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Introduction

Real analytic torsion is a spectral invariant of a compact Riemannian manifold equipped
with a flat Hermitian vector bundle; it was introduced by Ray and Singer [44]. For
odd-dimensional manifolds, this invariant does not depend on the metric data. Ray and
Singer conjectured that, for unitarily flat vector bundles, this invariant coincides with the
Reidemeister torsion, a topological invariant. This conjecture was established by Cheeger
[28] and Miiller [41], and extended by Miiller [42] for unimodular flat vector bundles, and
by Bismut and Zhang [22] to arbitrary flat vector bundles. A fundamental property of
these invariants is that they are well defined for manifolds that are not oriented.

The purpose of this paper is to use Toeplitz operators to study asymptotic properties of
the Ray—Singer real analytic torsion [44]. More specifically, if X is a compact Riemannian
manifold, and if F),|,en is a certain family of flat Hermitian vector bundles on X, we
obtain the asymptotics of their Ray—Singer torsion as p — 400. We express the leading
term of the asymptotic torsion as the integral of a differential form that is obtained by a
universal construction that uses the Berezin integral formalism introduced by Mathai and
Quillen [39]. For compact odd-dimensional manifolds, we obtain in this way an infinite
number of invariants that are computable using local data.

Let us now give the background to the results obtained in this paper. For holomorphic
torsion, this study was initiated by Bismut and Vasserot [20, 21]. For real analytic torsion,
Bergeron and Venkatesh [3] have studied the asymptotics of the analytic torsion of
quotients of symmetric spaces by a decreasing sequence of lattices in the underlying
Lie group. Their motivation was to understand the behaviour of the torsion subgroup
in the cohomology of compact quotients. Miiller [43] studied in detail the case where
X is a compact quotient of the three-dimensional hyperbolic space SL,(C)/SU(2), and
Fp, = SPF, where F is the two-dimensional flat vector bundle associated with the
tautological representation of SLy(C) on C2, and S? denotes the pth symmetric power.
The arguments of [43] are based on Selberg’s trace formula. Marshall and Miiller [38] have
used the results of [43] to study the asymptotics of torsion subgroups in the cohomology
of hyperbolic 3-manifolds.

Our approach to the asymptotics of Ray—Singer torsion for the vector bundles F) is
valid for an arbitrary compact manifold X. Moreover, we work in a more general context
than the one above, since we also obtain the asymptotics as p — 400 of the analytic
torsion forms of Bismut and Lott [18]. In that context, let 7 : M — S be a submersion
of smooth manifolds with compact fibre X. Our flat bundles F), are obtained as direct
images by a proper map g : N'— M of the pth power of a holomorphic positive line
bundle L along the compact Kéahler fibre N, under a nondegeneracy assumption that is
ultimately related to geometric quantization, and to the corresponding Toeplitz operators
in the sense of [23, 25, 34].

Let us now give more details on the main points that are covered in the paper.

0.1. The flat vector bundles F),

In the paper, we work under two kinds of assumption. In the first eight sections of
the paper, we assume that G is a reductive Lie group acting holomorphically on the
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manifold N, and that P¢ — M is a flat G-principal bundle on M, so that F, is the flat
vector bundle on M that is obtained via the action of G on H®9(N, L?). Then we can
transfer the analysis of the asymptotic torsion to the fibre bundle Pg, which does not
depend on p. The results are ultimately formulated in terms of generalized characteristic
forms on M, which are expressed in terms of differential operators acting on the Lie
algebra g of G.

In §9, we consider the case where G is an arbitrary Lie group. In this more general case,
the answer is expressed as the integral along the fibre N of an explicit differential form on
N. This differential form is constructed using deformations of the Poisson algebra along
the fibre N. Some key properties of the algebra of Toeplitz operators are used to obtain
the final formula.

0.2. A nondegeneracy condition

In both cases, our main result applies to the family of flat Hermitian vector bundles
Fp|pen under a natural nondegeneracy condition that guarantees that, for p € N large
enough, H' (X, F,) = 0.

Let us give more details when G is a reductive group with Lie algebra g. Let K be a
maximal compact subgroup with Lie algebra €. Let g = p & £ be the Cartan decomposition
of g. Let U be the compact form of G, with Lie algebra u =ip @ ¢. We assume that U
acts holomorphically on N, and that its action lifts to L. Let u: N — u* denote the
corresponding moment map.

Let Pk be a reduction of Pg to the subgroup K. Let 69 be the connection form on the
flat bundle Pg, and let 6% be the connection form on Pk that is induced by 69 via the
Cartan decomposition g = p @ . Let 6® be the p component of 89 on Pg. Then (u,i0)
is a well-defined section of ¢*T*X. Our nondegeneracy assumption says that this section
does not vanish on N.

When (F, VF, gF) is a flat vector bundle on M, an important special case is when N
is the projective bundle PF and L is the canonical hyperplane line bundle on N. In this
case, F, = SPF*. Let w(VFE, gF) be the variation of gf" with respect to the flat connection
V¥ as defined in (5.1). Our nondegeneracy condition says that, if z € PF, the section
(w(VF, gM)z,2)/1z)? of ¢*T*X should not vanish.

In the general case, let g& be a Hermitian metric on the line bundle L on N, and let
TX be another copy of TX. The nondegeneracy condition is equivalent to the fact that
a section o of q*T/*3( does not vanish on A. The section oj is obtained by varying the
metric of L with respect to the flat connection of Pg.

0.3. V-invariant and W-invariant

Our main result states that the asymptotics of the analytic torsion can be evaluated
by integration on X of a locally computable differential form W. Since analytic torsion
verifies natural functorial properties with respect to the composition of submersions, the
integral of W should verify similar properties.

In [16, §3], Bismut and Goette considered a related problem. Namely they gave a
local formula for the difference of two natural versions of equivariant analytic torsion.
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The corresponding local object, the V-invariant, which is naturally associated with a
Killing vector field on X, was shown directly to verify the same functorial properties as
analytic torsion. Its construction relies on the Berezin integral formalism of Mathai and
Quillen [39]. Another copy A (T*X) of A(T*X) is used in the construction. The natural
involution exchanging A (T*X) and A (ﬁ) plays a key role in explaining the properties
of the V-invariant. The intuition given in [16] for the construction of the V-invariant is
that analytic torsion itself can be viewed formally as the V-invariant of the loop space LX
of X equipped with its canonical action of S! by rotations, so that any of its ‘localizations’
has to follow the same algebraic pattern.

The same algebraic formalism reappears here. Our W-invariant is a close analogue of
the V-invariant, which, instead of being associated with a Killing vector field, is now
obtained via the local variation of a nonflat Hermitian metric. The underlying paradigm
is that the analytic torsion of a flat vector bundle can be viewed formally as the pairing
of the V-invariant of LX and the W-invariant of LX. In the context of [16], only the V
part contributes to the localization. Here it is only the W part that contributes to the
large-p asymptotics.

Our construction of the W-invariant in §§2 and 9 is self-contained; it does not
necessitate any knowledge of the V-invariant of [16], and the above considerations on
the loop space will remain in the shadow. The construction is only possible under the
assumption of nondegeneracy. In the case where G is reductive, the W-invariant, defined
in Definition 2.11, is expressed in terms of the action of the heat kernels of certain
operators with constant coefficients on gc acting on the Duistermaat—Heckman integral
[29, 30] on N. For a general Lie group, the W-invariant is obtained in Definition 9.22 as
the integral of a differential form on N. Of course, we show that the two constructions
are compatible.

Let ¢ be the 1-form on A which is minus half of the horizontal variation of the metric
gl with respect to the flat connection, so that og is the restriction of ¥ to q*ﬁ. As we
saw before, the nondegeneracy assumption asserts that the section o does not vanish.
If m = dim X, let ¥ be the (m — 1)-form on the total space of TX \{0} that transgresses
the Euler form e(TX, VIX). Let ¢{(L, g%) be a natural first Chern form for (L, g&). In
Theorems 2.12 and 9.23, we establish the explicit formula

W = g.[0ody exp (ci (L, g7))]- (0.1)

A very special case is when N is reduced to a point, so that (L, VL) is a flat line bundle

on M. If w(VE, gby = (g©)~'VEgL then ¥ = —w(VE, gL)/2 is a closed 1-form on M, and
¥ is its restriction to 7X. By (0.1),

W= 19651//. (0.2)

When m = dim X is odd, then W is a closed form on M. Set TX+ = TX/{9}, and let
e(T X*) be the Euler class of TX*. In this case, by [22, equation (6.20)], the cohomology
class [W] of W is given by

(W] = —3[01Ae(TX1), (0.3)
so that [, x W is the integral over X of a classical cohomology class. When N is arbitrary,
there is no clear cohomological interpretation of W.

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

Asymptotic torsion and Toeplitz operators 229

0.4. Nondegeneracy, Toeplitz operators, and the spectral gap

Under our assumptions of nondegeneracy, we show in Theorem 4.4 and in §9.10 that
the lowest eigenvalue of the corresponding Hodge-de Rham Laplacian Dg’z grows like
p?. This estimate is obtained by giving a lower bound on the constant term of the
Weitzenbock formula for D,),(’z, by expressing this constant term as a Toeplitz operator
acting on C*°(N, LP).

When G is reductive, this is the only use we make of Toeplitz operators. In the general
case, which is dealt with in §9, key results on the algebra of Toeplitz operators play a
much more important role. Subtle properties of the Poisson algebra of the fibres N, which
is a degeneration of the Toeplitz algebra, are used to calculate the W-invariant in this
more general case. Results by Boutet de Monvel and Guillemin [25] on Toeplitz operators,
and further developments by Bordemann, Meinrenken, and Schlichenmaier [23] and Ma
and Marinescu [34, 35] play an important role in the proofs.

0.5. Analytic torsion, analytic torsion forms, and I'-torsion

One reason for working with analytic torsion forms instead of the simpler analytic torsion
is that the formalism incorporates the variation of the usual analytic torsion. As was
shown in [18], the anomaly formulae for the usual Ray—Singer torsion are consequences
of basic properties of analytic torsion forms. Also, the analytic torsion forms formalism
provides a better control of the local cancellations in the small-time asymptotics of
supertraces of heat kernels.

Take the case of one single fibre X, and let X denote a I' cover of X , where T is a
discrete group. Our nondegeneracy assumption also implies a lower bound for the Hodge
Laplacian D;,(’z that grows like p?. For p € N, one can then define the corresponding I’
analytic torsion of X. Modulo O(e™“P), ¢ > 0, the asymptotics of the I analytic torsion are
shown to be the same as the asymptotics of the analytic torsion itself, in close resemblance
with Atiyah’s index theorem for coverings [1].

0.6. Asymptotic torsion and the trace formula

In §8, we relate our methods to the Selberg trace formula as used by Miiller [43], when
X is a compact quotient of a symmetric space. The conditions under which the analytic
torsion associated with our flat bundles vanishes, which are stated in Theorem 8.6 and
Remark 8.7, are still the ones found by Moscovici and Stanton [40], [11, Chapter 7] for
the trivial flat bundle. Also, when X is instead a symmetric space, we use the results of
[11] to compute the asymptotics of the semisimple orbital integrals that are associated
with the heat operator exp(—tD,)f’z/Z). In the case where the flat bundle F is associated
with an irreducible representation of U and with the corresponding coadjoint orbit of
its highest weight XA, a condition on X is given in Proposition 8.12 so that it verifies our
nondegeneracy condition. Moreover, we compute directly the asymptotics of the orbital
integrals as p — +00, and we recover in this special case our asymptotic formula in terms
of Berezin integrals.

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

230 J.-M. Bismut et al.

0.7. The main result

We assume that the nondegeneracy condition is verified. Let 77,(ng, VvEr, g P) be the
Ray—Singer analytic torsion [44] associated with the de Rham complex (Q'(X , Fp), ax )
For the precise definition, we refer to (5.49) and (5.50). Set n = dim N. The main result,
which is established in Theorems 7.1 and 9.32, is as follows.

Theorem 0.1. As p — +o0,
p " (g™ v, gfr) Z/ W +0(p™"). (0.4)
X

Note that, if m =dim X is odd, for any p € N, 7}1(ng, VFP,gFP) is a topological
invariant, so that all the terms in its asymptotic expansion as p — 400 are topological
invariants. Equation (0.4) identifies the first term.

0.8. The organization of the paper

This paper is organized as follows. In § 1, we introduce the Berezin integral formalism.
Also, given a reductive group G, a G-bundle PG on M, and a compact Kéhler manifold
N, under an assumption of nondegeneracy, we construct natural transgressions of the
Euler form of certain vector bundles.

In § 2, given the fibration w : M — S, using the formalism of § 1, we construct the forms
W on M and the corresponding invariants . W.

In §3, given a compact Kahler manifold N, we express certain operators acting on
HOO (N, L) as Toeplitz operators, and we compute the asymptotics of the character for
the action of G on H®9 (N, LP) near the identity in G.

In §4, we obtain an asymptotic estimate for the lowest eigenvalue of certain Hodge
Laplacians.

In §5, we summarize the main results of Bismut and Lott [18] on the odd closed
superconnection forms on S that are associated with a flat vector bundle on M, and the
corresponding even analytic torsion forms on S.

In §6, we compute the leading term in the asymptotics as p — 400 of the above odd
forms that are associated with F,.

In §7, we obtain our main result, which gives the leading term in the asymptotics as
p — o0 of the analytic torsion forms associated with F,.

In §8, we evaluate the asymptotics as p — +00 of certain orbital integrals, and we
relate the asymptotics to the more general results that were obtained in §§6 and 7.

Finally, in §9, we consider the case where G is a general Lie group. We extend the
results of §§ 1-7 to this more general case.

In the whole paper, if E = E; ® E_ is a Z)-graded vector space, and 7 = %1 defines
the Z-grading, if A € End(E), we denote by Trs[A] the supertrace of A; i.e.,

Try[A] = Tr[z A]. (0.5)

The results contained in this paper were announced in [19]. In [19], the normalizations
of differential forms by powers of 2i7r or 27 were eliminated for simplicity.
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1. Multidimensional transgressions of the Euler form

Let M be a smooth manifold, and let (E, gE, VE) be a Euclidean vector bundle with
connection. Let G be a reductive group with compact maximal subgroup K. Let g be
the Lie algebra of G, and let g = p @ ¢ be its Cartan decomposition. Let Pg be a flat
principal G-bundle on M, let Px be a reduction of Pg to a principal K-bundle, and
let g, = p, @t be the corresponding bundle of Lie algebras. If B is a smooth section of
E* ® pr, we construct a family of associated closed forms a; on M, which turn out to be
a natural extension of forms constructed by Mathai and Quillen [39] when G = R.

This section is organized as follows. In § 1.1, we introduce the reductive group G, its
compact form U, its complexification G¢, and the enveloping algebra Ug.

In §1.2, if E is an Euclidean vector space, we recall elementary results on the Clifford
algebras ¢(E), C(E).

In §1.3, we consider the algebra Ug ®'E(E).

In § 1.4, if u is the Lie algebra of U, we consider certain Ad-invariant analytic functions
R(A) on u, and their extension as holomorphic functions on gc. In what follows,
these functions will be obtained as integrals on a compact complex U-manifold N of
Duistermaat—Heckman equivariant forms [5, 29, 30].

In §1.5, we recall simple facts on Berezin integration.

In § 1.6, we introduce the manifold M, and the corresponding geometric data, the vector
bundle E , and the flat principal bundle Pg.

In §1.7, over M, given a section B8 of E*® Py, we construct a superconnection Ay, t > 0,
with coefficients in 'E(E) ® Ug,. Its principal symbol U(.Atz) is a section of A'(E*) ® Sg,.

In §1.8, we obtain cr(.Atz) from .Atz by a rescaling procedure at the identity along the
fibres of Pg xg G.

In §1.9, we establish a Bianchi-like identity for o (A?).

In §1.10, we define the exponential exp(—o (.A,z))7 which should be viewed as a heat
operator acting along the fibres of g,.

In §1.11, we introduce the Mathai-Quillen forms a, on the total space & of E, and the
corresponding angle form —1i.

Finally, in §1.12, we construct the closed forms a; on M, and we evaluate these forms
in terms of the forms ga,.

1.1. Reductive groups

Let G be a connected reductive group, let g be its Lie algebra, and let ® be the Cartan
involution on G. Let K C G be the maximal compact subgroup of G of the points of G
that are fixed by ©®, and let ¢ be its Lie algebra. Let G/K be the associated symmetric
space. Let

g=pot (1.1)
be the Cartan decomposition of g. Let B be a real-valued nondegenerate bilinear
symmetric form on g which is invariant under the adjoint action of G, and also under

®. We may and we will assume that () = —B(-, ®-) is a K-invariant scalar product on
g that is such that (1.1) is an orthogonal splitting. We denote by | | the corresponding
norm.
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Let U be the compact form of G, and let u=ip @ ¢ be its Lie algebra. Let G¢ be
the complexification of G, and let gc = g ®r C be its Lie algebra. Then G¢ is also the
complexification of U, and gc = uc. By [32, Proposition 5.6], G¢ is still reductive, and
G and U are closed subgroups of G¢. Also, U is a maximal compact subgroup in G¢.

If E is a finite-dimensional complex vector space, and if p:U — Aut(E) is a
representation of U, then p extends uniquely to a representation of G, and to a
holomorphic representation of Gg¢. Also, recall that, by Weyl’s unitary trick [32,
Proposition 5.7], if U is simply connected, it is equivalent to consider representations
of G, of U on E, or holomorphic representations of G¢ on E, or representations of g, of
u, or complex representations of gc on E.

Let Ug denote the enveloping algebras of g. Then g is a Lie subalgebra of Ug. Also,
G acts on Ug by the adjoint representation. Moreover, Ug can be identified with the
algebra of real left-invariant scalar differential operators on G. Also, Ug is equipped with
an increasing filtration. Its Gr is the commutative algebra Sg, the symmetric algebra
of g. Moreover, Ug and Sg are canonically isomorphic as Z-graded vector spaces, and
this isomorphism induces the identity on Sg. We denote by o : Ug — Sg the canonical
isomorphism, which is also called the symbol map. For instance, if A, B € g,

o(AB) = $(AB+ BA) + 1[A, B]. (1.2)

Also, Sg can be identified with the algebra of real differential operators with constant
coefficients on g.

In what follows, when we want to emphasize that elements of g are considered as
elements of Ug, and that their products are taken in Ug, they will be underlined. They
will not be underlined in the case where just Lie brackets in g are considered.

Moreover, gc can be identified with the Lie algebra of holomorphic left-invariant
vector fields on G, and the enveloping algebra Ugc with the algebra of left-invariant
complex holomorphic differential operators on G¢, which acts naturally on holomorphic
functions on Gc¢. Similarly, Sgc can be identified with the algebra of complex
holomorphic differential operators on g¢ with constant coefficients, which acts naturally
on holomorphic functions on gc.

Let E be a finite-dimensional complex Hermitian vector space, and let p : U — U(E)
be a unitary representation. We obtain corresponding representations of K, G, G¢. In
particular, p maps ¢ and p to skew-adjoint and self-adjoint elements of End(E).

1.2. Clifford algebras

Let E be a real finite-dimensional Euclidean vector space of dimension m, and let () be
the corresponding scalar product.

Let C(E ) be the Clifford algebra associated with the bilinear form (). Then c(f ) is the
algebra generated by 1, e € E , and the commutation relations

e +ee=—207). (1.3)

Let ?(E) be the Clifford algebra associated with the bilinear form —(), i.e., by just
changing the sign in the right-hand side of (1.3). If € € E, we denote by c(e), c(e) the
corresponding elements in c¢(E), ¢(E).
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The algebras C(E),?(E) are Zp-graded. Also, they are equipped with an increasing
filtration. The corresponding Gr™ is just the exterior algebra A (E) >~ A (E*). In what
follows, we denote by [] a supercommutator.

If¢ e E, let e € E* correspond to ¢ by the metric. Set
cle) =¢e*N—iz, Cle) =e¢*N+ip (1.4)

—~ o~

Ife, f € E, then

[c@.c(D]=-2@F). [@.ahH]=2@F), [c@ aH]=0. (15
The maps ¢ecE—> c(e),c(e) End(A (E*)) extend to representations c : c(E) —
End(A (E*)) T ?(E) — End(A” (E*))
If H e c(E), set
o(H)=C(H)l € A(E"). (1.6)
The map o gives a canonical isomorphism of filtered vector spaces ?(E )~ A'(E *) which
induces the identity at the level of the Gr'. The map o is also called the symbol map.

1.3. The algebra AE)® Ug

The algebra C(E YQ®Ugis a Zp- graded algebra, which is equipped with a filtration. Its Gr
is the supercommutatlve algebra A (E ) ® Sg. By the above, we get a symbol map o :
c(E) QUg— A (E ) ® Sg which is an identification of filtered Z,- graded vector spaces.

Let B € E*®p Then B e E*®g and B € E*®iu. Let 2, .. em be an orthonormal
basis of E, and let 2! ,e" be the corresponding dual basis of E*. Then

Z :3(6’1 (17)

Moreover, 8% € ANE*) @t is given by

B* = 52l [B@). B@))]. (1.8)
Let |8]? € S%g be given by
m
BI> =) B@)*. (1.9)
Then |8 € S%2gN S2u. Also,
B> = —liBI* in S?gc. (1.10)

Let B € E*(X)Ug be given by

Z B@). (1.11)

Then g% € A2(E*) ® Ug coincides with g2 in (1.8). Set

B> = Zﬁ(enz (1.12)
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Then
a(181%) = |BI*. (1.13)

Since B € E* Riu, |E|2 € UgNUu. More precisely,
B> = —lipl* in Ugc. (1.14)

Let ¢(B) € C(E) ® Ug be given by

ap) =) c@p@). (1.15)
i=1
Then
o (c(B)) = B. (1.16)

1.4. A complex G-manifold and the function R

Recall that uc = u@iu. If A € gc = uc, let Im A denote the component of A in iu.

Let A €u— R(A) € C be a smooth function which is the Fourier transform of a
compactly supported finite measure ¥ on u. Then R extends to a holomorphic function
gc — C, and moreover there exist ¢ > 0, C > 0 such that, if A € uc,

IR(A)| < Cexp(c|Im A)). (1.17)

The bounds in (1.17) extend to the derivatives of R of any order. Let </ be the algebra
of such functions, and let 7Y denote the subalgebra of the R € & that are U-invariant.
Then @Y is also the subalgebra of the R € &7 that are Gc-invariant.

Take B € E* ®p as in §1.3. Then —|iB|? € S>u can be viewed as a nonnegative
differential operator on u with constant coefficients.

For t > 0, the operator exp(—t|/3|2) acts on o7. Let C’(u, C) be the vector space
of complex-valued continuous functions on u. By the above, the operator exp(z|if 1)
also acts on CP(u,C). Note that R(A) € & NC’(u,C), and that the actions of
exp(—t|B1%), exp(t]iB|*) on R(A) coincide.

If » € u*, since B € E*®iu, (A, iB) € E*. Let |(, iB)| denote the norm of (A, iB) in E*.
Then exp(2im (A, u)) € &7, and, moreover,

exp (—t|B1%) expim (A, u)) = exp (—4n*t|(1, iB)|*) exp(im (x, u)). (1.18)

Let N be a compact complex manifold of complex dimension n. Let SZ(N) be the
finite-dimensional Lie algebra of holomorphic vector fields on N. Let n be a smooth real
closed nondegenerate (1, 1)-form on N. We assume that the group U acts holomorphically
on N and preserves the form 7. If A eu, let AN € #(N) be the corresponding
holomorphic vector field on N, so that A € u > —AN € J#(N) is a morphism of Lie
algebras. Also, we assume there is a moment map p : N — u* attached to this action
such that, if u € U, then

p(ux) ="Ad" W), (1.19)

and, moreover, if A € u,
d{pn, A) —ignn =0. (1.20)
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By (1.19), (1.20), we deduce that, if A, B € u,
(w.[A, B]) = n(AN, BY). (1.21)
Equation (1.20) is equivalent to

a{u, A) —isvaon =0. (1.22)

Classically, the action of U extends to a holomorphic action of Gc on N. If A € gc, the
corresponding vector field AN € J#(N) is still characterized by (1.22).
If A €u, set

R(A) = f exp(2im (1, A) +1). (1.23)
N
By (1.23), we find that R € &Y. Also, if A €u, R(A) can be computed using the
localization formulae of [5, 29, 30]. By (1.18), (1.23), we obtain

exp(—t|ﬂ|2)R(A)=/ exp (—4n2t|(u,,i,3>|2+2i71(u,A)—i—n). (1.24)
N

Definition 1.1. Let og be the smooth section of E* on N,
og =2 (u,iB). (1.25)
Then B is said to be nondegenerate if o5 does not vanish on N. Equivalently, there exists
a > 0 such that
logl* > a. (1.26)
By (1.24)—(1.26), if B is nondegenerate, there exist ¢ > 0, C > 0 such that, if A € uc,
lexp (—11B1*) R(A)| < C exp(—ta + c[ImA|). (1.27)

1.5. The Berezin integral

Let V be a real finite-dimensional vector space of dimension m’.

Let €1, ..., e, be an orthonormal basis of E ,and let @', ..., 2" be the corresponding
dual basis 0£ E*. Suppose that E is oriented and that ej,...,e, is an oriented basis

of E. Let fB be the linear map from A (V*) ® A'(E*) into A" (V*) such that, if @ €
A(V¥), ' € A(E®),
B
/ aa’' =0 if dega’ < m,
_ (1.28)

(_l)m(m+1)/2

B
A Y A e —
Tm/2

More generally, let o(E) be the orientation line of E. Then f B defines a linear map from
A(VH ® A'(E*) into A (V*) ® O(E), which is called a Berezin integral.
Let A be an antisymmetric endomorphism of E. We identify A with w4 € AZ(E *) that
is given by
wa =% Z (@, Aejyet nel. (1.29)
1<i,j<m
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By definition, the Pfaffian Pf[%] of % is given by

B
/ exp(—wa/2) = Pf[%] . (1.30)

Then Pf [%] vanishes if m is odd. Moreover,
A A7?
det| — | =Pf| — | . 1.31
© |:271:| |:2n] ( )
1.6. The manifold M

Let M be a smooth manifold. Let p: PG — M be a principal G-bundle. From the
embedding G — G, we get a corresponding principal G¢-bundle p : Pg, — M.

Since G/K is contractible, there are smooth sections of the fibre bundle Pg x5 G/K.
Let S be the set of these smooth sections. Then S is an infinite-dimensional connected
Fréchet manifold.

Let h € §. To h corresponds a reduction of the principal G-bundle p : P — M to a
principal K-bundle p : Pk — M. From the embedding K — U, we obtain the associated
principal U-bundle Py. More generally, on M x S, the G-bundle Pg can be reduced to a
K-bundle Pg.

Since G acts on the right on Pg, Ug maps into differential operators acting on the
right along the fibre of Pg.

From the action of G on itself by conjugation, we get the bundle of Lie groups

G, = Pg xg G. (1.32)
The corresponding bundle of Lie algebras g, is given by
8- = PG XG g (1.33)

Moreover, B induces a corresponding bilinear form on g,. Also, G, acts on the left on Pg
by an action which commutes with the right action of G on Pg. The bundle of enveloping
algebras

Ug, = PG xgUg (1.34)

can be identified with the algebra of right-invariant differential operators along the fibres
of G,. Equivalently, it can be identified with the algebra of differential operators along
the fibres of Pg which are invariant under the right action of G. For the identification to
preserve the Lie bracket, A € g, maps into the vector field associated with —A along the
fibre of Pg.

Since

gr = Px Xk g, (1.35)

the scalar product of g induces a scalar product on g,, and the splitting (1.1) of g induces
the corresponding splitting of g,,

gr :prea‘er_ (1.36)
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In what follows, we assume that Pg is equipped with a flat connection. Let 69 denote
the g-valued connection form on Pg. By projection of 89 on € with respect to the Cartan
decomposition (1.1), we get a connection form 6% on Px. If O is the projection of 69 on
p, we have the identity

6% — P +-9t. (1.37)
Similarly, from 69, we get connection forms 6%, 09¢ on Py, Pg.. In what follows, 6 will
be considered as a section of T*M ® p,.
Let ®% be the curvature of the connection 8. Since 9 is flat, from (1.37), we get

e =—1[o7,0%], [d+6". 6"]=0. (1.38)
In what follows, we will write the first equation in (1.38) in the form
ot = —gP2, (1.39)
Moreover,
[67,07%] = 0. (1.40)

Let V9% be the connection on g, which is induced by the connection 6f. This
connection preserves the splitting (1.36) of g,. Moreover, the second equation in (1.38)
can be written in the form

vantgh = . (1.41)

The curvature @ of the connection 6" is given by

o' = 2072, (1.42)

1.7. A superconnection over M

Let (E , gE ) be a real Euclidean vector bundle of dimension m on M, which is equipped
with an Euclidean connection VE, whose curvature is denoted RE.

Let e(g, VE) be the Euler form of (E, VE), and let e(E) be the corresponding Euler
class. Then

e(E, VE) = pf [g} . (1.43)

By (1.30), we can rewrite (1.43) in the form

B TR
e(E,VE)=/ exp (—Z<a,RE?j>?’?f>. (1.44)

We define the bundle of Clifford algebras ?(E ) asin § 1.2, and we use the corresponding
notation.

Let Q be the O(m)-bundle of orthogonal frames in E. Then 0 is equipped with an
so(m)-valued connection form 8% . Since so(m) embeds as a Lie subalgebra of ¢V (R™),
it will be convenient to view #%° as taking values in ¢°V¢"(R™).

Set

RG = PG XM Q (145)
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Then Rg is a G x O(m)-bundle, and 6% 4 6% is a connection form on Rg. Of course,
G can be replaced by any of the groups already considered in §1.1. Let VE®9’ “ be
the connection on E ® gr that is induced by VE Vor-t We still denote by VE®Ou the
corresponding connection on AE)QU 9r-

Let B be a smooth section of E* ® pr. We will use the notation of §1.3. In particular,
€1, ...,en is an orthonormal basis of E and @', ..., @" is the dual basis. Then g2 in (1.8)
is now a section of AZ(E*) ®¢%,, and |B)? in (1.9) is a section of $2g, N S%u,. Moreover,
¢(p) is a section of AE)® Ug,.

Definition 1.2. For r > 0, let A; be the superconnection
Ay = VE®I L fr2(B). (1.46)
Then A; is just the superconnection A; which is associated with the metric gE /t. The
curvature .A,2 is a smooth section of [A (T*M) & ¢(E)]**"® Ug,, and U(.Atz) is a section
of [A(T*M) @ A (E*)]?*" ® Sg,-.
Theorem 1.3. The following identities hold:
[P S O F ~
Al =g (el-, REej>c(ei)C(€j) — 0P — Jic@)VERI g (@)
I ~ o~
+t|g|2+-c(ei)c(?j),sz(ei,ej), (1.47)

(M) = (1 RPE;)e'0) P2 4 VIOt gt 1B 412,

Proof. By (1.39), we get
vE®g 12 _ %(a, R%)?@)ﬁ@) _ P2, (1.48)
The first identity in (1.47) follows from (1.46), (1.48). By applying the symbol map to
this identity, and using (1.13), we get the second identity. O
We will write a(,A%) as a sum of components of degree 0 to 2 in Sg,; i.e.,
2 .
oA =) oA, (1.49)
i=0
By (1.47) and (1.49), we get
o(.A2)(O) i <el R e]>?"é7
o (AHD = —gP2 4 JivESIup 4 g2, (1.50)
o(AD® =11
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1.8. The principal symbol as a rescaled limit

If ¢ € E, the action of 7€) on A (E*) was defined in (1.4). We will not distinguish ¢(e)
from its action on A'(E*).
For a > 0, let ¥, be the automorphism of A" (T*M) that is such that, if « € A1(T*M),

then
Yoo = ala. (1.51)
For s > 0,1 > 0, set
As,t = wﬁAS%WI/ﬁ' (152)
Let N2 E be the number operator of A'(E*). Fors > 0,e¢ E set
@ =5~ g TR, (1.53)
Then |
@ = x?* A+ si. (1.54)
Set A (B A (B¥)
Bey=sN" 7 AN (1.55)
By (1.47), (1.52), and (1.53), we get
S [~ E~\~ o~ o~ E o~
B, = Z<e,~, REej>cs(/e\,~)cS(ej)—s9p’2—«/Ecs(e,-)VEQ;g””s,B(ei)
1S o« o o~ o~
152 IB + S @6 @) @, 7). (1.56)

By identifying Ug, to the algebra of right-invariant differential operators on G,, Bsz’t
can be viewed as a differential operator along the fibres of G,. Similarly, by identifying
Sg, to the algebra of differential operators with constant coefficients on g,, G(A,z) can be
viewed as a differential operator along the fibres of g, .

We use the exponential map to identify a neighbourhood of 0 in g, with a
neighbourhood of 1 € G,. For a € R, if h € C*(g, C), put

8.h(f) = h(af). (1.57)

Of course §, also acts fibrewise on C*°(g,, C).
For s > 0,t > 0, set
Cs,r = 85B;,181/s. (1.58)

Then Cy; can be viewed as a differential operator defined on a neighbourhood of 0 € g.
The same is true for Cszyt.

We will say that a sequence of differential operators with smooth coefficients on g,
converges if the corresponding coefficients converge uniformly on compact sets of the
total space of g, together with their derivatives of any order.

Proposition 1.4. Ass — 0,
2, — o(AD). (1.59)

Proof. We use equations (1.47), (1.54), and (1.56), and we get (1.59). O
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1.9. The Bianchi identity

If A € gr, A and ad(A) act on Sg,, respectively increasing the degree by 1 and preserving
the degree. We use the notation

m

ad(B) = e'ad(B@)). ip= Yy B@)is. (1.60)
i=1

i=1
These operators act as odd derivations of the algebra A (T*M) ® A'(E*) ® Sg,. We still
denote by VE®94 the obvious connection on A (E*) ® Sg, .

Definition 1.5. Let £; be the differential operator

L, = VE®I L 0i 4ot ad(ViB). (1.61)
Theorem 1.6. The following identities hold:
9 B
Lio(AD) =0, —o(A})=L——. 1.62
10 ( l) Bta( ;) t2\/; ( )

Proof. We use equation (1.47) for o (A?). We grade the left-hand side of (1.62) by its
degree in /7. In degree 0, the first identity in (1.62) is trivial. The coefficient of /7 is
given by R ~

—REB+REB—[B,072]—[072, B] =0. (1.63)
The coefficient of ¢ is given by

28@)VERS1B@) — [B, VERI-uB] — 26 VERS1 BG4 [B, VESS 1] = 0.

(1.64)
Clearly,
ad(B)B> = 0. (1.65)
By (1.65), the coefficient of £3/% is given by
ad(B)|B|* +2igB% = 0. (1.66)
This completes the proof of the first identity in (1.62).
By (1.47), we get
a 1 =
—o(A?) = —-VE®eu 2+ 82, 1.67
it A =27 B+IBI"+B (1.67)
which is equivalent to the second identity in (1.62). The proof of our theorem is completed.
O

Remark 1.7. When G =R, (1.62) is an identity of Mathai and Quillen [39, §6]. The
second identity in (1.62) is a consequence of the first one. Indeed, replace M by M x R%..
Over M x {t}, we replace B by +/tB. Let A, be the analogue of A; over the enlarged
space. Then one has the easy identity,

d
o (A) = o (A2) + 2—%/3. (1.68)
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By the first identity in (1.62), we get
—~ 9 )
(v_mﬂr’“ i+ 2 g+ ad(ﬁﬂ)) oA} =0, (1.69)

which gives both identities in (1.62).

Another more geometric approach which we will use later is to keep B fixed, and, over
the ﬁbre M x {t}, to equip E with the metric gE/t We obtain in this way a new metric
on E over M x R’ Then VE +dt(0t 2z) is a Euclidean connection on E. We trivialize
E over R by parallel transport with respect to this Euclidean connection. The ultimate
effect is that once this trivialization is done, B is replaced by +/tB8. We can now proceed
as before.

1.10. The exponential of G(A?)

Let Sg, be the formal completion of Sg,. The exponential exp(—o (.A,z)) lies naturally in
(A(T*M) & A (E*))® ® Sg,. By (1.49), we get

2
exp (—o (AD)) = Hexp (—o(AHD). (1.70)

i=0
Because, for 0<i <1, U(Atz)(i) is of positive degree in A'(T*M)@A'(E*), the
corresponding e/)\(ponential just contains a finite number of terms, and they lie in

A(T*M) ® A (E*)® Sg,. By (1.50),

exp (—G(Atz)(z)) = exp (—t|,3|2). (1.71)
The proper interpretation of exp(—t|8|%) as an operator has been given in §1.4. In

particular, exp(— O’(Az)) acts naturally on the algebra «7Y. More precisely, if R € &Y,
then exp(—o (A?)R(0) € A (T*M) ® A’ (E*).

1.11. The Mathai—Quillen forms g,, b,

In what follows, we identify E and E* by the metric gk

We follow Mathai and Quillen [39]. Let 7 : & — M be the total | space of the vector
bundle E on M. Let Y denote the tautological section of T*E on £ Then t*VEY is a
section of A- (T*E) ®T*E. Let 0(E) be the orientation bundle of E.

For t > 0, set

A, = %(@ R’%)?’?f +oVEVIY 1 72 (1.72)
By [39, §6], we get
(t*VE—i—Zi A)A —0, 2= (r*VE—l—Zi A)i (1.73)
NOG A ’ ot 4 NG zﬁ ’
The identities in (1.73) are special cases of the ones in Theorem 1.6.
Definition 1.8. Let g,, b, be the forms on & with values in O(E),
B By
a, = exp(—A;), b, = ——exp(—Ay). 1.74
a; / p(—=Ay), b, / 27 p(—A;) ( )
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By Mathai and Quillen [39, §6], the form a, is of degree m, it is closed, and its
cohomology class does not depend on ¢, and is equal to t*e(E). Also, the form b, is
of degree m — 1. Finally, by [39, §7], [22, Theorem 3.4], for ¢ > 0, we have the identity

o4, = —db,. (1.75)

The above properties of g,, b, are easy consequences of (1.73).
We embed M into € as the zero set of Y. Let 8y be the current of integration on M.
If K is a compact subset of 5, let || ”C}((S) be a natural norm on the Banach space of

C! forms on & with coefficients in the orientation bundle o(TM) of TM with support
included in K. By [22, Theorem 3.5], if K is a compact subset of £, there exists C > 0
such that, if v is a smooth form on & with values in o(TM), fort > 1,

o
&

Definition 1.9. Let ¢ be the current on & with values in O(E),
+00
v = / byd. (1.77)
0

The restriction of the current i to the sphere bundle of & was first constructed in
[39, §7].

C
< m|lv||cll<(§)' (1'76)

‘fv(at 6M>' vlley @

Now, we follow [22, Definition 3.6].

By [22, Theorem 3.7], we have the equation of currents on f?,
dy = r*e(ﬁ, vf) — Sy (1.78)

Moreover, v is smooth on f\{O}7 and the restriction of —y to the fibres E coincides with
the solid angle form associated with the metric g€.

1.12. The forms a;, b, on M

We use the same notation as in § 1.4. In particular, we take N as in that subsection, and
we assume that R € o7V is given by (1.23).

We fix once and for all a square root (2i7)
this choice.

1/2 of 2i7. Our formulae will not depend on

Definition 1.10. Let ¢ be the endomorphism of A (T*M)®grC which maps « €
AX(T*M) ®g C into 2im) % a.

Definition 1.11. Let o be the even form on M,

a=gR(OP?). (1.79)
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Proposition 1.12. The following identity holds:
a = R(0). (1.80)

Proof. Using (1.40) and the fact that R is Ad-invariant, for s € R, we get

aiexp (s6P2)R(0) = 6P exp (s6™2)R(0)
S

1
= 5(ad@")[67 exp (s672)])R(0) =0, (1.81)
from which we get (1.80). O
Set
N= PK XKN. (1.82)

In (1.82), we can as well replace K by U, G, G¢. Then g : NV — M is a proper submersion
with compact fibre N. Also, from the connection 8% on Pk, we get a horizontal subbundle
THN c TN. The closed 2-form 1 on N can be viewed as a vertical 2-form on N. By
(1.19), u can be viewed as a smooth map from A into g*u. Let ¥ be the 2-form on N,

Kk =n+(w, 072). (1.83)

By (1.20), (1.39), the 2-form « is closed on N.
We still define o as in (1.25). Then op is a smooth section of g*E* on N

Definition 1.13. We will say that g is nondegenerate if og does not vanish on N.

Definition 1.14. For ¢t > 0, set

~

B
a; = Qim)"?g / exp (—a (AD))R(0),
_ (1.84)

B
by = Qim)" D2 / > Jexp( o (AD)R().
Then a;, b, are smooth forms on M, and, mod2, the degrees of a,,b, are equal to
dimE, dimE — 1.
By (1.23), (1.47), we get

B 2 -
a; =/ |:exp <—3—‘ <e,, R eJ)AV7> (exP (_f|ﬂ|2)R> (% —J1vE®Iug 2iﬂtﬁ2):| :

(1.85)

A similar formula can be given for b,. Therefore a;, b, are real forms.

We identify E and E* by the metric gE, so that og is a section of q*E on N. Then
O‘Ec_l,, O‘EQ, are smooth forms on A. By (1.74), we have the identities

B
1 ~
oga, :/ exp (—Z<E,RE6 >Al'7 VE«/_O'/g—l‘|05| )
B 1 oF
Qt—/ 2\/_ xp( <el,R ej>el J— «/_cr/g—t|aﬁ|)

Moreover, ag‘gt is a closed form.

(1.86)
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We will now extend these results to the forms a;, b;. Note that the connection VE®%r-4
on E ®g, lifts to N

If als>0 is a family of smooth forms on M, and if K is a compact subset of M, given
ckx > 0, we will say that, on K, as t — +00, a; = O(e k") if the sup norm of a; and of
its derivatives of arbitrary order over K are O(e™¢k’).

Theorem 1.15. For any t > 0, the form a; is closed, and its cohomology class does not
depend on t > 0. We have the identity

9 db (1.87)
—ay = — . .
Bt t t

The following identities hold:

Br 1 =~ .
o = / [ exp<__(a,REa,>zl?f
L/N 4

(1, 072 = 20 IV ESO g 4 4 ?1p2) — 4|, iﬂ>l2+n)}

BE ¢ amieif) | A (1.88)
by = f / Mexp(__@,REa izt
WIANG 4
n (u P2 _ iz /ivE®sug +4n2zﬂ2> — 47|, iB) 2 + n)}
Moreover,
a; = q*[agg, exp(k)], b= q*[agliexp(/c)]. (1.89)
Also,
ap = e(E, VE)ng(eP’Z) - e(E, VE>q*[exp(K)] - e(E, VE>R(0). (1.90)

If B is nondegenerate, for any compact set K C M, there exists cx > 0 such that, on
K, ast - 400,
a, = O(e™ K", b, = O(e KY). (1.91)

If B is nondegenerate, the Euler class e(E) vanishes. Also, Jg‘w is a smooth (m —1)-form
on N with values in O(E) such that

d(ofy) = q*e(E, vf). (1.92)

Proof. The operator vE®gu +2iﬁﬂ +ad(ﬁ,3) is a derivation acting on the smooth
sections of A (T*M) @ A (E*) ® Sgr. By the first identity in (1.62), we get

(VE®8 424y +ad(ViB) ) exp (~o (A7) = 0. (1.93)

Clearly,

B
f igexp (—o (A?))R(0) = 0. (1.94)
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Moreover, since R is Ad-invariant, we get

B
/ ad(B) exp (—o (A?))R(0) = 0. (1.95)

By (1.84), (1.94), and (1.95), we get

Since g, is obtained from a; by replacing B by 4/t 8, by the universality of the construction
of a;, the cohomology class of a; does not depend on ¢. By the second identity in (1.62), we
get (1.87). Another proof is to observe that, by (1.68), the analogue a; of a; on M x R¥.
is given by
a) =a; —dt Aby. (1.97)
Since a; is closed, from (1.97), we get (1.87).
By (1.47), we get

o (A?) expim (i, A)) = (% <?i, RE@)?i’e‘j

i (M, —oP2 4 JrvE®sug | t,32>+47r2t|(u, i,3)|2>
x expRim{u, A)). (1.98)
By (1.23), (1.84), and (1.98), we get (1.88).

Clearly, VE og is a 1-form on N. This form can be split into its horizontal and vertical
components. Let d¥ i denote the fibrewise derivative of . By (1.25), we get

VEoy = 2m(u, VE®S 1ig) £ 27 (dV u. ip). (1.99)

By (1.20), (1.99), and checking signs carefully, we obtain
VEog = 2m(u, VESI i) — 2mi g yn . (1.100)
Now, we evaluate the integral g, [a;;c_zt exp(x)] using (1.86). By (1.83), (1.100), the only
nonhorizontal form that appears in the exponential is just n+2nﬁi(iﬂ)wn. Using an

elementary reduction of squares, in the fibre integral, the form n +2nﬁi(i5)wn can be
replaced by n —4x25n((B)N, (B)V). By (1.21),

()Y, ip)™) = ~2(u. 7). (1.101)
By (1.101), in (1.89), we can replace n+2nﬁi(iﬁ)Nn by n+ (u, 47%tp?). Therefore, the
right-hand sides of (1.88) and (1.89) coincide.

By (1.30), (1.79), (1.80), (1.85), (1.86), and (1.89), we get (1.90).

If the section og does not vanish, by (1.24)-(1.27), and by (1.85), (1.86), and (1.88)
or (1.89), we get (1.91). Therefore the common cohomology class of the a; vanishes
identically. Since R(0) # 0, by (1.90), the class e(E) vanishes. By the results of §1.11,
and in particular by (1.78), we get the last statement of our theorem, whose proof is
completed. O

Remark 1.16. Our results on the forms a;, b; also follow from (1.75), (1.89).
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2. The W-invariant

Let w : M — S be a projection of smooth manifolds with compact fibre X. We assume
that M is equipped with the same geometric data as in § 1, with E being ﬁ, another
copy of the relative tangent bundle 7' X. The purpose of this section is to construct odd
closed forms m,c; on the base S, and by transgression an even form w,W on S. Also, we
prove the compatibility of the integral mw, W with respect to natural functorial operations,
which make it to behave in a way that is similar to the analytic torsion forms of Bismut
and Lott [18].

This section is organized as follows. In §2.1, we introduce the smooth fibration 7 :
M — S.

In §2.2, we define various tensors associated with the fibration.

In §2.3, in the context of § 1, we take E=TX, B = o,

In §2.4, we exchange the roles of the exterior variables in A" (T*X) and A'(f’-ﬁ?(), SO
as to get refined Bianchi-like identities on U(Atz). We show that ma; is concentrated in
degree 0, and that m,b; vanishes identically.

In §2.5, we construct forms ¢; on M such that m.c; is an odd closed form whose
cohomology class does not depend on ¢.

In §2.6, by transgression of the forms mc;, if 9P is nondegenerate, we obtain an even
form 7. W on S, which is closed if the fibres X are odd dimensional.

In §2.7, we study the behaviour of m,W under adiabatic limits.

Finally, in § 2.8, we study the rigidity of certain cohomology classes under deformation
of the flat connection on Pg.

2.1. A smooth fibration

Let w: M — S be a submersion of smooth manifolds with compact fibre X of
dimension m. Let r be the dimension of §. Let TX C TM be the tangent bundle to

the fibres X.
Let THM c TM be a horizontal subbundle, so that
TM=THM&TX. (2.1)
Let PTX : TM — T X be the projection associated to the splitting (2.1). Observe that
THM ~ 7*TS. (2.2)
By (2.1), (2.2), we have the identification of bundles of algebras
A(T*M) =~ 7*A(T*S) @ A (T*X). (2.3)

IfU e TS, let UM € TH M be the horizontal lift of U, so that m,U” = U.

Definition 2.1. If U, V are smooth sections of TS, set
T#w,v)y=-rP™X[U", vH]. (2.4)

2.2. A metric on TX and the tensors T and §

Let g7X be an Euclidean metric on 7X. In what follows, we identify T7X and T*X by
the metric g7X.
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By [8, §1], (T M, gTX) determines an Euclidean connection V7X on TX. Let g”5 be a
Euclidean metric on T'S. We equip TM with the metric g7 = 7*gTS @ gTX. Let VIM:L
be the Levi-Civita connection on (T M, g7™). Then VI¥ is given by

vIX = pTXyTM.L (2.5)

Note that V7X does not depend on g7*.
Let VTS be the Levi-Civita connection on (T'S, g75). Let VI'™ be the connection on
TM given by
VIM — gxyTS g vTX, (2.6)
Let T be the torsion of VI'M_ Put
§=vIML_yTM (2.7)

Then S is a 1-form on M with values in antisymmetric elements of End(TM). If A, B, C €
TM, then
S(A)B—-S(B)A+T(A,B) =0,

2(S(A)B,C)+(T(A,B),C)+(T(C,A),B)—(T(B,C),A)=0. (28)

By [8, Theorem 1.9], we know that the following hold.

e The connection VI'X and the tensors T and (S(-)-, -) do not depend on g’¥.
e The tensor T takes its values in T X, and vanishes on TX x T X.

e For any A € TM, S(A) maps TX into TH M.

eForany A,Be THM, S(A)B e TX.

eIf AcTHM, S(A)A = 0.

By (2.8), we find that if A e THM, B,C e TX,

(T(A,B),C)=(T(A,C),B) =—(S(B)C, A). (2.9)

If U is a smooth section of T'S, let Lyn denote the Lie derivative associated with the
vector field U on M. Then Lyu acts on the tensor algebra of TX, and this action is
tensorial in U € T'S. In particular, (gTX)_lLUHgTX is a self-adjoint section of End(7 X).

Now, we recall a simple result stated in [9, Theorem 1.1].

Theorem 2.2. The connection VIX on (TX, gTX) is characterized by the following two
properties.

o Along the fibres X, VI is just the Levi-Civita connection of (TX, g%).
e IfU € TS, then

-1
Vih=Lyn+5"%) Lyng™ . (2.10)
IfU,V e€TS, then
r(uf, vy =1"wW,v). (2.11)
IfUeTS, AeTX, then
(U, A) = L") ' Lyng"¥A. (2.12)
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We denote by RTX the curvature of VIX,
Let dvy be the volume form along X. If U € TS, let divx(U) be defined by

Lyndvx =divy(U)dvy. (2.13)

By [13, Proposition 1.4] or by (2.9), (2.12), if ey, ..., ey is an orthonormal basis of T X,
then
divy (U) = —(S(eie;, UY). (2.14)

2.3. The case where E=TX,8=0"

We make the same assumptions as in §§ 2.1 and 2.2. Also, we assume that G is a reductive
group as in § 1.1, and that the formalism developed in §§1.1-1.6 applies to our manifold
M. We will use the notation of these subsections without further mention.

Recall that S denotes the manifold of smooth sections h of Pg xg G/K. Let S’ denote
the manifold of smooth choices (h, T# M, gTX). In what follows, we will often replace
M,Sby M xS, SxS.

In what follows, we fix h € S, so that the principal G-bundle p: P — M can be
reduced to a principal K-bundle p : Px — M.

Let TX be another copy of TX. Let gTX be the metric on TX which corresponds to

g™, and let VvTX be the Euchdean connection correspondmg to VX, We will use the

formalism of §1.7 with (E gf VE) = (TX gTX VTX) We denote by f the Berezin
integral of § 1.5, which maps A (T*M) ® A’ (T*X) into A(T*M) ® o(TX).

Let ey, ..., e, be an orthonormal basis of TX, and let ¢y, ..., ¢, be the corresponding
orthonormal basis of TX. Let f1, ..., fr be a basis of T'S. The associated dual bases will

be denoted with upper indices.
Recall that 6% is a smooth section of T*M ® p,. Set

m r
X _ Zeiep(e,-), gr-H — Zf"‘@p(faH), (2.15)
i=1 a=1
so that
oF = 6P X L oPH, (2.16)
Set o,
0P =) 2'0P(e). (2.17)
i=1

In the context of §1.7, we take
B=0". (2.18)

We can now use the notation and results of § 1, while replacing 8 by or.
By (1.47), (2.18), we get

oA =1 <e,, RTXe >a’af P2 4 VTX®u [P 4 |5P 2 4 10P2. (2.19)
By (1.61), the operator L; is given by

L, = VX0 0 o 4 ad(ViBP). (2.20)
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By (1.62), (2.18), we get

o~

QP
2/

2.4. Exchanging the hatted and unhatted variables

We will exchange the roles of A(T*X) and A'(T/”S(). In particular, A'(f;‘?() will be
considered as the standard exterior algebra of the cotangent bundle T*X of the fibre X.

We denote by d¥ the fibrewise de Rham operator acting on smooth sections of A‘(T/*\X).
Also, m*A(T*S) is treated as a fibrewise trivial vector bundle, so that dX also acts on
smooth sections of T*A (T*S) ® A'(T/*\X).

Let VTX be the restriction of V7¥ to a given fibre. Then VTX is a fibrewise connection
on TX. Its curvature, R\TX, is a smooth section of Az(ﬁ) ® End(T X). The connection
VTX acts on smooth fibrewise sections of A‘(T/*3() ® A (T*X). Tts action on sections of
A'(ﬁ) is just given by the de Rham operator dX. of course, VTX also acts on smooth
sections of T*A(T*S) ® A (T*X) ® A (T*X).

As in [16, equation (3.61)], set

T = LT 1) )& n g a g7,

TO = fYASAT(FH, e).

Li0(A2) =0, %G(A,% =L, (2.21)

(2.22)

Then TH# and dXTH are sections of T*A%(T*S) @ A'(ﬁ). Moreover, TV is a section of
T*A(T*S) ® A (T*X) @ A (TX). We will view T as a section of 7*A (T*S) & A (T*X)
with values in TX. The operator iyo decreases by 1 the degree in A" (T*X), and increases
by 2 the degree in 7*A(T*S) ® A"(T/*\X).

As in [16, equation (3.63)], set

T = (1°, T°). (2.23)
Then
2
2 “ .
TP =" DO (T (£ e).ej)fene | (2.24)
j=1\ I<i<m
1<agr

where the square in the right-hand side of (2.24) is taken in A" (T*S) ® A (T*X). Then
IT9? is a section of A2(T*S) ® AX(T*X).

When identifying TX and T*X by the metric g7X, T9 can be viewed as a section of
T*A(T*S) ® A (T*X) ® A (T*X), which is given by

TO=<T(faH,ei),ej)f°‘ Aelnel. (2.25)

By the above, VTXT0 is well defined.
By [16, Theorem 3.26], we get

%(ei, RTX€j>2i /\'é\. = %(ei, k\TXEj)ei /\ej +§,TXTO + %’T0|2 - %Z{X?H. (226)

If the metric g7 X is replaced by g’ X /¢, equation (2.26) is divided by t.
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Let NA‘(T*M),NA'(T/;}) be the number operators of A (T*M), A'(ﬁ) that act by
multiplication by the corresponding degrees. Set

N = NN T _ AT, (2.27)
Definition 2.3. Let Zt be the fibrewise differential operator

ad(6?)
i

7, = 9TX®0ru +2i—ﬁ9P~X+%T0 + (2.28)

Theorem 2.4. The following identity holds:
G(.Alz) = ;lt(e,-, I/Q\TXej)eiej +§TX®9"’”(—«/EQP’X + %TO)
+[—VI0PX 4 LTOP 4GP — P2 T XD frgh H _LGXTH (9 99)

Moreover, for t > 0, we have the identities

oy 0P ~pn 0P

5a(A,)_ £’2ﬁ+9 +— (2.30)
9 () + N o A2 L

at (A’)+21 [V o (40)] Ltzﬁ'

Finally, the following identities hold:
L:6° =1L,6° = i[6F, 6], (2.31)
~ ~ or2
LOP+L,0° =2(V10P2+— .
Jt
Proof. We use the notation of §2.2. Let VI'™ be the connection on TM that was defined

in (2.6). We still denote by V'™ its action on smooth sections of A"(T*M), which increases
the total degree by 1. Since T is the torsion of VI™ | we have the well-known identity,

dM =vT™ 4 ir. (2.32)

Let VAT'M)®gru e the connection on A (T*M)®g, which is induced by the
connections VI'M ver4 By (1.41), (2.32), we get

(VA-(T*M)®gr,u +ir)e? = 0. (2.33)
By (2.16), (2.33), we get
Vﬁm,,u@\p _ _(§TX®9,.,M +iT0)9p,x _yTX®grugp.H._ (2.34)

By (2.19), (2.26), and (2.34), we get (2.29).
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Now, we establish (2.30). By (1.39), (1.73), we get
(%TX@Q”” +2i_ﬁ0p,x+%T0) (%(ei, ﬁTXej>eiej
+ VTX®u(_ froPX L 1T0) 4| — V167X 4 %TOIZ) = [@”2, \/;ep,X:I_ (2.35)

By (1.41), we obtain
vIiXeeugr =, (2.36)

Moreover,
VIX@srugr2 — [YTX@arugp gv], (2.37)

Also, we have the easy identity

6P 1
—2i p.2 I pX 4 Z70
2i_ sigpxyiy? J{ﬁ" MU

2
} =0. (2.38)

By (2.29), and (2.34)—(2.38), we get the first identity in (2.30).
By (2.29), we obtain

%U(A,Z) = —2%/;6”‘%’"910 —~ %i_ﬁgp_xﬂﬂep +672, (2.39)
which is equivalent to the second identity in (2.30). The third identity in (2.30) follows
from (2.19) and from the second identity in (2.30).

By (1.41), (2.20), we get one identity in the first line of (2.31). By (2.28), (2.36), we
obtain the second identity. By (2.21), (2.30), we get the last identity in (2.31). The proof
of our theorem is completed. O

Let x(X) be the Euler characteristic of the fibre X. By the Chern—Gauss—Bonnet
theorem, we get

X(X) = / e(TX). (2.40)
X

If mis odd, x(X) =0, and (T X) = 0.

Let R € &Y be the function given by (1.23). Recall that, for a € R, the action of ¥, on
A (T*M) was defined in (1.51). We use the same notation for the corresponding action
on A (T*S).

Theorem 2.5. For any t > 0, the following identities hold:
mxa; = X (X)R(0), m.b =0. (2.41)

Proof. To establish (2.41), we may as well replace 2iz by 1 in equation (1.84) for a,, b;.
Let fX denote the standard integral along X, in which the exterior algebra is now

generated by ¢!, ..., @". Let f B denote Berezin integration with respect to the variables
el',...,e". By (1.84), we get
B < B
Tay = n*/ exp (—a (AD))R(0) = (—1)" / / exp (—a (A7) R(0). (2.42)
X

The sign (—1)™ comes from the interchange between the two kinds of integral.
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> Ry = NV (A2 N2, (2.43)
Using (2.42) and the fact that TX and TX have the same dimension, we get
< B
Visay = (—1)" /X/ exp(—R,) R(0). (2.44)
By the third equation in (2.30), and by (2.43), we obtain
%R, = N2 (Z, ;—j;) o (A2 N2, (2.45)
By (2.44), (2.45), for t > 0, we get
d T (B P
S Vi = (—1)m¢ﬁfX/ (ﬁ, 2ﬁ> exp (—a (AD)) R(0). (2.46)
Using (2.30), we can rewrite (2.46) in the form
d CB T er
Dy = )" /X | & [27 exp(—a(A?))] R(O). (2.47)
Since R is Ad-invariant, by (2.47), we get
%x//ﬁn*a, =0. (2.48)
By (2.48), we deduce that, in positive degree, m.a; vanishes, and that
[72a]? = [m,a0]©. (2.49)
By (1.90), (2.40), we get
[ma0]® = 7, [e(ﬁ Vﬁ>]R(0) = x(X)R(0). (2.50)

By the above, we get the first equation in (2.41).

We use the notation in the proof of Theorem 1.15. Then m.a; vanishes in positive
degree. By (1.97), this implies the vanishing of m.b;, which completes the proof of our
theorem. 0

2.5. The forms ¢;,d; on M

Definition 2.6. Set
y = —6F exp (0P2/2im) R(0). (2.51)

Equivalently, we have
y = —(R'(672)2i7), 0%). (2.52)

Then y is a real odd form on M.

Proposition 2.7. The form y is closed on M.
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Proof. This follows from (1.38), (2.51). O

Remark 2.8. By replacing M, S by M x S, S x S, by Proposition 2.7, we also deduce that
the cohomology class [y (h)] € H (M, R) of y(h) does not depend on the choice of & € S.
Moreover, if h, h' € S, there are canonical forms Y (h, h’) € Q (M)/dS2~' (M) such that

dy(h. 1) = y(h') =y (h). (2.53)
Let eq, ..., ey still denote an orthonormal basis of TX. Set
L= iei Ael. (2.54)
i=1
Recall that the map ¢ was defined in Definition 1.10.

Definition 2.9. For ¢ > 0, set

B
o = _(21';1)('"“)/2(;;/ 0% exp (—o (AD))R(0),

6P A
2

B gv
dt:—(2in)’”/2<p/ JiZne exp (— o (A2))R(0), (2.55)

B L
er = im)" g / 2 P (~o (AD)R(O).

Then ¢, d;, e; are smooth real forms on M.

Let X be the total space of TX. Recall that the forms a,, b, on X were defined in
Definition 1.8. By (1.25), a5 is the section of ¢*T*X that is given by

OFp = 2n<,u, i5p>. (2.56)
We identify TX and T*X by the metric gﬁ, so that oz, can be viewed as a section of
q*TX.
Theorem 2.10. The forms m.c; are odd, they are closed, and their cohomology class does
not depend on t > 0. The forms m.d;, me; are even. Moreover,
mico = m[e(TX, VI )y ]. (2.57)

Also,

0

1 0]
Eﬂ*ct = ;d?'[*dt, <1 +2t5> w\/t’ff*et = '(//\/;ﬂ*d[ (258)

The following identities hold:
o = —q[ (1, 2in9p)(a§*pgt) exp(c)], di = —1q:[{u. 2in9p)(a§pl_7t) exp()].  (2.59)

If oF is nondegenerate, and if K is a compact subset of M, there exists cx > 0 such
that, on K, ast — 400,

¢ =0 kY, dy = O(e kY, e = O(e K, (2.60)

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

254 J.-M. Bismut et al.

Proof. It is easy to see that the forms m.c,; are odd. Until further notice, we may as well
make 2iw = 1, so as to disregard the normalization of the forms involving ¢. By (2.20),
(2.21), and (2.31), we get

B
de, = — / Vi[B, 7] exp (—o (AD) R(O). (2.61)

By (2.61), we get

~

B
dmic, = —71*/ Vi[0F, 67 ] exp (—o (AD))R(0). (2.62)

Proceeding as in (2.42), and using (2.62), we obtain

dme; = —(— 1)'"// Gp 6] exp (—O’(A2))R(O). (2.63)

By (2.30), (2.31), we can rewrite (2.63) in the form

~ B
dn*c,z—(—l)’”// tL:[0F exp (—o (A)]R(0). (2.64)
X

Using the Ad-invariance of R, we deduce from (2.64) that

3 B
drm.c; = —(—1)’"/ Exf 16¥ exp (—o (A2))R(0) = 0. (2.65)
X

We have proved that the forms m.c; are closed. By universality, their cohomology class
does not depend on 7. By (2.19), (2.51), and (2.55), we get (2.57).
Now, we proceed as in Remark 1.7, while using the correspondlng notation. Namely,
we enlarge M,S to M xR%, S xR%, and, over M x {s}, we equip TX with the metric
TX /s. In this way, we have a new metric g on the vector bundle TX. Let A, be the
correspondlng superconnection on M X Ri. Set

B
¢ = —/ 0¥ exp (—a (4AD)) R(0). (2.66)

Then ¢, is the analogue of ¢, on M x R .. By the above, the form m,c, is closed on § x R}
Using (1.68), (2.18), we rewrite (2.66) in the form

B
¢ = —f 0¥ exp <—U(A ) — \/_j-s p) R(0). (2.67)

By (2.55), (2.67), we obtain

ds
¢ =Cstt+ 5 Gt (2.68)

Since myc; is closed, by (2.68), we get the first identity in (2.58).
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By proceeding as in the proof of Theorem 2.5, and using (2.30), (2.55), we get

d " T (B L
<1+2t§>¢ﬁn*et:(—l) wﬁ/X/ 5

. d©®)\ [o°
(VTX®Q,,M + 2i_\ﬁ0P»X+%T0 4+ LJ;) I:? exp (—G (A?))] R(O). (2.69)

Since R is Ad-invariant, we can ignore the term % in the right-hand side of (2.69).
Also, by (2.9), (2.22), we get

ipoL = 0. (2.70)
By (2.69), (2.70), we obtain
d B )
(1 +2t§) Vil = wﬁn*/ 5 ignx L) A 67 exp (=0 (AD) R(0). (2.71)
Also,
igpxL =07, (2.72)

By (2.55), (2.71), and (2.72), we get the second identity in (2.58).
By proceeding as in the proof of equation (1.89) in Theorem 1.15, we get (2.59).
IfOF is nondegenerate, by proceeding as in the proof of Theorem 1.15, we get (2.60).
The proof of our theorem is completed. O

2.6. The W-invariant

In this section, we assume that oP is nondegenerate. In particular, equation (2.60) in
Theorem 2.10 holds. Let o(T X) be the orientation bundle of TX. Recall that the form
¥ on the total space of TX \{0} was defined in Definition 1.9. Then aajfpt/f is a smooth
(m — 1)-form on N with values in o(T X). By equation (1.92) in Theorem 1.15,

d(o%,v) = q*e(TX, V') (2.73)
By (1.77), by equation (1.89) in Theorem 1.15, and by Theorem 2.5, we obtain
(J'cq)*[(aei“p w) exp(;c)] =0. (2.74)
Definition 2.11. Set
+oo gt
W= —/ . (2.75)
0 t

Then W is a smooth form on M with values in o(T X).

Theorem 2.12. The following identity holds:

W = gu[ (i, 2im0%)(05, ) exp(x)]. (2.76)
The even form mwW on S is such that
dmW = m[e(TX, V' ¥)y]. (2.77)

If dim X is odd, the form w,W is closed, and its cohomology class [m.W] € H (S, R) does
not depend on (TH M, gTX) or on infinitesimal variations of h.
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Proof. The first part of our theorem follows from (1.77), from Theorem 2.10, and from
(2.75). If m is odd, the right-hand side of (2.77) vanishes, and 7, W is closed. Replacing
M,S by M xS, Sx8, it is also obvious that the cohomology class of 7, W does not
depend on the data. The proof of our theorem is completed. O

Remark 2.13. If dim X is even, by replacing M, S by M x &', § x §’, we deduce from
(2.77) that the infinitesimal variation of 7w, W in Q'(S)/dQ (S) with respect to the data in
&’ can be evaluated in terms of the Chern—Simons secondary classes associated with the
Euler class of TX, and of the secondary class of forms described in Remark 2.8. Details
are left to the reader.

2.7. The forms 7,W and adiabatic limits

Let 7’ : M’ — S be another smooth submersion on S with compact fibre Z. Let 7 : M —
M’ be a smooth submersion with compact fibre Y such that

7 =n't. (2.78)

Then t induces a fibrewise projection X — Z with compact fibre Y. Let i : Y — X be
the obvious embedding. Let g7¥ be the metric induced by g7* on TY, and let T# X be
the bundle orthogonal to TY in TX with respect to g7*X. Then THM @ TH X plays the
role of THM for the submersion 7 : M — M'.

To the projection T : M — M’ we can associate exactly the same objects as we did for
the projection w : M — S. In particular, the form i*0P is the exact analogue of or. If
i*0 P is nondegenerate, then 9P is nondegenerate.

Let g7% be a metric on TZ. For € > 0, let gzx be the metricon TX =TY @ THX,

geTX — Ve éf*gTZ. (2.79)
Assume that i*0 ¥ is nondegenerate. To the projection 7 : M — S, and to (T M, gETX),
we can associate the even form W, on M as in Definition 2.11. Similarly, to the projection
T:M — M and to (THM@THX,g™"), we can associate the even form W on M.
If X is odd dimensional and Z is even dimensional, 7, W is a closed form on M’, and
so ,le(TZ)t W] € H®"(S, R) is well defined. If Z is odd dimensional, e(TZ) = 0. If X
is odd dimensional and Z is odd dimensional, we adopt the natural convention

e(TZ)T,W = 0. (2.80)

As before, convergence of forms means here uniform convergence of the forms and their
derivatives of arbitrary order over compact subsets.

Theorem 2.14. As e — 0, then

We — Wo = t*[e(TZ, VT 4)]W. (2.81)
If X is odd dimensional, then
[ W] =m,[e(TZ)t.W] in H""(S,R). (2.82)
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Proof. We add the extra subscript € to the objects considered in the previous subsections
to mark their dependence on the metric gETX. By (2.75), we get

Too dt
W, =— / @ (2.83)
0

Let d, be the form on M that is attached to  and to (TiMeTHX, gT"). We claim
that, as € — 0, we have the uniform convergence over compact subsets of M x R} of
smooth forms and their derivatives on M of arbitrary order

die 4

- t*[e(T 2, VTZ)]T, (2.84)

and also that, if K C M is compact, there exist cx > 0, Cx > 0 such that, on K, for
t>0,0<e<,
|di ] < Ck exp(—ckt). (2.85)
Then (2.81) follows from (2.84), (2.85). So we concentrate on the proof of these two
equations.
We consider the analogue of equation (2.55) for die. Let ej,...,e, be an
orthonormal basis of TY, and let e,/ 11, ..., en be an orthonormal basis of TZ. Then
el, ..., ey, ﬁe;’/+1, e, ﬁenﬁl is an orthonormal basis of T X with respect to the metric

gIX. Let fB’Y, fB’Z denote the Berezin integrals on A (T*Y), A (T*Z) with respect to
the metrics g7¥, g7%. Let feB denote the Berezin integral on A'(T/*\X) with respect to the

metric g7 X. One has the obvious formula

B , B)Y rB.Z
/ = elm=m )/2/ / . (2.86)
€

Let VGTX be the Euclidean connection on TX attached to (T7 M, gETX), let VI'Y be
the Euclidean connection on TY attached to (THM @ THX, g™?), and let VT4 be the
Euclidean connection on T Z attached to T# M’, gT#. By proceeding as in [6, pp. 116-117],
[12, §1.2], as € — 0, we have the convergence of connections on TX =TY @THX ~
TY®T*TZ,

TX TX vIr o x

In (2.87), the precise value of * is irrelevant.
Moreover, as € — 0, one has the easy

6%7 > |i*6* (2.88)
and also
67> > |i*6* > 0. (2.89)
Using (2.19), (2.55), and the above considerations, it is now easy to get (2.84) and
(2.85). We have completed the proof of (2.81).

If X is odd dimensional, by Theorem 2.12, the cohomology class of 7,W does not
depend on (TH M, g7¥). By (2.81), as € — 0, we get

W — wi[e(TZ, V%), W], (2.90)
from which we get (2.82). The proof of our theorem is completed. O
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Remark 2.15. If X is even dimensional, by Theorem 2.12 and Remark 2.13, in
Q(5)/d2~1(S), the dependence of 7, W on the metrics can be explicitly calculated in
terms of secondary classes. By proceeding as in the proof of Theorem 2.14, we can give
an explicit formula for m,W —x.[e(TZ, VI ), W] in Q'(S)/d2~'(S) in terms of such
secondary classes. Details are left to the reader.

Let THM’ be a horizontal subbundle of TM’, and let g7 be a metric on TZ. Let
p’: P, — M’ be a principal G-bundle having the same properties as p : P — M. We
denote with a prime the objects constructed before that are associated with the projection
7’. We assume that

Pg = ‘L’*P(/;. (2.91)

Then
9P =% ¥, (2.92)

If 6" is nondegenerate, then 8 P is nondegenerate.

Assume that  *' is nondegenerate. Let W’ be the form on M’ that is associated with
(THM', gT%). For € > 0, we equip TX = TY & TH X with the metric g7%€ that is given
by

gTX,e — 6ng/ o ‘L'*gTZ. (293)

Let W€ be the form on M that is associated with (TH M, gT%-€).
Theorem 2.16. As e — 0, then
wé > WO =e(ry, VI w'. (2.94)
If X is odd dimensional, then
[T W] = x(V)[7,W'] in H¥"(S,R). (2.95)

Proof. We add the extra superscript € to the objects considered in the previous
subsections to mark their dependence on the metric g7%€. By (2.75), we get

+o00 dt
we = — / iy (2.96)
0 t

We claim that, as € — 0, we have the convergence of forms

&

dé
— = e(TY, VTY)I*T’, (2.97)

and also that the analogue of (2.85) holds; i.e., for t > 0,0 <€ < 1,

|df | < Ck exp(—ck1). (2.98)
Then (2.94) follows from (2.97), (2.98). Now, we will prove these two equations.
Note that
g"Xe =eglX. (2.99)
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We use the same notation as in the proof of Theorem 2.14. Let fB’E be the Berezin
integral on A (T*X) with respect to the metric g7 *¥:¢. Instead of (2.86), we get

B,e ) BY Bz
/ =e—’"/2/ / . (2.100)

By (2.99), VI is the connection on T X that is associated with (g7%€, TH# M), and (2.87)
still holds. Also, by (2.92),

67|97 = <*[6v' . (2.101)

Using (2.19), (2.55), and the above considerations, we get (2.97), (2.98).
If X is odd dimensional, proceeding as in the proof of Theorem 2.14, and using (2.94),
we get
(7 W] = n,[t[e(TY, VIV)]W'] in H®'(S, R). (2.102)

By (2.102), we get (2.95). The proof of our theorem is completed. O
2.8. Rigidity

Up to now, the flat structure on the principal G-bundle Pg was fixed. Let F be the
Fréchet manifold of such flat structures. We will replace M, S by M x &' x F, § x §' x F.

The restriction of Pg to the fibres over F of M x 8’ x F is equipped with a flat connection.
However, the principal G-bundle Pg is no longer flat on M x &’ x F.

Proposition 2.17. In degree >3, the cohomology class of y is invariant under deformation
of the flat structure on Pg.

Proof. We may as well make 2iwr = 1. We proceed as in [15, Proof of Theorem 2.1]. Let
d” be the de Rham operator on F. By (2.51), we get

dry = (—=d" 6" + 67 (a7 6% %)) exp (67?)R(0). (2.103)
By (1.39), we have the identity
dFor? = [d+93’ d]'—gé]_ (2.104)

By (1.38), (2.104), and using the Ad-invariance of R, we get

0P (d7672) exp (0" ) R(0) = —d[6Pd” 6" exp (672)]R(0). (2.105)
Set
k(x) = exm);#. (2.106)
Then
[(@76) exp@® 2 R(©)]F = (a767)072k(672) R(0). (2.107)

Also, since R is Ad-invariant, we get

(d767)07 2k (6P ?)R(0) = —%[6P, a7 07 ]0Pk(672)R(0). (2.108)
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By (1.38), (2.104), and (2.108), we obtain
(a7 6P)0P 2k (6"2)R(0) = L(a76P2)0Pk(6"2)R(0)
= La[(a”6%)6"k(67%)]R(0). (2.109)
Our proposition follows from (2.103), (2.105), (2.107), and (2.109). O

Remark 2.18. The proof of Proposition 2.17 shows that, if £ € [0, 1] — f; € F is a smooth
path, there is an even form ¥ on M of degree >2 such that

a7 =y (1> =y (f)=?. (2.110)

By proceeding as in [15, Proof of Theorem 2.5], one can show that, in degree >4, the
class of ¥ € Q' (M)/d2~' (M) does not depend on the path.

By Theorem 2.10, and by Proposition 2.17, in degree >3, the common cohomology
class of the m.c;, t > 0 is invariant under deformation of the flat structure on Pg. As we
shall see in Theorem 7.6, it is a consequence of the main result of this paper that, if dim X
is odd, in degree >2, the cohomology class of 7, W is also invariant under deformation of
the flat structure on Pg.

3. A class of Toeplitz operators

Let N be a compact Kéhler manifold taken as in §1.4. Assume that there is a
U-equivariant holomorphic Hermitian line bundle L such that ¢ (L, g%) = . The purpose
of this section is to express the action of elements of length <2 in Ugc on H 00N, LP)
as Toeplitz operators. We obtain in this way the asymptotics of this action as p — +o0.
We also compute the asymptotics of the trace of g = e4/?, A € gc on HOO(N, LP) in
terms of the function R(A) that was introduced in §1.4.

This section is organized as follows. In §3.1, we introduce the line bundle L, and we
express certain Lie derivative operators coming from u and acting on HO9(N, L), and
the composition of two of these, as Toeplitz operators.

In§3.3,if B € E*® p is nondegenerate, we give a lower bound for the action of |8 > on
HOO(N, LP) as p — +oo0.

In §3.4, we obtain the asymptotics of the trace of e4/? on HOO(N, LP) using the
Kirillov formula.

Finally, in § 3.5, we compute the asymptotics as p — 400 of the action of certain heat
operators.

3.1. A line bundle on N

We use the assumptions and notation of §§ 1.1 and 1.4. In particular, N denotes a compact
complex manifold, n is a smooth real closed U-invariant (1, 1)-formon N, and u : N — u*
is the moment map associated with the action of the compact Lie group U on N. Let
g™ be a U-invariant Hermitian metric on the holomorphic tangent bundle TN, and let
dvy be the associated volume form on N.

In what follows, we assume that 5 is positive; i.e., if A € TN, then —in(A, A) defines
a Hermitian metric on TN.
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Let L be a holomorphic line bundle on N, let g& be a Hermitian metric on L, and let
VL denote the corresponding holomorphic Hermitian connection. Let 7% be the curvature
of VL. Let ¢1(L, g&) be the corresponding first Chern form; i.e.,

L rk
We assume that
ci(L,g") =n. (3.2)

Also, we assume that the holomorphic action of U on N lifts to a holomorphic unitary
action on L.

We equip C®(N, L) with the Hermitian product associated with the metrics g7V, gZ,
so that, if s, s € C®°(N, L),
(s,s")=@m)™" /N (s.5"), don. (3.3)

Then the action of U on C*®(N, L) is unitary. We equip H©9 (N, L) with the Hermitian
metric induced by (3.3), so that U acts unitarily on H®O(N, L).

If Aeu, let Lﬁ denote the natural action of A on the smooth sections of L. Then Lﬁ
is a lift of the holomorphic vector field AN on N. Finally, we assume that, if A € u,

LY =V —2in(u, A). (3.4)

Equation (1.20) on u follows from (3.4). Set

Ltio = Vivao —2imiu, A), Lhg, =V, (3.5)
Then
L% =Lao + Lo (3.6)
Also, if A, B € u,
[LL, Lé] = _L[LA,B]’ [L/Lm,ow ng,l)] =0, (3.7)
[Lfm,m» Lé(lm] = —L[LA,B](LO)v [Lﬁ«m’ LIL;(OJ)] = _L[LA’B](O.I)'

By (1.21), (3.2), if A, B € u,
(1. [A, B]) = c1 (L. g¥) (AN, BY). (3.8)

As explained in § 1.4, the action of U on N extends to a holomorphic action of G¢ on
N. In the same way, the action of U on L extends to a holomorphic action of G¢ on L.
If A € gc=u®grC, the corresponding Lie derivative operator L4 is given by (3.4), and
the identities in (3.5), (3.7) still hold.

If A € u, the action of Lﬁ on C*°(N, L) is formally skew-adjoint, and the action of LiLA
is formally self-adjoint. By (3.4), we see that, if A € u,

(e9) 'Lhgt =0, (¢%) 'LEgt = —dn(u. A). (3.9)
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3.2. Lie derivatives and Toeplitz operators

The action of Gc on C®(N, L) induces a corresponding action on HOO(N, L). As we
saw before, the action of U on HOO(N, L) is unitary. If A € gc, the operator LI/; acts
on HOO(N, L). By (3.5),

LIA'H(O’O)(N,L) = Li(l,o)lH(o'O)(N,L)’ (310)

Let P be the orthogonal projection operator from C*(N, L) on HOO(N, L).
Let VIV be the holomorphic Hermitian connection on TN, and let RTN be its
curvature. If A € u, VIV ANLO) ig 5 skew-adjoint endomorphism of TN.
Set
d=detTN. (3.11)

The metric g7V induces a Hermitian metric g¢ on d. Let V¢ denote the corresponding
holomorphic Hermitian connection on d. Then

1
ci(d, g% = —ETr[RTN]. (3.12)

The group U acts holomorphically and isometrically on d, and this action extends to
a holomorphic action of G¢. Let v: N — u* be the map such that, if A € u,

1
——Te[ VTV ANEO, (3.13)

1%/4

(v, A) =

We use the same notation as in (3.4)—(3.7) for d as for L. Then v is a moment map
associated with the action of U on d. As in (3.4), if A € gc, we get

LY = V4, —2in(v, A). (3.14)
Also, the analogues of (3.5)—(3.7) hold. Instead of (1.22), if A € g¢c, we have
(v, A) —isnaoncr(d, g%) = 0. (3.15)
Also, the analogue of (3.8) says that, if A, B € u,
(v, [A, B]) = c1(d, g%) (A", BM). (3.16)

Theorem 3.1. If A € u, the following identity holds:
LYl goo .y = —2im P{u+v, A)P. (3.17)
If A, B € u, then
LiLE ooy 1) = P(—47>(u+v, A)(u+v. B)
+2inei(L®d, gh®)(ANOD, pNLO))p, (3.18)
Proof. To establish (3.17), we use the first equation in (3.5). The formal adjoint V/I;;“,(LO)
of VjN(l,O) acting on C*°(N, L) is given by

Vﬁ/(l,m = _V,izv(o,n _TY[VTN”AN(O’I)]- (3.19)
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Also, VgN(O.l) vanishes on HOO(N| L), so that, if s, s’ € HOO(N, L), then
(Vivaos ) =(=2ix(v, A)s, ). (3.20)

Equation (3.17) follows from the above considerations.
If 5,5 € HOO(N, L), by (3.17), we get

(L5LGs. s") = =2im((u+v, A)Ls, s'). (3.21)
By (3.5), we obtain
—2im (u—+v, A)Lks = 472 (u+v, A) (i, B)s
+ (Vpna.0 207 (i +v, A))s = Vv Qi {n+v, A)s). (3.22)
By (1.22), (3.15), we get

Venao{w+v, A) = ci(L®d, g"®)(ANOD pN1.0) (3.23)

Using (3.19), we also have
(—VEvao@im{n+v, A)s),s') = (—4x>(u+v, A)(v, B)s, s'). (3.24)
By (3.21)—(3.24), we get (3.18). The proof of our theorem is completed. O

Remark 3.2. By (3.8), (3.16), equation (3.18) is compatible with (3.7). Moreover, the
operators in (3.17), (3.18) are Toeplitz operators. Equation (3.18) expresses the product of
two Toeplitz operators of the type (3.17) as a Toeplitz operator. By (3.17), the operators
Lﬁl gooy, ) form a finite-dimensional Lie algebra of Toeplitz operators. Questions
connected with Toeplitz operators will be dealt with in much more detail in §9.

For p € N, in Theorem 3.1, we can replace L by L?, so that u is replaced by pu. Let P,
be the corresponding orthogonal projection operator from C*(N, L?) on HOO(N, LP).

By Kodaira’s vanishing theorem, for p € N such that ¢1(L? @ d, gL"®?) > 0, for i > 0,
HOD(N, LP) vanishes.

3.3. The action of éz on HOO(N, L)

We make the same assumptions as in §§1.3 and 1.4, and we use the corresponding

notation. We still take B € §*®p. Recall that |8|> was defined in (1.12), that |8|*> €

UgNUu, and that (1.14) holds. B N
For p € N, let p, be the representation of G¢ on HOO(N LP). For p €N, ,op|é|2 is

self-adjoint and nonnegative in End(H®-9 (N, L?)), and, moreover,

m
P2
oplBl2 =S LL . (3.25)
piZ ; Blei) H(0~0)(N,L/’)
Theorem 3.3. There exist C' > 0,C"” > 0 such that, for p € N,

pplBI> = p* Pploglz, Py —C'p—C". (3.26)

If B is nondegenerate, there exist ¢ > 0, C > 0 such that, for p € N,
pplBI? = cp* - C. (3.27)
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Proof. By equation (3.18) in Theorem 3.1, and by (3.25), we get

m
pplBI* = 47> Py > [(pu+v,iBle)* P,
j=1

— Py > 2imei(LP ®@d, g% ) (Be) )V OV, Be)N M) P, (3.28)

j=1
From (3.28), we get (3.26). If B is nondegenerate, (3.27) follows from (3.26). The proof
of our theorem is completed. O

Remark 3.4. If T is a maximal torus in U, if N = U/T, and if L is the holomorphic line
bundle on N associated with the weight A, from (3.28), one recovers the formula for the
action of the Casimir operator of U on HOO(N, LP).

3.4. The asymptotics of the trace of ¢4/?

If B is a complex (m, m) matrix, put

|B| = sup |Al. (3.29)
1€Sp(B)
If B is such that |B| < 2, set
B
Td(B) = det| ——— | . (3.30)
l—e B

If B is self-adjoint, no condition on B is necessary to define Td(B).
From the above, there exists € > 0 such that, if A € gc, |A| < €, the form
TN

TNy _ _
Tda(N. g )_Td|: -

+ VTN/AN("O)} (3.31)

is well defined. Note that, if A € iu, no condition on A is needed.
For g € G, set
(0,0) »
Xp(g) = T NED g, (3.32)

We now give a form of Kirillov’s formula.

Theorem 3.5. For p € N large enough, for A € gc, |A| <€,
xple] = / Tds(TN, g"V)exp (2imp{n, A) + pei (L, g%)). (3.33)
N

Proof. For A € u, this is just the Kirillov formula [4, Theorem 8.2]. Equation (3.33)
extends by analytic continuation to the general case. O

Recall that, for A € gc, R(A) was defined in (1.23). Using (3.2), we get

R(A) =/ exp (2im (i, A) +c1(L, g")). (3.34)
N

As in §1.8, we identify a neighbourhood of 0 in g¢ with a neighbourhood of 1 in G¢.
For a € R, we define the action of §, on C*(gc, C) as in (1.57).
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Theorem 3.6. As p — 400,

B1/pxp)(A) = p"R(A)+O(p" ™). (3.35)
Proof. This is a trivial consequence of equation (3.33) in Theorem 3.5. O

3.5. A heat operator acting on yx,
Let 52(G¢) be the vector space of complex-valued holomorphic functions on G¢. As in
§ 1.1, we identify Ugc with the algebra of left-invariant complex holomorphic differential
operators on G¢, which acts on S(G¢). Similarly, Uu can be identified with the algebra
of left-invariant real differential operators on U, which acts on C*°(U, R).

The functions yx, in (3.32) lie in J(Gc). For p € N, if g € G¢, we have the obvious
identity,

©.0)
B xp(8) = Te "N gp, 2], (3.36)

By (1.14), since —|i B | is a nonnegative second-order differential operator on U, for
t > 0, the action of the operator exp(—t|é|2) on x, is well defined. By (3.36), we get

exp (—1181%)xp (&) = TH "N g exp (=ip, 1 B17)]- (3.37)

Theorem 3.7. If B is nondegenerate, there exist C > 0, C' > 0 such that, for p € N large
enough, for g e U, t > 0,

exp (—#@2) Xp(g)‘ < Cp"exp (=C'r). (3.38)

If B is nondegenerate, there exist ¢ > 0,C > 0, C’ > 0 such that, for p € N large enough,
fO{rA engt >07

t
81/pexp (—?|é|2) Xp(A)‘ < Cp"exp (c|A| = C'1). (3.39)

Proof. If g € U, g acts as a unitary operator on H %9 (N, LP). If B is nondegenerate, by
equation (3.27) in Theorem 3.3, and by (3.37), we get

exp (—#W) xp(g)‘ <exp (—(c—C/p*)t)xp (D). (3.40)

By (3.35), as p — 400,
xp(H) =0(p"). (3.41)

By (3.40), (3.41), we get (3.38).
Take A € gc. By equation (3.17) in Theorem 3.1, we get

|| oo | < exp(clAl). (3.42)

By proceeding as before, we get (3.39). The proof of our theorem is completed. O
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Remark 3.8. For € > 0, let B¥(0, ¢) be the open ball of centre 0 and radius € in u. For
€ > 0 small enough, the exponential map identifies B*(0, €) with an open neighbourhood

of 1in U. Asin §1.8, for € > 0 small enough, we can view |é|2 = —|ié|2 as a second-order
differential operator acting on C*°(B"(0, ¢), C).
Set )
18]
2 [
Bl =810 =500- (3.43)
By proceeding as in § 1.8, we find that, as p — 400,
B> — IBI%. (3.44)
Also,
t
81/p exp <—?|g|2> xp = exp (—t1B12) (B1/pxp)- (3.45)
By (3.44), as p — 400,
exp(—t|B1%) — exp(—t|B). (3.46)
By (3.35), (3.46), as p — +o0,
p~"exp (—11B13) B1/p xp) (A) — exp (—tIBI*) R(A). (3.47)

By (3.39), (3.47), if B is nondegenerate, we get
lexp (—71B1*) R(A)| < Cexp (c|Al - C't). (3.48)
Equation (3.48) fits nicely with (1.27).

4. A lower bound for the Hodge Laplacian

We make the same assumptions as in §§2 and 3, with S reduced to a point. The purpose
of this section is to obtain a lower bound as p — +oo for the Hodge Laplacian Dif acting
on Q(X, Fp), with F), = HOO(N, LP) when oF is nondegenerate. The method of proof
consists in expressing a part of Dif as a Toeplitz operator, to which the results of § 3 can
be applied.

This section is organized as follows. In §4.1, we construct the flat bundle F =
HO9(N, L) on X.

In §4.2, we give a formula for the associated Hodge-de Rham Laplacian.

Finally, in § 4.3, when o is nondegenerate, we give a lower bound for IZI;( as p — 4o00.

4.1. A flat vector bundle

We make the same assumptions as in §§2 and 3.

Recall that the manifold N was defined in (1.82), and fibres over M with fibre N. We
denote by p the representation Gc — Aut{H®9(N, L)]. Since K, U, G, G¢ also act on
the line bundle L on N, L induces a corresponding line bundle on N, which we also
denote by L.

Set

F=Pg xxg H*O(N, L). (4.1)
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In (4.1), we may as well replace K by U, G, G¢c. Then F can be identified with the
Dolbeault cohomology of L along the fibres N. Also, F is a Hermitian vector bundle on
M. The connection 69 induces a flat connection V¥ on F, and the connection 6% induces
a corresponding unitary connection VF* on F. Recall that % is a section of T*M ® p,.
By (1.37),

viu = vF _ pe¥. (4.2)
Note that pfP is a 1-form on M taking its values in self-adjoint elements of End(F). It
will be convenient to use the notation

o(VF, g") = —2p6". (4.3)
By (4.2),
W97, §F) = (¢) VP, (1.4
Let RF“ be the curvature of V%, By (1.38), (4.3), we get
RFU = —poP2 = Lo (VF, g")%. (4.5)

Let (2 (X, Flx),d*) be the fibrewise de Rham complex of smooth forms along the
fibres X with values in F|x, equipped with the fibrewise de Rham operator dX. Then
(2(X, Flx),dX) can be viewed as a family of infinite-dimensional complexes on S. Let
H'(X, F|x) be the cohomology of the complex (' (X, Fl|x),dX). Then H (X, F|x) is a
finite-dimensional Z-graded complex vector bundle on S.

Recall that dvx is the volume form along X. We equip Q'(X, F|x) with the metric
gQ'(X'F‘X) associated with the L, Hermitian product

(s.5") = /X(s s/)A_(T*X)@)RdeX. (4.6)
Let d%* be the fibrewise adjoint of d* with respect to the Hermitian product (4.6). Set
X =d¥ 4d%~ (4.7)
By Hodge theory,
ker DX ~ H'(X, F|y). (4.8)
Moreover, if (0% is the Hodge Laplacian, we get
D¥?* = [a¥, a%**] = Ox. (4.9)

4.2. A formula for the Hodge Laplacian

Here we assume that S is just a point, so that M consists of a single fibre X.

Let VX be the Levi-Civita connection on (TX, g7%), and let RTX be its curvature.
Let VAT e the connection on A'(T*X) that is induced by VIX. Let VA T X)@rF.u
be the unitary connection on A" (T*X) ®g F that is induced by VATX) gFu Jet KX
be the scalar curvature of X. Let A%** be the Bochner Laplacian acting on Q' (X, F),
which is associated with the connection VA (" X)®rF.u,

Let ey, ..., e, be an orthonormal basis of TX, and let el, ..., e" be the corresponding
dual basis of T*X. We use the notation of §1.2 with respect to the Euclidean vector
bundle (T X, g7%). For the moment, the forms #” and 9¥ are identified.
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Theorem 4.1. The following identities hold:

DX — (ei _ ie[)vé?«(T*X)ng +2ig,~/0§p(ei)’ (4 10)
A (T*X)@rF.u '

DX = c(e)V,, + (e pb* (er).

Moreover,
KX

DX,2 — _AX,M+_
4

—~ 1 PN
+p|aP] - 5 (ctepetey) —eenie)) o6 eive))

+c(e)T(e)) pVIXOI1GP (e)). (4.11)

1 PN
- g(R”ozi, ej)ek, eg)cle;)c(e;)ler)Tler)

Proof. This follows from (4.3), (4.4), and from [22, Theorem 4.13]. O

Remark 4.2. For the moment, the fact that we wrote 9P instead of O in some of the
terms in (4.11) is a matter of taste. Still the similarity of the right-hand sides of (1.47)
and (4.11) is not accidental.

4.3. Nondegeneracy of 6" and gap in the spectrum
Definition 4.3. Set

KX 1, oy DOSN
©=—- g(R (ei. €j)ex, eg)c(ei)c(e;)cler)Tler)

~,2 1 e
+[OF]" = S (etenete)) — Cei)Te)0P 2 (e, e;)
+c(e)Cle)) VIX®-1G P (¢, (4.12)
Then O is a section of End(A (T*X))® Ug,.

Equation (4.11) can be rewritten in the form
DX2 = _AXH 4 5O, (4.13)
By (4.13), we deduce that, if s € Q' (X, F),
(DX25,5) > (p®s, 5). (4.14)

By Theorem 3.1, we can re-express p® as a Toeplitz operator acting on the vector
bundle A (T*X) g C*°(N, L) over X.
When replacing L by LP, we denote with an extra subscript p the above objects. In

particular,
Fy = Px xxg HOO(N, LP). (4.15)
In what follows, we will use the notation of § 3 with respect to the fibre N. As in (1.25),
(2.56), set
o5e = 2m(w, i0F). (4.16)
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Then ojy is a section on N of q*T/*\X. Recall that 6 ¥ is said to be nondegenerate if oy
does not vanish on N. Equivalently, there is a > 0 such that

logs|* > a. (4.17)

Theorem 4.4. If/Q\p is nondegenerate, there exist ¢ > 0, C > 0 such that, for p € N,
0p® = cp® —C. (4.18)
Ifé\*0 18 nondegenerate, there exist ¢ > 0, C > 0 such that, for p € N,
X,2 2
D" > cp”—C. (4.19)

Ifé\p is nondegenerate, for p € N large enough, D;,(’Z is invertible; i.e. H (X, Fp) = 0.

Proof. If0 7 is nondegenerate, since X is compact, by Theorem 3.3, there exist ¢ > 0, C >
0 such that

pp|0P° = cp?—C. (4.20)
By equation (3.17) in Theorem 3.1, and by (4.12), there exist C’ > 0, C” > 0 such that

lop(©—[a°[)| < C'p+C. (4.21)

By (4.20), (4.21), we get (4.18). By (4.14), (4.18), we get (4.19). The proof of our theorem
is completed. O

Remark 4.5. The estimate (4.19) remains valid on a Galois cover X of X. This fact will
be used in §6.6 and in §8.

5. The analytic torsion forms

The purpose of this section is to summarize the main results on the analytic torsion
forms of Bismut and Lott [18], which, in degree 0, coincide with the classical Ray—Singer
analytic torsion [44]. Given a proper submersion 7 : M — S with compact fibre X, a flat
vector bundle F on M, a horizontal subbundle T# M of TM, and metrics g7, g, the
analytic torsion forms are even forms on S.

This section is organized as follows. In §5.1, we introduce odd closed forms on M that
are associated with the flat Hermitian vector bundle F.

In §5.2, we interpret the de Rham operator d™ as a flat superconnection A’ on the
vector bundle Q' (X, F|x) over S.

In §5.3, we obtain the adjoint superconnection A” to A’ in the sense of [18], and also
the superconnection A = %(A” + A).

In §5.4, we replace g7 X by g% /¢, and we construct the corresponding superconnection
A;.

In §5.5, as in [18], we construct odd closed forms h(A’, ¢

In §5.6, we establish a transgression formula.

In §5.7, we construct the analytic torsion forms, and we state some of their properties.

In §5.8, we specialize the construction of §5.1 to the case where F = HOO(N| L).

Finally, in §5.9, we state the Lichnerowicz formula of [18].

'(X’F‘X)) on S.
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5.1. The odd forms associated with a flat vector bundle

We make the same assumptions as in §§2.1 and 2.2, and we use the corresponding
notation. Also, F denotes a complex vector bundle of dimension k on M, and V¥ is
a flat connection on F. Also, gf is a Hermitian metric on F. Let R be the GL(k, C)
bundle of frames in F, and let Ry be the U(k)-bundle of unitary frames in F. With
G = GL(k, C), K = U(k), we are in the situation that was described in §§ 1.1 and 1.6. We
could as well borrow our notation from these two subsections.

As in (4.4), set

—1
w(VF, ¢") = (g") vigt. (5.1)
Let VF# be the unitary connection on (F, gf),
Vi = vE 4 1lo(VE, gF). (5.2)

Let RF* be the curvature of VI #. One verifies that
RFM = —1o(VF, gF)?, (5.3)

which fits with (4.5).
By [18, Proposition 1.3], we get

Tr[exp(—R"*)] = dim F. (5.4)
By (5.3), we can rewrite (5.4) in the form
Tr[exp(o(VF, £)?/4)] = dim F. (5.5)
Equation (5.5) is also a consequence of Proposition 1.12.
Set ,
h(x) = xe*". (5.6)
Then
W (x) = (1+2x%)exp (x?). (5.7)

We define the action of ¢ on A(T*M) ®g C as in Definition 1.10.

Definition 5.1. Set
h(VF, gF) = Qim) 2eTt[h(w(VF, g7)/2)]. (5.8)

Now, we recall results by Bismut and Lott [18, Theorems 1.8 and 1.11].

Proposition 5.2. The odd form h(VF, gt is real and closed, and its cohomology class
does not depend on g¥', and will be denoted h(VF).

Remark 5.3. This result is also a consequence of Proposition 2.7. By a construction of
Bismut and Lott [18, Theorems 1.9 and 1.11], as explained in Remark 2.8, given two
metrics g©', gf’ on F, there is a uniquely defined class of even forms h(VF, gf', gf") e

Q' (M)/dS2 V(M) such that
di(VF, gF, ™) = n(vF, ") —n(VF, g"). (5.9)
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By Proposition 2.17, in degree >3, the cohomology class of h(VF, g) is rigid under
deformation of the flat connection V¥, which is also a result of [15, Theorem 2.5 and
Remark 2.6]. More precisely, given a smooth path of flat connections ¢ € [0, 1] — VZF on
F, one can construct an even form E(V{ , g7 such that

di (vl ¢")Z? = (n(VF.e") - n(v{, g7) P (5.10)

Moreover, the class E(V{, gHEY e Q' (M)/de " (M) does not depend on the path ¢ €
[0, 11 — v/.

5.2. A flat superconnection on Q' (X, F|x)
By (2.3), we have the identification of Z-graded vector spaces,

QM,F)~Q (S, 22X, Flx)). (5.11)

We follow [18, §3(b)]. Let d™ be the de Rham operator acting on Q' (M, F). By (5.11),
A’ = dM can be considered as a flat superconnection of Q'(X, F|x).

Definition 5.4. Let V¥ X-FIX) be the connection on €' (X, F|x) such that, if U € TS and
if s is a smooth section of (X, F|x), then

@ (X.Flx)
VU

s = Lyus. (5.12)

The connection V¥ X FIX) preserves the Z-grading of Q' (X, F|x).

Recall that TH was defined in Definition 2.1. The interior multiplication iy acts
naturally on A (T*M) @Rr F. We have the simple result of [18, Proposition 3.4].

Proposition 5.5. The following identity of operators acting on Q' (M, F) holds:

A =dX VX Ly (5.13)

5.3. The adjoint superconnection

Let VAT X)@RFu 1o the unitary connection on A (T*X) ® rF induced by VIX and
vFEu We equip the vector bundle Q(X, F|y) with the metric g X-FIx) defined as
in (4.6).

Let A” be the adjoint of the superconnection A’ with respect to the metric g
in the sense of [18, §1(d)]. The adjoint d*-* is just the fibrewise adjoint of dX. Let
VX Flx)* he the connection on Q' (X, Flx) which is adjoint to V¥ X FIX) with respect
to g XFIx) Since TX and T*X are identified by g7¥, we can consider T# as a section
of A2(T*S) @ T*X. Then TH A acts on A (T*S) ® 2 (X, Flx).

Then we have the result stated in [18, Proposition 3.7].

Q(X,Flx)

Proposition 5.6. The following identity holds:

A" =a¥* 4 vEEFOx _pH L (5.14)
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Set
A= %(A//—l-A/), B = %(A”—A/). (5_15>

Then A is a superconnection on (X, F|x), and B is a smooth section of

(A°(T"$) & REnd(22 (X, F1)))**".

5.4. A rescaling of the metric on TX

For a € R, let ¥, be the endomorphism of A"(T*S) that is defined as in (1.51). Here, ¥,
only acts on A (T*S) and not on A (T*M).
For t > 0, set

TX

Let g,Q(X’Fl’() be the metric on Q' (X, F|x) associated to g,TX.
Recall that m =dimX. Let N2 "X be the number operator of A (T*X). Then
NATX) aets by multiplication by k on QX(X, F|x). One verifies easily that

. A(T*X) _ .
th (X.Flx) _ N m/zgsz (X.F|x)_ (5'17)

Let A} be the adjoint of A" with respect to g,Q(X’F‘X). Clearly A” = AY. Moreover,

AV = N0 g N0 (5.18)
Set
A= 5(A]+A), B, = 5(A] - A). (5.19)
Definition 5.7. For ¢ > 0, set
¢/ = N0 41NN 2, ¢/ = N0 g NE O (5.20)

Then C; is a flat superconnection on Q' (X, F|x), and C; is its adjoint with respect to
g X FIX) | Set

C, = 3(C/+C)), D =%(C'-C)). (5.21)
Clearly,
C = tNA'(T*X)/zAtz‘_NA‘(T*X)/2 D; = tNMT*X)/Zth_NA.(T*X)/2 (5.22)
Proposition 5.8. Fort > 0, the following identities hold:
Cr =V ViAY 4 D=V ViBY . (5.23)

Proof. Our proposition follows easily from the fact that A’ = d¥ increases by 1 the total
degree of the forms on M. O
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5.5. The odd closed forms h(A’, th(X’F‘X))

Let x(X, F) be the Euler characteristic of F|x; i.e.,

X(X.F) =) (=1)/ dim H/ (X, F|). (5.24)
j=0

By the Chern—Gauss—Bonnet theorem,
X (X, F) = dimF/ e(TX). (5.25)
X
First, we state a result established in [18, Theorem 3.15].

Proposition 5.9. For anyt > 0,
Trs[ exp(—A2)] = x(X, F). (5.26)
We define the action of ¢ on A (T*S) ®g C as in Definition 1.10.

Definition 5.10. For ¢ > 0, set

n(A% g C) = @im) T, (5.27)
h(C), g X FI0) = 2im) 2 Trg[h(D)].

h(A/, th(X,F\x)> — h(Ct/, gQ‘(X,le))_ (5.28)

The Z-graded vector bundle H (X, F|x) on S is equipped with the flat Gauss—Manin
connection VH# (X.FIx) By identifying H (X, F|x) with the fibrewise harmonic forms in
Q(X, Flx), H (X, F|x) inherits a Hermitian metric g/ X-FIx) from the metric g% X-Flx),
Set

R(VH XFO X FI0Y = 2im) 2o Trg[h(o(H (X, Flx), g ®F10)/2)]. (5.29)

We state a result that was established in [18, Theorem 3.16].

Theorem 5.11. The forms h(A’, th‘(X,F|X)) are real, odd, closed, and their cohomology
class does not depend on t > 0. Moreover, ast — 0,

n(A% g ) = [e(TX, VT)R(VE gF)] + O(VE). (5.30)
Ast — 400,
h(A', g FTI0) = (9 XFI0, B F0) 4 O(1/4/7). (5.31)
The following identity holds:
h(VAXFI0Y = 2 [e(TX)R(VF)]  in HXYS, R). (5.32)
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5.6. A transgression formula
Definition 5.12. For ¢ > 0, set

) NA(T*X)
hA(A/,gf”"’F'”)=¢Trs[<—2 -2 )|,

PR (5.33)
. N
hA(Cvt/7 gQ (X,FlX)) — (/JTI”S [( 5 _ %) h/(Dt)} .
The forms in (5.33) are still real.
By (5.22),
hA<A/’gtg-(X,F\x)) :h/\(C;’gQ-(X,F‘X))_ (5.34)
By Proposition 5.8, we get
h(A’, th-(X,F\x)) _ W:[,l (2in)1/2<pTrS[h(\/?B)],
A(T*X) (5.35)
A7 S XFIY _ 1 N my o,
h (A,g, )—wﬁwm[( 3 —Z>h(ﬁ3)].
We have the following result established in [18, Theorem 3.20].
Theorem 5.13. The form h"™(A’, g,Q(X’FIX)) 1s even. Moreover,
O (ar sz'(X,Fm) _ Lo a4 Xl
ath(A , 8 = —dh (A g ) (5.36)
Put
m . .
X'(X.F) = (1)) jdim H/ (X, F|). (5.37)
j=0
We recall the result of [18, Theorem 3.21].
Theorem 5.14. Ast — 0,
WA (A/, gtg(x,le>) = O(V1). (5.38)
Ast — 400,
: 1
hA(A’, g2 <”'X>) - (EX/(X, F)— %X(X, F))h/(O) +0(1/1). (5.39)

Now, we enlarge M, S to M x R}, S xR’ , and, over M x {s}, we equip TX with the

metric g7 X/s. Over M x R’ , the canonical connection VTX on TX is given by
STX TX J 1
VIX=vT¥ pas(——-=—). (5.40)
as  2s
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By equation (2.12), for U € T X,

0 U
T(—,U) = ——. (5.41)
as 2s

9 1
<S(U)V, £> = 55(U. V). (5.42)

By (2.9),if U,V e TX,

Now, we proceed as in [18, §3(i)]. Let A’, B, be the analogues of A’, B, over S x R,. By
[18, equations (3.112) and (3.113)], we get

~ ds ( NANTX)
Bi=By+—[——7-——1]. (5.43)
S 2 4

Let §,Sz‘<X’F|X) be the analogue of g,Q(X’FIX). By (5.27), (5.43), we get an equation already
established in [18, equation (3.114)],

~ o : ds .
H(A B Xy = (A g ) 4 =i (a7, g8 P10, (5.44)

Since the form in (5.44) in closed on § x R, we recover (5.36). Similarly, Theorem 5.14
can be viewed as a consequence of Theorem 5.11 and of (5.44).

5.7. The analytic torsion forms
Now, we follow [18, §3(j)].

Definition 5.15. Set
To(TH M, g%,V gF) = — /0+°° [hA (A/, gtﬂ‘(X,le))
+ <%x(X, F)— %x’(X, F)) (h'(0) —h’(i\/E/Z)):|%. (5.45)
The forms T, (T# M, g7X, VF, gF') are called analytic torsion forms.

The following result was established in [18, Theorem 3.23].

Theorem 5.16. The form ’77,(THM, gTX, \Z gF) s even. Moreover,
dTu(THM, g"%, Vv, g") = . [e(TX, VI*)R(VF, g")]
_ h(vH'(X,le)’ gH'(XyF\X)). (5.46)
Proof. Our theorem follows from Theorems 5.13 and 5.14. O

Let TH'M,g" " ¢f’ be another triple of data. We will denote with an extra
prime the objects canonically attached to this new triple. Let E(TX,VTX, VTX’) €
Q' (M)/dS2 " (M) be the corresponding Chern-Simons class, so that

de(TX, VX VIY) = e(TX, VI¥) —e(TX, VT¥). (5.47)
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The following result was established in [18, Theorem 3.24] as a consequence of
Theorem 5.16.

Theorem 5.17. The following identity holds:
E(TH/M, gTX/7 VF, gF/) _ E(THM, gTX’ VF, gF)
= m[e(TX, VX, VXN (VF, gF)] + m[e(TX, VIXVR(VF, g7 ¢™)]
— h(VHXF0 B XL oH X FION 0 0 (8)/d71(S). (5.48)
Remark 5.18. Let (D*2)~! be the inverse of DX-? acting on the orthogonal bundle to
ker DX in Q' (X, F|x). For s € C,Re(s) > m/2, set
9 (s) = —Try [(NA "X _ 2) (D¥%)” ] : (5.49)

Then ¥ (s) extends to a meromorphic function of s € C, which is holomorphic near
s = 0. By definition, the Ray—Singer analytic torsion [22, 44] of the de Rham complex
(' (X, Flx),d¥) is given by 22(0). By Bismut and Lott [18, Theorem 3.29],

o 1o
2 9s
An ingredient in the proof of (5.50) is the simple fact that

0 9 NATX)
(A 5“”"”) <l+2ta—>Trs|:(T—% exp (—tDX2/4) . (5.51)

As shown in [22, Theorem 7.10], as t — 0,

A(T*X)
Trs |:<N— - %) exp (—tDX’2/4):| = O(1/V1). (5.52)

(TP M, g™X, Vv, gF (0). (5.50)

2
Equation (5.38) fits with (5.51), (5.52).

Assume that X is odd dimensional, and that H (X, F|x) = 0. By (5.46), the form
Tu(THM, gTX,VE, ¢f)on §is closed, and by (5.48), its cohomology class does not depend
on THM, gTX gF. Tt will be denoted by T;,(VF).

Let £€[0,1] — VF be a smooth l-parameter family of flat connections on F. We
denote by Fy the ﬂat bundle (F, VF) Recall that the forms h(V[ gF) were described in
Remark 5.3.

Assume that, for ¢ €[0,1], H (X, F¢|lx) =0. Now, we have the result of [15,
Theorem 3.45].

Theorem 5.19. If X is odd dimensional, the following identity holds:
T(vH)Z? = T(vE)Z?  in HY(S,R). (5.53)
If X is even dimensional, then
[E(THMMgTX VF F) Th(THM gTX VF gF)](>2)
=1 [e(TX, VIXVR(VE, )] in @($)/d(S). (5.54)
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5.8. The odd forms associated with H 9 (N, L?)
We make the same assumptions as in §2 and in §4.1, and we use the corresponding
notation. In particular, the flat Hermitian vector bundle F, on M is given by (4.15).

Also, we use the notation in (4.2).
By (3.32), (4.3), and (5.8), we get

WY 57) =~ [0 exp (072 2] (5.59

Let z be an odd Grassmann variable, which supercommutes with A (T*M). If a €
R[z] ® A (T*M), we can write a in the form

a=b+zc, b,ce AN(T*M). (5.56)
Set
a* =c. (5.57)
By (5.55), we get
h(VFr, gfr) = xp[exp(6"2/2im — 26%)]". (5.58)

5.9. A Lichnerowicz formula

Let ey, ..., ey be a locally defined smooth orthonormal basis of TX, and let fi,..., fr
be a basis of T'S. The corresponding dual bases are denoted with upper indices.

Definition 5.20. Let V7 A (T*$) ® A(T*X) b the fibrewise connection on the vector bundle
T*A(T*S) ® A (T*X),
Lga* A (T*$) B A(T*X) _ yr*A'(T*8) & A (T*X) + (Sei. f \/_c(e )£e

+3(SrT e (5.59)

Let | v A (T*$) ® A(T*X)@RFU he the connection on 7* A (T*S) & A (T*X) @R F that is
induced by 'v7 A TS & A(TX) ,VE" Fort > 0, set

IV:T*A'(T*S) ® A (T*X)®RF.u _ wl/ﬁlvﬂ*l\-(r*s) AT RFsuw\/} (5_60)
Put
R = 3(ei. R™¥e;)c(e)Tle;) — 6072 (5.61)

Then R is a smooth section of A (T*M) ® ¢(TX) Q &,.

Let KX be the scalar curvature of the fibres (X, g7%). Let z be an odd Grassmann
variable which anticommutes with all the other odd objects we met before. Let 8, be the
analogue of ¥, when acting on R[z] ® A (T*S). In particular,

04z = az. (5.62)

Definition 5.21. For ¢ > 0, set

KX ¢ Uy p H o0
Ay = 1=+ geleneleRiei, ep) + 5 [ [PR(f, f3)

16
+§c(ei>f“7z(ei,fa) —[g P +§f“< )vT"@g’ “OF (er)
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[N t —~ ~
+ §c(e,-)c<e,->@°~2(ei, ej) + 7¢(eTe) Ve 1P e))
1
+ 52v1eed® (@) + 6P (f1). (5.63)

Then A, is a section of A (T*S) ® ¢(TX) ® A(TX)QUg,. Set

A=A (5.64)

Then
A= eﬁmeﬁ. (5.65)

Put
LF =ct—zD,. (5.66)

The following formula was established by Bismut and Lott in [18, Theorem 3.11], [15,
Theorem 3.19] as a consequence of the Lichnerowicz formula for the curvature of the
Levi-Civita superconnection given in [18, Theorem 3.6].

Theorem 5.22. Given t € RY, for p € N, the following identity holds:

~ 2
F, I (1o A (T*S) ® A (T*X)QRF)p,u Z
L’ = 7 < Vt/2,e,- REp.u Ec(e,~)> +ppA;. (5.67)

6. The asymptotics of the odd superconnection forms

In this section, under the assumptions of §§2 and 5, we obtain the asymptotics as p —
+00 of the odd forms h(A’, g X-Frlx)y on §.

This section is organized as follows. In §6.1, we obtain the asymptotics of the forms
h(VEr, gfp).

In §6.2, replacing the vector bundle F by the infinite-dimensional vector bundle .% of
fibrewise holomorphic functions along the fibres of P, we give a universal construction
of Giche operators Cy, D; that were considered in §5. In this way, we obtain an operator
LY.

In §6.3, we introduce the vector bundle F of fibrewise smooth functions along the fibres
of PG, and we lift the operator L7 to ordinary differential operators LF, LF on the total
space Pg. of Pg. along a fibre X. In particular, L}:’ is elliptic along the fibres of Pg...

In §6.4, we give a formula expressing the odd superconnection forms h(A’, g,Q-(X’FlX))
in terms of a pairing of the heat kernels for LlF or Lf’ , and of the character y associated
with the action of G¢ on HO0 (X, L).

In §6.5, the asymptotics of the forms h(A’, gQA(X’F”IX)

2 ) are obtained in terms of the

forms myc;/4 that were defined in § 2.
Finally, in §6.6, we briefly consider the case where S is reduced to a point, and where
X is replaced by a Galois cover X.
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6.1. The asymptotics of the forms h(Vir, gfr)

If aplpen is a family of smooth differential forms on M, we will say that, given k € N,
ap = O(p*) as p — +oo0 if, for every compact set K C M, r € N, the sup of loep| and its
derivatives of order <r over K is dominated by Cx, p*.

We make the same assumptions as in §§2 and 5. Recall that the odd closed form y on
M was defined in Definition 2.6.

Proposition 6.1. As p — o0,

1
ey sh(VEP gt =y +O(p7h. 6.1
p NG 1yph( gr)=y+00(p™) (6.1)

Proof. By (5.58), we get
1
NG

By Theorem 3.6, as p — +00,

vy 5h(VE?, 877) = S1ypxp) (077 )2i — 267)°. (6.2)

G1/pxp) (072 /2im — 207) = p"R(0P2/2im — z0%) + O(p" ™). (6.3)

By (2.52), we get
R(072)2im —z0%)° = . (6.4)
By (6.2)—(6.4), we get (6.1). O

6.2. The universal construction of the operators C;, D;

Let Pg. denote the total space of Pg. over a given fibre X.
Recall that p, denotes the representation G¢ — Aut[H 00N, LP)]. There is an
obvious action of G¢ on C*°(Pg, H©O-9 (N, LP)) such that

gs(u) = pp(g)sug). (6.5)

Then C*(X, F,) can be identified with C*°(Pg, HOO (N, LP))%¢, the vector space
of Gc-invariant sections in C*®(Pg., H®O (N, LP)). Such invariant functions are
holomorphic functions along the fibres of Pg,..

Recall that 5 (Gc) is the vector space of complex-valued holomorphic functions on
Gc. By restriction to the compact group U, the vector space 5 (G¢) inherits an L,
Hermitian product. The left action of G¢ on G¢ induces a corresponding left action
o of G¢c on #(Gc). The induced action of U on 42(Gc) is unitary. Also, there is an
associated action of Ugc on 47 (Gc), which we still denote o.

Set

F = Pg xg H(Gc) = PG XGo H(Ge) = Py xy 0(Ge). (6.6)

Then # is the vector bundle on M of the holomorphic functions along the fibres of Pg,.
Also, Ugc,r acts on % as the algebra of fibrewise holomorphic right-invariant differential
operators. If A € Ugc,,, f € &, the action of A on f will be denoted o (A) f.
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The vector bundle .% is naturally equipped with the connections V7, V7 that are

induced by the connections 69, 6%, the connection V¥ is flat, and the connection V7
is unitary. By (4.2),
v = v P, (6.7)
By (4.5), the curvature RZ* of V7 is given by
R7" = —gP2, (6.8)

Since o induces the tautological representation of Ugc on s#(Gc), in (6.7), (6.8), we
wrote 67, 672 instead of o (8?), o (67-2).

The left action of G¢ on itself induces an action of G¢ on C*(G¢, C), which will be
still denoted o. Also, 57 (G¢c) C C*®(Gc, C). Set

F = PG X6 C*®(Gc¢, O). (6.9)

Then .# embeds into F. The connection form 6% induces a connection V¥* on the vector
bundle F, whose curvature is still given by (6.8).

Let Q be the O(m)-principal bundle of orthonormal frames in T X, which we equip with
the connection induced by VIX. Let P(, denote the fibre product of P with Q. Then
P(, is an O(m) x G principal bundle. In this construction, we can replace G by G¢ or
U. In particular, the connections 69, 8¢ induce corresponding connections on the above
principal bundles.

In the constructions of § 5, when replacing F by .%, we obtain the superconnection C;gE
on (X, .%|x) and the operator sz. Let L? be the analogue of L in (5.66), so that

L7 =c7?*—:p7. (6.10)

Theorem 6.2. Given t € RY, the following identity holds:

2
F ! *A(T*S) & A(T*X) B 7, (PN
L7 =—; (IVZz,e,-( R ot ) +Ar (6.11)
Proof. This is just a formal consequence of Theorem 5.22. O

Clearly, L;? acts on A (T*S) ® (X, .Z|x). This is the space of smooth sections of
A(T*S) ® A (T*X) along the fibres PG that are holomorphic along the fibres of Pg..

6.3. Lifting L7

Let Op be the algebra of scalar differential operators along the fibre X. Then L;g is a
section over S of
Op®R[z] ® End(A (T*X)) ®r Ugc, - (6.12)

Let Urgc be the real enveloping algebra of gc; i.e., Urgc is the enveloping algebra of
G¢ considered as a real Lie group. Since gc = uc, Urgc = Uruc. Also, Urgc maps into
Ugc. Similarly, we can construct the bundle of real enveloping algebras Urgc,,.

We now construct a lift LF of L7 to

Op®R[z] ® End(A (T*X)) ® Urgc.r. (6.13)
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Clearly, the first term in the right-hand side of (6.11) lifts naturally to an operator in
(6.13).
Consider A; in (5.63). We proceed as in §§ 1.3 and 3.5. We have the identity

G = —|i8*)> in Ugc,. (6.14)

The right-hand side of (6.14) can also be viewed as an element of Urgc,,, which will be
our lift of [# ?|? in Urgc.,.
We consider another part of A;, which, up to the factor ¢, is given by

1 PN 1
—g(c(ei)c(ej) —c(e,')c(ej))ep'z(ei,ej) = 4(e Nle; —el Ni )Gp (ei,ej)

:——Z 9p2(e,,ej)—e Nig; 4’ /\le,) ——Z[«/_Op (e,,ej)]

l<j l</

+%Z(ei Nie, — el Nig) . (6.15)
i<j
We can view the right-hand side of (6.15) as a section of the bundle of algebras in (6.13),
which lifts the corresponding left-hand side.

The same procedure can also be applied to the remaining terms in (5.63). Ultimately
we have produced the required lift of L7 to LF. Then LF acts naturally on
A (T*S) ® (X, F|x). Moreover, when acting on A (T*S) ® Q' (X, Z|x), LF restricts
to L’fz . The operator LF is a second-order operator with nonnegative scalar principal
symbol, which commutes with the right action of G¢ on Pg,.

The operator Lf can be made to be elliptic. Indeed, we have the real splitting gc = u®
iu. Also, u is equipped with a U-invariant scalar product, which induces a corresponding
U-invariant scalar product on gc. Consider the right-invariant Laplacian on C*°(G¢, C).
Since this operator commutes with the left action of K on C*°(G¢, C), it induces a
corresponding fibrewise elliptic operator on F = Pg x g C*°(G¢, C), which we denote by
AGc. This operator is invariant under the right action of G¢ on PG, and vanishes on
H(Gc)-

By adding to LtF a multiple of —tA%¢ which is large enough, we obtain in this way an
elliptic operator LY on Pg,. which is still a lift of L7,

We claim that, for t > 0, the heat operators exp(—L,F), exp(—L}“’) are well defined. An
easy method to construct exp(—LtF) is via stochastic differential equations. The sum of
squares in (6.15) is easily accessible to a probabilistic treatment. For more details, we
refer in particular to [7, Proposition 3.7]. The fact that the fibres of Pg. are noncompact
does not create any difficulty, because the operators considered are invariant under the
right action of G¢. The operator LtF’ being elliptic, the construction of the operator
exp(—LF’ ) is even simpler.

The fibres of Pg. are equipped with a volume form dg which comes from the
left-invariant Haar measure! associated with the scalar product of gc. Then dg is
invariant by the right action of G¢ on Pg.. Also, dvxdq is a volume form on Pg,.

LSince G is unimodular, this is also the case for G¢.
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Let PIF’(u, u') be the smooth kernel on Pg. which is associated with exp(—L}?’) with
respect to dvydg. In general, there is no smooth kernel associated with exp(—LF) but
only a measure-valued kernel P,F(u, du’). However, because L,F is elliptic in directions
which are normal to the fibres of Pg, it can be written in the form

P, du’y = Q¥ (pu, pu/)dvxStI‘:u’pu,(dq), (6.16)

where Qf(x, x) is smooth on X x X, and SzFu ~(dq) is a measure along the fibre Pg ./
which depends smoothly on u, x’.

6.4. A formula for (A, g* *F1¥))

Let PIF (x, x") be the smooth kernel associated with the operator exp(—LtF ) with respect
to the volume dvx (x). By (5.27), (5.66), we get

h(A/,th(X’F'X)) - (2i7‘[)1/2<p/ Tes[ PF (x, x) [P dvx (x). (6.17)
X
We use the notation
X=X (6.13)
If x € X,u,u’ € PGex, then W'y € Ge. We claim that
/ T A T O P (Y] (o'~ ) () (6.19)
PGC,)(

descends to a smooth function on X. Indeed, x is an Ad-invariant function, and, moreover,
exp(—L}:’ ) commutes with right multiplication by G¢. As to the existence of the integral
in (6.19), it follows from elementary estimates.

We claim the above considerations also apply to the kernel P,F . Using the notation in
(6.16), and under the same assumptions as in (6.19), consider the integral

TrsA'(T*X>[Q,F(x,x)]/ x ('~ u)SF, (dq). (6.20)
PG
Since exp(—Lf) commutes with the right action of G¢ on Pg,., the measure StF:u,x on the

fibre PG, comes from a measure S,ITX (dg) on Gc x through the left action of G¢, on
PG, so that (6.20) can be written as

TrSA‘(T*X>[Q,F(x,x)]/ x(g7")SF, (dg). (6.21)

GC,r.x
Theorem 6.3. Fort > 0, the following identities hold:

h(A/ gtﬂ'(X,F\x))

= @im)'?p /X [Trs“”*’”[Q,F(x,x)]z / x(g‘)S,F,xwg)} dvx (x)

GC.r,x
= (2in)1/2<p/ |:/
X Pg

TeN T PF )y (u'~ ) dg (M’)} dvx(x). (6.22)

CX
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Proof. As explained in §6.2, smooth sections of F on X can be identified with
G c-invariant functions on Pg. under the action described in (6.5), and such sections are
fibrewise holomorphic. Recall that F is modelled after the vector space H®9 (N, L). The
operators LtF and Lf' can be considered as operators acting on C*°(Pge, 7*A(T*X) ®
HO9(N L)) which commute with the right action of G¢. The solution of the heat
equation exp(—sL[F) acting on Q' (X, F|x) lifts in the proper sense to the operators
exp(—st) or exp(—st/). Equation (6.22) then becomes a tautology. O

Remark 6.4. The main point of equation (6.22) is that the dependence on the
representation p is only via the character .

6.5. The asymptotics as p — 400 of the odd superconnection forms

Let ap¢|peN,i>0 be a family of smooth differential forms on S. Let k € N. We will say

that, as p — 400, ap; = O(p") if, for any compact set K C S, for M > 0,r € N, for

0 <t < M, the sup of o, ; and its derivatives on K is dominated by CK,rpk.

Recall that the forms ¢;, d; on M were defined in Definition 2.9.
Theorem 6.5. As p — +o0,
1
Jr . X
RN Q'(X,Fp\x)> _ L n
Wl/\/ﬁ\/;h (A’g,/pz = ”*\/;dt/4p +0(p").

Q(X,F),
W]/\ﬁ,h(A/, gt/ (2 "X)> = TxCt/4 p" +O(p" 1),
(6.23)

In particular, if K C S is compact, there exists C > 0 such that, for p e N*,0 <t < 1,

‘p*"*‘m/ﬁm(f\’, gfj}ff“'”)‘ <CVi onK. (6.24)

If 0P is nondegenerate, given a > 0 and a compact set K C S, there exist ¢ > 0,¢ >
0, C > 0 such that, fort > «, p € N,

‘h(A/’gtg)(X,Fplx))‘ < Cexp (—c(pz—c/)t) on K.

O (X Folx) (6.25)
‘hA(A’,gt Fplx )‘ < Cexp (—c(pz—c/)t) on K.

Proof. To prove our theorem, we may as well make 2iw = 1 in the normalization of the
various forms. We may and we will assume S to be compact. First, we establish (6.23).
By equation (6.22) in Theorem 6.3, with L replaced by L? and F by F,, we get

o (X, Fplx)
h(A *81yp2 )

= /X [TrsA'(T*X)[QtF/pz(x,x)]z/GCM xp(gl)S,F/,,z,x(dg)} dvx (x)

— /}\( {/PG TI’SA-(T*X)[PtI;/pz(u, M/)]ZX,D (u/flu)dq (M/)} dUX(.x). (626)

CX
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For a € R, the action of 6, on R[z] ® A" (T*S) was defined in §5.9. Set

LE’, = Ol/ﬁLfGﬁ. (6.27)

To the operator exp(—Lg’,) we associate kernels and measures which are denoted with
an extra subscript p. We use the corresponding notation for the operator LF’ . By (6.26),

we get
Q(X,Fplx)
o o257
_ A(T*X) z -1
_/X|:Tr [th/p (x,x)] /GCHXP(g )s¥ bt/ p? x(dg)j| dvx(x)
A (T*X F z —1
= /X |:/PGCAT ( )[Pp/[/p (u,u/)] Xp(u/ u)a’q(u’):| dvyx (x). (6.28)
Set
Ap,t = 01/ﬁA4t/p29ﬁ. (629)
y (6.11), we obtain
2
F U (1 om* A (T*S) 8 A (T*X)R.F, b4 .
gl/ﬁLh/sz\/ﬁ = —? < V;Tt/p,ei - 2—\/2\/56(6[)) +Ap. (630)

In what follows, we will systematically underline the elements of g, or Ug,. This
is because, as in §1, the elements of Ug,, viewed as differential operators along the
fibres of G,, will have to be distinguished from corresponding elements in Sg,, viewed
as differential operators with constant coefficients along the fibres of g,. In particular,
instead of (5.61), we use the notation

R = {ei, R"Xej)e(ei)cle;) — 072 (6.31)
By (5.63), (6.29), we get

KX R 1 R
Api = [4—2+Zic<ei>c(e,»)§<ei,e,-)+—f“f’3=(fcf’, i)
L Ve |’9‘ } Aen) rxeg,. L0 ()
\/ﬁ f (l’f(x) +“/—f 1/2 fH g T
+ ic(e,)c(e,)ﬂ —c(e,)c(e,w”@gf A
2p p P
NN L0
+ WZC(@)?(@:‘) +zf ;(faH)‘ (6.32)

Let x € M, and let X be the fibre of m containing x. Along this fibre, we take a
local geodesic coordinate system centred at x; i.e., for € > 0 small enough, we identify
the open ball B*X(0, ¢) C T, X with the open ball BX(x,€) via the map ¥ € T, X —
exp,(Y) € X. We trivialize fibrewise R[z] ® A (T*S) ® A'(T*X) near x using parallel
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transport with respect to the fibrewise connection 1V21>'/(],T B AT ch( -) along the

geodesics centred at x. Also, we trivialize Pk fibrewise by parallel transport with respect
to the connection 8% along these geodesics, so that

Pxlpx 0.0~ BHX(0,€) x K, Pglgxe =~ B (0,€) xG. (6.33)
In (6.33), we can as well replace K, G by U, G¢. Under the identifications in (6.33),
G, ~G, g, =g, Ug ~Ug, (6.34)

and the left action of G, on Pg is just the left action of G on G. Also, in (6.34), g, is
identified with the right-invariant vector fields on G, and Ug, acts on G as right-invariant
differential operators.

For € > 0 small enough, via the exponential map, we identify a neighbourhood of
0 in g with a neighbourhood of 1 in G. This identification extends to a holomorphic
identification of a neighbourhood B%¢(0, €) of 0 in gc with a neighbourhood B¢ (0, €)
of 1 in G¢. Let O(BYC(0, €)) be the vector space of complex holomorphic functions on
B9€(0, €). Under the above identifications, the operator 6y, fL a/p ,0 /p acts on
C®(BTX(0,¢), R[z] ® A (T*S) ® A (TFX)) ®c O(BI(0, €)). (6.35)

Let Y, A denote the tautological sections of Ty X, gc. For s > 0,a > 0, set

Ksaf(Y,A) = f(sY,aA). (6.36)
Put
F _ F
My =K fiypayp1 L 20K pvip: (6.37)

We introduce another copy fx?( of Ty X. If e € T, X, let e denote the corresponding
element in T, X. Let * € T*X correspond to e by the metric of Ty X, and let ¢* be the
corresponding element in T*X.

We make a Getzler rescaling [31] on the Clifford variables c(e;), c(e;). For e € Ty X, s >
0, set

cs(e) = %e* A —=~sio, Csile) = %’é’k A +/siz. (6.38)

This notation is compatible with that in § 1.8. We denote by yt the operator obtained
from M‘g by replacing the c(e;), c(e;) by the cyplei), cl/p(e,)

Recall that o (A?) is given by (2.19). As explained in §1.8, o(A?) is viewed as a
differential operator with constant coefficients acting along the fibre g, ..

In what follows, tensors will be evaluated at x. Let ATX be the fibrewise Laplacian
along TX. Set

NT, = —ATX po(A2) +26%. (6.39)

The €, f* generate T*M, and will be considered as differential forms on M. We claim

that, as p — 400, we have the convergence of differential operators on T, X,

NT, = NZ,. (6.40)
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Equation (6.40) says that we have uniform convergence of the coefficients of the operators
as well as their derivatives of any order over compact subsets.

To establish (6.40), let us review the various terms in the right-hand side of (6.30).
The contribution of the first term in the right-hand side of (6.30) to the limit of th
is just —ATX. Indeed, local index-theoretic techniques, which include the local families

index theorem, show that the connection ‘v;}‘/ff‘s) AT _ %?(') only contributes

trivially to the limit. So we concentrate on the contribution of 6%. In this trivialization
by parallel transport with respect to 8%, let I't be the connection form for 6%. Since the
curvature of 8¢ is given by —6"2, we have

Iy =—16"2(r, )+ O(IY?). (6.41)

For each index i, inside the square in the right-hand side of (6.30), the asymptotic
contribution of 6% is given by
t

2p2(’)(Y), (6.42)

p
the first factor p coming from the rescaling in the variable A. The expression in (6.42)
tends to 0 as p — 4o00. The above establishes our claim on the contribution of the first
term in (6.30).

We claim that, as p — +o0, the contribution of A, to the limit of th is given
by U(.Atz) +z0P. This follows from arguments similar to the ones in the proof of
Proposition 1.4, from (2.19), and from (6.31), (6.32). This completes the proof of (6.40).

The operators in (6.40) act on functions which are holomorphic on gc. Therefore, it is
a priori not possible to deduce anything for the corresponding heat operators, because
the classical arguments we have in hand necessitates the convergence of operators acting
on smooth functions. However, in §6.3, we defined lifts LF, LF" of L. The arguments
we gave when proving (6.40) have a counterpart for the operators Lf, L?’ constructed
in §6.3. From these operators, one can define operators M;I:,z’ Mgft and Nll‘;[, Nlljft as in
(6.37), (6.38).

We claim that the operators NII‘;),,
asymptotics of N;’ﬁ in (6.40); i.e., there are differential operators Ngo),,
coefficients on Ty X X gc such that, as p — +o0,

N;l:,/t have asymptotics which are similar to the

NE | with constant

N};, — N& .. N;”ft — N .. (6.43)

This is because the operators L}?, Lf’ have exactly the same kind of homogeneity as the
operator L;g itself. When restricting these operators to functions that are holomorphic
along gc, the operators Ngo’t, NEO’J coincide with Ngit. The operators Ngo,z’ NCI;Z,, can be
written in the form

Ny, =—-ATX 4k N, = —ATY 4K (6.44)

Comparing with (6.39), we find that KF, K¥’ are differential operators along the fibres of
PG, that are lifts of o (A?) +z6P, the operator ¥’ being fibrewise elliptic.
We will now take the asymptotics as p — 0o in the right-hand side of (6.28).
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(1) We claim that, given x € X, the computation of the asymptotics of any of the two
integrands at x can be made to be local near x, 1 € G¢ x. In § 6.3, we have equipped
u with an Ad(U)-invariant scalar product, gc = u @ iu with the corresponding scalar
product, and G ¢ with the associated right-invariant metric. Let d9¢ be the distance
on Gc¢. From the metrics of X and G, and from the connection 6%, we obtain a
Riemannian metric gTPGC on PG, which is invariant under the right action of G¢
on Pg. Let d¥6c be the associated distance.
The fibre Pg, is complete for this metric. Using finite propagation speed, we find
that, given > 0, M > 0, for dPGC(u,u/) >a,0<t <M,

|PF (u, u')| < cexp (—CdTec2(u, u)/1). (6.45)

Recall that F), = HOO(N LP) is equipped with a U-invariant Hermitian metric.
If A € End(F)), we denote by [|A]l, the norm of A with respect to this Hermitian
product. By equation (3.17) in Theorem 3.1, and by proceeding as in (3.42), there
exists C’ > 0 such that, if g € G¢, p € N,

lopglly <exp(C'pd?c(1,9)), lops™' I, <exp(C'pd®c(l. ).  (6.46)
Moreover, we have the trivial inequality
Xp(OI < llppgllp dim Fp. (6.47)

By (3.41), (6.46), and (6.47), there exist ¢’ > 0, C’ > 0 such that, for g € G¢, p € N,

Ixp(®) < ¢'p"exp (C'pdYc(l, g)),

-1 /.n 1 1Gc (648)
Ixp(g7")| < 'p"exp (C'pdC(1, g)).
Take x € X,u € Pk x,u' € PGe,x, 50 that u’ = ug, g € G¢. Clearly,
dPoc (u,u'y < d%c(1, g). (6.49)

Let s €[0,1] — us; € Pg. be a geodesic in Pg. that connects u and u’. Let
s e[0,1] = uf € Pk be the corresponding horizontal curve with respect to the
connection 6% such that ugl =u. Let s € [0, 1] - g5 € G¢ be such that uy = ufgs,
and let £ be the length of this curve in G¢. Then

d%e(1, g1) < € < d7%c (u, ). (6.50)
Clearly, there is k € K such that u{’ = uk, and so
kg1 = g. (6.51)
Since the group K is compact, by (6.51), there is C > 0 such that
d%c(1,g) <dc(1,g) +C. (6.52)
By (6.50), (6.52), we conclude that
doc(1, g) < d"oc (u,u') +C. (6.53)
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By (6.45), (6.48), and (6.53), for dPc (u,u') > a,0 <t < M, p € N¥,
|Pt1;/p2 (e, u') xp ('™ u)| < cexp (—C/pzdpcc‘z(u, u')). (6.54)

By (6.54), we deduce that, given ¢ > 0, as p — 400,

‘/X[/ u'€PG . TrSA'(T*X)[PI%Z(”v”/)]Xﬁ(“/_lu)dq(“/)]dUX(X)

d76c (w,u')>a

— 0. (6.55)

(2) We use the trivializations indicated after (6.32). The above arguments also indicate
that, to compute the asymptotics of (6.28) as p — 400, near (x, 1) € X x G¢, we
can replace X x G¢ by Ty X X gc, and replace the operator LF’ by an operator L,F’
on Ty X x gc that is trivial outside a small ball centred at 0 in 7, X. We define the
operators Mg/ /s ME/ . from L¥ exactly as before.

Up to permutation, the monomial ]_[;":1 c(e;)C(e;) is the only one whose supertrace
is nonzero, and, moreover,

Ty 770 |:1_[ C(ei)?(ei):| = (=)™ (6.56)

i=1

Let Try be the functional on the algebra of operators generated by the
e, iei,?l, iz;, 1 <i < m that vanishes on all monomials except, up to permutation,
on [T/L, €'’ and is such that

Trs []‘[ ei?i:| = (—D™. (6.57)
i=1

Let £EZI(Y, (Y’, A")) be the smooth kernel associated with the operator exp(—ﬁgf[)
with respect to the volume dY'dA’. Take a > 0 small enough. To compute
the asymptotics of (6.28) as p — +o00, we should compute at each x € X the
asymptotics as p — +o00 of

A Tr [P0, (0, 4))]B1/pxp) (—A)dA. (6.58)

|Al<ap

Let ﬂgg,t(O, (Y, A)) be the smooth kernel associated with the operator exp(—ﬂgé,t).
By (6.43), it is easy to deduce that, as p — 400,

PY 0, (v, A) — PE 0, (1, A). (6.59)
Combining equation (3.35) in Theorem 3.6, (6.59), and dominated convergence, as
p — +09,
- T F
2mp ! Aegc Trs[ﬁptt(o’ (0, A))((Sl/po)(—A)]dA

|Al<ap

- 2" /A Tr[PE (0, (0, A))|R(~A)dA. (6.60)
€gc
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Using (6.28), (6.55), (6.58), and (6.60), as p — +o0,

—n —1/2 (X, Fplx)
p"p /wl/ﬁh<A/»g4t/pz ! )

-2 / [/ Tr[PX (0. (O»A))]ZR(—A)dA}dvx. (6.61)
X L/Aegc

(3) Recall that XY was defined in (6.44). As we saw after (6.44), the elliptic operator
KY is a lift of G(A,z) +z6P. Since the function R(A) is holomorphic in A, we have
the identity,

f Trs[PX 0, (0, A)R(=A)]d A = (4) "/ *Trs[exp(—o (A?) — 267 )R(0)].
A€gc
(6.62)

Observe here that, in spite of the fact that R(—A) appears in (6.61), we have not
made a corresponding change of signs in o (A?) +z0P. This is because, as we saw
in §1.6, A € gc,, acts like the vector field —A", which accounts for (6.62).

By combining (1.28), (2.55), (6.57), (6.61), and (6.62), for t > 0, we get

| Q(X,Fplx)
p "ﬁlﬁ1/ﬁh(A/,g4,/pz e ) — TyCy (6.63)

We will now refine (6.63) to obtain the more precise asymptotic expansion in the
first identity in (6.23). The fact that, for a given ¢ > 0, there is an asymptotic
expansion as in (6.23) relies on standard arguments based on the corresponding
asymptotic expansion of the operators in (6.40). Also, the proof of equation (5.30)
in Theorem 5.11 that is given in [18, Theorem 3.16] uses two kinds of argument:
an argument of localization of the asymptotics near the diagonal in X x X, and a
rescaling of the Clifford variables c(e) — ¢;(e). In the present context, where ¢ is
replaced by t/p?, the c(e) should be replaced by Ct/p? (e). Here, we replace c(e) by
the less singular ¢;/,(e), but we introduce an extra singularity when replacing c(e)
by €1/p(e). Still, the above arguments show easily that we have uniformity in the
convergence in (6.23) when ¢+ — 0, so that (6.23) holds uniformly for 0 <t < M.
By (2.68), (5.44), the second equation in (6.23) follows from the first equation.
Equation (6.24) follows from (6.23).

If 9 ¥ is nondegenerate, by equation (4.19) in Theorem 4.4, by (5.63), and by equation
(5.67) in Theorem 5.22, using Kato’s comparison principle, for p € Nand 7 > a > 0,

’h(A/’ th(X,FplX))} < CeXp (_a(pZ _ c/)t) dlm(Fp),
, (6.64)
hA(A/’ th (X,Fp|X)>‘ < Cexp (_a(pz —C/)t) dim(F,).
By (3.41), (6.64), we get (6.25). The proof of our theorem is completed. O

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

290 J.-M. Bismut et al.

Remark 6.6. In our proof of Theorem 6.5, we used the second equation in (6.22) instead of
the first one. However, the first equation would have done as well. Its apparent drawback
is that the operator L,F is not elliptic in the directions of the fibres of Pg.. However,
the fact that there is an integral in g € G¢,, in the right-hand side of (6.22) makes this
lack of ellipticity irrelevant. Equation (6.58) should be replaced by a weak convergence
of measures. Details are left to the reader.

Also, the reader will have noticed that, when taking the proper limit as p — +00 of
equation (5.26), we would just recover equation (2.41), which gives the proper perspective
to Theorem 2.5.

6.6. Convergence results on a Galois cover of X

We assume that § is reduced to a point. Let I' be a dlscrete group actlng freely and
properly discontinuously on a manifold X so that X = F\X Let 7 : X — X be the
obvious projection. The metric g7 X lifts to a I'-invariant metric gTX on TX.

Let H be a Hermitian vector bundle on X. Let Q be the vector space of continuous
kernels Q(z, z') acting on C? ()? ,T*H) that commute with I', and such that there exist
¢ > 0,C > 0 such that

|0(z,2)| < Cexp (—Cdz(z, 7). (6.65)
One verifies easily that Q is an algebra. Also, Tr[Q (z, z)] is a I'-invariant function, so
that it descends to a continuous function on X. Set

' [Q] = /XTr[Q(x, x)]dvy. (6.66)

One then verifies easily that Tr' is a trace on Q; i.e., it vanishes on commutators. Using
finite propagation speed for the wave equation, one can derive the well-known fact that
heat kernels on X lie in the algebra Q.

We will now apply the formalism of the previous sections, still assuming § to be
a point. For >0, we define AT (A’, gtg-(X’ﬁ*FlX)) € R by the same formula as in
(5.35), by replacing the supertrace in the right-hand side of (5.35) by the corresponding
I'-supertrace Tr! .

We claim that the results of Theorem 6.5 are valid for hNT (A, g ). The key
point is that, as observed in Remark 4.5, if oF is nondegenerate, the spectral estimate
(4.19) is still valid over X. Therefore, if P is nondegenerate, for p € N large enough, we
can still define the I'-torsion 771F (g™, Fp, gf7) € R by a formula similar to (5.45).

Taking into account the fact that S is reduced to a point, we claim that the obvious
analogue of Theorem 6.5 holds for AT (A, g Q *7 F”lx)) In particular, if 7.d, € R still
refers to the object considered in §2 that is associated with X, as p — 400,

s F(A/ Sj X7 F17|X)> _ p"+1ﬂ*d;/4 +0(p"). (667)

Also, the estimates in (6.23)—(6.25) still hold. The proof of the above is strictly similar
to the proof of Theorem 6.5.
Given a nontrivial conjugacy class [y] in T', one can instead define an associated
AT [y](A/ QX7 *Fplz)
81/p2

Q(Xn Fplp)

). One verifies easily that, given ¢ > 0, there exist C > 0,¢ > 0
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such that, as p — 400,

h/\,r,[y](A/’ gf;'[f;(,nwpli))’ < Cexp(—cp?), (6.68)

and, moreover, that the analogues of (6.23)—(6.25) still hold.
Some of the above results will be reobtained in § 8 in the context of locally symmetric
spaces.

7. The asymptotics of the analytic torsion forms

In this section, when oP is nondegenerate, we obtain the asymptotics as p — 400 of the
analytic torsion forms Ti(THM, gTX, VFp, gF/’) in terms of the form W that was defined
in §2.

This section is organized as follows. In §7.1, we state our main result, the proof of
which is divided into two key steps, involving large and small values of the parameter
t>0.

In §7.2, we obtain the estimate involving large values of ¢.

In §7.3, we prove the estimate involving small values of ¢.

In § 7.4, we verify the compatibility of our asymptotic formula to known results on the
forms W and T,(TH M, gTX, v, gFP).

In §7.5, we derive rigidity results on the class of forms 7, W that are consequences of
our asymptotic formula.

Finally, in § 7.6, we obtain the asymptotics of the I'-torsion of a Galois covering X of X.

7.1. The main result

We make the same assumptions as in § 6. Also, we assume 6P to be nondegenerate in the
sense of Definition 1.13. Recall that the form W was defined in Definition 2.11.

Theorem 7.1. As p — +o0,

P_"_lwl/ﬁE(THM, g Vi gy = w+0O(p7h). (7.1)

Proof. For simplicity, we assume S to be compact. By Theorem 4.4, for p large enough,
the complexes ('(X, Fy|x), dX) are exact. By (5.45), for p large enough,

+00 . dt
Ti(TM, g™% Vi gfr) = —/0 hA(A/, g (X’F”'X))T. (7.2)
We rewrite (7.2) in the form
P . dt
H TX wF, _F,\ _ Q (X, Fplx)
) < = [ )
too : dt
_ / hA(A/,gfz (Xst|X)>_' (73)
1/p t
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In the remainder of the section, we will show that there exists ¢ > 0 such that, as

p — +09,
+oo : dt )
o A R e )
1/p ) Qf(XF i (7.4)
_P_n_IW]/\/ﬁ/(; hA<A/, gt/pz’ - >T = W+0(p7 "),
from which (7.1) follows. O

7.2. A proof of the first equation in (7.4)
As in §4.3, we denote by D}f the operator DX acting on Q' (X, Fplx). Let A, > 0 be the

lowest eigenvalue of D;,(’z. Take o > 0. For ¢t > «, we get
Tr[exp(—tD[}f’z)] <exp(=Apt — a))Tr[exp(—oeD[)f’Z)]. (7.5)
By equation (4.19) in Theorem 4.4, there exist ¢ > 0, C > 0 such that
Ap = ep?—C. (7.6)

Taking « = 1/4p in (7.5), and using (7.6), for p € N large enough, and for r > 1/p, we
get

Tr[exp(—thf’z)] < Cexp(—c(p +t))Tr[exp(—Dl)f’2/4p)]. (7.7)
By (4.13), (4.18), and using Kato’s comparison principle, we get
Tr[exp(— D)2 /4p)] < Cp™/*(dim F) exp(—cp). (7.8)
By (3.41), (7.8), we obtain
Tr[exp(— D)2 /4p)] < Cp™/*™ exp(—cp). (7.9)

By (7.7), (7.9), there exist C > 0, ¢ > 0 such that, for p € N large enough, and for ¢t > 1/p,

Tr[exp(—1D)?)] < Cexp(—c(p+1). (7.10)
By (5.35), there exist C > 0, k € N such that

ph(ar gt )| < o Trexp(—1DX2/8)]. (7.11)

By (7.10), (7.11), there exist C > 0, ¢ > 0 such that, for p € N large enough, and for
t=1/p,

hA<A’,g?(X'F”|X))‘ < Cexp(—cp —ct). (7.12)

By (7.12), we get the first equation in (7.4).
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7.3. A proof of the second equation in (7.4)

Note that
/p hA<A', gQ'(f,Fplx))ﬂ _ / hA<A’ Q(XF, |X))dt
0 t/p t 0 /P t

P . dt
N sz(x,mx))_
+/1 h (A,gt/pz - (7.13)

By equation (6.23) in Theorem 6.5, as p — +00,

Q(X.F)lx)\ dt 1 dt B
wl/f/ " A/ 8o P'X))t :/0 Tadija=— +O(p™). (7.14)

To handle the second term in the right-hand side of (7.13), we still use (6.23), combined
with the fact to be proved that there exist ¢ > 0, C > 0 such that, for p € N large enough,
and 1 <1 < p,

- Q(X.F,
[Py g (4 g2 )| < Cexp—en. (7.15)
It follows that, as p — o0,
Q (X Fylx)\ dt too dt
T l1//1/{/ h" A’ /; m)f —>/ medijg— (7.16)
1

By (2.75), (7.13), (7.14), and (7.16), we find that, as p — 400,

dt
wl/f./ h/\ A/ S;(X FplX)) . — ﬂ*W, (717)

which is part of the second equation in (7.4).
So we concentrate on the proof of (7.15). By proceeding as in (5.44) and in the proof
of Theorem 6.5, it is enough to show that, for p € N large enough, for 1 <t < p,

%p_nwl/ﬁh<A/,gS;§'FpX))‘ < Cexp(—ct). (7.18)
Here, we will use equation (5.67). Set
Lfr =177, (7.19)
By (5.23), (5.62), and (5.66), we get
L =6, L0 ;. (7.20)

By (4.18), there exists @ > 0 such that, for p € N large enough,

pp® > 2ap>. (7.21)
Set
ot Fe Pt gy E, W
L =L ==, Lf = LF - (7.22)
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Let € €]0, 1] be a lower bound for half of the injectivity radius of the fibres X. Let
Y (u) : Ry — [0, 1] be a smooth decreasing function that is equal to 1 for |u| < €/2 and
to 0 for |u| > €. Set

+00 ) du
Fi(x) :/ Cos(ux)w(\/ﬂm) exp (—u /4)

e Vam p (7.23)
G;(x) = [w cos(ux) (1 — ¢ (Vlul)) exp (—u2/4)\/:_n.
Then
exp (—x%) = F(x) + G, (x). (7.24)

Note that F;(x), G;(x) are even holomorphic functions. Therefore there exist holomorphic
functions F;(x), G;(x) such that

F(x) = F(x?), G;(x)=G(x?). (7.25)

By (7.24), (7.25), we get N N
exp(—x) = F;(x) + G;(x). (7.26)

The restrictions of F;, G; to R lie in the Schwartz space S(R). Therefore the same is true
for the restrictions of F;, G, to R.
By (7.22), (7.26), we get

exp (—L;7) = e~ (F, (L") + G (L"), (7.27)

Proposition 7.2. There exist C > 0, ¢ > 0 such that, for p e N,0 <t < 1,

|p_”TrS[C~},(L,F”/)]| < Cexp(—c/t). (7.28)
Proof. Set
Hi(x) = /+oo cos(ux)(1 — ¥ (|ul)) exp (—u?/4t) du ) (7.29)
s Vart
Then
G, (x) = H;(x/V/1). (7.30)

By proceeding as in [17, equation (13.23)], given d > 0, k € N, there exist ¢ > 0,C > 0
such that
sup  |x|¥|H;(x)] < Cexp(—c/1). (7.31)

xeC
Im(x)|<d

Finally, there exists a holomorphic function ﬁ, (x) such that

H;(x) = H;(x?). (7.32)
By (7.25), (7.30), and (7.32), we get

G,(x) = Hy(x/1). (7.33)
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By (7.20), (7.22), and (7.33), we obtain
Gi(L") = 6y, B (L) ;. (7.34)
By proceeding as in [9, Proof of Theorem 11.3], one can show that there exist ¢ >
0, C > 0 such that, for p e N,t €]0, 1],
| Trs[H, (LT")]] < Cp" exp(—c/1). (7.35)
To prove (7.35), let us first assume that S is reduced to a point, so that the part of Lf»
not containing z is self-adjoint. By (7.21), for p € N large enough, we get
pp® —ap® > ap®. (7.36)
This estimate is strong enough to control the piece of Lf»’ containing z. Let AX be the
Laplace-Beltrami operator. By Kato’s comparison principle, for p € N large enough, we
= |Tes[ H, (L™")]| < C(dim F,)Te[ H, (- A% /4)]. (7.37)
By (7.31), for 0 < < 1,
Te[H, (—A% /4)] < cexp(=C/1). (7.38)

By (3.41), (7.38), we get (7.35) when S is reduced to a point. In the general case, Kato’s
comparison principle is no longer available because L7 is not self-adjoint. However,
uniform estimates for the resolvent of LtF ” can be obtained that are similar to the ones in
[9, Chapter 9]. These estimates still use (7.36), combined with the fact that, in equations
(5.63), (5.67), the size of the terms of nonzero degree in A" (T*S) is dominated by Cp.
These estimates still give (7.35).

By (7.34), (7.35), we get (7.28). The proof of our proposition is completed. O

By (7.28), for p e N, 1 <t < p,

|p_”01/ﬁTrs[(~;t/pz(LS’;2)]} < Cexp (—cp?/t) < Cexp (=%t + p)). (7.39)
By (7.27), (7.39), to establish (7.18), we are left to prove that, for 1 <7 < p,
_ ~ F
P60, 5T Fy e (L, )] < C (7.40)

Using finite propagation speed for hyperbolic equations, [27, §7.8], [46, §4.4], for x € X,
the support of the smooth kernel FN}/pz (LIF/’;/Z) is included in the open ball BX(0, €/2).
Therefore, the proof of (7.40) can be localized. Now, we proceed as in the proof of
Theorem 6.5. There, the proof was based on a choice of local coordinates near x € X.
The support condition given before shows that we can safely replace X by T, X, while

f/”[:z outside the ball BTxX(0, €/2) to the full T, X, so that it has
Fpr

essentially the same structure as L, et

We consider equations (5.63), (5.67) for LS‘;}Z. In A2, the component of degree 0 in

extending the operator L

R[z] ® A (T*S) is just 4#8' By (7.21), for p € N large enough, p;—z@ —a has a positive
lower bound.
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We will now proceed as in the proof of Theorem 6.5, doing the rescaling on the
coordinate Y near x and also the same Getzler rescaling on the Clifford variables, while
not performing any rescaling on the coordinates in G¢. Equivalently, we still treat F), as
an ordinary flat Hermitian vector bundle. By equation (3.17) in Theorem 3.1, proceeding
as in the proof of (4.21), if A € gc, we get

;”LAlH(QO)(N,LI’) g C|A| (741)

While, in the proof of Theorem 4.4, the estimate in (7.41) was enough to obtain the
spectral gap in (4.18), (4.19), here, the rescaling on the Getzler variables makes certain
terms bigger. As an example, after the Getzler rescaling, the leading term as p — 400
in %’c\l /p(ei)ciyp(ej) is given by fet Ae/, which is a nilpotent operator, whose size for
1 <t < p is not uniformly controlled. To take advantage of the uniform positivity of
L ”® —a,asin [17, §11(k)], we introduce a systems of Hilbert norms with weights. Namely,

for A > 0 small enough, s € C®(T X, A (T X) ® Fp x), set

A (T*X) |2
ESAR]

L (7.42)

|S|A

With respect to the norm | |;, if f € T*X, the norm of the operator fA is now A|f|.
Of course the contribution of operators like i, is increased by the factor 1/A, but such
operators always have an extra factor like 1/,/p which makes them small in the end.
Ultimately, when picking up the proper A > 0, for r > 1, we get a positive lower bound

for the spectrum of the rescaled version of 6y, thF/ 20 /-

Using a contour integral formula then leads easily to a proof of (7.40). This completes
the proof of equation (7.15).

We claim that we can now establish the full second equation in (7.4), which requires
refining (7.16) to

b Q (X, Fplx)\ dt +oo dt _
[t g XS = [ oG (ras)
1 t 1 t
We still use equation (7.27). By (7.39), as p — 400,

p ~
/1 p"e 0y, TGy (L7 P 2)] = O(e™P). (7.44)

Using previous arguments, given t > 1, as p — 400, p~ Gl/fTrb[ t/pz(Lt/ 2)] has an
asymptotic expansion that is uniform when ¢ > 1 remains bounded. By proceeding as in
the proof of Theorem 6.5, for p € N*, 1 <t < p, over compact subsets of S,

1 ~ F, ¢
‘P nﬁwl/ﬁTrs[Ff/pz(L,/;z)]z JRayi. ccia| < C;. (7.45)
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By (7.45), over compact subsets of S, we get

p 1 ~ Fy/ dt
—at/4 —n_1_ z _ ar
fl (e T By (L 0)] ”*Cr/4> ;
+oo
<cp™! / e 41, (7.46)
1
By (7.27), (7.39), and (7.46), we get
P 1 dt C
P —n(A gQ(X,Fplx) — pec 4> —l< = 7.47)
/1 < 77 )= ) T <5 (

By proceeding as in (5.44) and in the proof of Theorem 6.5, from (7.47), we get (7.43).
This completes the proof of Theorem 7.1.

Remark 7.3. Let (F/, VF', gF,) be a flat Hermitian vector bundle on M. One verifies
easily that, if we replace F), by F, = F, ® F" in the left-hand side of (7.1), then the
right-hand side of (7.1) should be multiplied by dim F’. Similarly, if L’ is a holomorphic
vector bundle on N to which the action of G also lifts, we could as well deal with L” ® L',
the only effect being to multiply the right-hand side of (7.1) by dim L'.

7.4. Compatibility of Theorem 7.1 to known results

We will check the compatibility of Theorem 7.1 to known results on analytic torsion
forms.
By equation (5.46) in Theorem 5.16, we know that, for p € N large enough,

dTh(TH M, g"*, V', g"r) = m,[e(TX, VIX)n(VT?, g"7)]. (7.48)

By equation (6.1) in Proposition 6.1, and by equation (7.1) in Theorem 7.1, when taking
the asymptotics of (7.48) as p — +00, we recover equation (2.77) in Theorem 2.12.

Moreover, by Ma [33, Theorem 0.1], T,(T"M,g"X VFr, gfr) satisfies natural
compatibility relations under compositions of proper submersions. The form m,W in
(7.1) should verify corresponding compatibility relations. These relations were proved
directly in Theorems 2.14 and 2.16.

7.5. Rigidity of the class of =, W

As we saw in Remark 2.13, if oP is nondegenerate, the infinitesimal variation on 7, W in
Q'(8)/d2~1(S) can be explicitly calculated. We will now obtain a corresponding global
result.

Let i, i’ € S. The class Y (h, h’) on M was defined in Remark 2.8.

We assume that i, i’ are such that the corresponding 5", 6% are both nondegenerate.
We denote with a ’ the objects considered above that are attached to TH M, g7 '

Theorem 7.4. The following identity holds:
(W — W) = m[e(TX, VIX)P(h, h)] in (S)/d2~(S). (7.49)

If dim X is odd, then
W =m W' in H(S,R). (7.50)
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Proof. To establish (7.49), we use Theorems 5.17 and 7.1, together with the fact that,
by Proposition 6.1, as p — 400,

Py ph (VI g ™) = T (1) + O(p7). (7.51)
When dim X is odd, (7.49) reduces to (7.50). The proof of our theorem is completed. [

Remark 7.5. In general, one cannot interpolate between & and A’ by a family £ € [0, 1] —
h¢ € § such that the corresponding 55 are nondegenerate. If this is the case, then
Theorem 7.4 is trivial. We do not know how to prove this result in general without
using Theorem 7.1.

By Theorems 2.12 and 7.4, if dim X is odd, the form 7, W is closed, and its cohomology
class does not depend on the metric data TH M, g7X h as long as oPis nondegenerate.

Let £ €[0,1] = fr € F be a family of flat connections on Pg. Let £ € [0, 1] — 959
denote the corresponding family of flat connection forms on Pg. Recall that the associated
class of forms ¥ on M was defined in Remark 2.18. We assume that, for £ € [0, 1], @f is
nondegenerate. Let £ € [0, 1] — W, be the associated family of forms on M.

Theorem 7.6. The following identity holds:
T (Wi — Wo) P2 = . [e(TX, VI*) D] in @(8)/d27'(S). (7.52)
If dim X s odd, then
WP =2, WP in H'(S,R). (7.53)

Proof. We use the notation of Remark 5.3. From the explicit formulae in [15, Definition
2.4 and Theorem 2.5], and proceeding as in the proof of Proposition 6.1, one finds easily
that, as p — +o0,

e ~ _F, ~ _
p" 11//1/ﬁh(vglyng) =y+0(p7h). (7.54)
By Theorems 5.19 and 7.1, and using (7.54), we get (7.52) and (7.53). O

7.6. The asymptotics of the I'-torsion

We make the same assumptions as in §6.6, and we use the corresponding notation. In
particular, S is reduced to a point. We assume that 6 ¥ is nondegenerate. For p € N large
enough, the I'-torsion 7,1 (g7%, V7, gfr) € R is well defined.

We still define the form W on X as in Definition 2.11. Since S is a point, 7, W € R.

Theorem 7.7. As p — +o0,
pinillﬁlr(ng, VF”, ng) — 7T*W+O(p7]). (755>
Proof. The proof is essentially the same as the proof of Theorem 7.1. However, the

arguments in the proof of (7.5)—(7.8) have to be adequately modified. If z,z’ € X, A €
Hom(ZT* (A (T*X) QRA*Fp);, T* (A (T*X) @R T*F}) /), set

|A| = Tr[A*A]'/2. (7.56)
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For z € X , we equip the vector space
Ly(X, Hom(z* (A (T*X) @R 7*F,) . 7* (A (T*X) @R T*F)) ))
with the corresponding Ly norm. Let P, ;(z,z') be the smooth kernel associated with
exp(—tD;,(’z). Then
Tt[Pp,i (2. 2)] = [ Pp.ij2(z. )L, (7.57)

We can rewrite (7.57) in the form
e 2
TrlPp.:(z, D1 = [exp (—1D)2/2)8. - (7.58)

By (7.58), Tr[Pp(z, z)] decreases with ¢. By Theorem 4.4 and Remark 4.5, we get an
analogue of (7.5), (7.6); i.e., given a > 0, for t > «,

T [exp(—1DX2)] < exp (= (cp® — €)1 — ) Tr" [exp(—a DX ?)]. (7.59)

The proof continues as the proof of Theorem 7.1. O

Remark 7.8. Inspection of the proofs of Theorems 6.5, 7.1, and 7.7 shows easily that
there is ¢ > 0 such that, as p — 400,

Ta(8™. V7. 8"7) =Ty (¢"*. V7. g7) = O™P). (7.60)

8. Asymptotic torsion and orbital integrals

The purpose of this section is to demonstrate the compatibility of the results of the
previous sections to the evaluation of semisimple elliptic orbital integrals in [11]. More
precisely, if G is a connected reductive group and K is a maximal compact subgroup,
we take X to be the symmetric space G/K or a compact quotient I' \ G/K by a discrete
torsion-free cocompact subgroup I' C G, and S to be a point. In this case ., W can be
evaluated more explicitly. Moreover, the asymptotics of the orbital integrals are evaluated
explicitly so as to recover certain results of §6. Also, conditions are given so that oP is
nondegenerate.

This section is organized as follows. In §8.1, the symmetric space X = G/K is
considered.

In §8.2, we introduce the Casimir operator on G.

In §8.3, the case where G = K is briefly considered.

In §8.4, a formula for DX:2 is given in terms of the Casimir operator.

In § 8.5, using the results of [11], certain orbital integrals associated with exp(—tD%2/2)
are evaluated. The integrand of the Ray—Singer analytic torsion of locally symmetric
spaces that are associated with our flat bundles F is still shown to vanish, except for
the restricted list found by Moscovici and Stanton [40], [11, Remark 7.9.2], who had
considered the case where F is unitarily flat.

In §8.6, the forms d; are shown to vanish for the symmetric spaces not included in the
list of [40].

In §8.7, m,W € R is computed in the case where G = SL,(C), and results of Miiller
[43] are recovered in the case where G = SL,(C).
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In §8.8, if A is a weight for U, and if N = N, is the corresponding coadjoint orbit of
U, necessary and sufficient conditions on A are given under which 0% is nondegenerate.

Finally, in §8.9, we obtain the asymptotics as p — 400 of certain orbital integrals
associated with the heat kernel of DX2. Of special relevance is the integrand of the
classical Ray—Singer analytic torsion. The forms d;, e; that were defined in Definition 2.9
are used to express the asymptotics.

8.1. Reductive groups and symmetric spaces
We use the notation of §1.1. Set

m =dimp, m' =dimt. (8.1)

Let 02 be the canonical left-invariant 1-form on G with values in g, and let P, 0% be
its components in p, £, so that
0% = 0% +06°. (8.2)
Let X =G/K be the associated symmetric space. Then p:G — X =G/K is a
K-principal bundle, equipped with the connection form #%. As in (1.38), (1.39), the
curvature ®F of this connection is given by

of = _1[67,67] = —6P2. (8.3)

Let ey, ..., ey be a basis of p, and let el, ..., e™ be the corresponding dual basis of p*.
We can rewrite (8.3) in the form

ef=_—- Z eiAej®[ei,ej]. (8.4)
1<i, j<m

We use the notation of §1.6. Making M = X, P = G, the assumptions of §1.6 are
verified. Indeed, 69 defines a flat connection on Pg. Also, G X G/K = X has a canonical
tautological section over X. Equivalently, the reduction of the principal bundle p : G — X
to a K-bundle is given tautologically. We can then apply to the present situation the
arguments and results of the previous sections.

If E is a finite-dimensional real Euclidean vector space, and if pf : K — Aut(E) is a
representation of K by isometries of E, then F = G xg E is an Euclidean vector bundle
on X, which is naturally equipped with an Euclidean connection V. Also, we may as
well assume that E is a complex Hermitian vector space, and that F is a Hermitian
vector bundle equipped with a unitary connection.

If the representation p% is induced by a representation G — Aut(E) that is still denoted
pE, the map (g,v) € G xg E — pf (g)v € E gives the canonical identification

GxxkE=XXE. (8.5)

In this case, the vector bundle F is also equipped with a canonical flat connection V-7

and moreover,
vil = vl 4 pEgP. (8.6)

As in (4.3),
o(VET gF) = —2pF0P. (8.7)
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Note the change of notation with respect to the previous sections, since VI, VF# have
become VF/ Vv F.

If pf : U — Aut(E) is a complex representation of U, there is a Hermitian metric g on
E that is such that the representation is unitary. As we saw in § 1.1, p£ extends uniquely
to a representation of G, so that we are in the situation we considered above.

Observe that G acts on g by the adjoint representation. The tangent bundle T X is

given by
TX =G xgp. (8.8)
Put
Then
TX®N =G xgg. (8.10)

By the above, TX, N are equipped with Euclidean connections VX V¥ Also, the
connection V¥ is the Levi-Civita connection of TX. Moreover, TX @ N is canonically
flat, and it can be identified with the trivial vector bundle g. Comparing with (1.33),
(1.36), we get

TX®N =g, TX=p,, N=£t. (8.11)
By (8.6), we get
VIXON.f _ yTXON 4 5qpP). (8.12)
By (8.12), we get _
a)(VTXEBN’f, gTX€BN) — —2ad(6"). (8.13)

Let RTX be the curvature of VIX. If a, b, c € TX, then
R™(a, b)c = —[[a, b]. c]. (8.14)

Note that 6P can be identified with the identity section of T*X ® TX. Therefore, if
UeTX,
TX®gr,
v, PP = 0. (8.15)

8.2. The Casimir operator of G

Let C% € Ug be the Casimir of g. If ey,...,e, is an orthonormal basis of p, and
€m+1s - - - » €myny 1S an orthonormal basis of €, then
m m+m'
Cc?= —Zeiz—i- Z er. (8.16)
i=1 i=m+1
Set
m m+m’
CoH=-%"¢, Cc'= > ¢, (8.17)
i=1 i=m+1
so that
c9=cof ¢t (8.18)
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As the notation indicates, C* is the Casimir of € that is associated with Ble. By [11,
equation (2.5.7)],
[ceH ct]=o. (8.19)

Let E be a complex vector space, and let pf be a representation of G in Aut(E).
Let C9F € End(E) be the Casimir of g which is associated with the representation pf.

Namely,
cE = pEcs, (8.20)
Set
COHE _ jEco.H — cbE _ (ECE (8.21)
Then
coE = coHE L ctE, (8.22)

8.3. The complexification of compact Lie groups

In this subsection, we assume that G is the complexification K¢ of the compact connected
Lie group K. The Lie algebra g of G is given by

g=itP¢t, (8.23)
so that, with respect to the notation in (1.1),
p =it (8.24)

If () is a K-invariant scalar product on ¢, then —() extends to a real symmetric bilinear
form B on g which has the properties indicated in §1.1. In what follows, we identify i
with the obvious complex structure of g, which exchanges p and &.

Let «t € A3(£*) be such that, if a, b, ¢ € ¢,

«ta, b, c) = B(a,bl,c) = —(la,b],c). (8.25)

Then «* is Ad-invariant. It induces a closed left- and right-invariant 3-form on K.
Let «® € A3(p*) be such that, if a, b, ¢ € p,

«P(a, b, c) = —«kt(ia,ib,ic). (8.26)

By (8.25), (8.26), we get
k¥(a,b,c) = B([a, b, ic). (8.27)

Then kP is K-invariant.

Proposition 8.1. The form «P descends to a closed 3-form on X which is parallel with
respect to vIx,

Proof. Since ! is K-invariant, it descends to a 3-form on X which is parallel with respect
to VIX. Therefore it is also a closed form. O
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Observe that ad(if”) acts as an antisymmetric endomorphism of p into itself. Moreover,

ad(i0)% = —ad(6”)>. (8.28)
Equation (8.14) can be written in the form
RTX = ad(io®)%. (8.29)
By (8.15), if U € TX,
v Xad(i6®) = 0. (8.30)

Proposition 8.2. The Pontryagin forms of (T X, VIX) are concentrated in degree 0. Also,
e(TX,V'¥) =o0. (8.31)

Proof. We use equation (8.29), together with the fact that ad(i6®) acts as an
antisymmetric endomorphism of TX into itself. By proceeding as in [18, proof of
Proposition 1.3], our proposition follows. O

Remark 8.3. Here is another proof of Proposition 8.2. First, we consider the Chern
character form. By [11, Proposition 7.1.1],

ch(TX, VI¥) +ch(N, VV) = 2m’. (8.32)
On the other hand, i : TX — N is a parallel morphism. Therefore,
ch(TX, VI ¥) = ch(N, VV). (8.33)
By (8.32), (8.33), we get
ch(TX, V) =m'. (8.34)

The same argument can be used for the other Pontryagin classes. Let us now consider
the case of the Euler class. Recall that ®F is given by (8.4). Set

1

0f=—3 Z AT ® e, el (8.35)
1<i,j<m
Then 1
3 (e, RTXej)eiel = —(@F, ©F). (8.36)
1<i,j<m

In (8.36), the scalar product is taken of the & components of ©, ©.
Let k® be the obvious analogue of «P. By (8.27), (8.36), we get

% S fer, R™esf6 A%T = —ijei?. (8.37)

1<i,j<m
By (1.44), (8.37), we get

B 1
e(TX,Vv1¥) = / exp (?i@*fp) . (8.38)

Since the exponential in (8.38) can never be of top degree in A (T*X), we get (8.31).
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8.4. The Weitzenbock formula on X

We assume again that G is an arbitrary connected reductive group. Let E be a complex
Hermitian vector space, and let pf : U — Aut(E) be a unitary representation of U. As
we saw in §8.1, E descends to a vector bundle F equipped with a flat connection V>f
and with a unitary connection V.

By (4.11), (8.15), we get

KX 1 PO
D2 = =AM = — o(RT (i, €))ex, ecfeleieleelenTler)

1 SN
+pFloP* - 5(c(el-)c(ej) —Clecle)) pEoP2 (e, e)). (8.39)

The tensors that follow —AX* in (8.39) are parallel with respect to VAT ®REF,
By [11, equation (2.6.8)], or by (8.14), we get

KX =TP[CYP]. (8.40)
Set
DX = c(e)) VA T 0OBRE, (8.41)
Then DX is a standard Dirac operator on X. By (4.10), (8.7), we get
m
DX = DX+ "Cenp (ei). (8.42)
i=1
By (8.15), (8.42), we obtain
m 2
D*? =Dp*? ¢ (Zaeap%)) . (8.43)
i=1

Also, the two operators in the right-hand side of (8.43) commute. Then (8.43) can be
rewritten in the form

m
1 o
DX’2=QX*2+§jpE<e,~)2+5 §__: le)ce)pE e, ej1). (8.44)
i=1 1<i,j<m

By (8.17), equation (8.44) is equivalent to

1 PR
DX?2 = pX2_ceHE 4 5 > Cecteptlei ). (8.45)
1<i, j<m
Let C%X be the Casimir operator of G acting on C®(X, A (T*X)®r F). Let
B*(k9, k%) € R be the constant defined in [11, §2.6]. Its precise value is irrelevant here.

Set
LXF ZLenX 4 Lgren ) (5.46)

Proposition 8.4. The following identity holds:

_exr_Lear - Lpercry _ Lpprots
=L 5€ T [C*F] T [C*P]. (8.47)
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Proof. Let SP be the Hermitian vector space of spinors associated with the Euclidean
vector space p, and let SP* be its dual. If e € &, set

1
?(ad(e)|p)=—z Z (ad(e)e;, ej)clei)Tle;). (8.48)

1<i,j<m

By [11, Theorem 7.2.1], using the notation in this reference, we get

QX’Z _ EX,F 1B*( ¢ E) 1CE,SP*®E (8 49)
5 = 3 KK 3 . )
By definition,
ESPRE - E 2
c = Y (Cadelp) +p" )" (8.50)
i=m+1
By (8.50), we get
m—+m’
CE,Sp*®E o CE,SP* + CE,E +2 Z /C\(ad(e;”p),OE(e;) (851)
i=m+1

By [11, equations (2.6.7) and (7.8.6)],
Bt k%) = Imt[ctt], v = It (8.52)
By (8.45), (8.49), and (8.52), we get (8.47). The proof of our proposition is completed. [

8.5. The trivial orbital integrals

Now, we will evaluate certain trivial orbital integrals, i.e., the orbital integrals associated
with the element 1 € G. For ¢t > 0, let P,(x,x’) be the smooth kernel on X which is
associated with exp(—tD*2/2). By definition, if x € X, the orbital integral associated
with 1 € G is given by

Trexp(—D¥2/2)] = TeN T OSRE Py (¢ 1)), (8.53)

Of course, the right-hand side of (8.53) does not depend on x € X.
Let dvp be the volume form on p. If o € A*(p*) ® o(p™), if o™ is the component of «
with top degree m, let «™** € R be such that

a™ = @My, (8.54)

First, we extend [11, Theorem 7.8.2], where E was assumed to be trivial. As in [11,
equation (5.5.11)], for Y € €, set

H(YE) = A(iad(Y)p) A~ (fad (Y5 e). (8.55)
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Theorem 8.5. For any t > 0, the following identity holds:
Tr, M exp(—1D*2/2)]

_ b (et Lot
= Ganr? exp (48Tr [C ]+ 16Tr [C ]

- i t
x /Jl(l/(f)TrsA(*0 )QE [exp <—i,0A ® )®E(Y§)+ECE’E)}
4
€

dy, .
X exp (—|Y§|2/2t)m = [e(TXx, VI)]|™ dim E. (8.56)
I

Proof. To simplify the notation, we will identify E and F. By [11, Theorem 6.1.1], and
by Proposition 8.4, we get the first part of (8.56). Moreover,

Tr, A (P1)®E |:exp (—i,oA'(p*)®E(Y(f) + %CQ’E>i|
= det (1 - exp(iad(Y(f)))lpTrE |:exp (—i,oE(YOB) + %CQ’E):| . (8.57)

If p is odd dimensional, then 0O is an eigenvalue of ad(YOE)|p, so that the integrand in
the second line of (8.56) vanishes. So let us assume that p is even dimensional. By [11,
equation (7.2.15) and Theorem 7.4.1], we get

! B A (PQE A (PIRE oyt o L ~aE
W/ejl(YO)Trs exp| —ip (YO)"‘EC

X exp (—|YE|2/2t)d—YOB =exp| — iTlré[Cu]
0 Qt)ym'/2 48

P* max
x | AT X, VI*)Tr S ®F | ex _RTER Levst'or Lok (8.58)
’ s P\T™2iz 72 2 -

By (8.22), (8.51), and (8.52), we get

i} 1 m+m’ R
coE _ctSTOE — coHE _ i [CEP]—2 ) Cad(enlp)p” (i) (8.59)
i=m+1
Moreover,
m+m’ 1
D Cdenlppten =7 > @encleppter e, (8.60)
i=m+1 I<i, jsm
As in (8.48), if A € End(p) is antisymmetric, set
~ 1 o
Cc(A) = ~2 Z (Aei, ej)c(ei)c(ej). (8.61)
1<i,j<m
Then we have the classical identity
RS =2(RTY). (8.62)
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By the first identity in (8.56), and by (8.58)—(8.62), we obtain

~ . _(RTX
Trs“][exp(—tDX’2/2)] = [A(TX, vIX) Ty ST OE |:exp<—c ( 5 )
in

RE ¢t . H.E ¢ R R - max
Rt g Y ectep” (leire;l) :

I<ijsm

By a computation similar to the one in Theorem 1.3, we get

2
m
* I A —~ !
(vS" ERTED 1:c(e,-m’f(ei)) = AR™) + RE - SCo e
1=

+1 Y Wendenptienei).

I<i jsm

307

(8.63)

(8.64)

Let ¢ be the automorphism of A®"(p*) which maps « € A¥(p*) to (2im) *2«. By

(8.63), (8.64), we get

Tr,exp(—tD*?/2)]

2
m
—~ * * t —~
= | A(TX, VTX)gaTrSS'D ®F exp | — (Vsp ®F +\/;ZC(65)/0E(61')>
i=1

max

(8.65)

The theory of superconnections guarantees that the cohomology class of the closed form
in the right-hand side of (8.65) does not depend on ¢. Because of invariance under the
left action of G, the forms themselves do not depend on ¢. For t = 0, we can then proceed
as in [11, Theorem 7.8.2], or make a simple computation, and we get the second identity

in (8.56). The proof of our theorem is completed.
Let T be a maximal torus in K, and let t C £ be its Lie algebra. Set
b={fep[fitI=0}

Put

h=bt

O

(8.66)

(8.67)

By [32, p. 129], we know that § is a Cartan subalgebra of g, that dim t is the complex rank
of K, and that dim h is the complex rank of G. Also, if m is odd, b is of odd dimension >1.

We still define TrM[(NA T*X) — ) exp(—tD%-2/2)] by a formula similar to (8.53). Now,
we extend part of [11, Theorem 7.9.1], where the case of a trivial E was considered.
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Theorem 8.6. For any t > 0, the following identity holds:

[ ATFX) M L nX2 ]_ 1 ety L pr At
Trg [(N 2)exp( tD /2) _—(27”)’"/2 exp<48Tr [C ]+16Tr [C ]

x [ oy oner [(N MY -2 ) e <—ipA‘(P*>®E<Y§> +3c gE)]
] 2 2

|4

day
x exp(—lﬂfﬁﬂf)W. (8.68)

If m is even, or if m is odd and dimb > 3, (8.68) vanishes.

Proof. By [11, Theorem 6.1.1] and by Proposition 8.4, we get (8.68). Instead of (8.57),
we get

Tr, A PSE |:(NA'('°*) - %) exp (—i,OA'(p*)®E(YoE) + %CQ'E)}

= Tr AP0 [(NA'(*“*> — %) exp(—iad(Y(f))] TeE [exp (—ipE(Y(f) ¥ %CQ’E)} .
(8.69)

By proceeding as in [11, equations (7.9.1), (7.9.2)], under the given conditions, the first
term in the right-hand side of (8.69) vanishes identically. The proof of our theorem is
completed. O

Remark 8.7. The same arguments as in [11] also show that, under the conditions of the
second part of Theorem 8.6, the orbital integrals where 1 is replaced by any semisimple
y € G also vanish. If T" is a torsion-free discrete cocompact subgroup of G, and if Z =
'\ X, this implies the vanishing of the analytic torsion of Z with coefficients in the flat
bundle F. In that respect, the conditions that were given above are exactly the ones that
guarantee the vanishing of the analytic torsion with trivial F. As shown in [11, Remark
7.9.2], where the connected simple Lie groups G such that m is odd and dimb =1 are
listed, these are exactly the conditions found by Moscovici and Stanton [40, Corollary 2.2]
for the vanishing of the ordinary analytic torsion when F is unitarily flat. Also, note that
the vanishing result at the end of our theorem has already been established by Bergeron
and Venkatesh in [3, Proposition 5.2].

8.6. The vanishing of the forms d;

We use the notation of § 2, with § taken to be a point.
By (2.19), (8.15), and (8.36), we get

o (A2) = —1(6%2,G72) — P2 4116 %) 41672, (8.70)

We take the compact manifold N as in §1.4, and we define the function R(A) as in
(1.23). By (2.55), we get

B
d = —%(21‘71)’"/2(0/ V0P NG P exp (o (A7) R(O0). (8.71)
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Theorem 8.8. If m is even, or if m is odd, and dimb > 3, then
B 1 . -
/ o A@pexp<5<9p‘2,9p’2)+0p'2—t9 p'2> =0. (8.72)

Under the above conditions, fort >0,

d; =0. (8.73)

Proof. If m is even, (8.72) is trivial. Let us assume that m is odd, and that dimb > 3. As
usual in Chern—Weil theory, we first replace %9“’2 by A € £. We will show that

B
/ GPexp (4,072 —107%) =0, (8.74)

from which (8.72), (8.73) will follow.
Let ep+1, - - - » €im be an orthonormal basis of £. If e € £, let e denote the corresponding
constant vector field on g. Then

m+m’
e= > fe.e)ei. (8.75)
i=m+1

We will rewrite (8.75) in the form

m—+m'
E:<e, > ei®a>. (8.76)

i=m+1
In particular, in (8.74),
m+m’
oP? = <9 P2, Z e,-®?,->. (8.77)
i=m+1
By (8.77), equation (8.74) can be rewritten in the form

B m—+m'
/ 0P exp <A—t Z e,~®E,~,/9\p’2> =0. (8.78)

i=m-+1

Since the e; lie in a commutative algebra, to prove (8.78), we only need to show that, if
Cet,

B
/ ¥ exp ((C,072) =0. (8.79)
Of course we can assume that C € t. If dimb > 3, the kernel of ad(C)|, is of dimension

>3. Therefore it is clear that the left-hand side of (8.79) vanishes. This completes the
proof of our theorem. O
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8.7. The W-invariant for SL,(C)

Now, we assume that G = SL(C). Let g = slo(C) be the Lie algebra of SLy(C), i.e., the
algebra of trace-free (2,2) matrices. Consider the Cartan involution ® : g — g*~! of G.
Let K = SU(2). Then K is the fixed point set of ®, and a maximal compact subgroup
of G. Let £ = su(2) be the Lie algebra of K, i.e., the algebra of skew-adjoint trace-free
(2, 2) matrices.

Let p be the vector space of self-adjoint trace-free (2, 2) matrices. Then

p =it (8.80)
Moreover, we have the Cartan decomposition,
g=pD¢L (8.81)

Clearly, SL,(C) is the complexification of SU(2), and g is the complexification of €.
Let E = C2, and let p£ : SLy(C) — Aut(E) be the canonical representation. We equip
g with the bilinear form
B(a, b) = 1ReTr[ab). (8.82)

Then B is an invariant symmetric bilinear form on g, the splitting (8.81) is orthogonal
with respect to B, and B is negative on £, and positive on p.
Consider the Pauli matrices,

i=|:(1)_01:|, j=[(i)é], k=[:)i?}. (8.83)

Then i> = —1,j> = —1,k*> = —1, the matrices i, j, k anticommute, and ij =k, ik = —,
jk = i. From the above, we get

[i,jl=2k, [i,kl=-2j, [j,kl=2i (8.84)

Also, 1, j, k is an orthonormal basis of ¢ for the scalar product induced by —B. Therefore,
i1, ij, ik is an orthonormal basis of p. We deduce that the induced metric on X = G/K
has constant sectional curvature —4.

We use the notation of §8.2. By the above, it follows that

P+P+1E =AY [P = AP, (8.85)
Let L be the differential operator on g,
L =i(1) +j(ij) + k(k). (8.86)

Recall that the algebra o7V was defined in §1.4. As explained in that subsection, AP
can be viewed as a nonnegative operator acting on «7V. Its fractional powers are then
well defined. Similarly —L? can be viewed as a nonnegative operator. Moreover, by the
Cauchy—Schwarz inequality,

—L> < AP(—AY). (8.87)

By (8.87), the action of AP 73/2L2 on o7V is well defined.
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Theorem 8.9. Fort > 0, we have the identities of operators acting on /'Y,

B
~ 1 ~ ~ ~
U 6" ABP exp (z(ep’z, OP2)+ P2 —10P2 — 119 PR)}

- %(Ap —2L2)exp (—1AP), (8.88)

l +oo § . 1 N . . 5 d max
5/ / ﬁePAepexp(5(9%2,9P’2)+9P’2—t0%2—r|9p|) -
0

= L avrpy)
b

max

Proof. Since dimp = 3, we get
exp ({672, 0P+ 072 —10P2) = (1+ 1672, 072) (1+6P2)(1—-16P2).  (8.89)
By (8.89), we obtain

B 1 - _
[/ 0P AOP exp <§<99’2, oP2) 4072 —10 Psz)
§ 1 max
:[/ QP/\@P(Ewpv?,ﬁpvz)—z@PJ?P»Z)} ) (8.90)

Using (1.28) and the commutation relations in (8.84), we get

max

g max
or A’@‘p<9p,2 @‘pl) = iAp
’ - j'[3/2 ’
5 max A (8.91)
Py PgP.2gp.2 _ T 42
[/990 0 :| _yr3/2L'
By (8.85), (8.90), and (8.91), we get the first identity in (8.88). The second identity
follows from the first one. The proof of our theorem is completed. O

Remark 8.10. Recall that g is itself a complex vector space. Let H(g) be the algebra
of holomorphic functions on g. By (8.86), we have the identity of operators acting on

H(@nY,
L=iA"=—iAP. (8.92)
From (8.92), we deduce the equality of operators acting on H(g) N.&/¥,
Lap12 ap=32p2) 2 2 ap12 2 2(LpY)12, (8.93)
b4 T b4

A maximal torus T = S! in SU(2) is the l-parameter group exp(2wtk),t € S' = R/Z.
Then k is a generator of the Lie algebra of t, and 2wk is a coroot in T, so that
exp(2rk) = 1. Let P be the lattice of weights; i.e., P is the subspace of t* which takes
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integral values on 2k. When identifying t with t* by its scalar product, then P = Z/27w.
A set P44 of positive weights is just given by N/27w.

Then U = SU(2) x SU(2) is a compact form of G = SL,(C), in which K = SU(2) embeds
by the diagonal embedding. Also, G¢ = SL(C) x SL(C), and G embeds in G¢ by the
embedding g € SL,(C) — (g, ©g) € SL2(C) x SL,(C).

By Weyl’s unitary trick [32, Proposition 5.7], since U 1is simply connected,
finite-dimensional irreducible representations of SL;(C) are just the finite-dimensional
irreducible representations of SU(2) x SU(2), which are themselves parameterized by two
integers a, b € N and the corresponding weights a/2m, b/2mw. The corresponding vector

—2
space is given by $*C2® S”C". The holomorphic representations of SL,(C) correspond
to the case where b = 0, and the antiholomorphic representations to the case a = 0. If p,
denotes the representation of SL;(C) on §¢ (Cz), this representation is isomorphic to its

dual. The same is true for the representation of SL;(C) on Sbéz.

Let E be the hyperplane line bundle on P!. On ﬁl, the corresponding hyperplane bundle
is denoted E. For a € N, the coadjoint orbit N, of a/2m € t* for SU(2) can be identified
with a point for @ = 0, with P! for @ > 0. The orbit N, carries a canonical line bundle
L. For a > 0, when identifying N, with P!, L, is just E®.

For a,b € N, set

Nap = Ng x Np. (8.94)

Let g1, g2 be the obvious projections from N, on N, Np. Fora,b e N, set
Loy = QTLa ®q;zb- (8.95)

Then SLy(C) acts on N, by the map (z,z) — (gz, (©g)z), and the action of SL,(C)
lifts to L, p. Clearly

HOO (N, p, Lap) = S°C2 @ ST (8.96)

Let pg : Ny — su(2)*, up : Np — su(2)* be the tautological moment maps. The moment
map g, that is associated with the action of U on N, is given by

Hab = (q] a> G5 Tp).- (8.97)

Let o, , 7» be the section of TX" on N, that is defined as in (1.25). We get easily
g p v = 27(q} tta — 43 TE. 0. (8.98)

By (8.98), 6P is nondegenerate if and only if a # b.

We equip the line bundle E with its canonical metric. Let m: P! — € be the
corresponding moment map. When identifying N with P!, L; maps to E, and 1 to m.
Set

n=ci(E, g"). (8.99)
For A € g, set
S(A) =/ exp(2im (m, A) + 7). (8.100)
P!
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Note that S is an even function. When A € su(2), S(A) can be calculated using the
localization formulae of [5, 29, 30]. If A € t, we can write A in the form A =tk,r € R.
Then

sin(t)

S(A) = (8.101)

For A € sly(C), let R, 5(A) be the function defined in (1.23) that is associated with the
previous geometric data. One finds easily that

Rap(A) = aS@AbSBOA) ifa>0,b>0,

aS(aA) ifa>0,b=0. (8.102)
If b = 0, the function R, is holomorphic.
If a # b, let W, be the associated form on X.
Theorem 8.11. For a # b,
1
W — —(AP12 _ APTI2L2V R, 4(0). (8.103)
' s
Fora >0,
2,
w0 = —a” (8.104)
Fora > 0,b >0,
2
= 3—(3a2b—b3) if a > b,
' b4
2
= g(”jabz —-a’) ifb>a. (8.105)

Proof. By (2.75), (8.71), and (8.88), we get (8.103). For @ € N, S(aA) is an eigenfunction
of —AY with eigenvalue a?. Moreover,

S(0) = 1. (8.106)

By (8.93), (8.102), (8.103), and (8.106), we get (8.104). Assume now that a, b € N*, a # b.
Since S(aA) is a holomorphic function on g, and S(b®A) is antiholomorphic, we get

LRap = i(b* —a®)Rap. (8.107)

Let f(A),g(A) denote functions on g that are respectively holomorphic and
antiholomorphic. Then

AP (fg) =—(A%f)g— FA'g+2(Vif, Vig). (8.108)
From (8.108), we get
AP(fg) = A'(fe) —2(A%f)g —2f A% (8.109)
Using (8.109), we obtain
APRyp = (A +2(a® +b%)) Rap. (8.110)
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By (8.107), (8.110), we obtain
(AP —2tL%) exp (—tAP) Ry p

= (g5 2007 =) ) exp (~1(a"+ 206 +9)) Rus

Since the function R, p(A), A € t is invariant by rotations, for ¢ > 0, we get

4

exXp (tAe)Ra,b(O) = W

400
/ exp (—r2/4t)Ra,b(r)r2dr.
0

Moreover,
sin(ar) sin(br) = %(cos((a —b)r) —cos((a + b)r)).

By (8.101), (8.102), (8.112), and (8.113), we obtain
exp (tAE)Ra,b(O) = %(e*“ib)zl —ef(“H’)zt).
Also, (8.114) is analytic in the variable r € C. By (8.114), for r > 0, we get
exp (—tAE)Ra,b(O) = %(6(““’)2[ —e(“_b)zt).
By (8.111), (8.115), we get
(AP —21L?) exp(—t AP) R, 5 (0)
- (—% Lo - a2)2t) e )

By (8.88), (8.103), we get

wmax _ T[—3/2 [+OO t_1/2 (_3 +2(b2 —a2)2t) i(e—(a—b)zz _ e(a+b)21)dt
ab — .

0 at 4t

Equivalently,

1

mex — —gn_3/2F(—3/2)(|a —bP —la+bP)
1 2 2)\2 -1 -1
+ 531/ =a®) (la—bI™" —la+b]7").

Also, we have the identities

r(1/2) ==, T(=3/2) =3%/x.
By (8.118), (8.119), we get (8.105). The proof of our theorem is completed.

(8.111)

(8.112)

(8.113)

(8.114)

(8.115)

(8.116)

(8.117)

(8.118)

(8.119)
O

Take a, b € N with a # b. Let T" be a torsion-free discrete cocompact subgroup of G =
SL,(C). Then Z = I' \ X is a compact manifold. For p € N, F), = SPAC? ® S”béz descends
to a flat Hermitian vector bundle on Z, which we also denote F),. Let T;(Z, v, gFP) eR
denote the corresponding analytic torsion. Since Z is odd dimensional, for p € N large
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enough, as the notation indicates, Tj,(Z, V7, gf7) does not depend on the metric on T Z.
By Theorem 7.1, for a > 0,b > 0,a # b, as p — 400,

pTh(2, V7, gfr) = WVol(Z) + O (p~"). (8.120)
If a > 0,b =0, instead of (8.120), we get
P Th(Z, VT, gfr) = WIEVol(Z) + O (p~ ). (8.121)

Equation (8.121) is the main result obtained by Miiller in [43, Theorem 1.1]. In [43], the
curvature of X = G/K is —1 instead of —4, which explains the difference in the evaluation
of the right-hand side in (8.121).

8.8. The nondegenerate representations of U

We consider again the case of a general reductive group G. We assume that m is odd,
and that dimb = 1. The connected simple Lie groups for which this condition holds were
described by Moscovici and Stanton [40, Corollary 2.2], [11, Remark 7.9.2].

Set

ty =ib®t. (8.122)

Then ty is the Lie algebra of a maximal torus Ty C U. Moreover, ® acts on ty and
preserves the splitting in (8.122). This action lifts to the natural action of ® on Ty C U.
Let Wy be the Weyl group of U associated with Ty .

Take A € t};, and let N, be the coadjoint orbit of A in u*. Then

N, Nt = WyA. (8.123)
Moreover, if U, C U denotes the stabilizer of A, then
N, =U/U,. (8.124)

Then N, is a compact Kéahler U-manifold. It is equipped with a closed symplectic
(1, D-form n;, and v € N, — v € u* is a moment map for the action of U on N,. The
associated function Ry (A), A € u in (1.23) is given by

Ry (A) = /N expim (v, A) + ;). (8.125)

The function R; can be computed using the formulae of [5, 29, 30]. Also, R, is an
eigenfunction of —A¥ with eigenvalue 472|A|%.

Proposition 8.12. The form P is nondegenerate with respect to Ny, if and only if WyA N
t=0.

Proof. Observe that & ° is degenerate if and only if there is v € N, such that v is
orthogonal to ip, i.e., v € £*. By making K act on v, we may as well assume that
v € t*. Therefore, there exists w € Wy such that wA = v. The proof of our proposition is
completed. O

Remark 8.13. One verifies easily that, if G = SLy(C), the condition in Proposition 8.12
is exactly the one stated after equation (8.98).
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8.9. The asymptotics as p — 400 of the orbital integrals

We still assume that m is odd, and that dimb = 1. Let Ry 4 C tj; be a positive root
system for U. Let C C ty be the positive Weyl chamber, and let P, C tj; denote the set
of positive weights.

If » € P44, let p, be the irreducible unitary representation of U of highest weight A on
the vector space Ej,. We still denote by p; the corresponding representation of G or Gc¢.

Here, we take N = N,. Then N, is a compact Kdhler manifold of complex dimension
n. Moreover, N, is equipped with the canonical holomorphic Hermitian line bundle L,
and, for p € N,

Ep. = HO®O(N, L?). (8.126)

Let F, denote the associated flat Hermitian bundle on X that is associated with E ;.
Let Dl}f denote the Dirac operator acting on Q'(X, F),) that was defined in (4.7). Recall
that, for ¢+ > 0, the form ¢, on X was defined in Definition 2.9.

Theorem 8.14. Fort > 0, as p — 400,

—n—1m. [1] NAA(T*X) m X,2 2 max -1
P (== 7 e (<D /2p7) | = lepI™ +O(p ),

o NATX) (8.127)
p Iy 1 |:<T -7 (l — th’z/pz) exp (—thf’z/sz)
= [dip]™ +O(p™").
Proof. By (8.68), (8.69), for p € N*, we get
. m
Tr, 1) [(NA (T*X) _ 5) exp (—tD§’2/2p2)]
= " exp ! TrE[CE’E] + A [Cé’p]
Qmt)ym/2 48p2 16p2
R (p* m .
[0y 60 (N 60— 2 Y exp (<iadcr /)
|4
E . E £ 4 E €2 dYO
x Trfr [exp (—zp "G /p+ 3 5C" )} exp (= Yo |"/20)
(8.128)

Let C" denote the Casimir operator for the Lie algebra u equipped with its canonical
scalar product, and let C*£r* denote its action on E pa- Clearly,

C®=—C" inUgc. (8.129)
Let py be the half sum of the positive roots of U. Classically,
CEr = 4x?(Ipa+ pul? — loul?). (8.130)
By (8.129), (8.130), as p — +o00,
CQ;'M S A2 (8.131)
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Also, by equation (3.35) in Theorem 3.6, as p — 400,
p "Tefr [exp(—ip®r(Yg)/p)] = Ri(—iY§) + O(p~). (8.132)

Let b+ C p be the space orthogonal to the one-dimensional line b. Take YOE € t. Since
m is odd, and ad(Y(f) vanishes on b, by the elementary [11, equation (7.9.1)], we get

Tr NP9 [(NAl(p*) - %) exp (—iad(YOE)/p)] = —det bi[l —exp (iad(YOB)/p)]. (8.133)
By (8.133), since dim b" is even, as p — +00,
0 [ (303 e (o))
= —det[iad(Y§)lpr ] +O(p7"). (8.134)
By (1.29), (8.4), the 2-form Doy, O0 P that is associated with ad(YOE)h:l is given by
Oy, = (Y5 ©F). (8.135)

Let |®P % € A*(p*) be obtained from ©f € A2(p*) ® € in (8.4) by taking the square of its
norm in ¢. By an easy computation in [11, equation (7.5.19)],

|eF|> =o. (8.136)
Of course, this also implies that
67| =o. (8.137)
IfY§ et
det [iad(Yg)lp. ] = P [iad(YE) 1] (8.138)
As in (2.54), set
m
L=Y ¢ ne' (8.139)
i=1

By (1.28), (1.31), (8.135), and (8.138), since m is odd, we get
§ max
72 det [iad(Yg)lpe] = — [/ Lexp (Y5, 0"+ @E))} . (8.140)

By (8.134), (8.140), for ¥{ € t,

w2 DT N OO (N - 2 exp (—iad (1), )]

- [/BLexp ((vs. @H@‘))} : (8.141)

Of course, equation (8.141) extends to Y{ € E.

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

318 J.-M. Bismut et al.

By (8.128), (8.131), (8.132), and (8.141), as p — 400,

o ST m
P [(NA (T*X) _ 3) exp (—tDl)f’z/sz)]

exp(—2721|A2) e
- ooz /|:/ Lexp ((vy, ©f + 8" >)}

|4

dy,
x RA(—iYg)exp(—‘Y§|2/2t)m—l—O(p_l). (8.142)

By (8.136), (8.137), if C is the leading term in the right-hand side of (8.142), then

C‘U o (50t8)
X exp (—antmz + %A*) Rk(—iA):|maX (@f n %@E> . (8.143)

Since R(A) is a holomorphic function of A, by (8.143), we get

C:[ Bi/L_ <l<®B @E)—®*+%@E>

[ max
X exp (—2n2t|kl2 - 5A‘> R,\] (0). (8.144)

Let A%, At A™® denote the Laplacians of the Euclidean vector spaces u, £, ip. Then

U= At AT (8.145)
Since
AYR; = —47%|A* Ry, (8.146)
we deduce from (8.145) that
(42 A* + AY R, = —A'PR;. (8.147)
Since R is analytic, '
APR; = —APR;. (8.148)
By (8.147), (8.148), we get
t t
exp (—2n2t|k|2 - EAE> R; = exp <—§AP) R;.. (8.149)
As in (8.85), we get
NS (8.150)
y (8.149)—(8.150), we get
t t~
exp (—2n2z|,\|2 — EAE> Ry =exp <—§|9 p|2> R;. (8.151)
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By (8.3),
ot =—g72, Oft=_—§r2 (8.152)

By (8.144), (8.151), and (8.152), we obtain

L Lip2 zp2y gp2_tapa_Tizp2 -
C= 75, O 5(9 2002+ 0P —50" —§|9 )R | (0). (8.153)

By (2.55), (8.70), we can rewrite (8.153) in the form
C = 2[6‘,/2]max. (8.154)

By combining (8.142) and (8.154), we get the first equation in (8.127). Applying
the operator 1+2t% to both sides of this first identity and using equation (2.58) in
Theorem 2.10, we get the second identity. The proof of our theorem is completed. O

Remark 8.15. The second identity in (8.127) can also be viewed as a consequence of
the analogue of Theorem 6.5 in the case of universal covers described in §6.6. In the
present context, when A is such that oP is nondegenerate, Theorem 7.7 is a consequence
of Theorem 8.14, and of the uniform decay estimates as t — +o0o that were established
in the proof of Theorems 7.1 and 7.7. These estimates are not obvious if one starts from
(8.128), because the presence of J; (Yok/p) in the right-hand side of (8.128) does not allow
us to replace YOE by i YOE. This point can be seen from another point of view in equations
(8.144)—(8.151), where the analyticity of R, is used when Jl(YOE) has disappeared. It is
somewhat paradoxical that, from the Weitzenbock equation (8.39), we get a better proof
of the required estimates than by the evaluation of the orbital integral in (8.128).

If y € G is semisimple and nonelliptic, if Tr”! denotes the corresponding orbital
integral, by [11, Theorem 6.1.1], there exist C > 0, ¢ > 0 such that, for ¢ €]0, 1], p € N*,

NATX)
TrV! |:<—2 - | (D)2 /2p%)

Let ' C G be a torsion-free discrete cocompact subgroup, let Z =T\X, and
assume that 6P is nondegenerate. By Theorems 7.1 and 7.7, Tp(g7%, VFr, gfr) and
7;11" (gT%,VvFr, gfr) have the same asymptotics, up to the factor Vol(Z). Equations (8.127)
and (8.155) explain why this is the case. Equation (8.155) is of no use for large ¢. However,
by Remark 4.5, for p € N large enough, and ¢ > 1, one obtains an extra uniform factor
exp (—c/ t) with ¢’ > 0, from which the Selberg trace formula can be properly controlled,
so as to explain the identity of the two asymptotics above in this very special case.

By Theorem 4.4, the condition of nondegeneracy of o given in Proposition 8.12 implies
that, for p € Nlarge enough, if Z =T"\ X is a compact quotient of X, then H'(Z, F,) = 0.
The same vanishing condition also appears in a different context in Borel and Wallach’s
work [24, Proposition 2.6.12].

< Cexp (—cp?/t). (8.155)

9. The case of general Lie groups

The purpose of this section is to extend the results of the previous sections to the case
where the underlying Lie group G is arbitrary. In this case, choosing a metric on the line
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bundle L is a fibrewise infinite-dimensional problem. The asymptotics of the analytic
torsion cannot be formally reduced to a problem of analysis on the group G as in the
previous sections. Of course, the results of this section are more general than the ones
that were obtained before.

On the differential geometric side, the construction of the form 7, W-invariant now uses
explicitly the properties of the Poisson algebra of the fibres N over M. The asymptotics of
the analytic torsion forms are obtained by a much more detailed analysis of corresponding
Toeplitz operators that act along the fibres N. Contrary to what happened in the previous
sections, the problem cannot be reduced to a finite-dimensional Lie algebra of such
operators. The asymptotics ultimately use the degeneration of the algebra of fibrewise
Toeplitz operators to the Poisson algebra, in the same way as, in the previous sections,
the bundle of Lie groups G, was degenerating to the bundle of Lie algebras g,.

This section is organized as follows. In §9.1, we introduce the geometric setting,
which includes in particular the choice of a Hermitian metric g© on the line bundle L
on N.

In §9.2, we elaborate on the differential geometry of the projection g : N' — M, by
considerations very similar to the ones we made in §§2.1 and 2.2 on the projection
m:M—S.

In §9.3, we give various properties on the bundle of Poisson algebras A over M.
In particular, we construct a connection VA on the bundle A, and we calculate its
curvature.

In §9.4, we extend the construction of the forms a;, b, in §1.12 to this more general
setting. Properties of the Poisson algebra are used here instead of the properties of the
Lie algebra g in §1.12.

In §9.5, we extend the construction of the forms ¢, d; in §2.5.

In §9.6, which extends § 2.6, we construct the W-invariant under a natural assumption
of nondegeneracy.

In §9.7, the unitary connection V5 is explicitly calculated, and its action on a family
of Toeplitz operators is obtained.

In §9.8, we recall various properties of the algebra of Toeplitz operators in the sense of
Ma and Marinescu [34, 35]. Also, we show that @(V7, gf7) and its covariant derivatives
can be expressed as Toeplitz operators.

In §9.9, we extend the results of §6.1; i.e., we compute the asymptotics of the forms
h(VEr, gFr)y.

In §9.10, we show that, under our nondegeneracy assumption, we still have a spectral
gap as in §4.3.

In §9.11, we give a formula for the operator Lf".

In §9.12, we extend the results of §6.5; i.e., we obtain the asymptotics of the forms
ha' g ),

In §9.13, under a nondegeneracy assumption, we obtain the asymptotics of the analytic
torsion forms; i.e., we extend the results of § 7.

Finally, in §9.14, we verify explicitly that the forms obtained in § 2 are special cases of
the forms that are considered here.
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9.1. The case of a general Lie group G

Let G be a Lie group, which is no longer assumed to be reductive or connected. Let N
be a compact complex manifold as in § 1.4. We assume that G acts holomorphically on
N, and that this action lifts to a holomorphic action on the line bundle L.

We take the manifold M as in §2.1. Let p : PG — M be a principal G-bundle, which
is equipped with a flat connection. We define the manifold A/ by the obvious analogue of
(1.82); i.e.,

N = Pg xg N. (9.1)
The manifold N is equipped with a line bundle that is still denoted L. We still denote
by ¢ the projection N'— M with fibre N. To this projection ¢, we can apply the
formalism of §2.1. In particular, the horizontal bundle TOH N C TN is determined by
the flat connection of Pg. Let TN be the holomorphic relative tangent bundle, and
let TRN = TN'/M denote the corresponding real bundle. Let JV denote the complex
structure of TR N.

Using the horizontal vector bundle TOH N = g*TM, we get the isomorphism of vector
bundles on N,

TN =q*TM & TrN. (9.2)

IfU e TM,let U € TN denote the horizontal lift of U.
By (9.2), we get the isomorphism

A(T*N) = g*A(T*M) ® A (TgN). (9.3)
Forms in the first factor in the right-hand side of (9.3) will be called horizontal, and those
in the second factor vertical. Forms in ¢* A (T*M) ® Aj(TﬁN) will be said to be of type
@ J)-
Let g7V be a smooth Hermitian metric on TN, and let dvy be the corresponding
fibrewise volume form. For U € TM, we define divy (U) as in (2.13), (2.14); i.e.,

LU({-IdUN =divy (U)dvy. (9.4)

Let gL be a smooth Hermitian metric on the line bundle L over N. Let VX be the
fibrewise holomorphic Hermitian connection on L. We can extend V% to a connection

VL on L by using the flat connection on Pg. This connection is in general nonunitary.
For U e TM, set

-1
(L, g")(U) = (¢") " Vyug". (9.5)
For U e TM, put
L L 1 L
VU({;‘ = VUOH +50(L, g")(U). (9.6)

By combining V% along the fibres N with V+# in (9.6), we obtain a unitary connection
on L, which is still denoted VL Tet rL, rL he the curvatures of VL, VL,

Let §N, 9V be the Dolbeault operators along the fibres N, let dV denote the
corresponding fibrewise de Rham operator, and let d™ denote the de Rham operator on
M. Then dM lifts to a horizontal operator on N. Moreover, r’ does not have components
of type (2,0), and

rE D — —Nw(L, g"). (9.7
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Moreover,
rlt =l 4 %dNa)(L, gL). (9.8)
By the above, we get
rL,u,(Z,O) =0, rL,u,(l,l) _ %@N _ 8N)a)(L, gL). (99)

Let ¢1(L, g¥) be the first Chern form associated with the connection VI-*, i.e.,

L I”L’”
Lgl)y=———. 9.10
el g7) = -5 (9.10)
Put
£=—2mc(L,g"). (9.11)
By (9.9),if U € TM,V € TgN, then
(U, V) = =3V vyo(L, ¢5) ). (9.12)

9.2. Metric properties of the projection ¢

Let CY(L, g%) be the restriction of ¢;(L, g¥) to the fibre N. In what follows, we assume
that CY(L, gl) is a fibrewise positive form.

Now, we proceed as in [14, §1(c)]. Let THA < TN denote the orthogonal bundle to
Tr N with respect to the form &. Then

TN =THN @ TyN. (9.13)
Also,
TN =q¢*TM. (9.14)
By (9.14), we deduce that
A(T*N) = g* N (T*M) ® A (TEN). (9.15)

The isomorphism in (9.15) is in general distinct from the one in (9.3).
Let £H,£Y denote the restriction of & to THN,TgN. By (9.15), &,V can be
considered as sections of A" (T*A), and, moreover,

g=¢£" 1Y, (9.16)

Until further notice, we equip TN with the metric g”¥ associated with the Kihler
form &Y. Namely, if A, A’ € TrN, then

(A, A)=¢(JNA, A). (9.17)

If H € C*(N,R), let VH denote the fibrewise gradient vector field of H with respect to
the metric g7V,

We apply the formalism of §§2.1 and 2.2 to the triple (A, TH#N, g"®V). Let VRN be
the connection on TR N constructed as in §2.2.

If U € TM, we denote by U the lift of U in T# N with respect to the splitting (9.13).
There is amap s : TM — TgrN such that, if U € TM,

Ut = ufl +5). (9.18)
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Then s(U) is determined by the fact that, if V € TrN,
EGsU), V)+E(UE, V) =0. (9.19)
By (9.12), (9.17), and (9.19), we get
s(U) = $Vo(L, g“) (). (9.20)
By the first identity in (9.9), and by (9.19), we deduce that
§UT V) = —£GW), s(V) =£(Ug" . s(V) = = (V" s(U)). (9:21)

Equation (9.21) determines &%.

We denote by S, T the tensors considered in the above subsections that are associated
with the present situation.

Let g”M be a metric on TM, and let V7' be the Levi-Civita connection on (TM, gTM).
Let VIV = q*VITM @ VIRN he the analogue of the connection VI'™ in (2.6). Then T is
the torsion of the connection VIV,

Let VA (T"M) 1o the connection induced by VIV on A*(T*N). Classically,

aN =vA TN i (9.22)
Since & is closed, we get
(VATN) Lir)e =o. (9.23)

By splitting (9.23) according to their type with respect to the factorization in (9.15), as
in [14, Theorem 1.7], we get

(VATRN 4 ir)eY =0 on THN x TyN x TrN,
VAT MR — o on THN x THN x THN, (9.24)
VAT MeH 4 eV =0 on THN x THN x TrN.
The main difference with [14] lies in the first identity in (9.24). In this reference, the
connection VRN preserves the complex structure of TrN, so that &V is parallel with

respect to VA TRN) and the first identity in (9.24) splits.
Let dV denote the fibrewise de Rham operator along the fibres N.

Definition 9.1. If H € C*°(N, R), let X4 be the fibrewise Hamiltonian vector field, so
that

dVH +ix, £ =0. (9.25)
Equation (9.25) is equivalent to
(@ +ix, ) (H+£")=0. (9.26)

Recall that, if U € TM, the Lie derivative operator L;u acts naturally on smooth
sections of A'(TgN). Now, we prove a version of [14, Remark 1.8].
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Proposition 9.2. IfU € TM, then
LynEY =0. (9.27)

If U,V e TM, the fibrewise vector field T(UM,VH) is the Hamiltonian vector field
associated with the Hamiltonian % (U, V).

Proof. Since iyn€" =0, we get
Lyng” =iyndVeY. (9.28)

By (9.22), and by the first identity in (9.24), we get (9.27). The second part of our
proposition is just a reformulation of the third identity in (9.24). O

By (9.19), (9.25),if U € TM,
Ve H = &(X, UJ'). (9.29)

9.3. The bundle of Poisson algebras
If H,H € C®°(N,R), we define the Poisson bracket {H, H'} € C*°(N, R) by the formula

(H,HY =€V Xy, X)) = XM = — Xy H. (9.30)

Then {} is a Lie bracket. Let A be the bundle of Lie algebras C*°(N, R) equipped with
this Lie bracket. Let V be the Lie algebra of smooth vector fields along the fibre N. Then
the map H € A — X3 €V is a morphism of bundles of Lie algebras. If H € A, we denote
by ad(H) the endomorphism of A that is given by H' — {H, H'}.

Note that A is a commutative algebra for the multiplication of functions. This structure
of A as a commutative algebra will be called the standard structure.

Theorem 9.3. IfU,V € TM,

(UM, v) = —H{o(L, g") (W), o(L, g¥) (V). (9.31)

Proof. By (9.21),
(UM, v = —&Ns), IVs(V)). (9.32)
By (9.20), (9.30), and (9.32), we get (9.31). O

Remark 9.4. Let UA denote the enveloping algebra of A. We denote by * the product
in UA. In what follows, we will often write (9.31) in the form

gH = —Lo(L, g")". (9.33)
Here, the star * indicates that the underlying Lie bracket is the Poisson bracket.
Set
9 = —jo(L, g"). (9.34)

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

Asymptotic torsion and Toeplitz operators 325

Then ¢ is a section of T*M ® A. By (9.20), if U € TM,

s(U) = -V (). (9.35)
We can rewrite (9.33) in the form
el = —p*2, (9.36)
From now on, dvy denotes the volume form with respect to the metric g7 associated
with &Y.
Definition 9.5. For H € A, put
Tr[H] = 27) ™" / Hdoy = / Hexp (] (L, g")). (9.37)
N N
We have the trivial identity
/ {H,H'}dvy = 0. (9.38)
N

Equation (9.38) says that Tr is indeed a trace on A; i.e., it vanishes on the Poisson
brackets.

Let Vol(N) be the symplectic volume of the fibres N with respect to the symplectic
form clv (L, gL). Then Vol(N) is a constant. Moreover, we have the identity

Tr[1] = Vol(N). (9.39)
Definition 9.6. If H is a smooth section of A, if U € TM, set
ViH = LypH. V"M = LynH. (9.40)

Then VA, VA4 are connections on the vector bundle A.

Theorem 9.7. If U € TM, if H is a smooth section of A, then
ViHH = Vi H A+ & (X, UY). (9.41)

The connection VAU is a connection on the bundle of algebras A with respect to the
standard structure and the Poisson structure. Namely if H, H' are smooth sections of A,

then
VM HH) = Vi HH + HVG A 0.42)
VINUH, 1Y = (VS 1)+ (A, Vi) '
Moreover, Tr is parallel with respect to VA’“, i.e.
VuTrH] = Tr[ Vi H]. (9.43)
The connection VA is flat. The curvature vAu2 of VAU g given by
vAL2 = ad(972). (9.44)
Finally,
vAy =0, VA9 =0. (9.45)
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Proof. Clearly,
VY = VEH + V) H. (9.46)

By (9.29), (9.46), we get (9.41).
The first equation in (9.42) is trivial. By (9.25), (9.27), we get
d"LynH+ip,,xy,E" =0. (9.47)

By (9.30), (9.40), and (9.47), we get the second equation in (9.42). Equation (9.43) follows
from similar arguments.
Clearly, the curvature of VA vanishes. Moreover, an easy computation shows that if
U, VeTlTM,
VAU, VYH = Vo u ynyH. (9.48)

By Proposition 9.2, by (9.30), and (9.48), we get
vAnZ = _ad(ef). (9.49)

By (9.36), (9.49), we get (9.44).
By (9.5), we get the first equation in (9.45). By (9.35), if U,V € TM,

Vewy? (V) = —(s(U), s(V)). (9.50)

By (9.50), we get
Vey?(V) = Vg (U) = 0. (9.51)
The second equation in (9.45) follows from (9.51). The proof of our theorem is completed.
O

Remark 9.8. When replacing 6 by @, (9.44) is an analogue of (4.5), and the second
equation in (9.45) is an analogue of (1.41).

We have the obvious Bianchi identity
{9, 9**} = 0. (9.52)

Definition 9.9. Set Ac = AQg C. Let VAC be the connection induced by VA4* on Ac.
Let VAC/ be the connection on Ac that is given by

vAc! = vACH 4 jad(). (9.53)
Proposition 9.10. The connection VAC is flat.

Proof. This is a trivial consequence of equations (9.44) and (9.45) in Theorem 9.7. [

Now, we prove a counterpart to Proposition 1.12.

Proposition 9.11. The integral along the fibre gilexp(ci(L, g%))] is a constant. More
precisely,

gx[exp(c1(L, g¥))] = Vol(N). (9.54)
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Proof. To prove our proposition, we may as well replace ¢ (L, gl) by —&. Clearly,

g«[exp(c1(L, gL))] = Tr[exp(—EH/Zn)]. (9.55)
By (9.36), we can rewrite (9.55) in the form
a«[exp(ci(L, g%))] = Tr[exp(9*?/27)]. (9.56)

Using the Bianchi identity in (9.52) and the fact that Tr is a trace, we get

9 *2 *2 *2 1 *2
aTr[exp(sﬁ )] = Tr[0™  exp(s¥™)] = ETI[W’ ¥ exp(s®™)}] = 0. (9.57)
By (9.57), we find that
Tr[exp(9*?/27)] = Tr[1]. (9.58)
By (9.39), (9.56), and (9.58), we get (9.54). O

Remark 9.12. The proof of Proposition 9.11 closely resembles part of the standard proof
of the index theorem [10, proof of Theorem 3.1]. Using (9.9) and the fact that £V is 7"
and 3V closed, one can also give another proof of Proposition 9.11. The fundamental fact

about the proof of Proposition 9.11 is that it involves a subtle extra structure on the
fibre N.

9.4. The forms a;, b,

We introduce a Euclidean vector bundle with connection E on M as in §1.7. Let B be a
smooth section of E* ® A. We use otherwise exactly the same notation as in § 1.7, simply
replacing g, by A.

In what follows, the product in A will be the standard product of smooth functions in
C% (N, R). Here, we define o (A?) by the formula

o (A2) = Ya, REG)Jo'el — 92 4 ivE®Aug 11112 —1p*2. (9.59)
Then a(,Atz) is a smooth section of A (T*M) & A'(E*) ® A.
Set R
L, = VESAL L2 1y —ad(ViB). (9.60)
We claim that the obvious analogue of Theorem 1.6 holds, so that, in particular,

B
=L—.
' N
Indeed, equation (9.44) simply replaces (1.39) in the proof of Theorem 1.6. R
Note that exp(—a(Atz)) is a section of the algebra A (T*M) ® A'(E*) ® A. Then TrfB
maps this algebra into A (T*M).
When B is viewed as a smooth section on N of g*A" (E ), we will use the notation og

instead of 8. In particular, while vE®A, #B is a section on M of T*M ® E* R A, VEU,g is
a section on A of A (T*N)® g*E*.

ad
Lio(A?) =0, Ea(Af) (9.61)
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Definition 9.13. We will say that g is nondegenerate if og does not vanish on N.

Let ¢ be the endomorphism of A"(T*M) mapping o« € AK(T*M) into (27)*/?a. Now,
we imitate Definition 1.14.

Definition 9.14. For ¢ > 0, set

B
ar = (Zn)m/ngr |:/ exp (—O‘(.Atz)):| ,

(9.62)

5 B
by = (27) 1)/2£Tr |:/ Wi exp (—(T(.AZZ)):| )

Then a;, b; are smooth real forms on M.
Recall that the forms at, b, on & were defined in Definition 1.8. Also, we identify E

and E* by the metric g£. By (1.74), as in (1.86), we get

B
1 —~
Ugc_zt = f exp <—Z(el, REC; >A’Aj VE\/;O;; —t|0,3|2> ,

B 1 (9.63)
Q,—/ 2«/_exp< —(ei, R ?])A’A] VE\/;aﬁ—t|o,3|2>.

Recall that the current ¢ on & was defined in Definition 1.9. We establish an extension
of Theorem 1.15.

Theorem 9.15. For any t > 0, the form a; is closed, and its cohomology class does not
depend on t > 0. We have the identity

d
Eat = _dbt (964)
Moreover,
a; = gy [o;;gt exp (c1 (L, gL))], b; = q*[agﬁexp (cl(L, gL))]. (9.65)
Also,
ag = e(f, VE)q* [exp(cl (L, gL))] = e(E, VE)q*[eXp(cY (L, gL))]. (9.66)

If B is nondegenerate, for any compact set K C M, there exists cxk > 0 such that, on
K, ast — 400,

a, = O(e™ K", b, = O(e k). (9.67)

If B is nondegenerate, the Euler class e(E) vanishes. Also, cr/;"w is a smooth (m — 1)-form
on N with values in O(E) such that

dojy = g*e(E, VE). (9.68)
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Proof. The proof of the first part of our theorem is formally the same as the proof of
Theorem 1.15. Instead of using the fact that R is G-invariant, so that its derivative
vanishes when it is evaluated on commutators, we use instead the fact that Tr is a trace
on the algebra A, so that (9.38) holds. When combined with (9.61), we get the first part
of our theorem.
Now, we establish (9.65). We denote with subscripts H, V differentiation on THN, TgN.
Then R R R
VEog = VEos+ Vo (9.69)

The term Vflaﬂ is responsible for the appearance of VE®A’”,B when evaluating the
right-hand side of (9.65). So we concentrate on VEag. Set

iX",S :?IZX5@) (970)
By (9.25), we get R
Vyop =ix,,§" (9.71)
Now, we proceed exactly as in (1.99)—(1.101), and we get (9.65).
The first identity in (9.66) is obvious, and the second identity follows from

Proposition 9.11. Equation (9.67) is trivial. Equation (9.68) follows from (1.78). The
proof of our theorem is completed. O

9.5. The forms c¢;,d; on M

We make the same assumptions as in §§2.1 and 2.2 in the context of §9.4. Also, we
take E to be the Euclidean vector bundle 7X as in §2.3. We denote by ¥ the section
of T*X ® A that is obtained by restriction of ¥ to TX >~ TX. In what follows, we take
B =7. By (9.59), (9.60), we get

O‘(A[2) = %(6[, RTXej>/e\i/e\j — ﬁ*z-i-\/?v.ﬁ@“‘l’”ﬁ—i-tl@ﬁ —1{9\*2,

— 9.72
L, = VIXOAU L0 15— ad(ViD). 07
By (9.61), we get
Lo( ) =0, Lo()=r (9.73)
! B 2.1

Let 9% be the section of T*X ® A obtained by restriction of ¥ to TX, and let 97 be
the section of 7*T*S ® A obtained by restriction of ¥ to T M, so that

B =X 4. (9.74)

Recall that T° was defined in (2.22). Then T is a section of 7*A (T*S) ® A (T*X) with
values in T X. The properties of izo were briefly described after equation (2.22). Also, the
operator N4 was defined in (2.27).

Definition 9.16. Set
ad(®)

7 (9.75)

'Ct = VTX@A’M +2i—\/;l9x+%T0 +

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748015000171

330 J.-M. Bismut et al.

Now, we establish an analogue of Theorem 2.4.

Theorem 9.17. The following identity holds:
o (48) = i, Pyl 4 9XOAN(yio¥ 1 470
+ |—«/;-ﬁx + %TO|2 _ t{,?*Z _ 0*2 _ §TX®A,M¢;§H _ %EX?H.
Moreover, fort > 0,

Lio(A2) =0,

0 v AV s 97

ara(A’)_ £12\/Z (AR
ia(Az)Jrl[/\/d o (4] =L, ’
ar 17 gt N

Finally,
—L9 =1L,0 = /1{9, 0},

R R R ﬁ*Z
LO+L0 =2 -2+ —].
NG

Proof. By (9.45), instead of (2.33), we get
(VA'(T*M)®A,u +iT)l7 —0.
By (9.74), (9.79), instead of (2.34), we get

vIXAugy _ _(’V\TX(ZLA,M + iTo)ﬁX _YTX®@AugH

By (2.26), (9.72), and (9.80), we get (9.76).
Now, we establish (9.77). By (1.73), (9.44), instead of (2.35), we get

(’V\TX(&A’M +2i_\/;ﬂx+%70)(%(€j, ﬁTXej)eiej
+§TX®A,M(_\/;Z9X_’_%TO)+\_\/;ﬂX+%TO|2) :_{3*2’\/;{})(}'

By (9.45),
v ( ) VIXeAuy _ (.

By Theorem 9.7, instead of (2.37), we obtain
§TX®A,M,L9*2 — {%TX@A,M,I} 29}

Instead of (2.38), we have the identity

1

"

By (9.76), and by (9.80)—(9.84), we get the first identity in (9.77).

4
. 2
—2_Jipxain? T {ﬁ’

https://doi.org/10.1017/51474748015000171 Published online by Cambridge University Press

(9.76)

(9.77)

(9.78)

(9.79)

(9.80)

(9.81)

(9.82)

(9.83)

(9.84)


https://doi.org/10.1017/S1474748015000171

Asymptotic torsion and Toeplitz operators 331

By (916)7 we obtain
()t ! 2\/? \/; _ﬁﬁ +7 0 ’ ’

which is equivalent to the second identity in (9.77). The third identity in (9.77) follows
from (9.72) and from the second identity in (9.77).

By (9.45), (9.72), we get one identity in the first line of (9.78). By (9.75), (9.82), we
obtain the other identity. By (9.73), (9.77), we get the last identity in (9.78). O

Now, we have the analogue of Theorem 2.5.
Theorem 9.18. For any t > 0, the following identities hold:
wea; = X (X)Vol(N), myb; =0. (9.86)

Proof. Using Theorem 9.17, the proof is identical to the proof of Theorem 2.5. O

Now, we prove a counterpart to Proposition 2.7. Let y be the odd form on M,
y = —2mTr[# exp (977)]. (9.87)
Proposition 9.19. The form y is closed. Moreover,
y = —q*[ﬁ exp (c1(L, gL))]. (9.88)

Proof. By (9.43) and (9.45), the form y is closed. By (9.11), (9.36), and (9.87), we get
(9.88). O

Recall that L was defined in (2.54). Now, we imitate Definition 2.9.

Definition 9.20. Let ¢, d;, e; be the forms on M,

B
¢ = —(2n)(m+1)/2£Tr |:/ 9 exp (—o (Alz))] ,

2‘;} o~
dy = —Q2m)"*¢Tr [ / Jil 2 v exp (—a(A%))] , (9.89)

B p
e = Q2m)"™? Tr/ —exp(—a(A?))|.
r<>£[ e (- ()
Recall that X is the total space of TX. Then a,, b, are forms on X.

We have the following analogue of Theorem 2.10.

Theorem 9.21. The forms m.c; are odd, they are closed, and their cohomology class does
not depend on t > 0. The forms mw.d;, we; are even. Moreover,

TeCo = rr*[e(TX, VTX))/]. (9.90)
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Also,
d 1 a0
E”*Ct = ?dn*d,, (1 —I—ZIE) Y ixer =Y jidy. (9.91)
Moreover,
= —q*[ﬁag*gt exp (cl(L, gL))], d, = —tq*[z?m;flgt exp (cl(L, gL))]. (9.92)

If5 is nondegenerate, if K is a compact subset of M, there exists ck > 0, such that,
on K, ast — 400,

;= O kY, dy = O(e kY, e; = O(e K1), (9.93)

Proof. Using Theorem 9.17, and in particular (9.78), the proof of the first part of our
theorem proceeds exactly as the proof of Theorem 2.10. The proof of (9.92) is the same as
the proof of (9.65). Equation (9.93) is trivial. The proof of our theorem is completed. O

9.6. The W-invariant

We assume 9 to be nondegenerate. We identify TX and T*X by the metric gﬁ. By
equation (9.68) in Theorem 9.15,

doky = q*e(TX, V'Y). (9.94)
By (1.77), by equation (9.65) in Theorem 9.15, and by Theorem 9.18, we get
(nq)*[og*w exp (c1(L, gL))] =0. (9.95)
Definition 9.22. Set
T dt
W= —/ 44 (9.96)
0 t
Theorem 9.23. The following identity holds:
W = q*[ﬂagw exp (cl(L, gL))]. (9.97)

The even form m W on S is such that
dm W =m,[e(TX, VI ¥)y]. (9.98)
If dim X is odd, the form w,W 1is closed, and its cohomology class [t W] € H (S, R) does

not depend on (TH M, gTX) or on infinitesimal variations of the metric gt.

Proof. The first part of our theorem follows from (1.77), from Theorem 9.21, and from
(9.96). When dim X is odd, the right-hand side of (9.98) vanishes. The second part of the
theorem is now obvious. O

Remark 9.24. Equation (9.98) for dm,W cannot be easily derived from equation (9.68)

for dag*w and from the explicit formula (9.97) for W. The results of §§2.7 and 2.8 extend
to this more general situation, with similar proofs.
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9.7. The curvature of the unitary connection on F
Recall that G acts on C®°(N, L). Set

F=PsxgC®WN,L), F=PgxgH"(WN,L). (9.99)

Then F, F are complex vector bundles on M, which are equipped with flat connections
v7, VF. Moreover, F is a flat subbundle of F. If s is a smooth section of F, if U € TM,
then
F L
Vis = VUOHS. (9.100)

Moreover, the flat connection V7 induces a corresponding flat connection V//F on F/F.

We assume here that g7V is an arbitrary Hermitian metric on TN. We equip the fibres
F with the Hermitian metric g7 associated with g7V, g’ as in (3.3). Let g¥ be the
corresponding Hermitian metric on F. Let P denote the fibrewise orthogonal projection
F —> F.

If U e TM, we define divy(U) as in (9.4), so that divy(U) depends on the choice of
g . In what follows, we will use the notation dvy for the volume form along the fibres
N that is associated with the symplectic form &Y. Ultimately, our results do not depend
on the choice of g7V, so that the reader may assume, if he/she wishes, that g7V is the
Hermitian metric associated with £V

Let F1 be the fibrewise orthogonal bundle to F in F. By identifying F* to F/F, F*
inherits a flat connection VF*. One verifies easily that VI~ is the orthogonal projection
of V¥ on FL. With respect to the splitting F = F & F-, we can write VZ in the form

vE o«
v/ = [ 0 VFL] (9.101)

We define w(V7, g7) as in (4.4); i.e.,
o(V7, ¢7) = (¢7) 'V e, (9.102)
Let V7 denote the unitary connection on F that is defined as in (4.2); i.e.,
vFi = v 4 Lo(v7, gh). (9.103)
We use a similar notation for the vector bundle F. One finds easily that
oV, ¢F) = Po(VF, g7)P, VI =pvFup, (9.104)

In what follows, [ ]+ denotes an anticommutator.

Theorem 9.25. IfU € TM, then

o(VF, g7 (U) = o(L, g¥)(U) +divy (U). (9.105)
The curvature V742 of V74 vanishes.
Moreover,
vEe? = _1p(w(v7, ¢7))P]. (9.106)

If H is a smooth section of A, then
VEUPHP = P(VAH)P + Po(VT, g YHP = [Pio(V7. ¢7)P. PHP] . (9.107)
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Proof. By (3.3), (9.4), (9.5), and (9.100), we get (9.105). By (4.5), (9.4), (9.5), and
(9.105), we deduce the vanishing of V%2, Equation (9.106) follows from (4.5), (9.104).

The unitary connection V/*# on F is characterized by the fact that V/ % — V7% is a
I-form on M with values in self-adjoint endomorphisms of 7. By (9.101), we deduce that

vEu g2
Fuu _
gFu [_a*/z vFl’"]' (9.108)

By (9.103), (9.108), we conclude that
a=—Pw(V7, g5 Pt (9.109)

Now, we establish (9.107). By (9.40), (9.105), we get

VU = vAN. (9.110)

By (9.108), (9.110), we deduce that
P(VAH)P = VI PHP + JPaPYHP + S PHP o™ P (9.111)
By (9.109), (9.111), we get (9.107). The proof of our theorem is completed. O

9.8. The algebra of Toeplitz operators

Put Vc =V ®grC. The morphism of Lie algebras H € A — X4 €V extends to a
morphism of Lie algebras from Ac into Ve. If ¥ € Ve, we denote by Y10 y©.D the
components of ¥ in TN, TN.

For p € N, when replacing L by L?, we denote with a subscript p the objects that were
considered before.

Given p € N, if A € End(L2(N, LP)), let ||A] be the norm of A with respect to the
Hilbert norm on L(N, L?). If A is trace class, we denote by ||A||; the norm of A in the
vector space of trace class operators.

Assume that A = P,AP,. Then A is trace class. Moreover,

Al < Al dim Fp,. (9.112)

By the formula of Riemann—Roch—Hirzebruch, there is C > 0 such that, for p € N,

dim F, < Cp". (9.113)
By (9.112), (9.113), we get
Al < CllAlP". (9.114)
IfH e A, set
[Hlloo = sup [H(2)]. (9.115)
ZEN

Then || ||oo iS @ norm on the bundle A.
First, we describe the formalism discovered by Berezin [2] and Boutet de Monvel and
Guillemin [25] on the definition of Toeplitz operators, and further pursued by Bordemann,
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Meinrenken, and Schlichenmaier [23], Schlichenmaier [45], and Ma and Marinescu [34, 35].
In particular, if # € Ac, T3, , denotes the Berezin-Toeplitz quantization of H, which is
given by

Ty, = PyHP,. (9.116)

Note that
173,51l < Hloo- (9.117)

In [34, Definition 7.2.1], Ma and Marinescu defined a vector space T of Toeplitz
operators. A Toeplitz operator is a family of bounded operators T, € End(L2(N, L?)), p €
N such that T, = P,T,P,, and that there exists a family H; € A, £ € N for which, for
any k € N, there exists Cr € N such that, for any p € N*,

k
Tpy—Y Typp | < Cep™*". (9.118)
£=0
As in [34], we use the notation
+00
Ty=Y Ty, ,p " +O(p~). (9.119)
=0

If we only specify the first k coefficients, the sum ZZZO(O) is replaced by ZIEZO.

One result that follows from the above references is that 7 is an algebra. More precisely,
Ma and Marinescu [34, Theorem 7.4.1] showed that the coefficients of the product of
Toeplitz operators can be computed locally in terms of differential operators acting on
the coefficients H; defining the Toeplitz operators.

In [36, Theorem 0.3 and Remark 0.5], Ma and Marinescu showed that, if H, H' € Ac,
then

- 2
Ty, p Ty, p = T, p + Y}EV(X;S’I),X%}O))I) ! +(9(p ) (9.120)

Let () denote the scalar product on Tr N that is associated with the Kéhler form £". By
(9.120), we deduce that

T’H,PT’H’,p = THH/,p + O(p_l)’
[T3.p Tre p) = iTae ey, pp ™ + O, (9.121)
(Tr.p Trepls = 2T p — Tvre vy pp~ ' +O(p72).
When the fibrewise metric g7V is associated with the Kihler form &Y, the first two
equations in (9.121) were first proved by Bordemann, Meinrenken, and Schlichenmaier
[23] using results by Boutet de Monvel and Sjostrand [26] and Boutet de Monvel and
Guillemin [25].

Moreover, by [34, equation (4.1.84), Lemma 7.2.4], as p — 400,
Tt[Ty, ] = p"Te[H]+ O(p" ). (9.122)

Observe that the leading term in (9.122) does not depend on the choice of the metric
gTN onTN.
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Remark 9.26. Let 7, be the bundle of algebras of Toeplitz operators along the fibres
N. Over the manifold M, this is a bundle of infinite-dimensional algebras. There is no
associated underlying bundle of Lie groups. This is why we will have to handle the bundle
7, with some care.

Recall that TX ~TX. We denote by G(VF,gF),(Ti;N the restrictions of

w(VE, gF), divy to TX. Ifei, ..., e, is an orthonormal basis of 7/")\(, set
m
(VP gt Z (v, gM) @)’

(9.123)

m
T5 vy j2pp)” Z vy /2p)@)p"

Theorem 9.27. The following identities hold:
w(VFr, gfr)/2p = T- ﬂ+divN/2p,p,
Fp
a)(V ) /Ap = pT. 0 _divy /2p.p* (9.124)
e I@(VF"»gF")

If H is a smooth section of A, then

— | T~ — 2
- |T19—divN/2p,p| .

VIt Ty = Tevaapprdivgytp — T-po-divn 2. Tl (9.125)
As p — 400,
o(V'r.8")/2p = =Ty, +O(p7"),
C()(VFp7 ng)2/4p = iTﬂ*z,p + O(p*l)’
1 . 2 -
W|w(VF”,gF")| =T5p,+0(p7), (9.126)

VF[”MTH’p = TV‘A‘“H,[? +O(p_1),
VFVTH,p = V_AC./H’[)—{-O([)_I).

Proof. By (9.34), (9.104), and by Theorem 9.25, we get (9.124), (9.125). By (9.18), (9.35),
(9.40), (9.121), (9.124), and (9.125), we get the first four equations in (9.126). By (9.104),
(9.105), we get

VI Ty, = VI Ty, — pIT g divw2p.ps TH.p]- (9.127)
By (9.121), we find that

—pIT-ptdivy2p.p» Tr, p) = Tip 2y + O(p7). (9.128)
By (9.53), by the fourth identity in (9.126), by (9.127), and by (9.128), we get the last
identity in (9.126). The proof of our theorem is completed. O
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Remark 9.28. Note that the leading terms in the right-hand side of (9.126) do not depend
on the choice of the metric g7". By (5.3), and by Theorem 9.27, we recover equation
(9.44) for VA2 and the flatness of VAc,

In the general case of nonflat fibrations, Ma and Zhang [37, Theorem 2.1 and Remark
3.1] have announced that the curvature of the natural unitary connection on F, is a
Toeplitz operator in the sense of [34, Chapter 7].

9.9. The asymptotics of the forms h(Vr, gfr)

First, we prove an extension of Proposition 6.1.
Proposition 9.29. As p — 400,
1
p"—, sh(VE, gTP) =y +0O(p7h). (9.129)
(V. 8") =y + 07

Proof. By (5.6), (5.8), we get

1 ) ) VFP, ng 5
— 1, ph (V7. g7) = Qim)' PoTr Qexp (o(VFr, g™) /4p) |, (9.130)
NI
Now, we use (9.87), (9.114)—(9.117), (9.121), (9.122), (9.126), and (9.130), and we get
(9.129). O

9.10. The spectral gap
We use the same notation as in §4.2. By [22, Theorem 4.13], instead of (4.11), we get

KX 1 PN
D2 = —A% 4 = — o(RT M (e, ¢))ex ecfeleie(e)elen)clen)

1, 1 PUIN
+1a(v", gMP - g (clencte)) —Tlenclea (V" RGN

l S u
— Ec(e,‘)c(ej)VeTiX@F’ o(VE, g")(e). (9.131)

In (9.131), we replace F by F,. Using Theorem 9.27, and in particular the third identity
in (9.126), we deduce from (9.131) that, if ¢ is nondegenerate, the obvious analogue of
Theorem 4.4 still holds.

9.11. A formula for LZF

Put
RE = Hei, R™¥ej(enele)) — Lo (VF, g7). (9.132)
Set
Y ST PPN Iy
A =tz +gelence)R e ep+ 5 f* PRI (K f5)

t I an
+ e fRY (e 1) + 1 |@(V". 8" [F = £ een Vi (V. g @)

6l
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o 2 t —~
+ 35 0eTeNo (VT g") (e, e)) = pelentle) Vo r MoV, g7 (e))

1 1
- ZZ«/;c(ei)a)(VF, ) (e — Ezf“a)(VF, ¢ (5. (9.133)
By [18, Theorem 3.11], [15, Theorem 3.19], instead of (5.67), we get
2
t KA THRQY D A (T Z
LF = . <1th/2ii<r $)® A (T X)@RFuu \_/;C(Ei)> AP (9.134)

9.12. An extension of Theorem 6.5

Now, we extend Theorem 6.5.

Theorem 9.30. As p — 400,
1
N
Q (X, Fplx)

1 1
‘Pl/«/ﬁﬁhA(A/’ 8 )= ”*Edr/w"“ +0(p").

¢1/ﬁh(A/a gS‘[g,Fplx)) _ N*C[/4pn —I—O(pnil),

(9.135)

Moreover, the obvious analogue of (6.24) still holds. If/ﬁ\ is nondegenerate, the analogue
of (6.25) also holds.

Proof. As in the proof of Theorem 6.5, we may and we will assume M to be compact.
Let H be a smooth section of A. By (9.117), (9.126), there exists C > 0 such that, for

pEN,
HVFP’“TH’,,H <cC. (9.136)
We use the same notation as in §6.4. As in (6.17), we get
h(A’,th(X’FlX)) - (2in’)1/2g0/ Tes[ PF (x, x) [P dvx (x). (9.137)
X
Put -
At =01y g5yl 20 75 (9.138)

By (9.134), as in (6.30), we get

p

Let x € M, and let X be the fibre of m containing x. We use the same coordinate
system near x as in the proof of Theorem 6.5, and we use the same trivialization of
R[z] ® A (T*S) ® A'(T*X). For p € N, we trivialize the vector bundle Fp on B(x,e€)
using parallel transport for the unitary connection VF7* along the geodesics centred at
x, so that the identification preserves the Hermitian metric of F.

For Y e T: X, |Y| <€, let Hy € Ay be the restriction of H to the fibre Ny. Then Ty, ,
acts on Fp, y >~ F, .. By the crucial equation (9.136), for ¥ € T X, [Y| < €, we get

t (1 TN (T*S) ® A (T*X)®RFpu 2
2

2
F, o~
el/ﬁme/pz@ﬁ = —— 2/ pei 2ﬁﬁC(ei)> +Ap;. (9139)

1Ty, p = Tro.pll < CIY]. (9.140)
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If f e C®(T X x Ny, LP), set
K (f(Y,2)) = f(sY, 2). (9.141)
Put - -
M, = Kﬁ/pel/ﬁL4t”/p29ﬁKp/ﬁ. (9.142)

We make the same Getzler rescaling on the Clifford variables c(e), ¢(e) as in the proof of
Theorem 6.5. Let N, p be obtained from M, "r " by this rescaling.

Since the vector spaces C®°(Ny, LP) depend on p, as p — 400, it is not possible to
give an asymptotic expansion for the operators N Ft in a naive sense. However, since the
coeflicients of these operators lie in the Toeplitz algebras T VY p> the asymptotics will be
ultimately described in terms of the Toeplitz algebra 7.

Let Op, be the algebra of scalar differential operators on 7, X. Let By be the algebra

B, = Op, ®R[z] & A'(T*S) ® End(A" (T*X)) & End(A (T*X)) ® Tx. (9.143)

Our computations will ultimately take place in the algebra B,.

Let R,,pt, A " be obtained from Rf7, A4t"/ 5

and Getzler rebcahngb. By (9.132), we get

by the above conjugations, trivializations,

F 1 F, _Fp)\2
R;,:Z(e,, \[Y/ ejlei/ple)Cyple)) — 4a)(V p)ﬁy/p' (9.144)

By (9.133), when evaluating the tensors at +/tY/p, we get
Fp X

t
pit = 16 2 Ct/p(el)ct/p(e])Rpt(euej)+ f fﬂR (fa 9f/3 )

A

PN
+ %cw(eof“?%,fi (ers ful) + g l@(v 7 8"

Jt TX®RFp,u (Vpp

REy AT GO ) (e

1
+ 5 —@iplencipepo(VE, ¢F) e e))
TX®F.u w(vpp

Lo (e)Tp(e) Ve ) (e;)

2 2
! 1
- 2p3/21ﬁ0z/p(ei)w(VF”, ") (e — Ezf"w(VFP, e, (9.145)

In what follows, the tensors will be evaluated at x. We use the same conventions as in
§9.8. By (9.34), by Theorem 9.27, and by (9.140)—(9.145), as p — +o0,

Fp TX , \oigi
Api = 4("’1’ R ) +T — 024 STVIXBAUG 1§ 2 4ir 92429, p

+ (1+1YNO(p). (9.146)

Incidentally, observe that, by using higher-order versions of the fourth equation in (9.126)

and taking a Taylor expansion, one verifies easily that A ¢ lies in the Toeplitz algebra
Ty, so that (9.146) gives its expansion to order 0.
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Let Ei"t be obtained from the first term in the right-hand side of (9.139) by conjugation
by K ji/p and by doing the above Getzler rescalings. We claim that, as p — 400,

Ey = AT 1 1y10(p7"), (9.147)

the last term in the right-hand side of (9.147) containing differentiation up to order 2
on T, X, the uniform bound O(p_l) only referring to the part acting on F ;. To obtain
(9.147), we use in particular (5.3) and the second identity in (9.126).

Set
Fp TX | 1 TX , \sizj _
Np= A"t glei, R e|e’@ +T o fomXeaus jy5prid = seo.p- (9.148)
By (9.139), (9.146), and (9.147), as p — 400,
F F, _
Nyh =N+ (1+V/1Y)o(p™h). (9.149)

Equation (9.149) can be viewed as the expansion of N ;p, € By, with the conventions of
Ma and Marinescu in [34, Chapter 7).

Set
oph =i NN N2, (9.150)
By (9.72), (9.148), we get
Fp TX
0, =—ATX+ T 2+ 0.5 (9.151)
Also,
F
exp (—0,) = exp (AT¥) exp (—TU(A%H%Q’I,). (9.152)

Let exp(—Olj”,)(Y, Y’) be the smooth kernel of the operator exp(—Olj”,) with respect to
the volume form dY’. By (9.152), we deduce that

B B
TrFr |:/ exp (—0;’;)(0, O):| = (4m) " 2TrFr |:/ exp (—TG(A%)+?9’[,):| . (9.153)

Given p € N, we have the identity of operators acting on F), ,,

e (= Ta(A%>+§ﬂ,p)k
exp (—TU(AIZHN%M) => EE— (9.154)
k=0

By (9.117), (9.120), there exists C > 0 such that, for k € N, p € N*,

H(_Tout%w%ap)k - T(—o(A?)—%mk,pH < C%' (9-155)
By (9.154), (9.155), we find that
lexo(=T, 211 = 0,) — Tepo a2 00,0 | < ¢ (9.156)
O+ D=7 p
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By (9.114), (9.156), we get

C

HeXP( o (AR S.p) T Texp(—a(A,Z)—%m,legz (9-157)

Using (9.122), we get

B
—n F,
)4 "Tr' |:/ Texp(—a(A?)—%ﬁ),p:|

= Tr |:/§exp <—0(Af)—%ﬂ)]+0(pl). (9.158)

By (6.56), (9.89), (9.149), (9.153), and (9.158), as long as the proper localization and
limit arguments are established, we get the first identity in (9.135). In what follows, we
concentrate on the proof of these arguments.

First, we prove that the asymptotics of the integral in the right-hand side of (9.137)
can be localized near any x € X. By (9.120), by Theorem 9.27, and by (9.132), (9.133),
given t > 0, there is C > 0 such that, for p € N*,

F,
Hel/ﬁAM"/pﬁﬁH <c. (9.159)

Let p;(x, x’) be the smooth kernel associated with the scalar heat operator exp(r A¥).
Using Kato’s domination principle and (9.159), there exists k € N such that, for p € N*,

H 4Z/p2(x X)H Cpyyp2(x, x)pk. (9.160)
By (9.114), (9.160), we get
H AR )” < Cpyyypr (. X", (9.161)
Also, there are constants ¢ > 0, C > 0 such that, for 0 <z <1, p €N,

Prjapr(x.x') < C(p* /)" exp(—cp*d*(x, x')/1). (9.162)
By (9.160)—(9.162), we get

< Cp" ke =m/2 exp(—cp?d*(x, x')/1). (9.163)

H 4f/p

By (9.163), we deduce easily that, given x € X, the integral in (9.137) can be localized
near x € X. As in the proof of Theorem 6.5, this means that, to compute the asymptotics
as p — 400 of (9.137), we may as well fix x € X, and replace near x the fibre X by
T X. Similarly, we may as well assume the projection g : N|x — X maps to T X. We
will still denote by P,F” (Y,Y"),Y,Y € T, X the heat kernel associated with the operator
exp(—L,Fp). We make exactly the same change of coordinates as in (9.142) and the same
rescalings as before. The major difference is that the coordinates are now taken in 7T, X,
so that they are globally defined on T X.
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For s > 0, let Qif’,,s(Y, Y, QQ’,’S(Y, Y"),Y, Y € T, X be the smooth kernels associated

. F F, .
with the operators exp(—sN,%), exp(—sN ") with respect to the volume dvrx(Y"). We
claim that, for s > 0, as p — 400,

Fp

l(epns — 2% yr| = 0, (9.164)

and that, in (9.164), O(p~') is uniform for bounded Y, Y’. If F), was not depending on
p, so that the kernels in (9.164) act on a fixed vector space Fy, (9.164) would just follow
from simple uniform estimates on the kernels, from (9.149), and from Duhamel’s formula.
The main difficulty here is that F, changes with p. However, the estimates in (9.146),
(9.147) that are uniform in p € N are enough to establish (9.164).

By (9.164), we get

H (Q)%hs =2}, )(0.0) H =0(p7). (9.165)

Recall that the functional "l/“r\s was defined after (6.56). We extend T\rs to a map ”fr\st =
Try ® Trfr. By (9.114), (9.165), we find that
_n—~F, F _
p TR [(Q)) . — @ )(0,00] =0(p7"). (9.166)

=p,L,s

By proceeding as in the proof of Theorem 6.5, and using (9.89) and the above
arguments, we get the first identity in (9.135). As in the proof of Theorem 6.5, the
second identity in (9.135) is a consequence of the first one.

The arguments that are needed to establish the analogue of equations (6.24) and (6.25)
are essentially the same as in the proof of Theorem 6.5, once the above convergence results
are taken into account. The proof of our theorem is completed. O

Remark 9.31. Let 7 : X — X be a Galois cover of X as in §6.6. Then the obvious analogue
of the results of that subsection still hold. The arguments needed in the proof are the
ones that are used in §6.6 as well as in the proof of Theorem 9.30.

9.13. The asymptotics of the analytic torsion forms

We still assume 9 to be nondegenerate. Now, we establish the obvious extension of
Theorem 7.1.

Theorem 9.32. As p — +o0,
Py TR (T M, 75 VP Fr) =, W+ O(p™). (9.167)

Proof. Using Theorem 9.30 instead of Theorem 6.5, the proof of our theorem is essentially
the same as the proof of Theorem 7.1. Let us now give some extra details.

We still have to establish the two identities in equation (7.4). The proof of the first
identity is exactly the same as in §7.2, using the analogue of Theorem 4.4 that was
established in §9.10. As to the proof of the second identity, we still write equation (7.13).
By Theorem 9.30, equation (7.14) still holds. Once the analogue of (7.15) is established,
by Theorem 9.30, we get the analogue of (7.16), which concludes the proof of our theorem.
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The estimate (7.15) can be proved exactly as in §7.3. This completes the proof of our
theorem. 0

Remark 9.33. The extensions of the results obtained in Remark 7.3 and in §§ 7.5 and 7.6
still hold. Indeed, by Ma and Marinescu [36, Theorem 0.3 and Remark 0.5], when L’ is
a holomorphic vector bundle on N, when replacing L? by LP ® L', the obvious analogue
of equation (9.120) holds. Moreover, by [34, equation (4.1.84), Lemma 7.2.4], equation
(9.122) still holds, when multiplying the right-hand side by dim L’.

9.14. The case of reductive groups

The case that was considered in §§2, 6, and 7 is a special case of what was done in the
present section. Indeed, under the assumptions of the above subsections, the line bundle
L on N is canonically equipped with a metric gL. Then, if ¢{ (L, gL ) is the corresponding
first Chern form of L that is defined as in (9.10), using the notation of §§ 1 and 2, we get

k=ci(L, g"). (9.168)

If A € u, the vector field AN on N is the Hamiltonian vector field associated with the
Hamiltonian 27 (u, A) in the sense of Definition 9.1. By (1.21), (9.30), if A, B € u,

{2mru, A), 27 {u, B)} = —2m(u, [A, B]). (9.169)

The — sign in (9.169) is related to the fact that A — —A" is a morphism of Lie algebras.
We have the identity

9 = 2m(u, i6F). (9.170)
By (9.169), (9.170), we get
9% = 2w, 672). (9.171)
By (9.170), we obtain
O =2m(u,i0P). (9.172)
By (1.25), (9.172), we find that
o5y = 0p. (9.173)

From (9.173), we deduce that 8 is nondegenerate in the sense of Definition 1.1 if and
only if 9 is nondegenerate in the sense of Definition 9.13.

By comparing Theorems 2.10 and 9.21, and also 2.12 and 9.23, and using (9.170), it is
clear that the forms that were obtained in § 2 are special cases of the forms obtained in
the present section.

Index

A1, 334 Ac, 326

A, 334 AN 234

A, 324 analytic torsion forms, 275
o, 234 A, 241
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Ay, 238

a,, 241, 253, 328, 331
ar, 243, 328

Y, 234

B, 231

b, 307

Berezin integral, 235
b,, 241, 253, 328, 331
by, 243, 328

e/ (L,g"), 322
A(E), 232
(@), 233
c(E), 232
c(e), 233

x (X, F), 273
C9, 301

Cc%E 302
c9H 301
CceHE 302
%X, 304

ct, 301

CHE 302
ci(L, gb), 261, 322
Xp, 264

& (e), 239
Cs(e), 285
cs(e), 285

¢, 253, 283, 331
7, 280
x(X), 251

8a, 239

dbc, 287
divy (U), 321
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d;, 253, 283, 331
D7, 280

duy, 325

dvy, 248, 267
DX, 267

DX, 304

X, 267

AX1 267

e(E, VE), 237
er, 253, 331
n, 234, 260

F, 266, 333
F, 280
F, 333
Z, 279
@, 242, 273, 307
@, 328
F,, 268

G, 231

Y, 252, 331
g, 231

Gc, 232

ac, 232
y(h,h'"), 253
G,, 236

ar, 236

glX 272

Hlloo, 334
b, 307

h(Azg?‘XJ””),273
H(Ge), 265, 279
{1, #H'}, 324

H(N), 234
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KX, 267, 277

L, 253, 310, 331
A, 278

L%, 261

AF, 337

Lfr, 293

Apy, 284

Ly, 277

L, 240, 248, 327, 329
L;, 250, 329

L7, 280

LE, 278

Lyn, 247

L£XF 304

m, 246, 300
m’, 300
M7, 285
w, 234, 260

N, 243, 321
vAc/ 326
vAcu 396
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VA, 325
vTX 247
vAu 395
N 250, 329
vF, 333
v7u 333
v7, 333
vZ, 280
vFES 300
N7, 285
NZ,, 285
vFu 280
V71 930
Vo 937

NA(TM) 950

LyT* A (T*$) ® A (T*X) 977
Ly7* A (T*S) & NI XO®RF.u 977

IV;T*A'(T*S) ® A'(T*X)®RF,u, 277

NA'(TTX), 250

VA'(T*X) ® RF,u7 271

viu 321
V@ &EFl0 971

w4, 235

o(E), 235, 241
O(e k"), 244
w(VF, gh), 267
(V7 g7), 333

w(L,g"), 321
O(phy, 279

Op, 280

o(TX), 255

Q (X, Flx), 267
P, 262

p, 231
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Pf, 236

P, 280
PG, 279

¥, 242, 328
Va, 239, 272
PTX 246

P, (x,x"), 305

0, 280

R, 277

RE, 337

R, 284
R(A), 234
Ry»(A), 313
R 267
RZ | 280
rl 261, 321
rlou 321
Op, 263
RTX 248

S, 247
S, 236, 323
S, 248
o, 232, 233
5, 322

o (A?), 238, 327, 329
og, 235, 243, 327

Sg, 232
Ogy, 253

T, 247, 307
0, 268

T, 323

t, 307
79,249, 329
64, 277

69, 237, 300
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TH, 246

TH, 249

T(TH M, g"*,vF, ¢F), 275
oH . 329

0, 231

EF(gTX’ v, ng)7 290
et 237

THM, 246

THN, 322

TSN, 321

Ty, p, 335

®F, 300

0%, 237, 300

oP, 248

6, 237, 300

T, 336

' 0], 290

Tr[H], 325

Trs, 230
Trs[l][exp(—tDX’z/Z)], 305
Trs, 288, 342

B (s), 276

X, 329

U, 232
u, 232

Ug, 232

U, 246, 322
Urgc, 280
V, 324
Vol(N), 325
W, 255, 332
Wap, 313

X, 253, 331
Xy, 323

£, 322
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