
− m

4

)
h′(Dt )

]
.

(5.33)

The forms in (5.33) are still real.

By (5.22),

h∧
(

A′, g�
·(X,F |X )

t

)
= h∧

(
C ′t , g�

·(X,F |X )). (5.34)

By Proposition 5.8, we get

h
(

A′, g�
·(X,F |X )

t

)
= ψ−1√

t
(2iπ)1/2ϕTrs

[
h
(√

t B
)]
,

h∧
(

A′, g�
·(X,F |X )

t

)
= ψ−1√

t
ϕTrs

[(
N3·(T ∗X)

2
− m

4

)
h′
(√

t B
)]
.

(5.35)

We have the following result established in [18, Theorem 3.20].

Theorem 5.13. The form h∧(A′, g�
·(X,F |X )

t ) is even. Moreover,

∂

∂t
h
(

A′, g�
·(X,F |X )

t

)
= 1

t
dh∧

(
A′, g�

·(X,F |X )
t

)
. (5.36)

Put

χ ′(X, F) =
m∑

j=0

(−1) j j dim H j (X, F |X ). (5.37)

We recall the result of [18, Theorem 3.21].

Theorem 5.14. As t → 0,

h∧
(

A′, g�
·(X,F |X )

t

)
= O

(√
t
)
. (5.38)

As t →+∞,

h∧
(

A′, g�
·(X,F |X )

t

)
=
(

1
2
χ ′(X, F)− m

4
χ(X, F)

)
h′(0)+O

(
1/
√

t
)
. (5.39)

Now, we enlarge M, S to M ×R∗+, S×R∗+, and, over M ×{s}, we equip T X with the

metric gT X/s. Over M ×R∗+, the canonical connection ∇̃T X on T X is given by

∇̃T X = ∇T X + ds
(
∂

∂s
− 1

2s

)
. (5.40)
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By equation (2.12), for U ∈ T X ,

T
(
∂

∂s
,U
)
= −U

2s
. (5.41)

By (2.9), if U, V ∈ T X , 〈
S(U )V,

∂

∂s

〉
= 1

2s2 〈U, V 〉. (5.42)

Now, we proceed as in [18, §3(i)]. Let Ã′, B̃t be the analogues of A′, Bt over S×R+. By

[18, equations (3.112) and (3.113)], we get

B̃t = Bst + ds
s

(
N3·(T ∗X)

2
− m

4

)
. (5.43)

Let g̃�
·(X,F |X )

t be the analogue of g�
·(X,F |X )

t . By (5.27), (5.43), we get an equation already

established in [18, equation (3.114)],

h
(

Ã′, g̃�
·(X,F |X )

t
) = h

(
A′, g�

·(X,F |X )
st

)
+ ds

s
h∧
(

A′, g�
·(X,F |X )

st

)
. (5.44)

Since the form in (5.44) in closed on S×R∗+, we recover (5.36). Similarly, Theorem 5.14

can be viewed as a consequence of Theorem 5.11 and of (5.44).

5.7. The analytic torsion forms

Now, we follow [18, §3(j)].

Definition 5.15. Set

Th
(
T H M, gT X ,∇F , gF) = − ∫ +∞

0

[
h∧
(

A′, g�
·(X,F |X )

t

)
+
(

m
4
χ(X, F)− 1

2
χ ′(X, F)

) (
h′(0)− h′

(
i
√

t/2
))]dt

t
. (5.45)

The forms Th
(
T H M, gT X ,∇F , gF) are called analytic torsion forms.

The following result was established in [18, Theorem 3.23].

Theorem 5.16. The form Th
(
T H M, gT X ,∇F , gF) is even. Moreover,

dTh
(
T H M, gT X ,∇F , gF) = π∗

[
e
(
T X,∇T X )h(∇F , gF)]

− h
(∇H ·(X,F |X ), gH ·(X,F |X )). (5.46)

Proof. Our theorem follows from Theorems 5.13 and 5.14.

Let T H ′M, gT X ′, gF,′ be another triple of data. We will denote with an extra

prime the objects canonically attached to this new triple. Let ẽ
(
T X,∇T X ,∇T X ′) ∈

�·(M)/d�·−1(M) be the corresponding Chern–Simons class, so that

dẽ
(
T X,∇T X ,∇T X ′) = e

(
T X,∇T X ′)− e

(
T X,∇T X ). (5.47)
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The following result was established in [18, Theorem 3.24] as a consequence of

Theorem 5.16.

Theorem 5.17. The following identity holds:

Th
(
T H ′M, gT X ′,∇F , gF ′)− Th

(
T H M, gT X ,∇F , gF)

= π∗
[̃
e
(
T X,∇T X ,∇T X ′)h(∇F , gF)]+π∗[e(T X,∇T X ′)̃h(∇F , gF , gF ′)]

− h̃
(∇H ·(X,F |X ), gH ·(X,F |X ), gH ·(X,F |X )′) in �·(S)/d�·−1(S). (5.48)

Remark 5.18. Let (DX,2)−1 be the inverse of DX,2 acting on the orthogonal bundle to

ker DX in �·(X, F |X ). For s ∈ C,Re(s) > m/2, set

ϑ(s) = −Trs

[(
N3·(T ∗X)− m

2

) (
DX,2)−s

]
. (5.49)

Then ϑ(s) extends to a meromorphic function of s ∈ C, which is holomorphic near

s = 0. By definition, the Ray–Singer analytic torsion [22, 44] of the de Rham complex

(�·(X, F |X ), d X ) is given by 1
2
∂ϑ
∂s (0). By Bismut and Lott [18, Theorem 3.29],

Th
(
T H M, gT X ,∇F , gF)(0) = 1

2
∂ϑ

∂s
(0). (5.50)

An ingredient in the proof of (5.50) is the simple fact that

h∧
(

A′, g�
·(X,F |X )

t

)(0) = (1+ 2t
∂

∂t

)
Trs

[(
N3·(T ∗X)

2
− m

4

)
exp

(−t DX,2/4
)]
. (5.51)

As shown in [22, Theorem 7.10], as t → 0,

Trs

[(
N3·(T ∗X)

2
− m

4

)
exp

(−t DX,2/4
)] = O(1/

√
t). (5.52)

Equation (5.38) fits with (5.51), (5.52).

Assume that X is odd dimensional, and that H ·(X, F |X ) = 0. By (5.46), the form

Th(T H M, gT X ,∇F , gF ) on S is closed, and by (5.48), its cohomology class does not depend

on T H M, gT X , gF . It will be denoted by Th(∇F ).

Let ` ∈ [0, 1] → ∇F
` be a smooth 1-parameter family of flat connections on F . We

denote by F` the flat bundle (F,∇F
` ). Recall that the forms h̃(∇F

` , gF ) were described in

Remark 5.3.

Assume that, for ` ∈ [0, 1], H ·(X, F`|X ) = 0. Now, we have the result of [15,

Theorem 3.45].

Theorem 5.19. If X is odd dimensional, the following identity holds:

Th
(∇F

1
)(>2) = Th

(∇F
0
)(>2) in H even(S,R). (5.53)

If X is even dimensional, then[
Th
(
T H M, gT X ,∇F

1 , gF)− Th
(
T H M, gT X ,∇F

0 , gF)](>2)

= π∗
[
e
(
T X,∇T X )̃h(∇F

` , gF)] in �·(S)/d�·−1(S). (5.54)
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5.8. The odd forms associated with H (0,0)(N , L p)

We make the same assumptions as in § 2 and in § 4.1, and we use the corresponding
notation. In particular, the flat Hermitian vector bundle Fp on M is given by (4.15).
Also, we use the notation in (4.2).

By (3.32), (4.3), and (5.8), we get

h
(∇Fp , gFp

) = −χp
[
θp exp

(
θp,2/2iπ

)]
. (5.55)

Let z be an odd Grassmann variable, which supercommutes with 3·(T ∗M). If a ∈
R[z] ⊗̂ 3·(T ∗M), we can write a in the form

a = b+ zc, b, c ∈ 3·(T ∗M). (5.56)

Set
az = c. (5.57)

By (5.55), we get

h
(∇Fp , gFp

) = χp
[
exp

(
θp,2/2iπ − zθp

)]z
. (5.58)

5.9. A Lichnerowicz formula

Let e1, . . . , em be a locally defined smooth orthonormal basis of T X , and let f1, . . . , fr
be a basis of T S. The corresponding dual bases are denoted with upper indices.

Definition 5.20. Let 1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X) be the fibrewise connection on the vector bundle
π∗3·(T ∗S) ⊗̂ 3·(T ∗X),

1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X) = ∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)+ 1
2 〈Sei , f H

α 〉
√

2c(ei ) f α

+ 1
2

〈
S f H
α , f H

β

〉
f α f β . (5.59)

Let 1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F,u be the connection on π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F that is
induced by 1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X),∇F,u . For t > 0, set

1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F,u
t = ψ1/

√
t
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X) ⊗̂ R F,uψ√t . (5.60)

Put
R = 1

4

〈
ei , RT X e j

〉̂
c(ei )̂c(e j )− θp,2. (5.61)

Then R is a smooth section of 3·(T ∗M) ⊗̂ ĉ(T X) ⊗̂ kr .
Let K X be the scalar curvature of the fibres (X, gT X ). Let z be an odd Grassmann

variable which anticommutes with all the other odd objects we met before. Let θa be the
analogue of ψa when acting on R[z] ⊗̂ 3·(T ∗S). In particular,

θaz = az. (5.62)

Definition 5.21. For t > 0, set

3t = t
K X

16
+ t

8
c(ei )c(e j )R(ei , e j )+ 1

2
f α f βR

(
f H
α , f H

β

)
+
√

t
2

c(ei ) f αR
(
ei , f H

α

)+ t
4
|̂θ p|2+

√
t

2
f α ĉ(ei )∇T X⊗gr ,u

f H
α

θ̂ p(ei )
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+ t
8

ĉ(ei )̂c(e j )θ̂
p,2(ei , e j )+ t

4
c(ei )̂c(e j )∇T X⊗gr ,u

ei
θ̂ p(e j )

+ 1
2

z
√

tc(ei )θ
p(ei )+ z f αθp( f H

α ). (5.63)

Then 3t is a section of 3·(T ∗S) ⊗̂ c(T X) ⊗̂ ĉ(T X)⊗Ugr . Set

3 = 31. (5.64)

Then

3t = θ−1√
t
t3θ√t . (5.65)

Put

L F
t = C2

t − zDt . (5.66)

The following formula was established by Bismut and Lott in [18, Theorem 3.11], [15,

Theorem 3.19] as a consequence of the Lichnerowicz formula for the curvature of the

Levi-Civita superconnection given in [18, Theorem 3.6].

Theorem 5.22. Given t ∈ R∗+, for p ∈ N, the following identity holds:

L
Fp
t = −

t
4

(
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R Fp,u

t/2,ei
− z√

t
ĉ(ei )

)2

+ ρp3t . (5.67)

6. The asymptotics of the odd superconnection forms

In this section, under the assumptions of §§ 2 and 5, we obtain the asymptotics as p→
+∞ of the odd forms h(A′, g�

·(X,Fp |X )) on S.

This section is organized as follows. In § 6.1, we obtain the asymptotics of the forms

h(∇Fp , gFp ).

In § 6.2, replacing the vector bundle F by the infinite-dimensional vector bundle F of

fibrewise holomorphic functions along the fibres of PGC , we give a universal construction

of the operators Ct , Dt that were considered in § 5. In this way, we obtain an operator

LF
t .

In § 6.3, we introduce the vector bundle F of fibrewise smooth functions along the fibres

of PGC , and we lift the operator LF
t to ordinary differential operators LF

t , LF′
t on the total

space PGC of PGC along a fibre X . In particular, LF′
t is elliptic along the fibres of PGC .

In § 6.4, we give a formula expressing the odd superconnection forms h(A′, g�
·(X,F |X )

t )

in terms of a pairing of the heat kernels for LF
t or LF′

t , and of the character χ associated

with the action of GC on H (0,0)(X, L).
In § 6.5, the asymptotics of the forms h(A′, g

�·(X,Fp |X )
t/p2 ) are obtained in terms of the

forms π∗ct/4 that were defined in § 2.

Finally, in § 6.6, we briefly consider the case where S is reduced to a point, and where

X is replaced by a Galois cover X̂ .
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6.1. The asymptotics of the forms h(∇Fp , gFp )

If αp|p∈N is a family of smooth differential forms on M , we will say that, given k ∈ N,

αp = O(pk) as p→+∞ if, for every compact set K ⊂ M, r ∈ N, the sup of |αp| and its

derivatives of order 6r over K is dominated by CK ,r pk .

We make the same assumptions as in §§ 2 and 5. Recall that the odd closed form γ on

M was defined in Definition 2.6.

Proposition 6.1. As p→+∞,

p−n 1√
p
ψ1/
√

ph
(∇Fp , gFp

) = γ +O(p−1). (6.1)

Proof. By (5.58), we get

1√
p
ψ1/
√

ph
(∇Fp , gFp

) = (δ1/pχp)
(
θp,2/2iπ − zθp

)z
. (6.2)

By Theorem 3.6, as p→+∞,

(δ1/pχp)
(
θp,2/2iπ − zθp

) = pn R
(
θp,2/2iπ − zθp

)+O(pn−1). (6.3)

By (2.52), we get

R
(
θp,2/2iπ − zθp

)z = γ. (6.4)

By (6.2)–(6.4), we get (6.1).

6.2. The universal construction of the operators Ct , Dt

Let PGC denote the total space of PGC over a given fibre X .

Recall that ρp denotes the representation GC → Aut[H (0,0)(N , L p)]. There is an

obvious action of GC on C∞(PGC , H (0,0)(N , L p)) such that

gs(u) = ρp(g)s(ug). (6.5)

Then C∞(X, Fp) can be identified with C∞(PGC , H (0,0)(N , L p))GC , the vector space

of GC-invariant sections in C∞(PGC , H (0,0)(N , L p)). Such invariant functions are

holomorphic functions along the fibres of PGC .

Recall that H (GC) is the vector space of complex-valued holomorphic functions on

GC. By restriction to the compact group U , the vector space H (GC) inherits an L2
Hermitian product. The left action of GC on GC induces a corresponding left action

σ of GC on H (GC). The induced action of U on H (GC) is unitary. Also, there is an

associated action of UgC on H (GC), which we still denote σ .

Set

F = PG ×G H (GC) = PGC ×GC H (GC) = PU ×U H (GC). (6.6)

Then F is the vector bundle on M of the holomorphic functions along the fibres of PGC .

Also, UgC,r acts on F as the algebra of fibrewise holomorphic right-invariant differential

operators. If A ∈ UgC,r , f ∈ F , the action of A on f will be denoted σ(A) f .
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The vector bundle F is naturally equipped with the connections ∇F ,∇F ,u that are

induced by the connections θg, θk, the connection ∇F is flat, and the connection ∇F ,u

is unitary. By (4.2),

∇F ,u = ∇F − θp. (6.7)

By (4.5), the curvature RF ,u of ∇F ,u is given by

RF ,u = −θp,2. (6.8)

Since σ induces the tautological representation of UgC on H (GC), in (6.7), (6.8), we

wrote θp, θp,2 instead of σ(θp), σ (θp,2).

The left action of GC on itself induces an action of GC on C∞(GC,C), which will be

still denoted σ . Also, H (GC) ⊂ C∞(GC,C). Set

F = PGC ×GC C∞(GC,C). (6.9)

Then F embeds into F. The connection form θk induces a connection ∇F,u on the vector

bundle F, whose curvature is still given by (6.8).

Let Q be the O(m)-principal bundle of orthonormal frames in T X , which we equip with

the connection induced by ∇T X . Let P ′G denote the fibre product of PG with Q. Then

P ′G is an O(m)×G principal bundle. In this construction, we can replace G by GC or

U . In particular, the connections θg, θk induce corresponding connections on the above

principal bundles.

In the constructions of § 5, when replacing F by F , we obtain the superconnection CF
t

on �·(X,F |X ) and the operator DF
t . Let LF

t be the analogue of L F
t in (5.66), so that

LF
t = CF ,2

t − zDF
t . (6.10)

Theorem 6.2. Given t ∈ R∗+, the following identity holds:

LF
t = −

t
4

(
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X) ⊗̂F ,u

t/2,ei
− z√

t
ĉ(ei )

)2

+3t . (6.11)

Proof. This is just a formal consequence of Theorem 5.22.

Clearly, LF
t acts on 3·(T ∗S) ⊗̂ �·(X,F |X ). This is the space of smooth sections of

3·(T ∗S) ⊗̂ 3·(T ∗X) along the fibres PGC that are holomorphic along the fibres of PGC .

6.3. Lifting LF
t

Let Op be the algebra of scalar differential operators along the fibre X . Then LF
t is a

section over S of

Op⊗R[z] ⊗̂ End(3·(T ∗X))⊗R UgC,r . (6.12)

Let URgC be the real enveloping algebra of gC; i.e., URgC is the enveloping algebra of

GC considered as a real Lie group. Since gC = uC, URgC = URuC. Also, URgC maps into

UgC. Similarly, we can construct the bundle of real enveloping algebras URgC,r .

We now construct a lift LF
t of LF

t to

Op⊗R[z] ⊗̂ End(3·(T ∗X))⊗URgC,r . (6.13)
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Clearly, the first term in the right-hand side of (6.11) lifts naturally to an operator in

(6.13).

Consider 3t in (5.63). We proceed as in §§ 1.3 and 3.5. We have the identity∣∣θ̂ p
∣∣2 = −∣∣i θ̂ p

∣∣2 in UgC,r . (6.14)

The right-hand side of (6.14) can also be viewed as an element of URgC,r , which will be

our lift of |̂θ p|2 in URgC,r .

We consider another part of 3t , which, up to the factor t , is given by

−1
8

(
c(ei )c(e j )− ĉ(ei )̂c(e j )

)
θp,2(ei , e j ) = 1

4

(
ei ∧ ie j − e j ∧ iei

)
θp,2(ei , e j )

= −1
4

∑
i< j

(
θp,2(ei , e j )− ei ∧ ie j + e j ∧ iei

)2− 1
4

∑
i< j

[√−1θp,2(ei , e j )
]2

+ 1
4

∑
i< j

(
ei ∧ ie j − e j ∧ iei

)2
. (6.15)

We can view the right-hand side of (6.15) as a section of the bundle of algebras in (6.13),

which lifts the corresponding left-hand side.

The same procedure can also be applied to the remaining terms in (5.63). Ultimately

we have produced the required lift of LF
t to LF

t . Then LF
t acts naturally on

3·(T ∗S) ⊗̂ �·(X,F|X ). Moreover, when acting on 3·(T ∗S) ⊗̂ �·(X,F |X ), LF
t restricts

to LF
t . The operator LF

t is a second-order operator with nonnegative scalar principal

symbol, which commutes with the right action of GC on PGC .

The operator LF
t can be made to be elliptic. Indeed, we have the real splitting gC = u⊕

iu. Also, u is equipped with a U -invariant scalar product, which induces a corresponding

U -invariant scalar product on gC. Consider the right-invariant Laplacian on C∞(GC,C).
Since this operator commutes with the left action of K on C∞(GC,C), it induces a

corresponding fibrewise elliptic operator on F = PK ×K C∞(GC,C), which we denote by

1GC . This operator is invariant under the right action of GC on PGC , and vanishes on

H (GC).

By adding to LF
t a multiple of −t1GC which is large enough, we obtain in this way an

elliptic operator LF′
t on PGC which is still a lift of LF

t .

We claim that, for t > 0, the heat operators exp(−LF
t ), exp(−LF′

t ) are well defined. An

easy method to construct exp(−LF
t ) is via stochastic differential equations. The sum of

squares in (6.15) is easily accessible to a probabilistic treatment. For more details, we

refer in particular to [7, Proposition 3.7]. The fact that the fibres of PGC are noncompact

does not create any difficulty, because the operators considered are invariant under the

right action of GC. The operator LF′
t being elliptic, the construction of the operator

exp(−LF′
t ) is even simpler.

The fibres of PGC are equipped with a volume form dq which comes from the

left-invariant Haar measure1 associated with the scalar product of gC. Then dq is

invariant by the right action of GC on PGC . Also, dvX dq is a volume form on PGC .

1Since G is unimodular, this is also the case for GC.
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Let PF′
t (u, u′) be the smooth kernel on PGC which is associated with exp(−LF′

t ) with

respect to dvX dq. In general, there is no smooth kernel associated with exp(−LF
t ) but

only a measure-valued kernel PF
t (u, du′). However, because LF

t is elliptic in directions

which are normal to the fibres of PGC , it can be written in the form

PF
t (u, du′) = QF

t (pu, pu′)dvX SF
t,u,pu′(dq), (6.16)

where QF
t (x, x ′) is smooth on X × X , and SF

t,u,x ′(dq) is a measure along the fibre PGC,x ′
which depends smoothly on u, x ′.

6.4. A formula for ht (A′, g�
·(X,F |X )

t )

Let P F
t (x, x ′) be the smooth kernel associated with the operator exp(−L F

t ) with respect

to the volume dvX (x ′). By (5.27), (5.66), we get

h
(

A′, g�
·(X,F |X )

t

)
= (2iπ)1/2ϕ

∫
X

Trs
[
P F

t (x, x)
]zdvX (x). (6.17)

We use the notation

χ = χ1 . (6.18)

If x ∈ X, u, u′ ∈ PGC,x , then u′−1u ∈ GC. We claim that∫
PGC,x

Trs
3·(T ∗X)[PF′

t
(
u, u′

)]
χ
(
u′−1u

)
dq
(
u′
)

(6.19)

descends to a smooth function on X . Indeed, χ is an Ad-invariant function, and, moreover,

exp(−LF′
t ) commutes with right multiplication by GC. As to the existence of the integral

in (6.19), it follows from elementary estimates.

We claim the above considerations also apply to the kernel PF
t . Using the notation in

(6.16), and under the same assumptions as in (6.19), consider the integral

Trs
3·(T ∗X)[QF

t (x, x)
] ∫

PGC

χ
(
u′−1u

)
SF

t,u,x (dq). (6.20)

Since exp(−LF
t ) commutes with the right action of GC on PGC , the measure SF

t,u,x on the

fibre PGC comes from a measure SF
t,x (dg) on GC,r,x through the left action of GC,r on

PGC , so that (6.20) can be written as

Trs
3·(T ∗X)[QF

t (x, x)
] ∫

GC,r,x

χ
(
g−1)SF

t,x (dg). (6.21)

Theorem 6.3. For t > 0, the following identities hold:

h
(

A′, g�
·(X,F |X )

t

)
= (2iπ)1/2ϕ

∫
X

[
Trs

3·(T ∗X)[QF
t (x, x)

]z ∫
GC,r,x

χ
(
g−1)SF

t,x (dg)

]
dvX (x)

= (2iπ)1/2ϕ
∫

X

[∫
PGC,x

Trs
3·(T ∗X)[PF′

t (u, u′)
]z
χ
(
u′−1u

)
dq
(
u′
)]

dvX (x). (6.22)
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Proof. As explained in § 6.2, smooth sections of F on X can be identified with

GC-invariant functions on PGC under the action described in (6.5), and such sections are

fibrewise holomorphic. Recall that F is modelled after the vector space H (0,0)(N , L). The

operators LF
t and LF′

t can be considered as operators acting on C∞(PGC , π
∗3·(T ∗X)⊗

H (0,0)(N , L)) which commute with the right action of GC. The solution of the heat

equation exp(−sL F
t ) acting on �·(X, F |X ) lifts in the proper sense to the operators

exp(−sLF
t ) or exp(−sLF′

t ). Equation (6.22) then becomes a tautology.

Remark 6.4. The main point of equation (6.22) is that the dependence on the

representation ρ is only via the character χ .

6.5. The asymptotics as p→+∞ of the odd superconnection forms

Let αp,t |p∈N,t>0 be a family of smooth differential forms on S. Let k ∈ N. We will say

that, as p→+∞, αp,t = O(pk) if, for any compact set K ⊂ S, for M > 0, r ∈ N, for

0 < t 6 M , the sup of αp,t and its derivatives on K is dominated by CK ,r pk .

Recall that the forms ct , dt on M were defined in Definition 2.9.

Theorem 6.5. As p→+∞,

1√
p
ψ1/
√

ph
(

A′, g
�·(X,Fp |X )
t/p2

)
= π∗ct/4 pn +O

(
pn−1),

ψ1/
√

p
1√
t
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)
= π∗

1√
t
dt/4 pn+1+O

(
pn). (6.23)

In particular, if K ⊂ S is compact, there exists C > 0 such that, for p ∈ N∗, 0 < t 6 1,∣∣∣p−n−1ψ1/
√

ph∧
(

A′, g
�·(X,Fp |X )
t/p2

)∣∣∣ 6 C
√

t on K . (6.24)

If θ̂ p is nondegenerate, given α > 0 and a compact set K ⊂ S, there exist c > 0, c′ >
0,C > 0 such that, for t > α, p ∈ N,∣∣∣h(A′, g

�·(X,Fp |X )
t

)∣∣∣ 6 C exp
(−c

(
p2− c′

)
t
)

on K ,∣∣∣h∧(A′, g
�·(X,Fp |X )
t

)∣∣∣ 6 C exp
(−c

(
p2− c′

)
t
)

on K .
(6.25)

Proof. To prove our theorem, we may as well make 2iπ = 1 in the normalization of the

various forms. We may and we will assume S to be compact. First, we establish (6.23).

By equation (6.22) in Theorem 6.3, with L replaced by L p and F by Fp, we get

h
(

A′, g
�·(X,Fp |X )
t/p2

)
=
∫

X

[
Trs

3·(T ∗X)[QF
t/p2(x, x)

]z ∫
GC,r,x

χp
(
g−1)SF

t/p2,x (dg)

]
dvX (x)

=
∫

X

[∫
PGC,x

Trs
3·(T ∗X)[PF′

t/p2(u, u′)
]z
χp
(
u′−1u

)
dq
(
u′
)]

dvX (x). (6.26)
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For a ∈ R, the action of θa on R[z] ⊗̂ 3·(T ∗S) was defined in § 5.9. Set

LF
p,t = θ1/

√
p LF

t θ
√

p. (6.27)

To the operator exp(−LF
p,t ) we associate kernels and measures which are denoted with

an extra subscript p. We use the corresponding notation for the operator LF′
t . By (6.26),

we get

p−1/2ψ1/
√

ph
(

A′, g
�·(X,Fp |X )
t/p2

)
=
∫

X

[
Trs

3·(T ∗X)[QF
p,t/p2(x, x)

]z ∫
GC,r,x

χp
(
g−1)SF

p,t/p2,x (dg)

]
dvX (x)

=
∫

X

[∫
PGC,x

Trs
3·(T ∗X)[PF′

p,t/p2(u, u′)
]z
χp
(
u′−1u

)
dq
(
u′
)]

dvX (x). (6.28)

Set

3p,t = θ1/
√

p34t/p2θ√p. (6.29)

By (6.11), we obtain

θ1/
√

p LF
4t/p2θ

√
p = − t

p2

(
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗F ,u

2t/p,ei
− z

2
√

t
√

pĉ(ei )

)2

+3p,t . (6.30)

In what follows, we will systematically underline the elements of gr or Ugr . This

is because, as in § 1, the elements of Ugr , viewed as differential operators along the

fibres of Gr , will have to be distinguished from corresponding elements in Sgr , viewed

as differential operators with constant coefficients along the fibres of gr . In particular,

instead of (5.61), we use the notation

R = 1
4

〈
ei , RT X e j

〉̂
c(ei )̂c(e j )− θp,2. (6.31)

By (5.63), (6.29), we get

3p,t = t K X

4p2 +
t

2p
c(ei )c(e j )

R
p
(ei , e j )+ 1

2
f α f β

R
p

(
f H
α , f H

β

)
+
√

tc(ei )√
p

f α
R
p

(
ei , f H

α

)+ t

∣∣̂θ p
∣∣2

p2 +
√

t f α
ĉ(ei )

p1/2 ∇
T X⊗gr ,u
f H
α

θ̂ p(ei )

p

+ t
2p

ĉ(ei )̂c(e j )
θ̂ p,2(ei , e j )

p
+ t

p
c(ei )̂c(e j )∇T X⊗gr ,u

ei

θ̂ p

p
(e j )

+
√

t
p1/2 zc(ei )

θp

p
(ei )+ z f α

θp

p

(
f H
α

)
. (6.32)

Let x ∈ M , and let X be the fibre of π containing x . Along this fibre, we take a

local geodesic coordinate system centred at x ; i.e., for ε > 0 small enough, we identify

the open ball BTx X (0, ε) ⊂ Tx X with the open ball B X (x, ε) via the map Y ∈ Tx X →
expx (Y ) ∈ X . We trivialize fibrewise R[z] ⊗̂ 3·(T ∗S) ⊗̂ 3·(T ∗X) near x using parallel
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transport with respect to the fibrewise connection 1∇3·(T ∗S) ⊗̂ 3·(T ∗X)
2t/p − z

√
p

2
√

t
ĉ(·) along the

geodesics centred at x . Also, we trivialize PK fibrewise by parallel transport with respect

to the connection θk along these geodesics, so that

PK |B X (0,ε) ' BTx X (0, ε)× K , PG |B X (0,ε) ' BTx X (0, ε)×G. (6.33)

In (6.33), we can as well replace K ,G by U,GC. Under the identifications in (6.33),

Gr ' G, gr = g, Ugr ' Ug, (6.34)

and the left action of Gr on PG is just the left action of G on G. Also, in (6.34), gr is

identified with the right-invariant vector fields on G, and Ugr acts on G as right-invariant

differential operators.

For ε > 0 small enough, via the exponential map, we identify a neighbourhood of

0 in g with a neighbourhood of 1 in G. This identification extends to a holomorphic

identification of a neighbourhood BgC(0, ε) of 0 in gC with a neighbourhood BGC(0, ε)
of 1 in GC. Let O(BGC(0, ε)) be the vector space of complex holomorphic functions on

BgC(0, ε). Under the above identifications, the operator θ1/
√

p LF
4t/p2θ

√
p acts on

C∞(BTx X (0, ε),R[z] ⊗̂ 3·(T ∗S) ⊗̂ 3·(T ∗x X))⊗C O(BgC(0, ε)). (6.35)

Let Y, A denote the tautological sections of Tx X, gC. For s > 0, a > 0, set

Ks,a f (Y, A) = f (sY, a A). (6.36)

Put

MF
p,t = K√t/p,1/pθ1/

√
p LF

4t/p2θ
√

p K p/
√

t,p. (6.37)

We introduce another copy T̂x X of Tx X . If e ∈ Tx X , let ê denote the corresponding

element in T̂x X . Let e∗ ∈ T ∗X correspond to e by the metric of Tx X , and let ê∗ be the

corresponding element in T̂ ∗X .

We make a Getzler rescaling [31] on the Clifford variables c(ei ), ĉ(ei ). For e ∈ Tx X, s >
0, set

cs(e) = 1√
s

e∗ ∧−√sie, ĉs(e) = 1√
s

ê∗ ∧+√siê. (6.38)

This notation is compatible with that in § 1.8. We denote by NF
p,t the operator obtained

from MF
p,t by replacing the c(ei ), ĉ(ei ) by the ct/p(ei ), ĉ1/p(ei ).

Recall that σ(A2
t ) is given by (2.19). As explained in § 1.8, σ(A2

t ) is viewed as a

differential operator with constant coefficients acting along the fibre gr,x .

In what follows, tensors will be evaluated at x . Let 1T X be the fibrewise Laplacian

along T X . Set

NF∞,t = −1T X + σ (A2
t
)+ zθp. (6.39)

The ei , f α generate T ∗M , and will be considered as differential forms on M . We claim

that, as p→+∞, we have the convergence of differential operators on Tx X ,

NF
p,t → NF∞,t . (6.40)
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Equation (6.40) says that we have uniform convergence of the coefficients of the operators

as well as their derivatives of any order over compact subsets.

To establish (6.40), let us review the various terms in the right-hand side of (6.30).

The contribution of the first term in the right-hand side of (6.30) to the limit of NF
p,t

is just −1T X . Indeed, local index-theoretic techniques, which include the local families

index theorem, show that the connection 1∇3·(T ∗S) ⊗̂ 3·(T ∗X)
2t/p,· − z

√
p

2
√

t
ĉ(·) only contributes

trivially to the limit. So we concentrate on the contribution of θk. In this trivialization

by parallel transport with respect to θk, let 0k be the connection form for θk. Since the

curvature of θk is given by −θp,2, we have

0k
Y = − 1

2θ
p,2(Y, ·)+O

(|Y |2). (6.41)

For each index i , inside the square in the right-hand side of (6.30), the asymptotic

contribution of θk is given by

p
t

2p2O(Y ), (6.42)

the first factor p coming from the rescaling in the variable A. The expression in (6.42)

tends to 0 as p→+∞. The above establishes our claim on the contribution of the first

term in (6.30).

We claim that, as p→+∞, the contribution of 3p,t to the limit of NF
p,t is given

by σ(A2
t )+ zθp. This follows from arguments similar to the ones in the proof of

Proposition 1.4, from (2.19), and from (6.31), (6.32). This completes the proof of (6.40).

The operators in (6.40) act on functions which are holomorphic on gC. Therefore, it is

a priori not possible to deduce anything for the corresponding heat operators, because

the classical arguments we have in hand necessitates the convergence of operators acting

on smooth functions. However, in § 6.3, we defined lifts LF
t , LF′

t of LF
t . The arguments

we gave when proving (6.40) have a counterpart for the operators LF
t , LF′

t constructed

in § 6.3. From these operators, one can define operators MF
p,t ,MF′

p,t and N F
p,t , N F′

p,t as in

(6.37), (6.38).

We claim that the operators N F
p,t , N F′

p,t have asymptotics which are similar to the

asymptotics of NF
p,t in (6.40); i.e., there are differential operators N F∞,t , N F′∞,t with constant

coefficients on Tx X × gC such that, as p→+∞,

N F
p,t → N F∞,t , N F′

p,t → N F′∞,t . (6.43)

This is because the operators LF
t , LF′

t have exactly the same kind of homogeneity as the

operator LF
t itself. When restricting these operators to functions that are holomorphic

along gC, the operators N F∞,t , N F′∞,t coincide with NF∞,t . The operators N F∞,t , N F′∞,t can be

written in the form

N F∞,t = −1T X +KF, N F′∞,t = −1T X +KF′. (6.44)

Comparing with (6.39), we find that KF,KF′ are differential operators along the fibres of

PGC that are lifts of σ(A2
t )+ zθp, the operator KF′ being fibrewise elliptic.

We will now take the asymptotics as p→∞ in the right-hand side of (6.28).
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(1) We claim that, given x ∈ X , the computation of the asymptotics of any of the two

integrands at x can be made to be local near x, 1 ∈ GC,x . In § 6.3, we have equipped

u with an Ad(U )-invariant scalar product, gC = u⊕ iu with the corresponding scalar

product, and GC with the associated right-invariant metric. Let dGC be the distance

on GC. From the metrics of X and GC, and from the connection θk, we obtain a

Riemannian metric gTPGC on PGC , which is invariant under the right action of GC
on PGC . Let dPGC be the associated distance.

The fibre PGC is complete for this metric. Using finite propagation speed, we find

that, given α > 0,M > 0, for dPGC (u, u′) > α, 0 < t 6 M ,∣∣PF′
t (u, u′)

∣∣ 6 c exp
(−CdPGC ,2(u, u′)/t

)
. (6.45)

Recall that Fp = H (0,0)(N , L p) is equipped with a U -invariant Hermitian metric.

If A ∈ End(Fp), we denote by ‖A‖p the norm of A with respect to this Hermitian

product. By equation (3.17) in Theorem 3.1, and by proceeding as in (3.42), there

exists C ′ > 0 such that, if g ∈ GC, p ∈ N,

‖ρpg‖p 6 exp
(
C ′ pdGC(1, g)

)
, ‖ρpg−1‖p 6 exp

(
C ′ pdGC(1, g)

)
. (6.46)

Moreover, we have the trivial inequality

|χp(g)| 6 ‖ρpg‖p dim Fp. (6.47)

By (3.41), (6.46), and (6.47), there exist c′ > 0,C ′ > 0 such that, for g ∈ GC, p ∈ N,

|χp(g)| 6 c′ pn exp
(
C ′ pdGC(1, g)

)
,∣∣χp

(
g−1)∣∣ 6 c′ pn exp

(
C ′ pdGC(1, g)

)
.

(6.48)

Take x ∈ X, u ∈ PK ,x , u′ ∈ PGC,x , so that u′ = ug, g ∈ GC. Clearly,

dPGC (u, u′) 6 dGC(1, g). (6.49)

Let s ∈ [0, 1] → us ∈ PGC be a geodesic in PGC that connects u and u′. Let

s ∈ [0, 1] → u H
s ∈ PK be the corresponding horizontal curve with respect to the

connection θk such that u H
0 = u. Let s ∈ [0, 1] → gs ∈ GC be such that us = u H

s gs ,

and let ` be the length of this curve in GC. Then

dGC(1, g1) 6 ` 6 dPGC
(
u, u′

)
. (6.50)

Clearly, there is k ∈ K such that u H
1 = uk, and so

kg1 = g. (6.51)

Since the group K is compact, by (6.51), there is C > 0 such that

dGC(1, g) 6 dGC(1, g1)+C. (6.52)

By (6.50), (6.52), we conclude that

dGC(1, g) 6 dPGC
(
u, u′

)+C. (6.53)
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By (6.45), (6.48), and (6.53), for dPGC (u, u′) > α, 0 < t 6 M, p ∈ N∗,∣∣PF′
t/p2

(
u, u′

)
χp
(
u′−1u

)∣∣ 6 c exp
(−C ′ p2dPGC ,2(u, u′)

)
. (6.54)

By (6.54), we deduce that, given t > 0, as p→+∞,∣∣∣∣∫
X

[∫
u′∈PGC,x

d
PGC (u,u′)>α

Trs
3·(T ∗X)[PF′

t/p2(u, u′)
]
χp
(
u′−1u

)
dq
(
u′
)]

dvX (x)
∣∣∣∣→ 0. (6.55)

(2) We use the trivializations indicated after (6.32). The above arguments also indicate

that, to compute the asymptotics of (6.28) as p→+∞, near (x, 1) ∈ X ×GC, we

can replace X ×GC by Tx X × gC, and replace the operator LF′
t by an operator LF′

t
on Tx X × gC that is trivial outside a small ball centred at 0 in Tx X . We define the

operators MF′
p,t , N F′

p,t from LF′
t exactly as before.

Up to permutation, the monomial
∏m

i=1 c(ei )̂c(ei ) is the only one whose supertrace

is nonzero, and, moreover,

Trs
3·(T ∗X)

[ m∏
i=1

c(ei )̂c(ei )

]
= (−2)m . (6.56)

Let T̂rs be the functional on the algebra of operators generated by the

ei , iei , ê i , iêi , 1 6 i 6 m that vanishes on all monomials except, up to permutation,

on
∏m

i=1 ei ê i and is such that

T̂rs

[ m∏
i=1

ei ê i

]
= (−1)m . (6.57)

Let PF′
p,t (Y, (Y

′, A′)) be the smooth kernel associated with the operator exp(−N F′
p,t )

with respect to the volume dY ′d A′. Take α > 0 small enough. To compute

the asymptotics of (6.28) as p→+∞, we should compute at each x ∈ X the

asymptotics as p→+∞ of

2m
∫

A∈gC|A|6αp

T̂rs
[
PF′

p,t (0, (0, A))
]
(δ1/pχp)(−A)d A. (6.58)

Let PF′∞,t (0, (Y, A)) be the smooth kernel associated with the operator exp(−N F′∞,t ).
By (6.43), it is easy to deduce that, as p→+∞,

PF′
p,t (0, (Y, A))→ PF′∞,t (0, (Y, A)). (6.59)

Combining equation (3.35) in Theorem 3.6, (6.59), and dominated convergence, as

p→+∞,

2m p−n
∫

A∈gC|A|6αp

T̂rs
[
PF′

p,t (0, (0, A))(δ1/pχp)(−A)
]
d A

→ 2m
∫

A∈gC

T̂rs
[
PF′∞,t (0, (0, A))

]
R(−A)d A. (6.60)
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Using (6.28), (6.55), (6.58), and (6.60), as p→+∞,

p−n p−1/2ψ1/
√

ph
(

A′, g
�·(X,Fp |X )
4t/p2

)
→ 2m

∫
X

[∫
A∈gC

T̂rs
[
PF′∞,t (0, (0, A))

]z R(−A)d A
]

dvX . (6.61)

(3) Recall that KF′ was defined in (6.44). As we saw after (6.44), the elliptic operator

KF′ is a lift of σ(A2
t )+ zθp. Since the function R(A) is holomorphic in A, we have

the identity,∫
A∈gC

T̂rs
[
PF′∞,t (0, (0, A))R(−A)

]
d A = (4π)−m/2T̂rs

[
exp

(−σ (A2
t
)− zθp

)
R(0)

]
.

(6.62)

Observe here that, in spite of the fact that R(−A) appears in (6.61), we have not

made a corresponding change of signs in σ(A2
t )+ zθp. This is because, as we saw

in § 1.6, A ∈ gC,r acts like the vector field −AN , which accounts for (6.62).

By combining (1.28), (2.55), (6.57), (6.61), and (6.62), for t > 0, we get

p−n 1√
p
ψ1/
√

ph
(

A′, g
�·(X,Fp |X )
4t/p2

)
→ π∗ct . (6.63)

We will now refine (6.63) to obtain the more precise asymptotic expansion in the

first identity in (6.23). The fact that, for a given t > 0, there is an asymptotic

expansion as in (6.23) relies on standard arguments based on the corresponding

asymptotic expansion of the operators in (6.40). Also, the proof of equation (5.30)

in Theorem 5.11 that is given in [18, Theorem 3.16] uses two kinds of argument:

an argument of localization of the asymptotics near the diagonal in X × X , and a

rescaling of the Clifford variables c(e)→ ct (e). In the present context, where t is

replaced by t/p2, the c(e) should be replaced by ct/p2(e). Here, we replace c(e) by

the less singular ct/p(e), but we introduce an extra singularity when replacing ĉ(e)
by ĉ1/p(e). Still, the above arguments show easily that we have uniformity in the

convergence in (6.23) when t → 0, so that (6.23) holds uniformly for 0 < t 6 M .

By (2.68), (5.44), the second equation in (6.23) follows from the first equation.

Equation (6.24) follows from (6.23).

If θ̂ p is nondegenerate, by equation (4.19) in Theorem 4.4, by (5.63), and by equation

(5.67) in Theorem 5.22, using Kato’s comparison principle, for p ∈ N and t > α > 0,∣∣∣h(A′, g
�·(X,Fp |X )
t

)∣∣∣ 6 C exp
(−a

(
p2− c′

)
t
)

dim(Fp),∣∣∣h∧(A′, g
�·(X,Fp |X )
t

)∣∣∣ 6 C exp
(−a

(
p2− c′

)
t
)

dim(Fp).

(6.64)

By (3.41), (6.64), we get (6.25). The proof of our theorem is completed.
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Remark 6.6. In our proof of Theorem 6.5, we used the second equation in (6.22) instead of

the first one. However, the first equation would have done as well. Its apparent drawback

is that the operator LF
t is not elliptic in the directions of the fibres of PGC . However,

the fact that there is an integral in g ∈ GC,r in the right-hand side of (6.22) makes this

lack of ellipticity irrelevant. Equation (6.58) should be replaced by a weak convergence

of measures. Details are left to the reader.

Also, the reader will have noticed that, when taking the proper limit as p→+∞ of

equation (5.26), we would just recover equation (2.41), which gives the proper perspective

to Theorem 2.5.

6.6. Convergence results on a Galois cover of X

We assume that S is reduced to a point. Let 0 be a discrete group acting freely and

properly discontinuously on a manifold X̂ , so that X = 0\X̂ . Let π̂ : X̂ → X be the

obvious projection. The metric gT X lifts to a 0-invariant metric gT X̂ on T X̂ .

Let H be a Hermitian vector bundle on X . Let Q be the vector space of continuous

kernels Q(z, z′) acting on Cb(X̂ , π̂∗H) that commute with 0, and such that there exist

c > 0,C > 0 such that ∣∣Q(z, z′)
∣∣ 6 C exp

(−cd2(z, z′
))
. (6.65)

One verifies easily that Q is an algebra. Also, Tr [Q (z, z)] is a 0-invariant function, so

that it descends to a continuous function on X . Set

Tr0[Q] =
∫

X
Tr[Q(x, x)]dvX . (6.66)

One then verifies easily that Tr0 is a trace on Q; i.e., it vanishes on commutators. Using

finite propagation speed for the wave equation, one can derive the well-known fact that

heat kernels on X̂ lie in the algebra Q.

We will now apply the formalism of the previous sections, still assuming S to be

a point. For t > 0, we define h∧,0(A′, g�
·(X̂ ,π̂∗F |X )

t ) ∈ R by the same formula as in

(5.35), by replacing the supertrace in the right-hand side of (5.35) by the corresponding

0-supertrace Trs
0.

We claim that the results of Theorem 6.5 are valid for h∧,0(A′, g
�·(X̂ ,π̂∗Fp |X̂ )
t ). The key

point is that, as observed in Remark 4.5, if θ̂ p is nondegenerate, the spectral estimate

(4.19) is still valid over X̂ . Therefore, if θ̂ p is nondegenerate, for p ∈ N large enough, we
can still define the 0-torsion T 0

h (g
T X , Fp, gFp ) ∈ R by a formula similar to (5.45).

Taking into account the fact that S is reduced to a point, we claim that the obvious

analogue of Theorem 6.5 holds for h∧,0(A′, g
�·(X̂ ,π̂∗Fp |X̂ )
t ). In particular, if π∗dt ∈ R still

refers to the object considered in § 2 that is associated with X , as p→+∞,

h∧,0
(

A′, g
�·(X̂ ,π̂∗Fp |X̂ )
t/p2

)
= pn+1π∗dt/4+O

(
pn). (6.67)

Also, the estimates in (6.23)–(6.25) still hold. The proof of the above is strictly similar

to the proof of Theorem 6.5.

Given a nontrivial conjugacy class [γ ] in 0, one can instead define an associated

h∧,0,[γ ](A′, g
�·(X̂ ,π̂∗Fp |X̂ )
t/p2 ). One verifies easily that, given t > 0, there exist C > 0, c > 0
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such that, as p→+∞,∣∣∣h∧,0,[γ ](A′, g
�·(X̂ ,π̂∗Fp |X̂ )
t/p2

)∣∣∣ 6 C exp(−cp2), (6.68)

and, moreover, that the analogues of (6.23)–(6.25) still hold.

Some of the above results will be reobtained in § 8 in the context of locally symmetric

spaces.

7. The asymptotics of the analytic torsion forms

In this section, when θ̂ p is nondegenerate, we obtain the asymptotics as p→+∞ of the

analytic torsion forms Th(T H M, gT X ,∇Fp , gFp ) in terms of the form W that was defined

in § 2.

This section is organized as follows. In § 7.1, we state our main result, the proof of

which is divided into two key steps, involving large and small values of the parameter

t > 0.

In § 7.2, we obtain the estimate involving large values of t .
In § 7.3, we prove the estimate involving small values of t .
In § 7.4, we verify the compatibility of our asymptotic formula to known results on the

forms W and Th(T H M, gT X ,∇Fp , gFp ).

In § 7.5, we derive rigidity results on the class of forms π∗W that are consequences of

our asymptotic formula.

Finally, in § 7.6, we obtain the asymptotics of the 0-torsion of a Galois covering X̂ of X .

7.1. The main result

We make the same assumptions as in § 6. Also, we assume θ̂ p to be nondegenerate in the

sense of Definition 1.13. Recall that the form W was defined in Definition 2.11.

Theorem 7.1. As p→+∞,

p−n−1ψ1/
√

pTh
(
T H M, gT X ,∇Fp , gFp

) = π∗W +O
(

p−1). (7.1)

Proof. For simplicity, we assume S to be compact. By Theorem 4.4, for p large enough,

the complexes (�·(X, Fp|X ), d X ) are exact. By (5.45), for p large enough,

Th
(
T H M, gT X ,∇Fp , gFp

) = − ∫ +∞
0

h∧
(

A′, g
�·(X,Fp |X )
t

)dt
t
. (7.2)

We rewrite (7.2) in the form

Th
(
T H M, gT X ,∇Fp , gFp

) = − ∫ p

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t

−
∫ +∞

1/p
h∧
(

A′, g
�·(X,Fp |X )
t

)dt
t
. (7.3)
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In the remainder of the section, we will show that there exists c > 0 such that, as

p→+∞,

−
∫ +∞

1/p
h∧
(

A′, g
�·(X,Fp |X )
t

)dt
t
= O(e−cp),

−p−n−1ψ1/
√

p

∫ p

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
= π∗W +O

(
p−1), (7.4)

from which (7.1) follows.

7.2. A proof of the first equation in (7.4)

As in § 4.3, we denote by DX
p the operator DX acting on �·(X, Fp|X ). Let λp > 0 be the

lowest eigenvalue of DX,2
p . Take α > 0. For t > α, we get

Tr
[
exp

(−t DX,2
p
)]
6 exp(−λp(t −α))Tr

[
exp

(−αDX,2
p
)]
. (7.5)

By equation (4.19) in Theorem 4.4, there exist c > 0,C > 0 such that

λp > cp2−C. (7.6)

Taking α = 1/4p in (7.5), and using (7.6), for p ∈ N large enough, and for t > 1/p, we

get

Tr
[
exp

(−t DX,2
p
)]
6 C exp(−c(p+ t))Tr

[
exp

(−DX,2
p /4p

)]
. (7.7)

By (4.13), (4.18), and using Kato’s comparison principle, we get

Tr
[
exp

(−DX,2
p /4p

)]
6 Cpm/2(dim Fp) exp(−cp). (7.8)

By (3.41), (7.8), we obtain

Tr
[
exp

(−DX,2
p /4p

)]
6 Cpm/2+n exp(−cp). (7.9)

By (7.7), (7.9), there exist C > 0, c > 0 such that, for p ∈ N large enough, and for t > 1/p,

Tr
[
exp

(−t DX,2
p
)]
6 C exp(−c(p+ t)). (7.10)

By (5.35), there exist C > 0, k ∈ N such that∣∣∣h∧(A′, g
�·(X,Fp |X )
t

)∣∣∣ 6 C(1+ t−k)Tr
[
exp

(−t DX,2
p /8

)]
. (7.11)

By (7.10), (7.11), there exist C > 0, c > 0 such that, for p ∈ N large enough, and for

t > 1/p, ∣∣∣h∧(A′, g
�·(X,Fp |X )
t

)∣∣∣ 6 C exp(−cp− ct). (7.12)

By (7.12), we get the first equation in (7.4).
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7.3. A proof of the second equation in (7.4)

Note that ∫ p

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
=
∫ 1

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t

+
∫ p

1
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
. (7.13)

By equation (6.23) in Theorem 6.5, as p→+∞,

p−n−1ψ1/
√

p

∫ 1

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
=
∫ 1

0
π∗dt/4

dt
t
+O

(
p−1). (7.14)

To handle the second term in the right-hand side of (7.13), we still use (6.23), combined

with the fact to be proved that there exist c > 0,C > 0 such that, for p ∈ N large enough,

and 1 6 t 6 p, ∣∣∣p−n−1ψ1/
√

ph∧
(

A′, g
�·(X,Fp |X )
t/p2

)∣∣∣ 6 C exp(−ct). (7.15)

It follows that, as p→+∞,

p−n−1ψ1/
√

p

∫ p

1
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
→
∫ +∞

1
π∗dt/4

dt
t
. (7.16)

By (2.75), (7.13), (7.14), and (7.16), we find that, as p→+∞,

−p−n−1ψ1/
√

p

∫ p

0
h∧
(

A′, g
�·(X,Fp |X )
t/p2

)dt
t
→ π∗W, (7.17)

which is part of the second equation in (7.4).

So we concentrate on the proof of (7.15). By proceeding as in (5.44) and in the proof

of Theorem 6.5, it is enough to show that, for p ∈ N large enough, for 1 6 t 6 p,∣∣∣ 1√
p

p−nψ1/
√

ph
(

A′, g
�·(X,Fp |X )
t/p2

)∣∣∣ 6 C exp(−ct). (7.18)

Here, we will use equation (5.67). Set

L Fp = L
Fp
1 . (7.19)

By (5.23), (5.62), and (5.66), we get

L
Fp
t = θ1/

√
t t L Fpθ√t . (7.20)

By (4.18), there exists a > 0 such that, for p ∈ N large enough,

ρp2 > 2ap2. (7.21)

Set

L
Fp ′
t = L

Fp
t −

ap2t
4
, L Fp ′ = L Fp − ap2

4
. (7.22)
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Let ε ∈ ]0, 1] be a lower bound for half of the injectivity radius of the fibres X . Let

ψ(u) : R+→ [0, 1] be a smooth decreasing function that is equal to 1 for |u| 6 ε/2 and

to 0 for |u| > ε. Set

Ft (x) =
∫ +∞
−∞

cos(ux)ψ
(√

t |u|) exp
(−u2/4

) du√
4π
,

G t (x) =
∫ +∞
−∞

cos(ux)
(
1−ψ(√t |u|)) exp

(−u2/4
) du√

4π
.

(7.23)

Then

exp
(−x2) = Ft (x)+G t (x). (7.24)

Note that Ft (x),G t (x) are even holomorphic functions. Therefore there exist holomorphic

functions F̃t (x), G̃ t (x) such that

Ft (x) = F̃t
(
x2), G t (x) = G̃ t

(
x2). (7.25)

By (7.24), (7.25), we get

exp(−x) = F̃t (x)+ G̃ t (x). (7.26)

The restrictions of Ft ,G t to R lie in the Schwartz space S(R). Therefore the same is true

for the restrictions of F̃t , G̃ t to R.

By (7.22), (7.26), we get

exp
(−L

Fp
t
) = e−ap2t/4(F̃t

(
L

Fp ′
t
)+ G̃ t

(
L

Fp ′
t
))
. (7.27)

Proposition 7.2. There exist C > 0, c > 0 such that, for p ∈ N, 0 < t 6 1,∣∣p−nTrs
[
G̃ t
(
L

Fp ′
t
)]∣∣ 6 C exp(−c/t). (7.28)

Proof. Set

Ht (x) =
∫ +∞
−∞

cos(ux)(1−ψ(|u|)) exp
(−u2/4t

) du√
4π t

. (7.29)

Then

G t (x) = Ht
(
x/
√

t
)
. (7.30)

By proceeding as in [17, equation (13.23)], given d > 0, k ∈ N, there exist c > 0,C > 0
such that

sup
x∈C|Im(x)|6d

|x |k |Ht (x)| 6 C exp(−c/t). (7.31)

Finally, there exists a holomorphic function H̃t (x) such that

Ht (x) = H̃t
(
x2). (7.32)

By (7.25), (7.30), and (7.32), we get

G̃ t (x) = H̃t (x/t). (7.33)

https://doi.org/10.1017/S1474748015000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000171


Asymptotic torsion and Toeplitz operators 295

By (7.20), (7.22), and (7.33), we obtain

G̃ t
(
L

Fp ′
t
) = θ1/

√
t H̃t

(
L Fp ′)θ√t . (7.34)

By proceeding as in [9, Proof of Theorem 11.3], one can show that there exist c >
0,C > 0 such that, for p ∈ N, t ∈ ]0, 1],∣∣Trs

[
H̃t
(
L Fp ′)]∣∣ 6 Cpn exp(−c/t). (7.35)

To prove (7.35), let us first assume that S is reduced to a point, so that the part of L Fp

not containing z is self-adjoint. By (7.21), for p ∈ N large enough, we get

ρp2− ap2 > ap2. (7.36)

This estimate is strong enough to control the piece of L Fp ′ containing z. Let 1X be the

Laplace–Beltrami operator. By Kato’s comparison principle, for p ∈ N large enough, we

get ∣∣Trs
[
H̃t
(
L Fp ′)]∣∣ 6 C(dim Fp)Tr

[
H̃t
(−1X/4

)]
. (7.37)

By (7.31), for 0 < t 6 1,

Tr
[
H̃t
(−1X/4

)]
6 c exp(−C/t). (7.38)

By (3.41), (7.38), we get (7.35) when S is reduced to a point. In the general case, Kato’s

comparison principle is no longer available because L Fp is not self-adjoint. However,

uniform estimates for the resolvent of L
Fp
t can be obtained that are similar to the ones in

[9, Chapter 9]. These estimates still use (7.36), combined with the fact that, in equations

(5.63), (5.67), the size of the terms of nonzero degree in 3·(T ∗S) is dominated by Cp.

These estimates still give (7.35).

By (7.34), (7.35), we get (7.28). The proof of our proposition is completed.

By (7.28), for p ∈ N, 1 6 t 6 p,∣∣p−nθ1/
√

pTrs
[
G̃ t/p2

(
L

Fp ′
t/p2

)]∣∣ 6 C exp
(−cp2/t

)
6 C exp

(− 1
2 c(t + p)

)
. (7.39)

By (7.27), (7.39), to establish (7.18), we are left to prove that, for 1 6 t 6 p,∣∣p−nθ1/
√

pTrs
[
F̃t/p2

(
L

Fp ′
t/p2

)]∣∣ 6 C. (7.40)

Using finite propagation speed for hyperbolic equations, [27, §7.8], [46, §4.4], for x ∈ X ,

the support of the smooth kernel F̃t/p2(L
Fp ′
t/p2) is included in the open ball B X (0, ε/2).

Therefore, the proof of (7.40) can be localized. Now, we proceed as in the proof of

Theorem 6.5. There, the proof was based on a choice of local coordinates near x ∈ X .

The support condition given before shows that we can safely replace X by Tx X , while

extending the operator L
Fp ′
t/p2 outside the ball BTx X (0, ε/2) to the full Tx X , so that it has

essentially the same structure as L
Fp ′
t/p2 .

We consider equations (5.63), (5.67) for L
Fp

t/p2 . In 3t/p2 , the component of degree 0 in

R[z] ⊗̂ 3·(T ∗S) is just t
4p22. By (7.21), for p ∈ N large enough,

ρp2

p2 − a has a positive

lower bound.
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We will now proceed as in the proof of Theorem 6.5, doing the rescaling on the

coordinate Y near x and also the same Getzler rescaling on the Clifford variables, while

not performing any rescaling on the coordinates in GC. Equivalently, we still treat Fp as

an ordinary flat Hermitian vector bundle. By equation (3.17) in Theorem 3.1, proceeding

as in the proof of (4.21), if A ∈ gC, we get

1
p

∥∥L A|H (0,0)(N ,L p)

∥∥ 6 C |A|. (7.41)

While, in the proof of Theorem 4.4, the estimate in (7.41) was enough to obtain the

spectral gap in (4.18), (4.19), here, the rescaling on the Getzler variables makes certain

terms bigger. As an example, after the Getzler rescaling, the leading term as p→+∞
in t

p ĉ1/p(ei )̂c1/p(e j ) is given by t ê i ∧ ê j , which is a nilpotent operator, whose size for

1 6 t 6 p is not uniformly controlled. To take advantage of the uniform positivity of
ρp2

p2 − a, as in [17, §11(k)], we introduce a systems of Hilbert norms with weights. Namely,

for λ > 0 small enough, s ∈ C∞(Tx X,3·(T ∗x X)⊗ Fp,x ), set

|s|2λ =
∣∣λ2N3·(T∗X)

s
∣∣2
L2
. (7.42)

With respect to the norm | |λ, if f ∈ T ∗X , the norm of the operator f∧ is now λ| f |.
Of course the contribution of operators like ie is increased by the factor 1/λ, but such

operators always have an extra factor like 1/
√

p which makes them small in the end.

Ultimately, when picking up the proper λ > 0, for t > 1, we get a positive lower bound

for the spectrum of the rescaled version of θ1/
√

p L
Fp ′
t/p2θ

√
p.

Using a contour integral formula then leads easily to a proof of (7.40). This completes

the proof of equation (7.15).

We claim that we can now establish the full second equation in (7.4), which requires

refining (7.16) to∫ p

1
p−n−1ψ1/

√
ph∧

(
A′, g

�·(X,Fp |X )
t/p2

)dt
t
=
∫ +∞

1
π∗dt/4

dt
t
+O

(
p−1). (7.43)

We still use equation (7.27). By (7.39), as p→+∞,∫ p

1
p−ne−at/4θ1/

√
pTrs

[
G̃ t/p2

(
L

Fp ′
t/p2

)]dt
t
= O(e−cp). (7.44)

Using previous arguments, given t > 1, as p→+∞, p−nθ1/
√

pTrs[H̃t/p2(L
Fp ′
t/p2)] has an

asymptotic expansion that is uniform when t > 1 remains bounded. By proceeding as in

the proof of Theorem 6.5, for p ∈ N∗, 1 6 t 6 p, over compact subsets of S,∣∣∣∣p−n 1√
p
ψ1/
√

pTrs
[
F̃t/p2

(
L

Fp ′
t/p2

)]z − eat/4π∗ct/4

∣∣∣∣ 6 C
t
p
. (7.45)
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By (7.45), over compact subsets of S, we get∣∣∣∣∫ p

1

(
e−at/4 p−n 1√

p
ψ1/
√

pTrs
[
F̃t/p2

(
L

Fp ′
t/p2

)]z −π∗ct/4

)
dt
t

∣∣∣∣
6 Cp−1

∫ +∞
1

e−at/4dt. (7.46)

By (7.27), (7.39), and (7.46), we get∣∣∣∣∫ p

1

(
p−n 1√

p
h
(

A′, g�(X,Fp |X ))− p∗ct/4

)
dt
t

∣∣∣∣ 6 C
p
. (7.47)

By proceeding as in (5.44) and in the proof of Theorem 6.5, from (7.47), we get (7.43).

This completes the proof of Theorem 7.1.

Remark 7.3. Let (F ′,∇F ′ , gF ′) be a flat Hermitian vector bundle on M . One verifies

easily that, if we replace Fp by F ′p = Fp ⊗ F ′ in the left-hand side of (7.1), then the

right-hand side of (7.1) should be multiplied by dim F ′. Similarly, if L ′ is a holomorphic

vector bundle on N to which the action of G also lifts, we could as well deal with L p ⊗ L ′,
the only effect being to multiply the right-hand side of (7.1) by dim L ′.

7.4. Compatibility of Theorem 7.1 to known results

We will check the compatibility of Theorem 7.1 to known results on analytic torsion

forms.

By equation (5.46) in Theorem 5.16, we know that, for p ∈ N large enough,

dTh
(
T H M, gT X ,∇Fp , gFp

) = π∗[e(T X,∇T X )h(∇Fp , gFp
)]
. (7.48)

By equation (6.1) in Proposition 6.1, and by equation (7.1) in Theorem 7.1, when taking

the asymptotics of (7.48) as p→+∞, we recover equation (2.77) in Theorem 2.12.

Moreover, by Ma [33, Theorem 0.1], Th(T H M, gT X ,∇Fp , gFp ) satisfies natural

compatibility relations under compositions of proper submersions. The form π∗W in

(7.1) should verify corresponding compatibility relations. These relations were proved

directly in Theorems 2.14 and 2.16.

7.5. Rigidity of the class of π∗W
As we saw in Remark 2.13, if θ̂ p is nondegenerate, the infinitesimal variation on π∗W in

�
·
(S)/d�·−1(S) can be explicitly calculated. We will now obtain a corresponding global

result.

Let h, h′ ∈ S. The class γ̃ (h, h′) on M was defined in Remark 2.8.

We assume that h, h′ are such that the corresponding θ̂ p, θ̂p′ are both nondegenerate.

We denote with a ′ the objects considered above that are attached to T H M, gT X , h′.

Theorem 7.4. The following identity holds:

π∗(W ′−W ) = π∗
[
e
(
T X,∇T X )γ̃ (h, h′

)]
in �·(S)/d�·−1(S). (7.49)

If dim X is odd, then

π∗W = π∗W ′ in H ·(S,R). (7.50)
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Proof. To establish (7.49), we use Theorems 5.17 and 7.1, together with the fact that,

by Proposition 6.1, as p→+∞,

p−n−1ψ1/
√

p h̃
(∇Fp , gFp , gFp ′) = γ̃ (h, h′

)+O
(

p−1). (7.51)

When dim X is odd, (7.49) reduces to (7.50). The proof of our theorem is completed.

Remark 7.5. In general, one cannot interpolate between h and h′ by a family ` ∈ [0, 1] →
h` ∈ S such that the corresponding θ̂

p
` are nondegenerate. If this is the case, then

Theorem 7.4 is trivial. We do not know how to prove this result in general without

using Theorem 7.1.

By Theorems 2.12 and 7.4, if dim X is odd, the form π∗W is closed, and its cohomology

class does not depend on the metric data T H M, gT X , h as long as θ̂ p is nondegenerate.

Let ` ∈ [0, 1] → f` ∈ F be a family of flat connections on PG . Let ` ∈ [0, 1] → θ
g
`

denote the corresponding family of flat connection forms on PG . Recall that the associated

class of forms γ̃ on M was defined in Remark 2.18. We assume that, for ` ∈ [0, 1], θ̂p` is

nondegenerate. Let ` ∈ [0, 1] → W` be the associated family of forms on M .

Theorem 7.6. The following identity holds:

π∗(W1−W0)
(>2) = π∗

[
e
(
T X,∇T X )γ̃ (>2)] in �·(S)/d�·−1(S). (7.52)

If dim X is odd, then

π∗W (>2)
1 = π∗W (>2)

0 in H ·(S,R). (7.53)

Proof. We use the notation of Remark 5.3. From the explicit formulae in [15, Definition

2.4 and Theorem 2.5], and proceeding as in the proof of Proposition 6.1, one finds easily

that, as p→+∞,

p−n−1ψ1/
√

p h̃
(∇Fp

` , gFp
) = γ̃ +O

(
p−1). (7.54)

By Theorems 5.19 and 7.1, and using (7.54), we get (7.52) and (7.53).

7.6. The asymptotics of the 0-torsion

We make the same assumptions as in § 6.6, and we use the corresponding notation. In

particular, S is reduced to a point. We assume that θ̂ p is nondegenerate. For p ∈ N large

enough, the 0-torsion T 0
h (g

T X ,∇Fp , gFp ) ∈ R is well defined.

We still define the form W on X as in Definition 2.11. Since S is a point, π∗W ∈ R.

Theorem 7.7. As p→+∞,

p−n−1T 0
h
(
gT X ,∇Fp , gFp

) = π∗W +O
(

p−1). (7.55)

Proof. The proof is essentially the same as the proof of Theorem 7.1. However, the

arguments in the proof of (7.5)–(7.8) have to be adequately modified. If z, z′ ∈ X̂ , A ∈
Hom(π̂∗(3·(T ∗X)⊗R π̂

∗Fp)z, π̂
∗(3·(T ∗X)⊗R π̂

∗Fp)z′), set

|A| = Tr[A∗A]1/2. (7.56)
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For z ∈ X̂ , we equip the vector space

L2
(
X̂ ,Hom

(
π̂∗
(
3·(T ∗X)⊗R π̂

∗Fp
)

z, π̂
∗(3·(T ∗X)⊗R π̂

∗Fp
)
·
))

with the corresponding L2 norm. Let Pp,t (z, z′) be the smooth kernel associated with

exp(−t D X̂ ,2
p ). Then

Tr[Pp,t (z, z)] = ‖Pp,t/2(z, ·)‖2L2
. (7.57)

We can rewrite (7.57) in the form

Tr[Pp,t (z, z)] = ∥∥exp
(−t D X̂ ,2

p /2
)
δz
∥∥2

L2
. (7.58)

By (7.58), Tr[Pp,t (z, z)] decreases with t . By Theorem 4.4 and Remark 4.5, we get an

analogue of (7.5), (7.6); i.e., given α > 0, for t > α,

Tr0
[
exp

(−t D X̂ ,2
p
)]
6 exp

(−(cp2−C
)
(t −α))Tr0

[
exp

(−αD X̂ ,2
p
)]
. (7.59)

The proof continues as the proof of Theorem 7.1.

Remark 7.8. Inspection of the proofs of Theorems 6.5, 7.1, and 7.7 shows easily that

there is c > 0 such that, as p→+∞,

Th
(
gT X ,∇Fp , gFp

)− T 0
h
(
gT X ,∇Fp , gFp

) = O(e−cp). (7.60)

8. Asymptotic torsion and orbital integrals

The purpose of this section is to demonstrate the compatibility of the results of the

previous sections to the evaluation of semisimple elliptic orbital integrals in [11]. More

precisely, if G is a connected reductive group and K is a maximal compact subgroup,

we take X to be the symmetric space G/K or a compact quotient 0 \G/K by a discrete

torsion-free cocompact subgroup 0 ⊂ G, and S to be a point. In this case π∗W can be

evaluated more explicitly. Moreover, the asymptotics of the orbital integrals are evaluated

explicitly so as to recover certain results of § 6. Also, conditions are given so that θ̂ p is

nondegenerate.

This section is organized as follows. In § 8.1, the symmetric space X = G/K is

considered.

In § 8.2, we introduce the Casimir operator on G.

In § 8.3, the case where G = KC is briefly considered.

In § 8.4, a formula for DX,2 is given in terms of the Casimir operator.

In § 8.5, using the results of [11], certain orbital integrals associated with exp(−t DX,2/2)
are evaluated. The integrand of the Ray–Singer analytic torsion of locally symmetric

spaces that are associated with our flat bundles F is still shown to vanish, except for

the restricted list found by Moscovici and Stanton [40], [11, Remark 7.9.2], who had

considered the case where F is unitarily flat.

In § 8.6, the forms dt are shown to vanish for the symmetric spaces not included in the

list of [40].

In § 8.7, π∗W ∈ R is computed in the case where G = SL2(C), and results of Müller

[43] are recovered in the case where G = SL2(C).
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In § 8.8, if λ is a weight for U , and if N = Nλ is the corresponding coadjoint orbit of

U , necessary and sufficient conditions on λ are given under which θ̂ p is nondegenerate.

Finally, in § 8.9, we obtain the asymptotics as p→+∞ of certain orbital integrals

associated with the heat kernel of DX,2. Of special relevance is the integrand of the

classical Ray–Singer analytic torsion. The forms dt , et that were defined in Definition 2.9

are used to express the asymptotics.

8.1. Reductive groups and symmetric spaces

We use the notation of § 1.1. Set

m = dim p, m′ = dim k. (8.1)

Let θg be the canonical left-invariant 1-form on G with values in g, and let θp, θk be

its components in p, k, so that

θg = θp+ θk. (8.2)

Let X = G/K be the associated symmetric space. Then p : G → X = G/K is a

K -principal bundle, equipped with the connection form θk. As in (1.38), (1.39), the

curvature 2k of this connection is given by

2k = − 1
2

[
θp, θp

] = −θp,2. (8.3)

Let e1, . . . , em be a basis of p, and let e1, . . . , em be the corresponding dual basis of p∗.
We can rewrite (8.3) in the form

2k = −1
2

∑
16i, j6m

ei ∧ e j ⊗[ei , e j ]. (8.4)

We use the notation of § 1.6. Making M = X, PG = G, the assumptions of § 1.6 are

verified. Indeed, θg defines a flat connection on PG . Also, G×G G/K = X has a canonical

tautological section over X . Equivalently, the reduction of the principal bundle p : G → X
to a K -bundle is given tautologically. We can then apply to the present situation the

arguments and results of the previous sections.

If E is a finite-dimensional real Euclidean vector space, and if ρE : K → Aut(E) is a

representation of K by isometries of E , then F = G×K E is an Euclidean vector bundle

on X , which is naturally equipped with an Euclidean connection ∇F . Also, we may as

well assume that E is a complex Hermitian vector space, and that F is a Hermitian

vector bundle equipped with a unitary connection.

If the representation ρE is induced by a representation G → Aut(E) that is still denoted

ρE , the map (g, v) ∈ G×K E → ρE (g) v ∈ E gives the canonical identification

G×K E = X × E . (8.5)

In this case, the vector bundle F is also equipped with a canonical flat connection ∇F, f ,

and moreover,

∇F, f = ∇F + ρEθp. (8.6)

As in (4.3),

ω
(∇F, f , gF) = −2ρEθp. (8.7)
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Note the change of notation with respect to the previous sections, since ∇F ,∇F,u have

become ∇F, f ,∇F .

If ρE : U → Aut(E) is a complex representation of U , there is a Hermitian metric gE on

E that is such that the representation is unitary. As we saw in § 1.1, ρE extends uniquely

to a representation of G, so that we are in the situation we considered above.

Observe that G acts on g by the adjoint representation. The tangent bundle T X is

given by

T X = G×K p. (8.8)

Put

N = G×K k. (8.9)

Then

T X ⊕ N = G×K g. (8.10)

By the above, T X, N are equipped with Euclidean connections ∇T X ,∇N . Also, the

connection ∇T X is the Levi-Civita connection of T X . Moreover, T X ⊕ N is canonically

flat, and it can be identified with the trivial vector bundle g. Comparing with (1.33),

(1.36), we get

T X ⊕ N = gr , T X = pr , N = kr . (8.11)

By (8.6), we get

∇T X⊕N , f = ∇T X⊕N + ad(θp). (8.12)

By (8.12), we get

ω
(∇T X⊕N , f , gT X⊕N ) = −2ad(θp). (8.13)

Let RT X be the curvature of ∇T X . If a, b, c ∈ T X , then

RT X (a, b)c = −[[a, b], c]. (8.14)

Note that θp can be identified with the identity section of T ∗X ⊗ T X . Therefore, if

U ∈ T X ,

∇T X⊗gr ,u
U θp = 0. (8.15)

8.2. The Casimir operator of G

Let Cg ∈ Ug be the Casimir of g. If e1, . . . , em is an orthonormal basis of p, and

em+1, . . . , em+m′ is an orthonormal basis of k, then

Cg = −
m∑

i=1

e2
i +

m+m′∑
i=m+1

e2
i . (8.16)

Set

Cg,H = −
m∑

i=1

e2
i , Ck =

m+m′∑
i=m+1

e2
i , (8.17)

so that

Cg = Cg,H +Ck. (8.18)
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As the notation indicates, Ck is the Casimir of k that is associated with B|k. By [11,

equation (2.5.7)], [
Cg,H ,Ck

] = 0. (8.19)

Let E be a complex vector space, and let ρE be a representation of G in Aut(E).
Let Cg,E ∈ End(E) be the Casimir of g which is associated with the representation ρE .

Namely,

Cg,E = ρE Cg. (8.20)

Set

Cg,H,E = ρE Cg,H , Ck,E = ρE Ck. (8.21)

Then

Cg,E = Cg,H,E +Ck,E . (8.22)

8.3. The complexification of compact Lie groups

In this subsection, we assume that G is the complexification KC of the compact connected

Lie group K . The Lie algebra g of G is given by

g = ik⊕ k, (8.23)

so that, with respect to the notation in (1.1),

p = ik. (8.24)

If 〈 〉 is a K -invariant scalar product on k, then −〈 〉 extends to a real symmetric bilinear

form B on g which has the properties indicated in § 1.1. In what follows, we identify i
with the obvious complex structure of g, which exchanges p and k.

Let κk ∈ 33(k∗) be such that, if a, b, c ∈ k,

κk(a, b, c) = B([a, b], c) = −〈[a, b], c〉. (8.25)

Then κk is Ad-invariant. It induces a closed left- and right-invariant 3-form on K .

Let κp ∈ 33(p∗) be such that, if a, b, c ∈ p,

κp(a, b, c) = −κk(ia, ib, ic). (8.26)

By (8.25), (8.26), we get

κp(a, b, c) = B([a, b], ic). (8.27)

Then κp is K -invariant.

Proposition 8.1. The form κp descends to a closed 3-form on X which is parallel with

respect to ∇T X .

Proof. Since κk is K -invariant, it descends to a 3-form on X which is parallel with respect

to ∇T X . Therefore it is also a closed form.
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Observe that ad(iθp) acts as an antisymmetric endomorphism of p into itself. Moreover,

ad(iθp)2 = −ad(θp)2. (8.28)

Equation (8.14) can be written in the form

RT X = ad(iθp)2. (8.29)

By (8.15), if U ∈ T X ,

∇T X
U ad(iθp) = 0. (8.30)

Proposition 8.2. The Pontryagin forms of (T X,∇T X ) are concentrated in degree 0. Also,

e
(
T X,∇T X ) = 0. (8.31)

Proof. We use equation (8.29), together with the fact that ad(iθp) acts as an

antisymmetric endomorphism of T X into itself. By proceeding as in [18, proof of

Proposition 1.3], our proposition follows.

Remark 8.3. Here is another proof of Proposition 8.2. First, we consider the Chern

character form. By [11, Proposition 7.1.1],

ch
(
T X,∇T X )+ ch

(
N ,∇N ) = 2m′. (8.32)

On the other hand, i : T X → N is a parallel morphism. Therefore,

ch
(
T X,∇T X ) = ch

(
N ,∇N ). (8.33)

By (8.32), (8.33), we get

ch
(
T X,∇T X ) = m′. (8.34)

The same argument can be used for the other Pontryagin classes. Let us now consider

the case of the Euler class. Recall that 2k is given by (8.4). Set

2̂k = −1
2

∑
16i, j6m

ê i ∧ ê j ⊗[ei , e j ]. (8.35)

Then
1
2

∑
16i, j6m

〈
ei , RT X e j

〉̂
e i ê j = −〈2k, 2̂k

〉
. (8.36)

In (8.36), the scalar product is taken of the k components of 2, 2̂.

Let κ̂p be the obvious analogue of κp. By (8.27), (8.36), we get

1
2

∑
16i, j6m

〈
ei , RT X e j

〉̂
e i ∧ ê j = −ii2k κ̂

p. (8.37)

By (1.44), (8.37), we get

e
(
T X,∇T X ) = ∫ B̂

exp
(

1
2

ii2k κ̂
p

)
. (8.38)

Since the exponential in (8.38) can never be of top degree in 3·(T̂ ∗X), we get (8.31).
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8.4. The Weitzenböck formula on X

We assume again that G is an arbitrary connected reductive group. Let E be a complex

Hermitian vector space, and let ρE : U → Aut(E) be a unitary representation of U . As

we saw in § 8.1, E descends to a vector bundle F equipped with a flat connection ∇F, f

and with a unitary connection ∇F .

By (4.11), (8.15), we get

DX,2 = −1X,u + K X

4
− 1

8

〈
RT X (ei , e j )ek, e`

〉
c(ei )c(e j )̂c(ek )̂c(e`)

+ ρE ∣∣θp∣∣2− 1
2

(
c(ei )c(e j )− ĉ(ei )̂c(e j )

)
ρEθp,2(ei , e j ). (8.39)

The tensors that follow −1X,u in (8.39) are parallel with respect to ∇3·(T ∗X)⊗R F .

By [11, equation (2.6.8)], or by (8.14), we get

K X = Trp
[
Ck,p

]
. (8.40)

Set

DX = c(ei )∇3·(T ∗X)⊗R F
ei

. (8.41)

Then DX is a standard Dirac operator on X . By (4.10), (8.7), we get

DX = DX +
m∑

i=1

ĉ(ei )ρ
E (ei ). (8.42)

By (8.15), (8.42), we obtain

DX,2 = DX,2+
( m∑

i=1

ĉ(ei )ρ
E (ei )

)2

. (8.43)

Also, the two operators in the right-hand side of (8.43) commute. Then (8.43) can be

rewritten in the form

DX,2 = DX,2+
m∑

i=1

ρE (ei )
2+ 1

2

∑
16i, j6m

ĉ(ei )̂c(e j )ρ
E ([ei , e j ]). (8.44)

By (8.17), equation (8.44) is equivalent to

DX,2 = DX,2−Cg,H,E + 1
2

∑
16i, j6m

ĉ(ei )̂c(e j )ρ
E ([ei , e j ]). (8.45)

Let Cg,X be the Casimir operator of G acting on C∞(X,3·(T ∗X)⊗R F). Let

B∗(κg, κg) ∈ R be the constant defined in [11, §2.6]. Its precise value is irrelevant here.

Set

LX,F = 1
2 Cg,X + 1

8 B∗(κg, κg). (8.46)

Proposition 8.4. The following identity holds:

DX,2

2
= LX,F − 1

2
Cg,E − 1

48
Trk
[
Ck,k

]− 1
16

Trp
[
Ck,p

]
. (8.47)
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Proof. Let Sp be the Hermitian vector space of spinors associated with the Euclidean

vector space p, and let Sp∗ be its dual. If e ∈ k, set

ĉ(ad(e)|p) = −1
4

∑
16i, j6m

〈
ad(e)ei , e j

〉̂
c(ei )̂c(e j ). (8.48)

By [11, Theorem 7.2.1], using the notation in this reference, we get

DX,2

2
= LX,F − 1

8
B∗(κk, κk)− 1

2
Ck,Sp∗⊗E . (8.49)

By definition,

Ck,Sp∗⊗E =
m+m′∑

i=m+1

(̂
c(ad(ei )|p)+ ρE (ei )

)2
. (8.50)

By (8.50), we get

Ck,Sp∗⊗E = Ck,Sp∗ +Ck,E + 2
m+m′∑

i=m+1

ĉ
(
ad(ei )|p

)
ρE (ei ). (8.51)

By [11, equations (2.6.7) and (7.8.6)],

B∗(κk, κk) = 1
6 Trk

[
Ck,k

]
, Ck,Sp∗ = 1

8 Trp
[
Ck,p

]
. (8.52)

By (8.45), (8.49), and (8.52), we get (8.47). The proof of our proposition is completed.

8.5. The trivial orbital integrals

Now, we will evaluate certain trivial orbital integrals, i.e., the orbital integrals associated

with the element 1 ∈ G. For t > 0, let Pt (x, x ′) be the smooth kernel on X which is

associated with exp(−t DX,2/2). By definition, if x ∈ X , the orbital integral associated

with 1 ∈ G is given by

Trs
[1][exp

(−t DX,2/2
)] = Trs

3·(T ∗X)⊗R F [Pt (x, x)]. (8.53)

Of course, the right-hand side of (8.53) does not depend on x ∈ X .

Let dvp be the volume form on p. If α ∈ 3·(p∗)⊗ o(p∗), if α(m) is the component of α

with top degree m, let αmax ∈ R be such that

α(m) = αmaxdvp. (8.54)

First, we extend [11, Theorem 7.8.2], where E was assumed to be trivial. As in [11,

equation (5.5.11)], for Y k
0 ∈ k, set

J1(Y k
0 ) = Â

(
iad(Y k

0 )|p
)

Â−1(iad(Y k
0 )|k

)
. (8.55)
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Theorem 8.5. For any t > 0, the following identity holds:

Trs
[1][exp(−t DX,2/2)

]
= 1
(2π t)m/2

exp
(

t
48

Trk
[
Ck,k

]+ t
16

Trp
[
Ck,p

])
×
∫
k

J1(Y k
0 )Trs

3·(p∗)⊗E
[

exp
(
−iρ3

·(p∗)⊗E (Y k
0 )+

t
2

Cg,E
)]

× exp
(−|Y k

0 |2/2t
) dY k

0

(2π t)m′/2
= [e(T X,∇T X )

]max dim E . (8.56)

Proof. To simplify the notation, we will identify E and F . By [11, Theorem 6.1.1], and

by Proposition 8.4, we get the first part of (8.56). Moreover,

Trs
3·(p∗)⊗E

[
exp

(
−iρ3

·(p∗)⊗E (Y k
0 )+

t
2

Cg,E
)]

= det
(
1− exp(iad(Y k

0 ))
)|pTrE

[
exp

(
−iρE (Y k

0 )+
t
2

Cg,E
)]
. (8.57)

If p is odd dimensional, then 0 is an eigenvalue of ad(Y k
0 )|p, so that the integrand in

the second line of (8.56) vanishes. So let us assume that p is even dimensional. By [11,

equation (7.2.15) and Theorem 7.4.1], we get

1
(2π t)m/2

∫
k

J1(Y k
0 )Trs

3·(p∗)⊗E
[

exp
(
−iρ3

·(p∗)⊗E (Y k
0 )+

t
2

Cg,E
)]

× exp
(−|Y k

0 |2/2t
) dY k

0

(2π t)m′/2
= exp

(
− t

48
Trk
[
Ck,k

])
×
[

Â(T X,∇T X )Trs
Sp∗⊗E

[
exp

(
− RSp

∗⊗E

2iπ
− t

2
Ck,Sp

∗⊗E + t
2

Cg,E

)]]max

. (8.58)

By (8.22), (8.51), and (8.52), we get

Cg,E −Ck,Sp∗⊗E = Cg,H,E − 1
8

Trp
[
Ck,p

]− 2
m+m′∑

i=m+1

ĉ(ad(ei )|p)ρE (ei ). (8.59)

Moreover,
m+m′∑

i=m+1

ĉ(ad(ei )|p)ρE (ei ) = 1
4

∑
16i, j6m

ĉ(ei )̂c(e j )ρ
E ([ei , e j ]). (8.60)

As in (8.48), if A ∈ End(p) is antisymmetric, set

ĉ(A) = −1
4

∑
16i, j6m

〈
Aei , e j

〉̂
c(ei )̂c(e j ). (8.61)

Then we have the classical identity

RSp∗ = ĉ
(
RT X ). (8.62)

https://doi.org/10.1017/S1474748015000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000171


Asymptotic torsion and Toeplitz operators 307

By the first identity in (8.56), and by (8.58)–(8.62), we obtain

Trs
[1][exp

(−t DX,2/2
)] = [ Â(T X,∇T X )Trs

Sp∗⊗E
[

exp
(
−ĉ

(
RT X

2iπ

)
− RE

2iπ
+ t

2
Cg,H,E − t

4

∑
16i, j6m

ĉ(ei )̂c(e j )ρ
E ([ei , e j ]

))]]max

. (8.63)

By a computation similar to the one in Theorem 1.3, we get

(
∇Sp∗⊗E +

√
t
2

m∑
i=1

ĉ(ei )ρ
E (ei )

)2

= ĉ(RT X )+ RE − t
2

Cg,H,E

+ t
4

∑
16i, j6m

ĉ(ei )̂c(e j )ρ
E ([ei , e j ]). (8.64)

Let ϕ be the automorphism of 3even(p∗) which maps α ∈ 3k(p∗) to (2iπ)−k/2α. By

(8.63), (8.64), we get

Trs
[1][exp

(−t DX,2/2
)]

=
 Â(T X,∇T X )ϕTrs

Sp∗⊗E

exp

−(∇Sp∗⊗E +
√

t
2

m∑
i=1

ĉ(ei )ρ
E (ei )

)2
max

.

(8.65)

The theory of superconnections guarantees that the cohomology class of the closed form

in the right-hand side of (8.65) does not depend on t . Because of invariance under the

left action of G, the forms themselves do not depend on t . For t = 0, we can then proceed

as in [11, Theorem 7.8.2], or make a simple computation, and we get the second identity

in (8.56). The proof of our theorem is completed.

Let T be a maximal torus in K , and let t ⊂ k be its Lie algebra. Set

b = { f ∈ p, [ f, t] = 0}. (8.66)

Put

h = b⊕ t. (8.67)

By [32, p. 129], we know that h is a Cartan subalgebra of g, that dim t is the complex rank

of K , and that dim h is the complex rank of G. Also, if m is odd, b is of odd dimension >1.

We still define Trs
[1][(N3·(T ∗X)− m

2 ) exp(−t DX,2/2)] by a formula similar to (8.53). Now,

we extend part of [11, Theorem 7.9.1], where the case of a trivial E was considered.
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Theorem 8.6. For any t > 0, the following identity holds:

Trs
[1]
[(

N3·(T ∗X)− m
2

)
exp

(−t DX,2/2
)] = 1

(2π t)m/2
exp

(
t

48
Trk
[
Ck,k

]+ t
16

Trp
[
Ck,p

])
×
∫
k

J1(Y k
0 )Trs

3·(p∗)⊗E
[(

N3·(p∗)− m
2

)
exp

(
−iρ3

·(p∗)⊗E (Y k
0 )+

t
2

Cg,E
)]

× exp
(−|Y k

0 |2/2t
) dY k

0

(2π t)m′/2
. (8.68)

If m is even, or if m is odd and dim b > 3, (8.68) vanishes.

Proof. By [11, Theorem 6.1.1] and by Proposition 8.4, we get (8.68). Instead of (8.57),

we get

Trs
3·(p∗)⊗E

[(
N3·(p∗)− m

2

)
exp

(
−iρ3

·(p∗)⊗E (Y k
0 )+

t
2

Cg,E
)]

= Trs
3·(p∗)

[(
N3·(p∗)− m

2

)
exp(−iad(Y k

0 ))
]

TrE
[

exp
(
−iρE (Y k

0 )+
t
2

Cg,E
)]
.

(8.69)

By proceeding as in [11, equations (7.9.1), (7.9.2)], under the given conditions, the first

term in the right-hand side of (8.69) vanishes identically. The proof of our theorem is

completed.

Remark 8.7. The same arguments as in [11] also show that, under the conditions of the

second part of Theorem 8.6, the orbital integrals where 1 is replaced by any semisimple

γ ∈ G also vanish. If 0 is a torsion-free discrete cocompact subgroup of G, and if Z =
0 \ X , this implies the vanishing of the analytic torsion of Z with coefficients in the flat

bundle F . In that respect, the conditions that were given above are exactly the ones that

guarantee the vanishing of the analytic torsion with trivial F . As shown in [11, Remark

7.9.2], where the connected simple Lie groups G such that m is odd and dim b = 1 are

listed, these are exactly the conditions found by Moscovici and Stanton [40, Corollary 2.2]

for the vanishing of the ordinary analytic torsion when F is unitarily flat. Also, note that

the vanishing result at the end of our theorem has already been established by Bergeron

and Venkatesh in [3, Proposition 5.2].

8.6. The vanishing of the forms dt

We use the notation of § 2, with S taken to be a point.

By (2.19), (8.15), and (8.36), we get

σ
(
A2

t
) = − 1

2

〈
θp,2, θ̂ p,2〉− θp,2+ t |θ̂ p|2+ t θ̂ p,2. (8.70)

We take the compact manifold N as in § 1.4, and we define the function R(A) as in

(1.23). By (2.55), we get

dt = −1
2
(2iπ)m/2ϕ

∫ B̂ √
tθp ∧ θ̂ p exp

(−σ (A2
t
))

R(0). (8.71)
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Theorem 8.8. If m is even, or if m is odd, and dim b > 3, then∫ B̂
θp ∧ θ̂ p exp

(
1
2

〈
θp,2, θ̂ p,2〉+ θp,2− t θ̂ p,2

)
= 0. (8.72)

Under the above conditions, for t > 0,

dt = 0. (8.73)

Proof. If m is even, (8.72) is trivial. Let us assume that m is odd, and that dim b > 3. As

usual in Chern–Weil theory, we first replace 1
2θ

p,2 by A ∈ k. We will show that∫ B̂
θ̂ p exp

(〈
A, θ̂ p,2〉− t θ̂ p,2) = 0, (8.74)

from which (8.72), (8.73) will follow.

Let em+1, . . . , em+m′ be an orthonormal basis of k. If e ∈ k, let e denote the corresponding

constant vector field on g. Then

e =
m+m′∑

i=m+1

〈e, ei 〉ei . (8.75)

We will rewrite (8.75) in the form

e =
〈

e,
m+m′∑

i=m+1

ei ⊗ ei

〉
. (8.76)

In particular, in (8.74),

θ̂ p,2 =
〈
θ̂ p,2,

m+m′∑
i=m+1

ei ⊗ ei

〉
. (8.77)

By (8.77), equation (8.74) can be rewritten in the form

∫ B̂
θ̂ p exp

〈A− t
m+m′∑

i=m+1

ei ⊗ ei , θ̂
p,2

〉 = 0. (8.78)

Since the ei lie in a commutative algebra, to prove (8.78), we only need to show that, if

C ∈ k, ∫ B̂
θ̂ p exp

(〈
C, θ̂p,2

〉) = 0. (8.79)

Of course we can assume that C ∈ t. If dim b > 3, the kernel of ad(C)|p is of dimension

>3. Therefore it is clear that the left-hand side of (8.79) vanishes. This completes the

proof of our theorem.
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8.7. The W -invariant for SL2(C)
Now, we assume that G = SL2(C). Let g = sl2(C) be the Lie algebra of SL2(C), i.e., the

algebra of trace-free (2, 2) matrices. Consider the Cartan involution 2 : g→ g∗−1 of G.

Let K = SU(2). Then K is the fixed point set of 2, and a maximal compact subgroup

of G. Let k = su(2) be the Lie algebra of K , i.e., the algebra of skew-adjoint trace-free

(2, 2) matrices.

Let p be the vector space of self-adjoint trace-free (2, 2) matrices. Then

p = ik. (8.80)

Moreover, we have the Cartan decomposition,

g = p⊕ k. (8.81)

Clearly, SL2(C) is the complexification of SU(2), and g is the complexification of k.

Let E = C2, and let ρE : SL2(C)→ Aut(E) be the canonical representation. We equip

g with the bilinear form

B(a, b) = 1
2 ReTr[ab]. (8.82)

Then B is an invariant symmetric bilinear form on g, the splitting (8.81) is orthogonal

with respect to B, and B is negative on k, and positive on p.

Consider the Pauli matrices,

i =
[

0 −1
1 0

]
, j =

[
0 i
i 0

]
, k =

[−i 0
0 i

]
. (8.83)

Then i2 = −1, j2 = −1, k2 = −1, the matrices i, j, k anticommute, and ij = k, ik = − j ,
jk = i. From the above, we get

[i, j] = 2k, [i, k] = −2j, [j, k] = 2i. (8.84)

Also, i, j, k is an orthonormal basis of k for the scalar product induced by −B. Therefore,

i i, i j, ik is an orthonormal basis of p. We deduce that the induced metric on X = G/K
has constant sectional curvature −4.

We use the notation of § 8.2. By the above, it follows that

i2+ j2+ k2 = 1k,
∣∣θ̂ p

∣∣2 = 1p. (8.85)

Let L be the differential operator on g,

L = i(i i)+ j(i j)+ k(ik). (8.86)

Recall that the algebra A U was defined in § 1.4. As explained in that subsection, 1p

can be viewed as a nonnegative operator acting on A U . Its fractional powers are then

well defined. Similarly −L2 can be viewed as a nonnegative operator. Moreover, by the

Cauchy–Schwarz inequality,

−L2 6 1p(−1k). (8.87)

By (8.87), the action of 1p,−3/2L2 on A U is well defined.
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Theorem 8.9. For t > 0, we have the identities of operators acting on A U ,[∫ B̂
θp ∧ θ̂ p exp

(
1
2

〈
θp,2, θ̂ p,2〉+ θp,2− t θ̂ p,2− t |θ̂ p|2

)]max

= 2
π3/2

(
1p− 2t L2) exp

(−t1p
)
, (8.88)[

1
2

∫ +∞
0

[∫ B̂ √
tθp ∧ θ̂ p exp

(
1
2

〈
θp,2, θ̂ p,2〉+ θp,2− t θ̂ p,2− t

∣∣θ̂ p
∣∣2)] dt

t

]max

= 1
π

(
1p,1/2−1p,−3/2L2).

Proof. Since dim p = 3, we get

exp
( 1

2

〈
θp,2, θ̂ p,2〉+ θp,2− t θ̂ p,2) = (1+ 1

2 〈θp,2, θ̂ p,2〉)(1+ θp,2)(1− t θ̂ p,2). (8.89)

By (8.89), we obtain[∫ B̂
θp ∧ θ̂ p exp

(
1
2

〈
θp,2, θ̂ p,2〉+ θp,2− t θ̂ p,2

)]max

=
[∫ B̂

θp ∧ θ̂ p

(
1
2
〈θp,2, θ̂ p,2〉− tθp,2θ̂ p,2

)]max

. (8.90)

Using (1.28) and the commutation relations in (8.84), we get[∫ B̂
θp ∧ θ̂ p

〈
θp,2, θ̂ p,2〉]max

= 4
π3/21

p,[∫ B̂
θpθ̂ pθp,2θ̂ p,2

]max

= 4
π3/2 L2.

(8.91)

By (8.85), (8.90), and (8.91), we get the first identity in (8.88). The second identity

follows from the first one. The proof of our theorem is completed.

Remark 8.10. Recall that g is itself a complex vector space. Let H(g) be the algebra
of holomorphic functions on g. By (8.86), we have the identity of operators acting on

H(g)∩A U ,

L = i1k = −i1p. (8.92)

From (8.92), we deduce the equality of operators acting on H(g)∩A U ,

1
π

(
1p,1/2−1p,−3/2L2) = 2

π
1p,1/2 = 2

π

(−1k
)1/2

. (8.93)

A maximal torus T = S1 in SU(2) is the 1-parameter group exp(2π tk), t ∈ S1 = R/Z.

Then k is a generator of the Lie algebra of t, and 2πk is a coroot in T , so that

exp(2πk) = 1. Let P be the lattice of weights; i.e., P is the subspace of t∗ which takes

https://doi.org/10.1017/S1474748015000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000171


312 J.-M. Bismut et al.

integral values on 2πk. When identifying t with t∗ by its scalar product, then P = Z/2π .

A set P++ of positive weights is just given by N/2π .

Then U = SU(2)×SU(2) is a compact form of G = SL2(C), in which K = SU(2) embeds

by the diagonal embedding. Also, GC = SL2(C)×SL2(C), and G embeds in GC by the

embedding g ∈ SL2(C)→ (g,2g) ∈ SL2(C)×SL2(C).
By Weyl’s unitary trick [32, Proposition 5.7], since U is simply connected,

finite-dimensional irreducible representations of SL2(C) are just the finite-dimensional

irreducible representations of SU(2)×SU(2), which are themselves parameterized by two

integers a, b ∈ N and the corresponding weights a/2π, b/2π . The corresponding vector

space is given by SaC2⊗ SbC2
. The holomorphic representations of SL2(C) correspond

to the case where b = 0, and the antiholomorphic representations to the case a = 0. If ρa
denotes the representation of SL2(C) on Sa (C2), this representation is isomorphic to its

dual. The same is true for the representation of SL2(C) on SbC2
.

Let E be the hyperplane line bundle on P1. On P1
, the corresponding hyperplane bundle

is denoted E . For a ∈ N, the coadjoint orbit Na of a/2π ∈ t∗ for SU(2) can be identified

with a point for a = 0, with P1 for a > 0. The orbit Na carries a canonical line bundle

La . For a > 0, when identifying Na with P1, La is just Ea .

For a, b ∈ N, set

Na,b = Na × N b. (8.94)

Let q1, q2 be the obvious projections from Na,b on Na, N b. For a, b ∈ N, set

La,b = q∗1 La ⊗ q∗2 Lb. (8.95)

Then SL2(C) acts on Na,b by the map (z, z′)→ (gz, (2g)z′), and the action of SL2(C)
lifts to La,b. Clearly

H (0,0)(Na,b, La,b) = SaC2⊗ SbC2
. (8.96)

Let µa : Na → su(2)∗, µb : Nb → su(2)∗ be the tautological moment maps. The moment

map µa,b that is associated with the action of U on Na,b is given by

µa,b = (q∗1µa, q∗2µb). (8.97)

Let σa,b,θ̂ p be the section of T̂ X∗ on Na,b that is defined as in (1.25). We get easily

σa,b,θ̂ p = 2π
〈
q∗1µa − q∗2µb, i θ̂ p

〉
. (8.98)

By (8.98), θ̂ p is nondegenerate if and only if a 6= b.

We equip the line bundle E with its canonical metric. Let m : P1 → k∗ be the

corresponding moment map. When identifying N1 with P1, L1 maps to E , and µ1 to m.

Set

η = c1
(
E, gE). (8.99)

For A ∈ g, set

S(A) =
∫

P1
exp(2iπ〈m, A〉+ η). (8.100)

https://doi.org/10.1017/S1474748015000171 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748015000171


Asymptotic torsion and Toeplitz operators 313

Note that S is an even function. When A ∈ su(2), S(A) can be calculated using the

localization formulae of [5, 29, 30]. If A ∈ t, we can write A in the form A = tk, t ∈ R.

Then

S(A) = sin(t)
t

. (8.101)

For A ∈ sl2(C), let Ra,b(A) be the function defined in (1.23) that is associated with the

previous geometric data. One finds easily that

Ra,b(A) = aS(a A)bS(b2A) if a > 0, b > 0,
aS(a A) if a > 0, b = 0.

(8.102)

If b = 0, the function Ra,b is holomorphic.

If a 6= b, let Wa,b be the associated form on X .

Theorem 8.11. For a 6= b,

W max
a,b =

1
π

(
1p,1/2−1p,−3/2L2)Ra,b(0). (8.103)

For a > 0,

W max
a,0 =

2
π

a2. (8.104)

For a > 0, b > 0,

W max
a,b =

2
3π

(
3a2b− b3) if a > b,

= 2
3π

(
3ab2− a3) if b > a. (8.105)

Proof. By (2.75), (8.71), and (8.88), we get (8.103). For a ∈ N, S(a A) is an eigenfunction

of −1k with eigenvalue a2. Moreover,

S(0) = 1. (8.106)

By (8.93), (8.102), (8.103), and (8.106), we get (8.104). Assume now that a, b ∈ N∗, a 6= b.

Since S(a A) is a holomorphic function on g, and S(b2A) is antiholomorphic, we get

L Ra,b = i
(
b2− a2)Ra,b. (8.107)

Let f (A), g(A) denote functions on g that are respectively holomorphic and

antiholomorphic. Then

1p( f g) = −(1k f
)
g− f1kg+ 2

〈∇k f,∇kg
〉
. (8.108)

From (8.108), we get

1p( f g) = 1k( f g)− 2
(
1k f

)
g− 2 f1kg. (8.109)

Using (8.109), we obtain

1pRa,b =
(
1k+ 2

(
a2+ b2))Ra,b. (8.110)
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By (8.107), (8.110), we obtain(
1p− 2t L2) exp

(−t1p
)
Ra,b

=
(
− ∂
∂t
+ 2t

(
b2− a2)2) exp

(−t
(
1k+ 2

(
a2+ b2)))Ra,b. (8.111)

Since the function Ra,b(A), A ∈ k is invariant by rotations, for t > 0, we get

exp
(
t1k

)
Ra,b(0) = 4π

(4π t)3/2

∫ +∞
0

exp
(−r2/4t

)
Ra,b(r)r2dr. (8.112)

Moreover,

sin(ar) sin(br) = 1
2 (cos((a− b)r)− cos((a+ b)r)). (8.113)

By (8.101), (8.102), (8.112), and (8.113), we obtain

exp
(
t1k

)
Ra,b(0) = 1

4t

(
e−(a−b)2t − e−(a+b)2t). (8.114)

Also, (8.114) is analytic in the variable t ∈ C. By (8.114), for t > 0, we get

exp
(−t1k

)
Ra,b(0) = 1

4t

(
e(a+b)2t − e(a−b)2t). (8.115)

By (8.111), (8.115), we get

(1p− 2t L2) exp(−t1p)Ra,b(0)

=
(
− ∂
∂t
+ 2

(
b2− a2)2t

)
1
4t

(
e−(a−b)2t − e(a+b)2t). (8.116)

By (8.88), (8.103), we get

W max
a,b = π−3/2

∫ +∞
0

t−1/2
(
− ∂
∂t
+ 2

(
b2− a2)2t

)
1
4t

(
e−(a−b)2t − e(a+b)2t)dt. (8.117)

Equivalently,

W max
a,b = −

1
8
π−3/20(−3/2)

(|a− b|3− |a+ b|3)
+ 1

2π3/20(1/2)
(
b2− a2)2(|a− b|−1− |a+ b|−1). (8.118)

Also, we have the identities

0(1/2) = √π, 0(−3/2) = 4
3
√
π. (8.119)

By (8.118), (8.119), we get (8.105). The proof of our theorem is completed.

Take a, b ∈ N with a 6= b. Let 0 be a torsion-free discrete cocompact subgroup of G =
SL2(C). Then Z = 0 \X is a compact manifold. For p ∈ N, Fp = S paC2⊗ S pbC2

descends

to a flat Hermitian vector bundle on Z , which we also denote Fp. Let Th(Z ,∇Fp , gFp ) ∈ R
denote the corresponding analytic torsion. Since Z is odd dimensional, for p ∈ N large
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enough, as the notation indicates, Th(Z ,∇Fp , gFp ) does not depend on the metric on T Z .

By Theorem 7.1, for a > 0, b > 0, a 6= b, as p→+∞,

p−3Th
(
Z ,∇Fp , gFp

) = W max
a,b Vol(Z)+O

(
p−1). (8.120)

If a > 0, b = 0, instead of (8.120), we get

p−2Th
(
Z ,∇Fp , gFp

) = W max
a,0 Vol(Z)+O

(
p−1). (8.121)

Equation (8.121) is the main result obtained by Müller in [43, Theorem 1.1]. In [43], the

curvature of X = G/K is −1 instead of −4, which explains the difference in the evaluation

of the right-hand side in (8.121).

8.8. The nondegenerate representations of U

We consider again the case of a general reductive group G. We assume that m is odd,

and that dim b = 1. The connected simple Lie groups for which this condition holds were

described by Moscovici and Stanton [40, Corollary 2.2], [11, Remark 7.9.2].

Set

tU = ib⊕ t. (8.122)

Then tU is the Lie algebra of a maximal torus TU ⊂ U . Moreover, 2 acts on tU and

preserves the splitting in (8.122). This action lifts to the natural action of 2 on TU ⊂ U .

Let WU be the Weyl group of U associated with TU .

Take λ ∈ t∗U , and let Nλ be the coadjoint orbit of λ in u∗. Then

Nλ ∩ t∗U = WUλ. (8.123)

Moreover, if Uλ ⊂ U denotes the stabilizer of λ, then

Nλ = U/Uλ. (8.124)

Then Nλ is a compact Kähler U -manifold. It is equipped with a closed symplectic

(1, 1)-form ηλ, and v ∈ Nλ→ v ∈ u∗ is a moment map for the action of U on Nλ. The

associated function Rλ(A), A ∈ u in (1.23) is given by

Rλ(A) =
∫

Nλ
exp(2iπ〈v, A〉+ ηλ). (8.125)

The function Rλ can be computed using the formulae of [5, 29, 30]. Also, Rλ is an

eigenfunction of −1u with eigenvalue 4π2|λ|2.

Proposition 8.12. The form θ̂ p is nondegenerate with respect to Nλ if and only if WUλ∩
t∗ = ∅.

Proof. Observe that θ̂ p is degenerate if and only if there is v ∈ Nλ such that v is

orthogonal to ip, i.e., v ∈ k∗. By making K act on v, we may as well assume that

v ∈ t∗. Therefore, there exists w ∈ WU such that wλ = v. The proof of our proposition is

completed.

Remark 8.13. One verifies easily that, if G = SL2(C), the condition in Proposition 8.12

is exactly the one stated after equation (8.98).
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8.9. The asymptotics as p→+∞ of the orbital integrals

We still assume that m is odd, and that dim b = 1. Let RU,+ ⊂ t∗U be a positive root

system for U . Let C ⊂ tU be the positive Weyl chamber, and let P++ ⊂ t∗U denote the set

of positive weights.

If λ ∈ P++, let ρλ be the irreducible unitary representation of U of highest weight λ on

the vector space Eλ. We still denote by ρλ the corresponding representation of G or GC.

Here, we take N = Nλ. Then Nλ is a compact Kähler manifold of complex dimension

n. Moreover, Nλ is equipped with the canonical holomorphic Hermitian line bundle L,

and, for p ∈ N,

E pλ = H (0,0)(N , L p). (8.126)

Let Fp denote the associated flat Hermitian bundle on X that is associated with E pλ.

Let DX
p denote the Dirac operator acting on �·(X, Fp) that was defined in (4.7). Recall

that, for t > 0, the form et on X was defined in Definition 2.9.

Theorem 8.14. For t > 0, as p→+∞,

p−n−1Trs
[1]
[(

N3·(T ∗X)

2
− m

4

)
exp

(−t DX,2
p /2p2)] = [et/2]max+O

(
p−1),

p−n−1Trs
[1]
[(

N3·(T ∗X)

2
− m

4

) (
1− t DX,2

p /p2) exp
(−t DX,2

p /2p2)]
= [dt/2]max+O

(
p−1).

(8.127)

Proof. By (8.68), (8.69), for p ∈ N∗, we get

Trs
[1]
[(

N3·(T ∗X)− m
2

)
exp

(−t DX,2
p /2p2)]

= pm

(2π t)m/2
exp

(
t

48p2 Trk
[
Ck,k

]+ t
16p2 Trp

[
Ck,p

])
×
∫
k

J1
(
Y k

0 /p
)
Trs

3·(p∗)
[(

N3·(p∗)− m
2

)
exp

(−iad(Y k
0 )/p

)]
×TrE pλ

[
exp

(
−iρE pλ(Y k

0 )/p+ t
2p2 Cg,E pλ

)]
exp

(−∣∣Y k
0
∣∣2/2t

) dY k
0

(2π t)m′/2
.

(8.128)

Let Cu denote the Casimir operator for the Lie algebra u equipped with its canonical

scalar product, and let Cu,E pλ denote its action on E pλ. Clearly,

Cg = −Cu in UgC. (8.129)

Let ρU be the half sum of the positive roots of U . Classically,

Cu,E pλ = 4π2(|pλ+ ρU |2− |ρU |2
)
. (8.130)

By (8.129), (8.130), as p→+∞,

Cg,E pλ

p2 →−4π2|λ|2. (8.131)
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Also, by equation (3.35) in Theorem 3.6, as p→+∞,

p−nTrE pλ
[
exp

(−iρE pλ
(
Y k

0
)
/p
)] = Rλ

(−iY k
0
)+O

(
p−1). (8.132)

Let b⊥ ⊂ p be the space orthogonal to the one-dimensional line b. Take Y k
0 ∈ t. Since

m is odd, and ad(Y k
0 ) vanishes on b, by the elementary [11, equation (7.9.1)], we get

Trs
3·(p∗)

[(
N3·(p∗)− m

2

)
exp

(−iad(Y k
0 )/p

)] = −det b⊥[1− exp
(
iad
(
Y k

0
)
/p
)]
. (8.133)

By (8.133), since dim b⊥ is even, as p→+∞,

p(m−1)Trs
3·(p∗)

[(
N3·(p∗)− m

2

)
exp

(−iad
(
Y k

0
)
/p
)]

= − det
[
iad
(
Y k

0
)|b⊥]+O

(
p−1). (8.134)

By (1.29), (8.4), the 2-form ωad(Y k
0 )|p on p that is associated with ad(Y k

0 )|p is given by

ωad(Y k
0 )|p = −

〈
Y k

0 ,2
k
〉
. (8.135)

Let |2p|2 ∈ 34(p∗) be obtained from 2k ∈ 32(p∗)⊗ k in (8.4) by taking the square of its

norm in k. By an easy computation in [11, equation (7.5.19)],∣∣2p
∣∣2 = 0. (8.136)

Of course, this also implies that ∣∣2̂p
∣∣2 = 0. (8.137)

If Y k
0 ∈ t,

det
[
iad
(
Y k

0
)|b⊥] = Pf

[
iad
(
Y k

0
)|b⊥]2. (8.138)

As in (2.54), set

L =
m∑

i=1

ei ∧ ê i . (8.139)

By (1.28), (1.31), (8.135), and (8.138), since m is odd, we get

π−m/2 det
[
iad
(
Y k

0
)|b⊥] = −

[∫ B̂
L exp

(〈
Y k

0 ,2
k+ 2̂k

〉)]max

. (8.140)

By (8.134), (8.140), for Y k
0 ∈ t,

π−m/2 p(m−1)Trs
3·(p∗)

[(
N3·(p∗)− m

2

)
exp

(−iad
(
Y k

0
)
/p
)]

→
[∫ B̂

L exp
(〈

Y k
0 ,2

k+ 2̂k
〉)]max

. (8.141)

Of course, equation (8.141) extends to Y k
0 ∈ k.
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By (8.128), (8.131), (8.132), and (8.141), as p→+∞,

p−n−1Trs
[1]
[(

N3·(T ∗X)− m
2

)
exp

(−t DX,2
p /2p2)]

= exp(−2π2t |λ|2)
(2t)m/2

∫
k

[∫ B̂
L exp

(〈
Y k

0 ,2
k+ 2̂k

〉)]max

× Rλ
(−iY k

0
)

exp
(−∣∣Y k

0
∣∣2/2t

) dY k
0

(2π t)m′/2
+O

(
p−1). (8.142)

By (8.136), (8.137), if C is the leading term in the right-hand side of (8.142), then

C =
[∫ B̂ L√

2t
exp

(
1
2

〈
2k, 2̂k

〉)
× exp

(
−2π2t |λ|2+ t

2
1k

)
Rλ(−i A)

]max (
2k+ t

2
2̂k

)
. (8.143)

Since R(A) is a holomorphic function of A, by (8.143), we get

C =
[∫ B̂ L√

2t
exp

(
1
2

〈
2k, 2̂k

〉−2k+ t
2
2̂k

)
× exp

(
−2π2t |λ|2− t

2
1k

)
Rλ

]max

(0). (8.144)

Let 1u,1k,1ip denote the Laplacians of the Euclidean vector spaces u, k, ip. Then

1u = 1k+1ip. (8.145)

Since

1uRλ = −4π2|λ|2 Rλ, (8.146)

we deduce from (8.145) that (
4π2|λ|2+1k

)
Rλ = −1ipRλ. (8.147)

Since R is analytic,

1ipRλ = −1pRλ. (8.148)

By (8.147), (8.148), we get

exp
(
−2π2t |λ|2− t

2
1k

)
Rλ = exp

(
− t

2
1p

)
Rλ. (8.149)

As in (8.85), we get

1p = ∣∣θ̂ p
∣∣2. (8.150)

By (8.149)–(8.150), we get

exp
(
−2π2t |λ|2− t

2
1k

)
Rλ = exp

(
− t

2

∣∣θ̂ p
∣∣2) Rλ. (8.151)
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By (8.3),

2k = −θp,2, 2̂k = −θ̂ p,2. (8.152)

By (8.144), (8.151), and (8.152), we obtain

C =
[∫ B̂ L√

2t
exp

(
1
2

〈
θp,2, θ̂ p,2〉+ θp,2− t

2
θ̂ p,2− t

2

∣∣θ̂ p
∣∣2) Rλ

]max

(0). (8.153)

By (2.55), (8.70), we can rewrite (8.153) in the form

C = 2[et/2]max. (8.154)

By combining (8.142) and (8.154), we get the first equation in (8.127). Applying

the operator 1+ 2t ∂
∂t to both sides of this first identity and using equation (2.58) in

Theorem 2.10, we get the second identity. The proof of our theorem is completed.

Remark 8.15. The second identity in (8.127) can also be viewed as a consequence of

the analogue of Theorem 6.5 in the case of universal covers described in § 6.6. In the

present context, when λ is such that θ̂ p is nondegenerate, Theorem 7.7 is a consequence

of Theorem 8.14, and of the uniform decay estimates as t →+∞ that were established

in the proof of Theorems 7.1 and 7.7. These estimates are not obvious if one starts from

(8.128), because the presence of J1(Y k
0 /p) in the right-hand side of (8.128) does not allow

us to replace Y k
0 by iY k

0 . This point can be seen from another point of view in equations

(8.144)–(8.151), where the analyticity of Rλ is used when J1(Y k
0 ) has disappeared. It is

somewhat paradoxical that, from the Weitzenböck equation (8.39), we get a better proof

of the required estimates than by the evaluation of the orbital integral in (8.128).

If γ ∈ G is semisimple and nonelliptic, if Trs
[γ ] denotes the corresponding orbital

integral, by [11, Theorem 6.1.1], there exist C > 0, c > 0 such that, for t ∈ ]0, 1], p ∈ N∗,∣∣∣∣∣Trs
[γ ]

[(
N3·(T ∗X)

2
− m

4

)
exp

(−t DX,2
p /2p2)]∣∣∣∣∣ 6 C exp

(−cp2/t
)
. (8.155)

Let 0 ⊂ G be a torsion-free discrete cocompact subgroup, let Z = 0 \ X , and

assume that θ̂ p is nondegenerate. By Theorems 7.1 and 7.7, Th(gT Z ,∇Fp , gFp ) and

T 0
h (g

T Z ,∇Fp , gFp ) have the same asymptotics, up to the factor Vol(Z). Equations (8.127)

and (8.155) explain why this is the case. Equation (8.155) is of no use for large t . However,

by Remark 4.5, for p ∈ N large enough, and t > 1, one obtains an extra uniform factor

exp
(−c′t

)
with c′ > 0, from which the Selberg trace formula can be properly controlled,

so as to explain the identity of the two asymptotics above in this very special case.

By Theorem 4.4, the condition of nondegeneracy of θ̂ p given in Proposition 8.12 implies

that, for p ∈ N large enough, if Z = 0 \ X is a compact quotient of X , then H ·(Z , Fp) = 0.

The same vanishing condition also appears in a different context in Borel and Wallach’s

work [24, Proposition 2.6.12].

9. The case of general Lie groups

The purpose of this section is to extend the results of the previous sections to the case

where the underlying Lie group G is arbitrary. In this case, choosing a metric on the line
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bundle L is a fibrewise infinite-dimensional problem. The asymptotics of the analytic

torsion cannot be formally reduced to a problem of analysis on the group G as in the

previous sections. Of course, the results of this section are more general than the ones

that were obtained before.

On the differential geometric side, the construction of the form π∗W -invariant now uses

explicitly the properties of the Poisson algebra of the fibres N over M . The asymptotics of

the analytic torsion forms are obtained by a much more detailed analysis of corresponding

Toeplitz operators that act along the fibres N . Contrary to what happened in the previous

sections, the problem cannot be reduced to a finite-dimensional Lie algebra of such

operators. The asymptotics ultimately use the degeneration of the algebra of fibrewise

Toeplitz operators to the Poisson algebra, in the same way as, in the previous sections,

the bundle of Lie groups Gr was degenerating to the bundle of Lie algebras gr .

This section is organized as follows. In § 9.1, we introduce the geometric setting,

which includes in particular the choice of a Hermitian metric gL on the line bundle L
on N .

In § 9.2, we elaborate on the differential geometry of the projection q : N → M , by

considerations very similar to the ones we made in §§ 2.1 and 2.2 on the projection

π : M → S.

In § 9.3, we give various properties on the bundle of Poisson algebras A over M .

In particular, we construct a connection ∇A,u on the bundle A, and we calculate its

curvature.

In § 9.4, we extend the construction of the forms at , bt in § 1.12 to this more general

setting. Properties of the Poisson algebra are used here instead of the properties of the

Lie algebra g in § 1.12.

In § 9.5, we extend the construction of the forms ct , dt in § 2.5.

In § 9.6, which extends § 2.6, we construct the W -invariant under a natural assumption

of nondegeneracy.

In § 9.7, the unitary connection ∇F,u is explicitly calculated, and its action on a family

of Toeplitz operators is obtained.

In § 9.8, we recall various properties of the algebra of Toeplitz operators in the sense of

Ma and Marinescu [34, 35]. Also, we show that ω(∇Fp , gFp ) and its covariant derivatives

can be expressed as Toeplitz operators.

In § 9.9, we extend the results of § 6.1; i.e., we compute the asymptotics of the forms

h(∇Fp , gFp ).

In § 9.10, we show that, under our nondegeneracy assumption, we still have a spectral

gap as in § 4.3.

In § 9.11, we give a formula for the operator L F
t .

In § 9.12, we extend the results of § 6.5; i.e., we obtain the asymptotics of the forms

h(A′, g
�·(X,Fp |X )
t ).

In § 9.13, under a nondegeneracy assumption, we obtain the asymptotics of the analytic

torsion forms; i.e., we extend the results of § 7.

Finally, in § 9.14, we verify explicitly that the forms obtained in § 2 are special cases of

the forms that are considered here.
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9.1. The case of a general Lie group G

Let G be a Lie group, which is no longer assumed to be reductive or connected. Let N
be a compact complex manifold as in § 1.4. We assume that G acts holomorphically on

N , and that this action lifts to a holomorphic action on the line bundle L.

We take the manifold M as in § 2.1. Let p : PG → M be a principal G-bundle, which

is equipped with a flat connection. We define the manifold N by the obvious analogue of

(1.82); i.e.,

N = PG ×G N . (9.1)

The manifold N is equipped with a line bundle that is still denoted L. We still denote

by q the projection N → M with fibre N . To this projection q, we can apply the

formalism of § 2.1. In particular, the horizontal bundle T H
0 N ⊂ TN is determined by

the flat connection of PG . Let T N be the holomorphic relative tangent bundle, and

let TR N = TN /M denote the corresponding real bundle. Let J N denote the complex

structure of TR N .

Using the horizontal vector bundle T H
0 N = q∗T M , we get the isomorphism of vector

bundles on N ,

TN = q∗T M ⊕ TR N . (9.2)

If U ∈ T M , let U H
0 ∈ T H

0 N denote the horizontal lift of U .

By (9.2), we get the isomorphism

3·(T ∗N ) = q∗3·(T ∗M) ⊗̂ 3·(T ∗R N
)
. (9.3)

Forms in the first factor in the right-hand side of (9.3) will be called horizontal, and those

in the second factor vertical. Forms in q∗3i (T ∗M) ⊗̂ 3 j (T ∗R N ) will be said to be of type

(i, j).
Let gT N be a smooth Hermitian metric on T N , and let dvN be the corresponding

fibrewise volume form. For U ∈ T M , we define divN (U ) as in (2.13), (2.14); i.e.,

LU H
0

dvN = divN (U )dvN . (9.4)

Let gL be a smooth Hermitian metric on the line bundle L over N . Let ∇L be the

fibrewise holomorphic Hermitian connection on L. We can extend ∇L to a connection

∇L on L by using the flat connection on PG . This connection is in general nonunitary.

For U ∈ T M , set

ω
(
L , gL)(U ) = (gL)−1∇L

U H
0

gL . (9.5)

For U ∈ T M , put

∇L ,u
U H

0
= ∇L

U H
0
+ 1

2ω
(
L , gL)(U ). (9.6)

By combining ∇L along the fibres N with ∇L ,u in (9.6), we obtain a unitary connection

on L, which is still denoted ∇L ,u . Let r L , r L ,u be the curvatures of ∇L ,∇L ,u .

Let ∂
N
, ∂N be the Dolbeault operators along the fibres N , let d N denote the

corresponding fibrewise de Rham operator, and let d M denote the de Rham operator on

M . Then d M lifts to a horizontal operator on N . Moreover, r L does not have components

of type (2, 0), and

r L ,(1,1) = −∂Nω
(
L , gL). (9.7)
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Moreover,

r L ,u = r L + 1
2 d Nω

(
L , gL). (9.8)

By the above, we get

r L ,u,(2,0) = 0, r L ,u,(1,1) = 1
2

(
∂

N − ∂N )ω(L , gL). (9.9)

Let c1(L , gL) be the first Chern form associated with the connection ∇L ,u , i.e.,

c1
(
L , gL) = −r L ,u

2iπ
. (9.10)

Put

ξ = −2πc1
(
L , gL). (9.11)

By (9.9), if U ∈ T M, V ∈ TR N , then

ξ
(
U H

0 , V
) = − 1

2∇J N Vω
(
L , gL)(U ). (9.12)

9.2. Metric properties of the projection q

Let cV
1 (L , gL) be the restriction of c1(L , gL) to the fibre N . In what follows, we assume

that cV
1 (L , gL) is a fibrewise positive form.

Now, we proceed as in [14, §1(c)]. Let T HN ⊂ TN denote the orthogonal bundle to

TR N with respect to the form ξ . Then

TN = T HN ⊕ TR N . (9.13)

Also,

T HN = q∗T M. (9.14)

By (9.14), we deduce that

3·(T ∗N ) ' q∗3·(T ∗M) ⊗̂ 3·(T ∗R N
)
. (9.15)

The isomorphism in (9.15) is in general distinct from the one in (9.3).

Let ξ H , ξV denote the restriction of ξ to T HN , TR N . By (9.15), ξ H , ξV can be

considered as sections of 3·(T ∗N ), and, moreover,

ξ = ξ H + ξV . (9.16)

Until further notice, we equip T N with the metric gT N associated with the Kähler
form ξV . Namely, if A, A′ ∈ TR N , then〈

A, A′
〉 = ξ(J N A, A′

)
. (9.17)

If H ∈ C∞(N ,R), let ∇H denote the fibrewise gradient vector field of H with respect to

the metric gT N .

We apply the formalism of §§ 2.1 and 2.2 to the triple
(
N , T HN , gTR N ). Let ∇TR N be

the connection on TR N constructed as in § 2.2.

If U ∈ T M , we denote by U H the lift of U in T HN with respect to the splitting (9.13).

There is a map s : T M → TR N such that, if U ∈ T M ,

U H = U H
0 + s(U ). (9.18)
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Then s(U ) is determined by the fact that, if V ∈ TR N ,

ξ(s(U ), V )+ ξ(U H
0 , V

) = 0. (9.19)

By (9.12), (9.17), and (9.19), we get

s(U ) = 1
2∇ω

(
L , gL)(U ). (9.20)

By the first identity in (9.9), and by (9.19), we deduce that

ξ
(
U H , V H ) = −ξ(s(U ), s(V )) = ξ(U H

0 , s(V )
) = −ξ(V H

0 , s(U )
)
. (9.21)

Equation (9.21) determines ξ H .

We denote by S, T the tensors considered in the above subsections that are associated

with the present situation.

Let gT M be a metric on T M , and let ∇T M be the Levi-Civita connection on
(
T M, gT M).

Let ∇TN = q∗∇T M ⊕∇TR N be the analogue of the connection ∇T M in (2.6). Then T is

the torsion of the connection ∇TN .

Let ∇3·(T ∗N ) be the connection induced by ∇TN on 3·(T ∗N ). Classically,

dN = ∇3·(T ∗N )+ iT . (9.22)

Since ξ is closed, we get (∇3·(T ∗N )+ iT
)
ξ = 0. (9.23)

By splitting (9.23) according to their type with respect to the factorization in (9.15), as

in [14, Theorem 1.7], we get(∇3·(T ∗R N )+ iT
)
ξV = 0 on T HN × TR N × TR N ,

∇3·(T ∗M)ξ H = 0 on T HN × T HN × T HN , (9.24)

∇3·(T ∗M)ξ H + iT ξV = 0 on T HN × T HN × TR N .

The main difference with [14] lies in the first identity in (9.24). In this reference, the

connection ∇TR N preserves the complex structure of TR N , so that ξV is parallel with

respect to ∇3·(T ∗R N ), and the first identity in (9.24) splits.

Let d N denote the fibrewise de Rham operator along the fibres N .

Definition 9.1. If H ∈ C∞(N ,R), let XH be the fibrewise Hamiltonian vector field, so

that

d NH+ iXHξ
V = 0. (9.25)

Equation (9.25) is equivalent to(
d N + iXH

)(
H+ ξV ) = 0. (9.26)

Recall that, if U ∈ T M , the Lie derivative operator LU H acts naturally on smooth

sections of 3·(T ∗R N ). Now, we prove a version of [14, Remark 1.8].
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Proposition 9.2. If U ∈ T M, then

LU H ξ
V = 0. (9.27)

If U, V ∈ T M, the fibrewise vector field T (U H , V H ) is the Hamiltonian vector field

associated with the Hamiltonian ξ H (U, V ).

Proof. Since iU H ξV = 0, we get

LU H ξ
V = iU H dN ξV . (9.28)

By (9.22), and by the first identity in (9.24), we get (9.27). The second part of our

proposition is just a reformulation of the third identity in (9.24).

By (9.19), (9.25), if U ∈ T M ,

∇s(U )H = ξ
(
XH,U H

0
)
. (9.29)

9.3. The bundle of Poisson algebras

If H,H′ ∈ C∞(N ,R), we define the Poisson bracket {H,H′} ∈ C∞(N ,R) by the formula

{H,H′} = ξV (XH, XH′) = XHH′ = −XH′H. (9.30)

Then { } is a Lie bracket. Let A be the bundle of Lie algebras C∞(N ,R) equipped with

this Lie bracket. Let V be the Lie algebra of smooth vector fields along the fibre N . Then

the map H ∈ A→ XH ∈ V is a morphism of bundles of Lie algebras. If H ∈ A, we denote

by ad(H) the endomorphism of A that is given by H′→ {H,H′}.
Note that A is a commutative algebra for the multiplication of functions. This structure

of A as a commutative algebra will be called the standard structure.

Theorem 9.3. If U, V ∈ T M,

ξ
(
U H , V H ) = − 1

4

{
ω
(
L , gL)(U ), ω(L , gL)(V )}. (9.31)

Proof. By (9.21),

ξ
(
U H , V H ) = −ξ(J N s(U ), J N s(V )). (9.32)

By (9.20), (9.30), and (9.32), we get (9.31).

Remark 9.4. Let UA denote the enveloping algebra of A. We denote by ∗ the product

in UA. In what follows, we will often write (9.31) in the form

ξ H = − 1
4ω
(
L , gL)∗2. (9.33)

Here, the star ∗ indicates that the underlying Lie bracket is the Poisson bracket.

Set

ϑ = − 1
2ω
(
L , gL). (9.34)
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Then ϑ is a section of T ∗M ⊗A. By (9.20), if U ∈ T M ,

s(U ) = −∇ϑ(U ). (9.35)

We can rewrite (9.33) in the form

ξ H = −ϑ∗2. (9.36)

From now on, dvN denotes the volume form with respect to the metric gT N associated

with ξV .

Definition 9.5. For H ∈ A, put

Tr[H] = (2π)−n
∫

N
HdvN =

∫
N
H exp

(
cV

1
(
L , gL)). (9.37)

We have the trivial identity ∫
N
{H,H′}dvN = 0. (9.38)

Equation (9.38) says that Tr is indeed a trace on A; i.e., it vanishes on the Poisson

brackets.

Let Vol(N ) be the symplectic volume of the fibres N with respect to the symplectic

form cV
1 (L , gL). Then Vol(N ) is a constant. Moreover, we have the identity

Tr[1] = Vol(N ). (9.39)

Definition 9.6. If H is a smooth section of A, if U ∈ T M , set

∇AU H = LU H
0
H, ∇A,uU H = LU H H. (9.40)

Then ∇A,∇A,u are connections on the vector bundle A.

Theorem 9.7. If U ∈ T M, if H is a smooth section of A, then

∇A,uU H = ∇AU H+ ξ(XH,U H
0
)
. (9.41)

The connection ∇A,u is a connection on the bundle of algebras A with respect to the

standard structure and the Poisson structure. Namely if H,H′ are smooth sections of A,

then

∇A,uU (HH′) = ∇A,uU HH′+H∇A,uU H′,

∇A,uU {H,H′} = {∇A,uU H,H′
}+ {H,∇A,uU H′

}
.

(9.42)

Moreover, Tr is parallel with respect to ∇A,u, i.e.

∇U Tr[H] = Tr
[∇A,uU H

]
. (9.43)

The connection ∇A is flat. The curvature ∇A,u,2 of ∇A,u is given by

∇A,u,2 = ad
(
ϑ∗2

)
. (9.44)

Finally,

∇Aϑ = 0, ∇A,uϑ = 0. (9.45)
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Proof. Clearly,

∇A,uU H = ∇AU H+∇s(U )H. (9.46)

By (9.29), (9.46), we get (9.41).

The first equation in (9.42) is trivial. By (9.25), (9.27), we get

d N LU H H+ iLU H XHξ
V = 0. (9.47)

By (9.30), (9.40), and (9.47), we get the second equation in (9.42). Equation (9.43) follows

from similar arguments.

Clearly, the curvature of ∇A vanishes. Moreover, an easy computation shows that if

U, V ∈ T M ,

∇A,u,2(U, V )H = −∇T (U H ,V H )H. (9.48)

By Proposition 9.2, by (9.30), and (9.48), we get

∇A,u,2 = −ad
(
ξ H ). (9.49)

By (9.36), (9.49), we get (9.44).

By (9.5), we get the first equation in (9.45). By (9.35), if U, V ∈ T M ,

∇s(U )ϑ(V ) = −〈s(U ), s(V )〉. (9.50)

By (9.50), we get

∇s(U )ϑ(V )−∇s(V )ϑ(U ) = 0. (9.51)

The second equation in (9.45) follows from (9.51). The proof of our theorem is completed.

Remark 9.8. When replacing θp by ϑ , (9.44) is an analogue of (4.5), and the second

equation in (9.45) is an analogue of (1.41).

We have the obvious Bianchi identity{
ϑ, ϑ∗2

} = 0. (9.52)

Definition 9.9. Set AC = A⊗R C. Let ∇AC,u be the connection induced by ∇A,u on AC.

Let ∇AC,′ be the connection on AC that is given by

∇AC,′ = ∇AC,u + iad(ϑ). (9.53)

Proposition 9.10. The connection ∇AC,′ is flat.

Proof. This is a trivial consequence of equations (9.44) and (9.45) in Theorem 9.7.

Now, we prove a counterpart to Proposition 1.12.

Proposition 9.11. The integral along the fibre q∗[exp(c1(L , gL))] is a constant. More

precisely,

q∗
[
exp

(
c1
(
L , gL))] = Vol(N ). (9.54)
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Proof. To prove our proposition, we may as well replace c1(L , gL) by −ξ . Clearly,

q∗
[
exp

(
c1
(
L , gL))] = Tr

[
exp

(−ξ H/2π
)]
. (9.55)

By (9.36), we can rewrite (9.55) in the form

q∗
[
exp

(
c1
(
L , gL))] = Tr

[
exp

(
ϑ∗2/2π

)]
. (9.56)

Using the Bianchi identity in (9.52) and the fact that Tr is a trace, we get

∂

∂s
Tr[exp(sϑ∗2)] = Tr[ϑ∗2 exp(sϑ∗2)] = 1

2
Tr[{ϑ, ϑ exp(sϑ∗2)}] = 0. (9.57)

By (9.57), we find that

Tr
[
exp

(
ϑ∗2/2π

)] = Tr[1]. (9.58)

By (9.39), (9.56), and (9.58), we get (9.54).

Remark 9.12. The proof of Proposition 9.11 closely resembles part of the standard proof

of the index theorem [10, proof of Theorem 3.1]. Using (9.9) and the fact that ξV is ∂
N

and ∂N closed, one can also give another proof of Proposition 9.11. The fundamental fact

about the proof of Proposition 9.11 is that it involves a subtle extra structure on the

fibre N .

9.4. The forms at , bt

We introduce a Euclidean vector bundle with connection Ê on M as in § 1.7. Let β be a

smooth section of Ê∗⊗A. We use otherwise exactly the same notation as in § 1.7, simply

replacing gr by A.

In what follows, the product in A will be the standard product of smooth functions in

C∞(N ,R). Here, we define σ(A2
t ) by the formula

σ
(
A2

t
) = 1

4

〈̂
ei , R Ê ê j

〉̂
e i ê j −ϑ∗2+√t∇ Ê⊗A,u· β + t |β|2− tβ∗2. (9.59)

Then σ(A2
t ) is a smooth section of 3·(T ∗M) ⊗̂ 3·(Ê∗)⊗A.

Set

Lt = ∇ Ê⊗A,u· + 2i√tβ − ad
(√

tβ
)
. (9.60)

We claim that the obvious analogue of Theorem 1.6 holds, so that, in particular,

Ltσ
(
A2

t
) = 0,

∂

∂t
σ
(
A2

t
) = Lt

β

2
√

t
. (9.61)

Indeed, equation (9.44) simply replaces (1.39) in the proof of Theorem 1.6.

Note that exp(−σ(A2
t )) is a section of the algebra 3·(T ∗M) ⊗̂ 3·(Ê∗)⊗A. Then Tr

∫ B̂

maps this algebra into 3·(T ∗M).
When β is viewed as a smooth section on N of q∗3·(Ê∗), we will use the notation σβ

instead of β. In particular, while ∇ Ê⊗A,uβ is a section on M of T ∗M ⊗ Ê∗⊗A, ∇ Êσβ is

a section on N of 3·(T ∗N )⊗ q∗ Ê∗.
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Definition 9.13. We will say that β is nondegenerate if σβ does not vanish on N .

Let ϕ be the endomorphism of 3·(T ∗M) mapping α ∈ 3k(T ∗M) into (2π)−k/2α. Now,

we imitate Definition 1.14.

Definition 9.14. For t > 0, set

at = (2π)m/2ϕTr

[∫ B̂
exp

(−σ (A2
t
))]

,

bt = (2π)(m−1)/2ϕTr

[∫ B̂ β

2
√

t
exp

(−σ (A2
t
))]

.

(9.62)

Then at , bt are smooth real forms on M .

Recall that the forms at , bt on Ê were defined in Definition 1.8. Also, we identify Ê
and Ê∗ by the metric g Ê . By (1.74), as in (1.86), we get

σ ∗βat =
∫ B̂

exp
(
−1

4

〈̂
ei , R Ê ê j

〉̂
e i ê j −∇ Ê√tσβ − t |σβ |2

)
,

σ ∗βbt =
∫ B̂ σβ

2
√

t
exp

(
−1

4

〈̂
ei , R Ê ê j

〉̂
e i ê j −∇ Ê√tσβ − t |σβ |2

)
.

(9.63)

Recall that the current ψ on Ê was defined in Definition 1.9. We establish an extension

of Theorem 1.15.

Theorem 9.15. For any t > 0, the form at is closed, and its cohomology class does not

depend on t > 0. We have the identity

∂

∂t
at = −dbt . (9.64)

Moreover,

at = q∗
[
σ ∗βat exp

(
c1
(
L , gL))], bt = q∗

[
σ ∗βbt exp

(
c1
(
L , gL))]. (9.65)

Also,

a0 = e
(
Ê,∇ Ê)q∗[exp

(
c1
(
L , gL))] = e

(
Ê,∇ Ê)q∗[exp

(
cV

1
(
L , gL))]. (9.66)

If β is nondegenerate, for any compact set K ⊂ M, there exists cK > 0 such that, on

K , as t →+∞,

at = O(e−cK t ), bt = O(e−cK t ). (9.67)

If β is nondegenerate, the Euler class e(Ê) vanishes. Also, σ ∗βψ is a smooth (m− 1)-form

on N with values in o(Ê) such that

dσ ∗βψ = q∗e
(
Ê,∇ Ê). (9.68)
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Proof. The proof of the first part of our theorem is formally the same as the proof of

Theorem 1.15. Instead of using the fact that R is G-invariant, so that its derivative

vanishes when it is evaluated on commutators, we use instead the fact that Tr is a trace

on the algebra A, so that (9.38) holds. When combined with (9.61), we get the first part

of our theorem.

Now, we establish (9.65). We denote with subscripts H, V differentiation on T HN , TR N .

Then

∇ Êσβ = ∇ Ê
Hσβ +∇ Ê

V σβ . (9.69)

The term ∇ Ê
Hσβ is responsible for the appearance of ∇ Ê⊗A,uβ when evaluating the

right-hand side of (9.65). So we concentrate on ∇ Ê
V σβ . Set

iXσβ = ê i iXβ (̂ei ). (9.70)

By (9.25), we get

∇ Ê
V σβ = iXσβ ξ

V . (9.71)

Now, we proceed exactly as in (1.99)–(1.101), and we get (9.65).

The first identity in (9.66) is obvious, and the second identity follows from

Proposition 9.11. Equation (9.67) is trivial. Equation (9.68) follows from (1.78). The

proof of our theorem is completed.

9.5. The forms ct , dt on M

We make the same assumptions as in §§ 2.1 and 2.2 in the context of § 9.4. Also, we

take Ê to be the Euclidean vector bundle T̂ X as in § 2.3. We denote by ϑ̂ the section

of T̂ ∗X ⊗A that is obtained by restriction of ϑ to T X ' T̂ X . In what follows, we take

β = ϑ̂ . By (9.59), (9.60), we get

σ
(
A2

t
) = 1

4

〈
ei , RT X e j

〉̂
e i ê j −ϑ∗2+√t∇ T̂ X⊗A,u· ϑ̂ + t |ϑ̂ |2− t ϑ̂∗2,

Lt = ∇ T̂ X⊗A,u· + 2i√t ϑ̂ − ad
(√

t ϑ̂
)
.

(9.72)

By (9.61), we get

Ltσ
(
A2

t
) = 0,

∂

∂t
σ
(
A2

t
) = Lt

ϑ̂

2
√

t
. (9.73)

Let ϑ X be the section of T ∗X ⊗A obtained by restriction of ϑ to T X , and let ϑH be

the section of π∗T ∗S⊗A obtained by restriction of ϑ to T H M , so that

ϑ = ϑ X +ϑH . (9.74)

Recall that T 0 was defined in (2.22). Then T 0 is a section of π∗3·(T ∗S) ⊗̂ 3·(T̂ ∗X) with

values in T X . The properties of iT 0 were briefly described after equation (2.22). Also, the

operator N d was defined in (2.27).

Definition 9.16. Set

L̂t = ∇̂T X⊗A,u + 2i−√tϑ X+ 1
2 T 0 + ad(ϑ)√

t
. (9.75)
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Now, we establish an analogue of Theorem 2.4.

Theorem 9.17. The following identity holds:

σ
(
A2

t
) = 1

4

〈
ei , R̂T X e j

〉
ei e j +∇̂T X⊗A,u(−√tϑ X + 1

2 T 0)
+ ∣∣−√tϑ X + 1

2 T 0∣∣2− t ϑ̂∗2−ϑ∗2−∇̂T X⊗A,u√tϑH − 1
4 d̂ X T̂ H . (9.76)

Moreover, for t > 0,

L̂tσ
(
A2

t
) = 0,

∂

∂t
σ
(
A2

t
) = −L̂t

ϑ

2
√

t
− ϑ̂∗2+ ϑ

∗2

t
, (9.77)

∂

∂t
σ(A2

t )+
1
2t

[
N d , σ (A2

t )
] = −L̂t

ϑ

2
√

t
.

Finally,

−Ltϑ = tL̂t ϑ̂ =
√

t
{
ϑ̂, ϑ

}
,

Lt ϑ̂ + L̂tϑ = 2

(
−√t ϑ̂∗2+ ϑ

∗2
√

t

)
.

(9.78)

Proof. By (9.45), instead of (2.33), we get(∇3·(T ∗M)⊗A,u + iT
)
ϑ = 0. (9.79)

By (9.74), (9.79), instead of (2.34), we get

∇ T̂ X⊗A,u ϑ̂ = −(∇̂T X⊗A,u + iT 0
)
ϑ X −∇̂T X⊗A,uϑH . (9.80)

By (2.26), (9.72), and (9.80), we get (9.76).

Now, we establish (9.77). By (1.73), (9.44), instead of (2.35), we get(∇̂T X⊗A,u + 2i−√tϑ X+ 1
2 T 0

)( 1
4

〈
ei , R̂T X e j

〉
ei e j

+∇̂T X⊗A,u(−√tϑ X + 1
2 T 0)+ ∣∣−√tϑ X + 1

2 T 0∣∣2) = −{ϑ̂∗2,√tϑ X}. (9.81)

By (9.45),

∇̂T X⊗A,u ϑ̂ = 0. (9.82)

By Theorem 9.7, instead of (2.37), we obtain

∇̂T X⊗A,uϑ∗2 = {∇̂T X⊗A,uϑ, ϑ
}
. (9.83)

Instead of (2.38), we have the identity

−2i−√tϑ X+ 1
2 T0
ϑ∗2+

{
ϑ√

t
,

∣∣∣∣−√tϑ X + 1
2

T 0
∣∣∣∣2
}
= 0. (9.84)

By (9.76), and by (9.80)–(9.84), we get the first identity in (9.77).
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By (9.76), we obtain

∂

∂t
σ
(
A2

t
) = − 1

2
√

t
∇̂T X⊗A,uϑ − 1√

t
i−√tϑ X+ 1

2 T 0ϑ − ϑ̂∗2, (9.85)

which is equivalent to the second identity in (9.77). The third identity in (9.77) follows

from (9.72) and from the second identity in (9.77).

By (9.45), (9.72), we get one identity in the first line of (9.78). By (9.75), (9.82), we

obtain the other identity. By (9.73), (9.77), we get the last identity in (9.78).

Now, we have the analogue of Theorem 2.5.

Theorem 9.18. For any t > 0, the following identities hold:

π∗at = χ(X)Vol(N ), π∗bt = 0. (9.86)

Proof. Using Theorem 9.17, the proof is identical to the proof of Theorem 2.5.

Now, we prove a counterpart to Proposition 2.7. Let γ be the odd form on M ,

γ = −√2πϕTr
[
ϑ exp

(
ϑ∗2

)]
. (9.87)

Proposition 9.19. The form γ is closed. Moreover,

γ = −q∗
[
ϑ exp

(
c1
(
L , gL))]. (9.88)

Proof. By (9.43) and (9.45), the form γ is closed. By (9.11), (9.36), and (9.87), we get

(9.88).

Recall that L was defined in (2.54). Now, we imitate Definition 2.9.

Definition 9.20. Let ct , dt , et be the forms on M ,

ct = −(2π)(m+1)/2ϕTr

[∫ B̂
ϑ exp

(−σ (A2
t
))]

,

dt = −(2π)m/2ϕTr

[∫ B̂ √
t
ϑ ∧ ϑ̂

2
exp

(−σ (A2
t
))]

, (9.89)

et = (2π)m/2ϕTr

[∫ B̂ L
4
√

t
exp

(−σ (A2
t
))]

.

Recall that X̂ is the total space of T̂ X . Then at , bt are forms on X̂ .

We have the following analogue of Theorem 2.10.

Theorem 9.21. The forms π∗ct are odd, they are closed, and their cohomology class does

not depend on t > 0. The forms π∗dt , π∗et are even. Moreover,

π∗c0 = π∗
[
e
(
T X,∇T X )γ ]. (9.90)
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Also,
∂

∂t
π∗ct = 1

t
dπ∗dt ,

(
1+ 2t

∂

∂t

)
ψ√tπ∗et = ψ√tπ∗dt . (9.91)

Moreover,

ct = −q∗
[
ϑσ ∗

ϑ̂
at exp

(
c1
(
L , gL))], dt = −tq∗

[
ϑσ ∗

ϑ̂
bt exp

(
c1
(
L , gL))]. (9.92)

If ϑ̂ is nondegenerate, if K is a compact subset of M, there exists cK > 0, such that,

on K , as t →+∞,

ct = O(e−cK t ), dt = O(e−cK t ), et = O(e−cK t ). (9.93)

Proof. Using Theorem 9.17, and in particular (9.78), the proof of the first part of our

theorem proceeds exactly as the proof of Theorem 2.10. The proof of (9.92) is the same as

the proof of (9.65). Equation (9.93) is trivial. The proof of our theorem is completed.

9.6. The W -invariant

We assume ϑ̂ to be nondegenerate. We identify T̂ X and T̂ ∗X by the metric gT̂ X . By

equation (9.68) in Theorem 9.15,

dσ ∗
ϑ̂
ψ = q∗e

(
T X,∇T X ). (9.94)

By (1.77), by equation (9.65) in Theorem 9.15, and by Theorem 9.18, we get

(πq)∗
[
σ ∗
ϑ̂
ψ exp

(
c1
(
L , gL))] = 0. (9.95)

Definition 9.22. Set

W = −
∫ +∞

0
dt

dt
t
. (9.96)

Theorem 9.23. The following identity holds:

W = q∗
[
ϑσ ∗

ϑ̂
ψ exp

(
c1
(
L , gL))]. (9.97)

The even form π∗W on S is such that

dπ∗W = π∗
[
e
(
T X,∇T X )γ ]. (9.98)

If dim X is odd, the form π∗W is closed, and its cohomology class [π∗W ] ∈ H ·(S,R) does

not depend on (T H M, gT X ) or on infinitesimal variations of the metric gL .

Proof. The first part of our theorem follows from (1.77), from Theorem 9.21, and from

(9.96). When dim X is odd, the right-hand side of (9.98) vanishes. The second part of the

theorem is now obvious.

Remark 9.24. Equation (9.98) for dπ∗W cannot be easily derived from equation (9.68)

for dσ ∗
θ̂
ψ and from the explicit formula (9.97) for W . The results of §§ 2.7 and 2.8 extend

to this more general situation, with similar proofs.
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9.7. The curvature of the unitary connection on F

Recall that G acts on C∞(N , L). Set

F = PG ×G C∞(N , L), F = PG ×G H (0,0)(N , L). (9.99)

Then F , F are complex vector bundles on M , which are equipped with flat connections

∇F ,∇F . Moreover, F is a flat subbundle of F . If s is a smooth section of F , if U ∈ T M ,

then

∇FU s = ∇L
U H

0
s. (9.100)

Moreover, the flat connection ∇F induces a corresponding flat connection ∇F/F on F/F .

We assume here that gT N is an arbitrary Hermitian metric on T N . We equip the fibres

F with the Hermitian metric gF associated with gT N , gL as in (3.3). Let gF be the

corresponding Hermitian metric on F . Let P denote the fibrewise orthogonal projection

F → F .

If U ∈ T M , we define divN (U ) as in (9.4), so that divN (U ) depends on the choice of

gT N . In what follows, we will use the notation dvN for the volume form along the fibres

N that is associated with the symplectic form ξV . Ultimately, our results do not depend

on the choice of gT N , so that the reader may assume, if he/she wishes, that gT N is the

Hermitian metric associated with ξV .

Let F⊥ be the fibrewise orthogonal bundle to F in F . By identifying F⊥ to F/F , F⊥
inherits a flat connection ∇F⊥ . One verifies easily that ∇F⊥ is the orthogonal projection

of ∇F on F⊥. With respect to the splitting F = F ⊕ F⊥, we can write ∇F in the form

∇F =
[∇F α

0 ∇F⊥

]
. (9.101)

We define ω(∇F , gF ) as in (4.4); i.e.,

ω
(∇F , gF

) = (gF )−1∇F gF . (9.102)

Let ∇F ,u denote the unitary connection on F that is defined as in (4.2); i.e.,

∇F ,u = ∇F + 1
2ω
(∇F , gF

)
. (9.103)

We use a similar notation for the vector bundle F . One finds easily that

ω
(∇F , gF) = Pω

(∇F , gF
)
P, ∇F,u = P∇F ,u P. (9.104)

In what follows, [ ]+ denotes an anticommutator.

Theorem 9.25. If U ∈ T M, then

ω
(∇F , gF

)
(U ) = ω(L , gL)(U )+ divN (U ). (9.105)

The curvature ∇F ,u,2 of ∇F ,u vanishes.

Moreover,

∇F,u,2 = − 1
4

[
P
(
ω
(∇F , gF

))
P
]2
. (9.106)

If H is a smooth section of A, then

∇F,u PHP = P
(∇AH

)
P + Pω

(∇F , gF
)
HP − [P 1

2ω
(∇F , gF

)
P, PHP

]
+. (9.107)
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Proof. By (3.3), (9.4), (9.5), and (9.100), we get (9.105). By (4.5), (9.4), (9.5), and

(9.105), we deduce the vanishing of ∇F ,u,2. Equation (9.106) follows from (4.5), (9.104).

The unitary connection ∇F ,u on F is characterized by the fact that ∇F ,u −∇F is a

1-form on M with values in self-adjoint endomorphisms of F . By (9.101), we deduce that

∇F ,u =
[ ∇F,u α/2
−α∗/2 ∇F⊥,u

]
. (9.108)

By (9.103), (9.108), we conclude that

α = −Pω
(∇F , gF

)
P⊥. (9.109)

Now, we establish (9.107). By (9.40), (9.105), we get

∇F ,uH = ∇AH. (9.110)

By (9.108), (9.110), we deduce that

P(∇AH)P = ∇F,u PHP + 1
2 PαP⊥HP + 1

2 PHP⊥α∗P. (9.111)

By (9.109), (9.111), we get (9.107). The proof of our theorem is completed.

9.8. The algebra of Toeplitz operators

Put VC = V ⊗R C. The morphism of Lie algebras H ∈ A→ XH ∈ V extends to a

morphism of Lie algebras from AC into VC. If Y ∈ VC, we denote by Y (1,0), Y (0,1) the

components of Y in T N , T N .

For p ∈ N, when replacing L by L p, we denote with a subscript p the objects that were

considered before.

Given p ∈ N, if A ∈ End(L2(N , L p)), let ‖A‖ be the norm of A with respect to the

Hilbert norm on L2(N , L p). If A is trace class, we denote by ‖A‖1 the norm of A in the

vector space of trace class operators.

Assume that A = Pp APp. Then A is trace class. Moreover,

‖A‖1 6 ‖A‖ dim Fp. (9.112)

By the formula of Riemann–Roch–Hirzebruch, there is C > 0 such that, for p ∈ N,

dim Fp 6 Cpn . (9.113)

By (9.112), (9.113), we get

‖A‖1 6 C‖A‖pn . (9.114)

If H ∈ A, set

‖H‖∞ = sup
z∈N
|H(z)|. (9.115)

Then ‖ ‖∞ is a norm on the bundle A.

First, we describe the formalism discovered by Berezin [2] and Boutet de Monvel and

Guillemin [25] on the definition of Toeplitz operators, and further pursued by Bordemann,
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Meinrenken, and Schlichenmaier [23], Schlichenmaier [45], and Ma and Marinescu [34, 35].

In particular, if H ∈ AC, TH,p denotes the Berezin–Toeplitz quantization of H, which is

given by

TH,p = PpHPp. (9.116)

Note that

‖TH,p‖ 6 ‖H‖∞. (9.117)

In [34, Definition 7.2.1], Ma and Marinescu defined a vector space T of Toeplitz

operators. A Toeplitz operator is a family of bounded operators Tp ∈ End(L2(N , L p)), p ∈
N such that Tp = PpTp Pp, and that there exists a family H` ∈ A, ` ∈ N for which, for

any k ∈ N, there exists Ck ∈ N such that, for any p ∈ N∗,∥∥∥∥∥Tp −
k∑
`=0

TH`,p p−`
∥∥∥∥∥ 6 Ck p−k−1. (9.118)

As in [34], we use the notation

Tp =
+∞∑
`=0

TH`,p p−`+O(p−∞). (9.119)

If we only specify the first k coefficients, the sum
∑+∞
`=0 is replaced by

∑k
`=0.

One result that follows from the above references is that T is an algebra. More precisely,

Ma and Marinescu [34, Theorem 7.4.1] showed that the coefficients of the product of

Toeplitz operators can be computed locally in terms of differential operators acting on

the coefficients H` defining the Toeplitz operators.

In [36, Theorem 0.3 and Remark 0.5], Ma and Marinescu showed that, if H,H′ ∈ AC,

then

TH,pTH′,p = THH′,p + TiξV (X (0,1)H ,X (1,0)H′ )
p−1+O

(
p−2). (9.120)

Let 〈 〉 denote the scalar product on TR N that is associated with the Kähler form ξV . By

(9.120), we deduce that

TH,pTH′,p = THH′,p +O
(

p−1),
[TH,p, TH′,p] = iT{H,H′},p p−1+O(p−2), (9.121)

[TH,p, TH′,p]+ = 2THH′,p − T〈∇H,∇H′〉,p p−1+O(p−2).

When the fibrewise metric gT N is associated with the Kähler form ξV , the first two

equations in (9.121) were first proved by Bordemann, Meinrenken, and Schlichenmaier

[23] using results by Boutet de Monvel and Sjöstrand [26] and Boutet de Monvel and

Guillemin [25].

Moreover, by [34, equation (4.1.84), Lemma 7.2.4], as p→+∞,

Tr[TH,p] = pnTr[H] +O
(

pn−1). (9.122)

Observe that the leading term in (9.122) does not depend on the choice of the metric

gT N on T N .
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Remark 9.26. Let Tr be the bundle of algebras of Toeplitz operators along the fibres

N . Over the manifold M , this is a bundle of infinite-dimensional algebras. There is no

associated underlying bundle of Lie groups. This is why we will have to handle the bundle

Tr with some care.

Recall that T̂ X ' T X . We denote by ω̂(∇F , gF ), d̂ivN the restrictions of

ω(∇F , gF ), divN to T̂ X . If ê1, . . . , êm is an orthonormal basis of T̂ X , set

∣∣ω̂(∇Fp , gFp
)∣∣2 = m∑

i=1

(
ω
(∇Fp , gF)(̂ei )

)2
,

|Tϑ̂−d̂ivN /2p,p|2 =
m∑

i=1

T 2
(ϑ̂−d̂ivN /2p)(̂ei ),p

.

(9.123)

Theorem 9.27. The following identities hold:

ω
(∇Fp , gFp

)
/2p = T−ϑ+divN /2p,p,

ω
(∇Fp , gFp

)2
/4p = pT 2

ϑ−divN /2p,p, (9.124)

1
4p2

∣∣ω̂(∇Fp , gFp
)∣∣2 = |Tϑ̂−d̂ivN /2p,p|2.

If H is a smooth section of A, then

∇Fp,u TH,p = T(∇A−2pϑ+divN )H,p − [T−pϑ+divN /2,p, TH,p]+. (9.125)

As p→+∞,

ω
(∇Fp , gFp

)
/2p = −Tϑ,p +O

(
p−1),

ω
(∇Fp , gFp

)2
/4p = iTϑ∗2,p +O

(
p−1),

1
4p2

∣∣ω̂(∇Fp , gFp )
∣∣2 = T|ϑ̂ |2,p +O

(
p−1),

∇Fp,u TH,p = T∇A,uH,p +O
(

p−1),
∇Fp TH,p = T∇AC,′H,p +O

(
p−1).

(9.126)

Proof. By (9.34), (9.104), and by Theorem 9.25, we get (9.124), (9.125). By (9.18), (9.35),

(9.40), (9.121), (9.124), and (9.125), we get the first four equations in (9.126). By (9.104),

(9.105), we get

∇Fp TH,p = ∇Fp,u TH,p − p[T−ϑ+divN /2p,p, TH,p]. (9.127)

By (9.121), we find that

−p[T−ϑ+divN /2p,p, TH,p] = Ti{ϑ,H}+O
(

p−1). (9.128)

By (9.53), by the fourth identity in (9.126), by (9.127), and by (9.128), we get the last

identity in (9.126). The proof of our theorem is completed.
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Remark 9.28. Note that the leading terms in the right-hand side of (9.126) do not depend

on the choice of the metric gT N . By (5.3), and by Theorem 9.27, we recover equation

(9.44) for ∇A,u,2, and the flatness of ∇AC,′.
In the general case of nonflat fibrations, Ma and Zhang [37, Theorem 2.1 and Remark

3.1] have announced that the curvature of the natural unitary connection on Fp is a

Toeplitz operator in the sense of [34, Chapter 7].

9.9. The asymptotics of the forms h(∇Fp , gFp )

First, we prove an extension of Proposition 6.1.

Proposition 9.29. As p→+∞,

p−n 1√
p
ψ1/
√

ph
(∇Fp , gFp

) = γ +O
(

p−1). (9.129)

Proof. By (5.6), (5.8), we get

1√
p
ψ1/
√

ph
(∇Fp , gFp

) = (2iπ)1/2ϕTr

[
ω
(∇Fp , gFp

)
2p

exp
(
ω
(∇Fp , gFp

)2
/4p

)]
. (9.130)

Now, we use (9.87), (9.114)–(9.117), (9.121), (9.122), (9.126), and (9.130), and we get

(9.129).

9.10. The spectral gap

We use the same notation as in § 4.2. By [22, Theorem 4.13], instead of (4.11), we get

DX,2 = −1X,u + K X

4
− 1

8

〈
RT X (ei , e j )ek, e`

〉
c(ei )c(e j )̂c(ek )̂c(e`)

+ 1
4

∣∣ω̂(∇F , gF)∣∣2− 1
8
(c(ei )c(e j )− ĉ(ei )̂c(e j ))ω

(∇F , gF)2(ei , e j )

− 1
2

c(ei )̂c(e j )∇T X⊗F,u
ei

ω
(∇F , gF)(e j ). (9.131)

In (9.131), we replace F by Fp. Using Theorem 9.27, and in particular the third identity

in (9.126), we deduce from (9.131) that, if ϑ̂ is nondegenerate, the obvious analogue of

Theorem 4.4 still holds.

9.11. A formula for L F
t

Put

RF = 1
4

〈
ei , RT X e j

〉̂
c(ei )̂c(e j )− 1

4ω
(∇F , gF)2. (9.132)

Set

3F
t = t

K X

16
+ t

8
c(ei )c(e j )RF (ei , e j )+ 1

2
f α f βRF( f H

α , f H
β

)
+
√

t
2

c(ei ) f αRF(ei , f H
α

)+ t
16

∣∣ω̂(∇F , gF)∣∣2− √t
4

f α ĉ(ei )∇T X⊗R F,u
f H
α

ω
(∇F , gF)(ei )
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+ t
32

ĉ(ei )̂c(e j )ω
(∇F , gF)2(ei , e j )− t

8
c(ei )̂c(e j )∇T X⊗R F,u

ei
ω
(∇F , gF)(e j )

− 1
4

z
√

tc(ei )ω
(∇F , gF)(ei )− 1

2
z f αω

(∇F , gF)( f H
α

)
. (9.133)

By [18, Theorem 3.11], [15, Theorem 3.19], instead of (5.67), we get

L F
t = −

t
4

(
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F,u

t/2,ei
− z√

t
ĉ(ei )

)2

+3F
t . (9.134)

9.12. An extension of Theorem 6.5

Now, we extend Theorem 6.5.

Theorem 9.30. As p→+∞,

1√
p
ψ1/
√

ph
(

A′, g
�·(X,Fp |X )
t/p2

) = π∗ct/4 pn +O
(

pn−1),
ψ1/
√

p
1√
t
h∧
(

A′, g
�·(X,Fp |X )
t/p2

) = π∗ 1√
t
dt/4 pn+1+O

(
pn). (9.135)

Moreover, the obvious analogue of (6.24) still holds. If ϑ̂ is nondegenerate, the analogue

of (6.25) also holds.

Proof. As in the proof of Theorem 6.5, we may and we will assume M to be compact.

Let H be a smooth section of A. By (9.117), (9.126), there exists C > 0 such that, for

p ∈ N, ∥∥∥∇Fp,u TH,p
∥∥∥ 6 C. (9.136)

We use the same notation as in § 6.4. As in (6.17), we get

h
(

A′, g�
·(X,F |X )

t

)
= (2iπ)1/2ϕ

∫
X

Trs
[
P F

t (x, x)
]zdvX (x). (9.137)

Put

3p,t = θ1/
√

p3
Fp

4t/p2θ
√

p. (9.138)

By (9.134), as in (6.30), we get

θ1/
√

p L
Fp

4t/p2θ
√

p = − t
p2

(
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R Fp,u

2t/p,ei
− z

2
√

t
√

pĉ(ei )

)2

+3p,t . (9.139)

Let x ∈ M , and let X be the fibre of π containing x . We use the same coordinate

system near x as in the proof of Theorem 6.5, and we use the same trivialization of

R[z] ⊗̂ 3·(T ∗S) ⊗̂ 3·(T ∗X). For p ∈ N, we trivialize the vector bundle Fp on B(x, ε)
using parallel transport for the unitary connection ∇Fp,u along the geodesics centred at

x , so that the identification preserves the Hermitian metric of Fp.

For Y ∈ Tx X, |Y | 6 ε, let HY ∈ AY be the restriction of H to the fibre NY . Then THY ,p
acts on Fp,Y ' Fp,x . By the crucial equation (9.136), for Y ∈ Tx X, |Y | 6 ε, we get

‖THY ,p − TH0,p‖ 6 C |Y |. (9.140)
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If f ∈ C∞(Tx X × Nx , L p), set

Ks( f (Y, z)) = f (sY, z). (9.141)

Put

M
Fp
p,t = K√t/pθ1/

√
p L

Fp

4t/p2θ
√

p K p/
√

t . (9.142)

We make the same Getzler rescaling on the Clifford variables c(e), ĉ(e) as in the proof of

Theorem 6.5. Let N
Fp
p,t be obtained from M

Fp
p,t by this rescaling.

Since the vector spaces C∞(Nx , L p) depend on p, as p→+∞, it is not possible to

give an asymptotic expansion for the operators N
Fp
p,t in a naive sense. However, since the

coefficients of these operators lie in the Toeplitz algebras T√tY/p, the asymptotics will be

ultimately described in terms of the Toeplitz algebra Tx .

Let Opx be the algebra of scalar differential operators on Tx X . Let Bx be the algebra

Bx = Opx ⊗R[z] ⊗̂ 3·(T ∗S) ⊗̂ End(3·(T ∗X)) ⊗̂ End
(
3·(T̂ ∗X)

)⊗ Tx . (9.143)

Our computations will ultimately take place in the algebra Bx .

Let RFp
p,t ,3

Fp
p,t be obtained from RFp ,3

Fp

4t/p2 by the above conjugations, trivializations,

and Getzler rescalings. By (9.132), we get

RFp
p,t = 1

4

〈
ei , RT X√

tY/pe j
〉̂
c1/p(ei )̂c1/p(e j )− 1

4ω
(∇Fp , gFp

)2√
tY/p. (9.144)

By (9.133), when evaluating the tensors at
√

tY/p, we get

3
Fp
p,t = 4t

K X

16p2 +
t

2p2 ct/p(ei )ct/p(e j )R
Fp
p,t (ei , e j )+ 1

2p
f α f βRFp

p,t
(

f H
α , f H

β

)
+
√

t
p3/2 ct/p(ei ) f αRFp

p,t
(
ei , f H

α

)+ t
4p2

∣∣ω̂(∇Fp , gFp
)∣∣2

−
√

t
2p3/2 f α ĉ1/p(ei )∇T X⊗R Fp,u

f H
α

ω
(∇Fp , gFp

)
(ei )

+ t
8p2 ĉ1/p(ei )̂c1/p(e j )ω

(∇F , gF)2(ei , e j )

− t
2p2 ct/p(ei )̂c1/p(e j )∇T X⊗Fp,u

ei ω
(∇Fp , gFp

)
(e j )

− 1
2p3/2 z

√
tct/p(ei )ω

(∇Fp , gFp
)
(ei )− 1

2p
z f αω

(∇Fp , gFp
)(

f H
α

)
. (9.145)

In what follows, the tensors will be evaluated at x . We use the same conventions as in

§ 9.8. By (9.34), by Theorem 9.27, and by (9.140)–(9.145), as p→+∞,

3
Fp
p,t = 1

4

〈
ei , RT X e j

〉̂
e i ê j + T−iϑ∗2+√t∇ T̂ X⊗A,u ϑ̂+t |ϑ̂ |2+i t ϑ̂∗2+zϑ,p

+ (1+√t |Y |)O(p−1). (9.146)

Incidentally, observe that, by using higher-order versions of the fourth equation in (9.126)

and taking a Taylor expansion, one verifies easily that 3
Fp
p,t lies in the Toeplitz algebra

Tx , so that (9.146) gives its expansion to order 0.
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Let E
Fp
p,t be obtained from the first term in the right-hand side of (9.139) by conjugation

by K√t/p and by doing the above Getzler rescalings. We claim that, as p→+∞,

E
Fp
p,t = −1T X + |Y |O(p−1), (9.147)

the last term in the right-hand side of (9.147) containing differentiation up to order 2
on Tx X , the uniform bound O

(
p−1) only referring to the part acting on Fp,x . To obtain

(9.147), we use in particular (5.3) and the second identity in (9.126).

Set

N
Fp
p,t = −1T X + 1

4

〈
ei , RT X e j

〉̂
e i ê j + T−iϑ∗2+√t∇ T̂ X⊗A,u ϑ̂+t |ϑ̂ |2+i t ϑ̂∗2+zϑ,p. (9.148)

By (9.139), (9.146), and (9.147), as p→+∞,

N
Fp
p,t = N

Fp
p,t +

(
1+√t |Y |)O(p−1). (9.149)

Equation (9.149) can be viewed as the expansion of N
Fp
p,t ∈ Bx , with the conventions of

Ma and Marinescu in [34, Chapter 7].

Set

O
Fp
p,t = i−N

d/2 N
Fp
p,t i

N d/2. (9.150)

By (9.72), (9.148), we get

O
Fp
p,t = −1T X + Tσ(A2

t )+ z√
i
θ,p. (9.151)

Also,

exp
(−O

Fp
p,t
) = exp

(
1T X ) exp

(−Tσ(A2
t )+ z√

i
θ,p
)
. (9.152)

Let exp(−O
Fp
p,t )(Y, Y ′) be the smooth kernel of the operator exp(−O

Fp
p,t ) with respect to

the volume form dY ′. By (9.152), we deduce that

TrFp

[∫ B̂
exp

(−O
Fp
p,t
)
(0, 0)

]
= (4π)−m/2TrFp

[∫ B̂
exp

(−Tσ(A2
t )+ z√

i
θ,p
)]
. (9.153)

Given p ∈ N, we have the identity of operators acting on Fp,x ,

exp
(−Tσ(A2

t )+ z√
i
ϑ,p
) = +∞∑

k=0

(− Tσ(A2
t )+ z√

i
ϑ,p
)k

k! . (9.154)

By (9.117), (9.120), there exists C > 0 such that, for k ∈ N, p ∈ N∗,∥∥∥(−Tσ(A2
t )+ z√

i
ϑ,p)

k − T(−σ(A2
t )− z√

i
ϑ)k ,p

∥∥∥ 6 C
k
p
. (9.155)

By (9.154), (9.155), we find that∥∥∥exp(−Tσ(A2
t )+ z√

i
ϑ,p)− Texp(−σ(A2

t )− z√
i
ϑ),p

∥∥∥ 6 C
p
. (9.156)
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By (9.114), (9.156), we get

p−n
∥∥∥exp(−Tσ(A2

t )+ z√
i
ϑ,p)− Texp(−σ(A2

t )− z√
i
ϑ),p

∥∥∥
1
6

C
p
. (9.157)

Using (9.122), we get

p−nTrFp

[∫ B̂
Texp(−σ(A2

t )− z√
i
ϑ),p

]

= Tr

[∫ B̂
exp

(
−σ(A2

t )−
z√
i
ϑ

)]
+O

(
p−1). (9.158)

By (6.56), (9.89), (9.149), (9.153), and (9.158), as long as the proper localization and

limit arguments are established, we get the first identity in (9.135). In what follows, we

concentrate on the proof of these arguments.

First, we prove that the asymptotics of the integral in the right-hand side of (9.137)

can be localized near any x ∈ X . By (9.120), by Theorem 9.27, and by (9.132), (9.133),

given t > 0, there is C > 0 such that, for p ∈ N∗,∥∥∥θ1/
√

p3
Fp

4t/p2θ
√

p

∥∥∥ 6 C. (9.159)

Let pt (x, x ′) be the smooth kernel associated with the scalar heat operator exp(t1X ).

Using Kato’s domination principle and (9.159), there exists k ∈ N such that, for p ∈ N∗,∥∥∥P
Fp

4t/p2(x, x ′)
∥∥∥ 6 Cp4t/p2(x, x ′)pk . (9.160)

By (9.114), (9.160), we get∥∥∥P
Fp

4t/p2(x, x ′)
∥∥∥

1
6 Cp4t/p2(x, x ′)pn+k . (9.161)

Also, there are constants c > 0,C > 0 such that, for 0 < t 6 1, p ∈ N,

pt/4p2(x, x ′) 6 C(p2/t)m/2 exp(−cp2d2(x, x ′)/t). (9.162)

By (9.160)–(9.162), we get∥∥∥P
Fp

4t/p2(x, x ′)
∥∥∥

1
6 Cpm+n+k t−m/2 exp(−cp2d2(x, x ′)/t). (9.163)

By (9.163), we deduce easily that, given x ∈ X , the integral in (9.137) can be localized

near x ∈ X . As in the proof of Theorem 6.5, this means that, to compute the asymptotics

as p→+∞ of (9.137), we may as well fix x ∈ X , and replace near x the fibre X by

Tx X . Similarly, we may as well assume the projection q : N |X → X maps to Tx X . We

will still denote by P
Fp

t (Y, Y ′), Y, Y ′ ∈ Tx X the heat kernel associated with the operator

exp(−L
Fp
t ). We make exactly the same change of coordinates as in (9.142) and the same

rescalings as before. The major difference is that the coordinates are now taken in Tx X ,

so that they are globally defined on Tx X .
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For s > 0, let Q
Fp
p,t,s(Y, Y ′), Q

Fp
p,t,s(Y, Y ′), Y, Y ′ ∈ Tx X be the smooth kernels associated

with the operators exp(−s N
Fp
p,t ), exp(−s N

Fp
p,t ) with respect to the volume dvT X (Y ′). We

claim that, for s > 0, as p→+∞,∥∥∥(QFp
p,t,s − QFp

p,t,s

)
(Y, Y ′)

∥∥∥ = O
(

p−1), (9.164)

and that, in (9.164), O
(

p−1) is uniform for bounded Y, Y ′. If Fp was not depending on

p, so that the kernels in (9.164) act on a fixed vector space Fx , (9.164) would just follow

from simple uniform estimates on the kernels, from (9.149), and from Duhamel’s formula.

The main difficulty here is that Fp changes with p. However, the estimates in (9.146),

(9.147) that are uniform in p ∈ N are enough to establish (9.164).

By (9.164), we get ∥∥∥(QFp
p,t,s − QFp

p,t,s

)
(0, 0)

∥∥∥ = O
(

p−1). (9.165)

Recall that the functional T̂rs was defined after (6.56). We extend T̂rs to a map T̂rs
Fp =

T̂rs⊗TrFp . By (9.114), (9.165), we find that

p−nT̂rs
Fp [(QFp

p,t,s − QFp
p,t,s

)
(0, 0)

] = O
(

p−1). (9.166)

By proceeding as in the proof of Theorem 6.5, and using (9.89) and the above

arguments, we get the first identity in (9.135). As in the proof of Theorem 6.5, the

second identity in (9.135) is a consequence of the first one.

The arguments that are needed to establish the analogue of equations (6.24) and (6.25)

are essentially the same as in the proof of Theorem 6.5, once the above convergence results

are taken into account. The proof of our theorem is completed.

Remark 9.31. Let π̂ : X̂ → X be a Galois cover of X as in § 6.6. Then the obvious analogue

of the results of that subsection still hold. The arguments needed in the proof are the

ones that are used in § 6.6 as well as in the proof of Theorem 9.30.

9.13. The asymptotics of the analytic torsion forms

We still assume ϑ̂ to be nondegenerate. Now, we establish the obvious extension of

Theorem 7.1.

Theorem 9.32. As p→+∞,

p−n−1ψ1/
√

pTh
(
T H M, gT X ,∇Fp , gFp

) = π∗W +O
(

p−1). (9.167)

Proof. Using Theorem 9.30 instead of Theorem 6.5, the proof of our theorem is essentially

the same as the proof of Theorem 7.1. Let us now give some extra details.

We still have to establish the two identities in equation (7.4). The proof of the first

identity is exactly the same as in § 7.2, using the analogue of Theorem 4.4 that was

established in § 9.10. As to the proof of the second identity, we still write equation (7.13).

By Theorem 9.30, equation (7.14) still holds. Once the analogue of (7.15) is established,

by Theorem 9.30, we get the analogue of (7.16), which concludes the proof of our theorem.
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The estimate (7.15) can be proved exactly as in § 7.3. This completes the proof of our

theorem.

Remark 9.33. The extensions of the results obtained in Remark 7.3 and in §§ 7.5 and 7.6

still hold. Indeed, by Ma and Marinescu [36, Theorem 0.3 and Remark 0.5], when L ′ is

a holomorphic vector bundle on N , when replacing L p by L p ⊗ L ′, the obvious analogue

of equation (9.120) holds. Moreover, by [34, equation (4.1.84), Lemma 7.2.4], equation

(9.122) still holds, when multiplying the right-hand side by dim L ′.

9.14. The case of reductive groups

The case that was considered in §§ 2, 6, and 7 is a special case of what was done in the

present section. Indeed, under the assumptions of the above subsections, the line bundle

L on N is canonically equipped with a metric gL . Then, if c1(L , gL) is the corresponding

first Chern form of L that is defined as in (9.10), using the notation of §§ 1 and 2, we get

κ = c1
(
L , gL). (9.168)

If A ∈ u, the vector field AN on N is the Hamiltonian vector field associated with the

Hamiltonian 2π〈µ, A〉 in the sense of Definition 9.1. By (1.21), (9.30), if A, B ∈ u,

{〈2πµ, A〉, 2π〈µ, B〉} = −2π〈µ, [A, B]〉. (9.169)

The − sign in (9.169) is related to the fact that A→−AN is a morphism of Lie algebras.

We have the identity

ϑ = 2π
〈
µ, iθp

〉
. (9.170)

By (9.169), (9.170), we get

ϑ∗2 = 2π
〈
µ, θp,2

〉
. (9.171)

By (9.170), we obtain

ϑ̂ = 2π
〈
µ, i θ̂ p

〉
. (9.172)

By (1.25), (9.172), we find that

σθ̂ p = σϑ̂ . (9.173)

From (9.173), we deduce that θ̂ p is nondegenerate in the sense of Definition 1.1 if and

only if ϑ̂ is nondegenerate in the sense of Definition 9.13.

By comparing Theorems 2.10 and 9.21, and also 2.12 and 9.23, and using (9.170), it is

clear that the forms that were obtained in § 2 are special cases of the forms obtained in

the present section.

Index

‖A‖1, 334

‖A‖, 334

A, 324

A , 234

AC, 326

AN , 234

analytic torsion forms, 275

At , 241
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At , 238

at , 241, 253, 328, 331

at , 243, 328

A U , 234

B, 231

b, 307

Berezin integral, 235

bt , 241, 253, 328, 331

bt , 243, 328

cV
1
(
L , gL), 322

ĉ(Ê), 232

ĉ
(̂
e
)
, 233

c(Ê), 232

c
(̂
e
)
, 233

χ(X, F), 273

Cg, 301

Cg,E , 302

Cg,H , 301

Cg,H,E , 302

Cg,X , 304

Ck, 301

Ck,E , 302

c1
(
L , gL), 261, 322

χp, 264

ĉs
(̂
e
)
, 239

ĉs(e), 285

cs(e), 285

ct , 253, 283, 331

CF
t , 280

χ
(
X
)
, 251

δa , 239

dGC , 287

divN (U ), 321

dt , 253, 283, 331

DF
t , 280

dvN , 325

dvX , 248, 267

DX , 267

DX , 304

d X , 267

1X,u , 267

e
(
Ê,∇ Ê), 237

et , 253, 331

η, 234, 260

F , 266, 333

F, 280

F , 333

F , 279

ϕ, 242, 273, 307

ϕ, 328

Fp, 268

G, 231

γ , 252, 331

g, 231

GC, 232

gC, 232

γ̃ (h, h′), 253

Gr , 236

gr , 236

gT X
t , 272

‖H‖∞, 334

h, 307

h
(

A′, g�
·(X,F |X )

t

)
, 273

H (GC), 265, 279{
H,H′

}
, 324

H (N ), 234
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h∧
(

A′, g�
·(X,F |X )

t

)
, 274

H ·(X, F |X ), 267∫ B̂
, 235

J1
(
Y k

0
)
, 305

K , 231

κ, 243, 343

k, 231

κk, 302

κp, 302

Ks,a , 285

K X , 267, 277

L, 253, 310, 331

3, 278

LL
A, 261

3F
t , 337

L Fp , 293

3p,t , 284

L t , 277

Lt , 240, 248, 327, 329

L̂t , 250, 329

LF
t , 280

L F
t , 278

LU H , 247

LX,F , 304

m, 246, 300

m′, 300

MF
p,t , 285

µ, 234, 260

N , 243, 321

∇AC,′, 326

∇AC,u , 326

∇A, 325

∇T X , 247

∇A,u , 325

N d , 250, 329

∇F , 333

∇F ,u , 333

∇F , 333

∇F , 280

∇F, f , 300

NF
p,t , 285

NF∞,t , 285

∇F,u , 280

∇F ,u , 280

∇gr ,u , 237

N3·
(

T ∗M
)
, 250

1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X), 277
1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F,u , 277

1∇π∗3·(T ∗S) ⊗̂ 3·(T ∗X)⊗R F,u
t , 277

N3·
(

T̂ ∗X
)
, 250

∇3·(T ∗X) ⊗̂ R F,u , 271

∇L ,u , 321

∇�·(X,F |X ), 271

ωA, 235

o(Ê), 235, 241

O
(
e−cK t), 244

ω
(∇F , gF), 267

ω
(∇F , gF

)
, 333

ω
(
L , gL), 321

O(pk), 279

Op, 280

o(T X), 255

�·(X, F |X ), 267

P, 262

p, 231
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Pf, 236

P ′G , 280

PGC , 279

ψ , 242, 328

ψa , 239, 272

PT X , 246

Pt (x, x ′), 305

Q, 280

R, 277

RF , 337

R, 284

R(A), 234

Ra,b(A), 313

RF,u , 267

RF ,u , 280

r L , 261, 321

r L ,u , 321

ρp, 263

RT X , 248

S, 247

S, 236, 323

S ′, 248

σ , 232, 233

s, 322

σ
(
A2

t
)
, 238, 327, 329

σβ , 235, 243, 327

Sg, 232

σθ̂ p , 253

T , 247, 307

2, 268

T , 323

t, 307

T 0, 249, 329

θa , 277

θg, 237, 300

T H , 246

T̂ H , 249

Th
(
T H M, gT X ,∇F , gF), 275

ϑH , 329

2, 231

T 0
h (g

T X ,∇Fp , gFp ), 290

2k, 237

T H M , 246

T HN , 322

T H
0 N , 321

TH,p, 335

2k, 300

θk, 237, 300

θ̂ p, 248

θp, 237, 300

Tr , 336

Tr0[Q], 290

Tr[H], 325

Trs, 230

Trs
[1][exp

(−t DX,2/2
)]

, 305

T̂rs, 288, 342

ϑ(s), 276

ϑ X , 329

U , 232

u, 232

Ug, 232

U H , 246, 322

URgC, 280

V, 324

Vol(N ), 325

W , 255, 332

Wa,b, 313

X̂ , 253, 331

XH, 323

ξ , 322
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pp. 43–72 (Soc. Math. France, Paris, 1976), MR 0420729 (54 #8741).

2. F. A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175,

MR 0395610 (52 #16404).

3. N. Bergeron and A. Venkatesh, The asymptotic growth of torsion homology for

arithmetic groups, J. Inst. Math. Jussieu 12(2) (2013), 391–447, MR 3028790.

4. N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, in Grundl.

Math. Wiss. Band 298 (Springer, Berlin, 1992), MR 94e:58130.
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19. J.-M. Bismut, X. Ma and W. Zhang, Opérateurs de Toeplitz et torsion analytique

asymptotique, C. R. Math. Acad. Sci. Paris 349(17–18) (2011), 977–981.
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