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THE CHARACTERISATION 
OF MODULAR GROUP ALGEBRAS 

HAVING UNIT GROUPS OF NILPOTENCY CLASS 3 

M. ANWAR RAO AND ROBERT SANDLING 

ABSTRACT. The unit group of the modular group algebra of a finite /7-group in char­
acteristic p is nilpotent. The /^-groups for which it is of nilpotency class 3 were deter­
mined in work of Coleman, Passman, Shalev and Mann when p > 3. We resolve the 
p = 2 case here which completes the classification. 

If G is a finite p-group and F is a field of characteristic /?, then the group U(FG) of 
units of the modular group algebra FG is a direct product U(F) x V, where V = V(FG) 
is the subgroup of normalised units. As V — 1+7 where I = I(FG) is the augmentation 
ideal, V is also a /7-group, finite if F is. Since I is nilpotent as an ideal, V is a nilpotent 
group and the class of U(FG) is equal to that of V. Again the nilpotency of I shows that 
7, and so FG, are nilpotent as Lie algebras and of the same class. A recent theorem of 
Du [4] shows that the nilpotency class of V as a group is equal to that of I as a Lie algebra 
(here denoted cl V, cl I respectively.) 

Recent studies, particularly those of Shalev, have indicated and established many pat­
terns in the dependence of the class of V on aspects of G. The classification of those G 
for which cl V = 3 has been completed except for p = 2. The present paper resolves this 
case, which gives the following theorem. 

THEOREM. Let G be a finite p-group and F afield of characteristic p. Then the fol­
lowing are equivalent: 

(i) cl U(FG) = 3; 
(ii) clFG = 3; 

(Hi) c\G = 2 andG' œ C3 or C\. 

One of the earliest results on cl V is that of Coleman and Passman [3] which shows 
that cl V > p if G is a non-abelian/?-group. The theorem, then, is of significance only for 
p = 2 or 3. That it holds for p = 3 is a consequence of the fact that cl V = p if and only 
if G' œ Cp. As mentioned in [10], this was conjectured by the second author (in work 
which was advanced through discussions with Frank Levin who kindly made available 
the material of [5] before its publication.) The sufficiency of the condition is not difficult; 
it was also noticed by Baginski [1]. The necessity was established in [8]. 

Adapting the techniques of [3] and introducing new ones, Shalev, together with Mann, 
obtained many results on cl V, mainly upper bounds [11,8, 12]. The most far-reaching 
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results are presented in [12] and were deduced on the basis of the recent breakthrough 
of Du [4] generalising the work of H. Laue [7]. The main theorem in [4] implies that 
the n-th term d( V) of the upper central series of V coincides with 1 + £,(/), where £„(/) 
denotes the n-th term of the upper central series of I considered as Lie algebra. 

Du's results permit the replacement of group commutator calculations by ones in­
volving Lie commutators. This simplification underlies the proof given here. It is not, 
however, how the result was arrived at. The first author [9] has developed a suite of 
programs written in the Cayley language [2] which construct power-commutator pre­
sentations for the groups V(FG) where \G\ divides 32 and |F| = 2. Once available, such 
a presentation facilitates the analysis of V using built-in Cayley functions. We studied 
explicit examples of 2-groups G for which cl V(FG) — 4 in order to gain insight into 
how nontrivial 4-fold commutators arose. These calculations guided the elaboration of 
the proof given here. 

PROOF OF THE THEOREM. That (i) and (ii) are equivalent has been noted; we may 
thus use cl V and cl I interchangably. We will show that (ii) and (iii) are equivalent. The 
introductory remarks have shown that only the casep = 2 is at issue. The statement in 
this case reduces to: cl I — 3 if and only if cl G — 2 and G1' & C\. The sufficiency of the 
conditions follows from Corollary C of [8] for/7 = 2. 

Their necessity is established by showing that a group G which fails to satisfy them 
has cl / > 4, contrary to the hypothesis. This is accomplished by the detailed study of 
a number of cases. The usual pattern specifies a minimal counterexample sufficiently 
closely to allow the explicit construction of a nontrivial Lie commutator of length 4. 

The hypothesis that cl / = 3 leads to a dichotomy: either clG = 2 or clG = 3. In 
the first case we want to conclude that G' & C\. In the second, we want to derive a 
contradiction. We begin with the first case, and so assume that 

(I) clG = 2andcl / = 3. 
We show that G' is elementary abelian of order 4 in two steps: that its exponent is 2; 

that its order is 4. 
(la) exp G' = 2. 

PROOF. Assume that exp G' > 4. It suffices to show that U ^ 0, where I4 denotes 
the 4-th term of the lower central series of / as Lie algebra, or, equivalently, that V4 ̂  1, 
where V4 denotes the 4-th term of the lower central series of the group V. The latter 
follows from a remark of Shalev [11, p. 265]. As the proof of this remark is omitted, we 
provide here an independent proof that U ^ 0. 

Since G' is central, we may assume that G' & C4. Write G' = (a) where a = [JC, y] 
for some x,y £ G. Then, with the convention that multiple commutators be left-normed, 
(x,y,y,y) = y3x(a-l)3^0. 

(lb) d(G') = 2. 

PROOF. Assume that d{G') > 3. Again we show that U 7̂  0. In a minimal coun­
terexample G, d(G') = 3 and any proper subgroup is of class < 2 with commutator 
subgroup elementary abelian of rank < 2. Note that (la) implies that G2 < C(G). 
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If a, b, c are independent elements of the elementary abelian group G7, then it is easy 
to see that (c — \)(b — \){a — 1 ) ^ 0 . The next item shows how to obtain such a product 
in a 4-fold Lie commutator. 

LEMMA. Let g,h,k, I G G. Write a = [g,h], b = [h,k], c = [k, i]. Then the com­
mutator (g, gh, hk, £) is equal to m(c — \)(b — Y)(a — I) for some m G G. 

PROOF. (g,gh) = hz(a - 1), where z = [Kg~]]g2 G ((G). Thus, (g,gh,hk) = 
kz'(b -l)(a-l) for somez7 G Ç(G) and (g,gh,hk, £) = tkz!{c - \)(b - \)(a - 1). 

This lemma then gives us the following criterion for showing that U ^ 0 and so 
obtaining a contradiction: 

U 7̂  0 if and only if there are elements g, h, k, I in G such that [g, h], [h, k] and 
[k, I] are independent elements of the elementary abelian group G'. 

From this we can conclude that the minimal counterexample G has d(G) > 4, for, if 
G = (x,y, z), then G' = ([x,y], [y, z], [z,x]) and these commutators must be independent 
as G' & C\. In particular, if H is a 3-generator subgroup of G, then H is proper. As 
d{H') < 2, there is an element z G H such that H' = [//, (z)]. It follows that there are 
commuting elements x,y G H such that H = (JC, y, z). To prove this, choose JC, y G H such 
that// = (JC,y,z). But [x,y] 6 {1, [x,z], [y,z], Uy,z]} by hypothesis. Each possibility is 
then examined and new generators chosen as required. For example, if [x,y] — [x,z], 
then [x, zy] = 1 while H — (JC, zy,z). 

We next turn our attention to the possibilities for centralisers. Since, for any g in G, 
\G : Cc(g)\ — \gG\ = Ktg,-*] • x G G}|, the index of a centraliser divides 8. Also 
centralisers are normal in a class 2 group. 

Suppose that there is an element g whose centraliser is of index 8. Then G' = [G, (g)] 
so that G' = ([x,g], [y,g], [z,g]) for some x,y,z G G. As above, we may assume that 
[x, v] = 1 from which it follows that [x,yg], [yg,g] and [g,z] are independent. By our 
criterion, U ^ 0, a contradiction. 

Suppose that there is an element g whose centraliser is of index 4. Then there are 
elements x,y G G such that G = C(x,y), where C = CcCg). Let / / = (x,y,g) so that 
// ' = [//, (g)] and / / ' has order 4. As above, we may assume that [x,y] = 1 so that the 
subgroup # = (x,y) is abelian. Thus G' = C'[C, K] and//' < [C, K]. If G7 = [C, tf], then 
there must be an element u G C such that [w, /^l ^ //'. We may assume that [u,x] $ H' 
whence [u,x\, [x,g] and [g,y] are independent, a contradiction. If G7 ^ [C, AT|, then 
G7 = C'H' and there are elements u,v G C such that [w, v] ^ //7. But then [w, wc], [vx, g] 
and [g,y] are independent, again a contradiction. 

We have now seen that all proper centralisers are of index 2. Choose x,y G G such 
that [x, y] ?M. Their centralisers are proper and distinct; let N denote the intersection of 
these centralisers so that N<G. Putting K — (x,y), we have G = NK and G7 = Nf{[x, y]) 
whence N7 = ([u, v], [s, ̂ 1) for some w, v, s, t G Af. But then [w, vx], [vx, syl and [sy, t] are 
independent, providing the final contradiction in this case. 
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REMARKS. The arguments above establish more than required. They justify the ob­
servation, prompted by Coleman, that a 2-group G which is minimal with respect to its 
commutator subgroup being central and elementary abelian of rank 3, has d(G) — 3 or 4. 
An example of the latter is the semi-direct product G = VE in which V is a vector space 
of dimension 4 over the field of 2 elements and E is the elementary abelian subgroup of 
GL(4,2) generated by the matrices / + E\jJ — 2,3,4, where / is the identity matrix and 
Ey the standard matrix units, in its natural action. 

Alternatives to these arguments are possible: all such groups can be shown to have an 
element with centraliser of index 8; Mann notes the relevance of a theorem of Knoche 
[6, p. 309] which states that a p-group G all of whose centralisers are of index < /?, has 

\G'\ <P-
We turn now to the second case. Its proof is also an examination of possible minimal 

counterexamples; it appeals to the result of case (I). Our assumption is 
(II) clG = 3andcl/ = 3. 

We show that this case is impossible. 
Let G be a group of minimal order satisfying (II). If S is a section of G having cl S = 3, 

then ç\I(FS) = 3. It follows that every proper section S of G is abelian or of class 2; if 
c\S = 2, then Sf is elementary abelian of rank < 2. By the minimality of G, IG3I = 2. 

As Lie algebra /(FG/G3) has class 2 or 3. If it is 3, then case (I) shows that G''/G3 pa 
C\. If it is 2, then G'/G3 pa C2 by Lemma 8(a) of [8]. (For p = 2, there is a simple 
alternative way of deducing that, for E a field of characteristic 2 and X a 2-group, cl EX — 
2 implies that X' pa C2 : cl EX = 2 if and only if I(X')EX, the 2-nd term of the lower central 
series of EX, is central in EX; as X' is central, (l(X')EX,EX) = I(X')2EX which is 0 if 
and only if I(X')2 — 0 and this happens precisely when X' pa C2.) 

Suppose first that G'/ G3 pa C\. Then d(G) > 3 so that every 2-generator subgroup is 
proper and so of class < 2 with an elementary abelian commutator subgroup. It follows 
as in the proof of case (I) that G2 < C(G). But G' < G2 so that cl G = 2, a contradiction. 

Secondly, suppose that G'/G3 pa C2. Once again this leads us to two cases, G' pa C4 
or C\. In both, the subgroup C = Cc(Gf) is used and has index 2. 

In the case G' pa C4, C' is proper in Gf since C is elementary abelian: Thus, G' 
is generated by some commutator g = [x, y] where we may assume that x $ C. As 
IG : C\ = 2, we may assume that y G C. But then (x,y,y,y) = y3x(g — l)3 ^ 0 and so 
U ^ 0, a contradiction. 

In the case G' pa C\, we have G' — (g)G3, g = [y,x] for some x,y G G, where 
we may assume that x $ C since C' < (>(G). But C = Cc(g) so that G3 = (z) for 
z = [g,x\ — \y,x,x\. But then (y,x,x,x) = x^yig — l)(z — 1) 7̂  0. As before, this gives 
the contradiction I4 ^ 0, which completes the proof. 
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