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ASYMPTOTICS FOR SEMILINEAR ELLIPTIC SYSTEMS 

EZZAT S. NOUSSAIR AND CHARLES A. SWANSON 

ABSTRACT. A class of weakly coupled systems of semilinear elliptic partial dif­
ferential equations is considered in an exterior domain in RN, N > 3. Necessary and 
sufficient conditions are given for the existence of a positive solution (componentwise) 
with the asymptotic decay u(x) = 0(\x\2~N) as |JC| —> oo. Additional results concern 
the existence and structure of positive solutions u with finite energy in a neighbourhood 
of infinity. 

Our objective is to establish necessary and sufficient conditions for the existence of 
two types of positive solutions (componentwise) of the semilinear elliptic system 

(1) -Am = fi(x,u), xeQ i = 1 Af 

in an exterior domain Q, C R N, N > 3, where x = (x\,..., x^), U = (u\,..., UM). It is 
not required that (1) be either a potential system or radially symmetric. The two types of 
positive solutions are: 

(I) Minimal positive solutions u, i.e., \x\N~2Ui(x) is bounded above and below by 
positive constants in some exterior domain £1, i = 1 , . . . , M. 

(II) Solutionsu with finite energy in a neighbourhood of infinity, i.e., ip Ui G D0' (KN), 
i = 1 , . . . , M, for some nonnegative radial function i/j G Cl (R N) with i/j (x) = 1 
for sufficiently large |x|. 

As usual, DQ , 2 (R N ) denotes the completion of C^(RN) in the norm ||<^|| = 
|| V</> ||L2(R^)- We also use the notation || | | ^ for the norm in Lq(B), where B C KN. 
Vector inequalities are to be interpreted componentwise; in particular u > 0 means that 
each ut > 0. For a multi-index7 = (7i , . . . ,7A/) > 0 we use the notation 

m 

Assumptions for (1). 
(Ai) There exists an exterior domain Qo and 6 G (0,1) such that/) G Cfoc(Qo x 

Rf, R+), i = 1,. . . ,M, where R+ = [0, oo). 
(A2) fi(x, u) is continuously differentiable with respect to the components of u at each 

x G Qo, u G Rf . 

M 

ET.-. 
1=1 

u7 
M 

= n(M*)7/ f ° r u > °-
1=1 
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SEMILINEAR ELLIPTIC SYSTEMS 515 

(A3) There exist positive constants A, RQ, a positive interval /o = (0, So), multi-indices 
It = (7/i,... ,7,M) > 0 with 7/I > 1, and locally Holder continuous functions 
g il [Ro, 00) —» (0,00) such that 

(2) S/(H)u7' <Mx,u) < A # ( | * | ) u \ i= 1,...,M 

forall|*| >Ro,u<Eltf. 

THEOREM 1. The system (1) has a minimal positive solution in some exterior sub-
domain ofQ® if and only if 

(3) J°° giir)^-1-^^-^ dr < 00 for each 1 = 1,... ,M. 

PROOF. If u(*) is a minimal positive solution of ( 1 ) in an exterior domain, there exist 
positive constants C and R such that w,(*) > C\x\ 2~N for all |*| >R,i= 1 , . . . , M. Then 
(1) and (2) show that w, satisfies the inequality 

(4) -Aut(x) > CM~lpi(\x\ )[w,(*)]7'\ |*| > /?, 1 = 1, . . . , Af, 

where 
A-M = gi(r)r-^-^N-2\ 

However, it is known [6, Theorem 12; 10, Theorem 1] that a necessary condition for a 
scalar inequality of type (4) to have a positive solution in an exterior domain in R N is 

j°° Piir)^-1'^-^ dr < 00, 1= 1 A#, 

which is equivalent to (3). (The proof in [6] for —Au = f applies verbatim to —Au > / ) . 
Conversely, if (3) holds the scalar equation — Afa = gi(r)(j>p^ has a minimal positive 

solution </>,(r) in some interval [R, 00) [9,10], and hence fair)/ c/>,(r) is bounded above and 
below in [R, 00) by positive constants, ij = 1, . . . , M. For a sufficiently small positive 
constant À, it follows from (2) that the vector v with components v, = À fa satisfies 

fix^^AX^gidxl)^'"^. 

^(ConstanOA17'1^!^)^.17''1 

<Xgi(\x\)<l>jlA = -Avf-, |JC| >R. 

Therefore visa positive supersolution and w = 0 is a subsolution of the boundary value 
problem 

—Aut =fi(x,u) for |jt| > R 
(5) 

ui = vt on |*| = R, / = 1 , . . . , M . 

The method described by Kawano [3] and Kawano and Kusano [4] for systems in R^, 
and described in [7, p. 843] for exterior boundary value problems, shows that (5) has a 
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nontrivial solution u such that 0 < ui(x) < V,(JC) = À (/>;(•*), * = 1,. . . ,M. The proof by 
Sattinger's monotone iteration procedure is almost exactly as in [3, pp. 146-150] since 
(A2) shows, for every bounded domain B c H o and every T > 0, there exists a constant 
K( = Kt(B, T) > 0 such that/i(*, u) + KM is nondecreasing in ut G [0, T] for all x e B, 
uETMJ= 1,...,M. 

The strong maximum principle for —Aw, > 0 implies that M/(X) > 0 for | JC| > R. Let 
z(x) = A\x\ 2~N, where A is a positive constant satisfying A < RN~2 m in^ / j ut(x). Then 

f -A(ut - z)(x) > 0 for |*| > R 
< U((x) — z(x) > 0 on |;c| = R 
I ut(x) — z(x) —>• 0 as |JC| —• oo, 

and consequently utix) > z(x) — A|;c|2_Ar for all \x\ > R by the maximum principle. 
Hence u is the required minimal positive solution of (1). 

COROLLARY 2. Suppose that gi(r) in (2) is specialized to gt(r) = 0(r~bi) as r —• oo 
for a constant bt satisfying N — b[ < (N — 2)| 7,: |, / = 1, . . . , M. Then (1) has a positive 
solution with finite energy in a neighbourhood of infinity. 

PROOF. Since (3) holds, Theorem 1 shows that (1) has a positive solution U(JC) = 
0(|A:|

 2~N) as |*| —+ oo. By (2), each ut can be regarded as a solution of Poisson's equation 
—Aw, = F(, where 

Fi(x) =fi(xMx)) < C\x\-b^N-2)\^\ < C\x\-N 

for some positive constant C,\x\ > R > 1. Then an a priori estimate [2, Theorem 3.9] 
for Poisson's equation in a ball Br/2(x) of centre * and radius rj 2, r = | JC| > 2R, yields 

KVn/K^I < C i 
2 . . r 
- sup \ui\ + - sup IFi| < ^ r 1 ^ 

V2 

for some constants C\ and C2, implying the conclusion of Corollary 2. 

COROLLARY 3. //>*(>*) is bounded and \lt\ > N/ (N - 2), r/ẑ n (1) has a positive 
solution with finite energy in a neighbourhood of infinity. 

This follows by taking each bt — 0 in Corollary 2. 

THEOREM 4. Suppose that each gi(r) is bounded in [RQ, 00) and that 17/1 < (N+2)/ 
(N—2),i= 1 , . . . , M. Then (3) is a necessary condition for ( 1 ) to have a positive solution 
with finite energy in a neighbourhood of infinity. 

PROOF. The function v defined by v(x) = E ^ i ut(x) solves a linear elliptic equation 
—Av = Hv in an exterior domain Q, where by (2) 

M 

(6) H{x)<CYfr(x)p\-x 

1=1 
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for some positive constant C. Since |7/| — 1 < 4/ (N — 2), Holder's inequality with 
exponents 

Pi = VTr—^TÛH 77 & = 
4 

(tf-2)(|7,-| - 1) ™ 4 - ( t f - 2 ) ( | 7 / | - 1) 

applied in a ball Br(x) of centre x and small radius r shows that there exists a constant 
C\ > 0, independent of r and JC, such that 

M 

|//|k2^,<C1g^'"||v||^_ 2)MxY 

Since v G L2N/(N-2\KN) from the Sobolev embedding Dl
0>

2(£ï) <-• L2Ar/("-2)(ft), it 
follows that || H\\N/2,Br(x) —• 0 as r —» 0 uniformly in Q,. From results of Brezis and Kato 
[1, Remark 2.1 and Theorem 2.3], this implies that v 6 Lq(Q) for all q > INj (N - 2), 
from which the norms 

(7) \\v\\qfB2(x)md\\Hv\\s,B2(xy 

for sufficiently large q and s, are bounded functions of x and have limits zero as | JC| —• oo. 
Then v(x) is bounded in Q as a consequence of standard a priori estimates for the equation 
—Av = Hv [2, Theorem 8.17]. It follows that || V||2,52(JC), as well as the norms (7), has limit 
zero as |x\ —* oo. Interior Holder estimates [2, Theorem 8.24] imply that v(x) —> 0, and 
so also each ui(x) —• 0 as | JC| —• oo. Consequently the maximum principle for —Aw, > 0 
yields ut(x) > C\x\ 2"N for \x\ > R, where C and R denote positive constants. The proof 
of Theorem 1 can then be repeated to obtain (3). 

THEOREM 5. Suppose that gi in (2) is specialized to gi(r) = 0(r~bi) as r —• oo and 
that 

f1 < M < fê ifh > 2 
(8) 

I ^ < M < m if0<bi<2, 
i — 1, . . . , M. Then a positive finite energy solution of(l) in a neighbourhood of infinity 
is necessarily minimal. 

PROOF. Kelvin's transformation 

x N-2, y = rTT' v((y) = \x\ M«W» ' = h-..,M 
1X12 

maps (1) into 

(9) -Avt = Hi(y)vi9 yeti 

where Q! is a deleted neighbourhood of the origin and 

ft(y) = \y\-N-2[vi(y)r1fi(^\y\N-2v(y))-
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Let V(y) = E ^ i v,-(y), and use (2) to obtain 

(10) Ht(y) < C\y\p>[V(y)Pl~\ )>€« ' , 

for some constant C> 0, where 

Pi= \li\(N-2)-N-2 + bi. 

A proof that Ht G Z/(£2') for some s > N/ 2, i — 1 , . . . , M, will be sketched below. 
Then a theorem of Serrin [8, p. 220] applied to (9) near y = 0 shows that either v;(y) or 
I y|N_2 Vi(y) is bounded above and below by positive constants in a deleted neighbourhood 
of y = 0. However, w;(x) cannot be bounded below by a positive constant in an exterior 
domain by the finite energy hypothesis, and hence it must be that |*| N~2ui(x) is bounded 
above and below by positive constants for sufficiently large |JC| . 

To show that Ht G Ls(Q.r) for s > N/ 2, we fix s satisfying 

IN 2N 
(11) S-2bi < (tf-2)(|7,-|-l)< — , 

s s 
which is possible by assumption (8). Define 

2N 2N 
Pi = "7^7—^7Û71 7T' & = s(N-2)(\^i\ - 1)' Hl 2N-s(N-2)(\li\ - 1) 

and apply Holder's inequality to (10), giving 

(12) II^II^IIW^IUIIVllS/'Ky 

where || \\s denotes the norm in Ls(Q.f). The assumption w, G Z)Q'2(Q) implies that V G 
Dl

0'
2(Q,f), whence V G L2NI {N~2\Q!) by Sobolev embedding. The left inequality (11) is 

equivalent to sptqt > —N, and therefore (12) yields Ht G LS(Q!). 
We remark, if |7*| < (N — bï)/ (N — 2) for some /, then a positive solution of (1) (of 

any type whatsoever) in any external domain cannot be minimal. Theorem 1 shows this 
since condition (3) fails in this case. 
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