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Introduction. Let k be a field, let R be a noetherian k-algebra of finite
Gelfand-Kirillov dimension GK(R), and let M be a finitely generated right R-module. A
standard prime factor series for M is a finite sequence of submodules 0= Nyc N, c... <
Ni.ieN;,c...cN,=M, such that for each i the annihilator P,=rg(N;/N,_;) is the
unique associated prime of N,/N;_; and GK(R/P,) = GK(R/P)) whenever i =j. The set of
prime ideals arising from such a series is an invariant of M, called the set of standard
primes St(M) of M. The concept, inspired by the notion of a standard affiliated series
introduced by Lenagan and Warfield in [7], has been developed in [5], where it was shown
that St(M) coincides with the set of all those prime ideals that are minimal over the
annihilator of a nonzero submodule of M.

In general, one cannot expect to have any bound on the lengths of the various
standard prime factor series of M, the case when M = Ry is a simple noetherian domain
that is not a division algebra furnishes a counterexample. However, the situation changes
when ¢Mp is a bimodule, finitely generated on each side, where R and § are noetherian
k-algebras of finite GK-dimension. In Section 1, it is shown that any standard prime factor
series of Mz whose terms are S-R-sub-bimodules N; does have bounded length, the least
upper bound being called the (right) standard length of M. It is realized as the length of
any unrefinable such standard series. Furthermore, the left standard length of M equals
the right standard length, and any unrefinable standard prime factor series of Mg that
consists of sub-bimodules is automatically a standard prime factor series of ¢M.

In Section 2, we briefly discuss the multiplicity of a standard prime P, that is the
number of times P occurs as the right annihilator of s(N;/N,_)x for a given right standard
prime factor series of ¢Mg. It is shown that the multiplicity of P in any two such
unrefinable series is the same.

The characterization of standard primes as prime ideals that are minimal over the
annihilator of a submodule suggests their use in questions related to “lying over”. For
this, let R be a noetherian subalgebra of the noetherian k-algebra S, such that Si is
finitely generated and GK(R) is finite. A prime ideal O of S is said to lie over the prime
ideal P of R if P is minimal over @ N R. In general, a prime P of R need not have LO,
that is, there need not exist a prime ideal of S that lies over P. Thus, one is faced with the
problem of finding criteria that assure lying over for a given prime of R. In Section 3, it is
shown that any standard prime P of Rg has LO and that if Q lies over P, then Q e St(Ss).
This leads to the following criterion for lying over: P e spec(R) has LO precisely when
P e St(S/I)x for some ideal I of S. Subsequently, at the end of Section 4, P is shown to
have LO if and only if P e St(xX) for some finitely generated left R-submodule X of a
left S-module M.

In Section 4, we consider the more restrictive property of lying directly over,
introduced by Goodearl and Letzter in [1]. A prime ideal Q of S is said to lie left directly
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over the prime ideal P of R if P is the left annihilator of a left R-submodule of S/Q.
Using standard primes, it is shown that P has left directly lying over if and only if
SP N R = P. Furthermore, at most a finite number of primes of S can lie left directly over
a given prime of R.

In general, it is not known whether only a finite number of primes of S can lie over a
given prime of R, although Letzter [10] has recently provided a positive answer for a class
of rings that includes complex group algebras over polycyclic-by-finite groups, noetherian
PI algebras, and enveloping algebras of finite dimensional complex solvable or semisimple
Lie algebras. In Section 5, we present some partial results. Specifically, it is shown that a
prime P of R has finite lying over whenever GK(R/P) is greater than or equal to
GK(R/rr(S/R)). This extends a result due to Small and Warfield [14], who assumed
both R and S to be prime, both Sz and ;S to be finitely generated, and Ry to be essential
in Sg. Finally, an extreme situation arises when GK(R/P)> GKg(S/R). In this case,
precisely one prime ideal Q of S lies over Pand P=0Q0 NR.

DEFINITIONS AND NOTATIONS. All rings considered are (left and right) noetherian
algebras over a field k, modules are unitary. The Gelfand-Kirillov dimension, GK-
dimension for short, of a right R-module M is denoted by GK(M). If M is an
S-R-bimodule, finitely generated on both sides, then GK(sM)= GK(Mg), and the
subscript is deleted. Only when the bimodule is not finitely generated on one side a
subscript is used on the appropriate side. For basic properties of GK-dimension we refer
to [6]. Most of the terminology is standard and follows the book by Goodearl and
Warfield [2].

rg(X) = r(X) = right annihilator in R of a subset X of a right R-module.
Ir(X) = I(X) = left annihilator in R of a subset X of a left R-module.
%6(I) = set of elements of R that are regular modulo the ideal / of R.
spec(R) = set of prime ideals of the ring R.

annspec(M) = {P e spec(R) | P = r(X),0# X < Mg}.

A prime ideal P of R is associated with the right R-module M if P=r(N') for all
submodules N’ #0 of some nonzero submodule N of M. The submodule N is called a
prime submodule of M.

Ass(M) = set of primes associated with the module M.

p(M) = p(M)g = reduced rank of the right R-module M.
rank(M) = uniform (Goldie) rank of the module M.

1. Standard length of a bimodule. Let R be a noetherian k-algebra, and let M be a
finitely generated right R-module. A sequence of submodules 0=NycN,c...cN,_;c
Nic...cN,_1cN,=M with P,=r(N,/N;_;) = Ass(N,/N;_;) is called a prime factor
series of M. It is called standard if GK(R/P)= GK(R/P,) whenever i <j. If Bc Cc D are
three consecutive terms of such a series such that GK(R/r(C/B)) < GK(R/r(D/C)),
then C is called a jumping point of the series. A standard prime factor series has s — 1
such jumping points where s denotes the number of distinct real numbers in the set
{GK(R/P) | P e St(M)}. By Theorem 2.4 of [5], any two standard prime factor series have
the same jumping points, they will be denoted by J;=J(M), 0=i <y, setting Jo(M) =0
and J,(M) =M, for convenience. It is clear that for each i, J;(M)/J;_;(M) is equidimen-
sional in the following sense.
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DEFINITION. A finitely generated right R-module M over the noetherian k-algebra R
is equidimensional if GK(R/P)= GK(R/Q) for any two standard primes P and Q of M.

Lemma 1.1. Let R be a noetherian k-algebra, and let M be a finitely generated right
R-module with GK(R/r(M)) < «. If M is equidimensional, then

St(M) = {P e spec(R) | P minimal over r(M)}.

Proof. By [5, Theorem 3.3], any prime that is minimal over r(M) is a standard prime
of M. Let P e St(M), and assume that P2 Q = r(M) with Q minimal over r(M). Since Q
is standard, and since GK(R/P) < GK(R/Q), this contradicts equidimensionality.

DerINITION. Let R and S be noetherian k-algebras, and let sMy be a bimodule that is
finitely generated on either side. A sequence of sub-bimodules

0=BycB,c...cB,_,cB,c...cB,=M

that is a standard prime factor series of My (sM) is called a right (left) standard prime
bi-factor series of M.

Right (or left) standard prime bi-factor series of a bimodule exist by [5, Proposition
2.3], any right (left) standard affiliated series of M will do.

LemMA 1.2. Let R and S be noetherian k-algebras, let sMyp be a bimodule, finitely
generated on both sides, with GK(M)=GK(R/r(M))<«, and assume that Mg is
equidimensional. Then the length of a right standard prime bi-factor series of M is
bounded by p(M)g»m), the reduced rank of M as a right R/r(M)-module.

Proof. Let 0=BycB,c...cB,_ycB,c...cB,=M be a right standard prime
bi-factor series of M with P, =rg(B,;/B;-,) = Ass(B;/B;_;)r. By Lemma 1.1, each P, is
minimal over rg(M). Note that each B,/B;_;, being finitely generated on the left, is
%(P,)-torsionfree. Thus it follows as in the proof of [4, Theorem 5.1} (note that the proof
does not require the B;’s to be annihilator submodules of M) that

p(M)rirry = E rank(B;/B;_1)r = n.
i=1

ProrosiTion 1.3. Let R and S be noetherian k-algebras, let sMr be a bimodule,
finitely generated on both sides, and assume that GK(M) < . Then the length of any right
standard prime bi-factor series of M is bounded by

s
2 p(Ji/ji—l)R/r(J,-/l,-_,)-
i=1

Proof. As such a series, like any standard prime factor series of Mg, passes through
the jumping points J;, and since each of the bimodules J;/J;_; satisfies the hypotheses of
Lemma 1.2, the claim follows.

In the situation under consideration, one always has that GK(S/ls(M)) = GK(M) =
GK(R/rr(M)) (see [6, 5:3 and 5-4]), so one can compare the maximal length of a right
standard prime bi-factor series of M with that of such a series on the left. As will be
shown below, these are the same.
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DeriniTiON. Let R and S be noetherian k-algebras, and let ¢Mz be a bimodule,
finitely generated on both sides, with GK(M) <. The right (left) standard length
r.stL(M) (l.stL(M)) is the maximal length of a right (left) standard prime bi-factor series
of M. Such a series is full if it is not refinable, that is, if no sub-bimodule can be inserted
between any two consecutive terms of the series to obtain a standard prime bi-factor
series of greater length.

Trivially, any right (left) standard prime bi-factor series of maximal length is full, and
we proceed to show that any two full right standard prime bi-factor series have the same
length r.stL(M).

Lemma 1.4. Let R and S be noetherian k-algebras, let {Mp be a bimodule that is
finitely generated on both sides, let GK(M) < «, and assume that r.stL(M) = 1. Then:

(i) M/X is 6(P)-torsion for any nonzero sub-bimodule X € M, where P = rg(M) =
Ass(M)g;

(ii) r.stL(N) =1 for any nonzero sub-bimodule N = M.

Proof. (i) Assume this to be false, and let X be maximal among nonzero sub-
bimodules with M/X not €(P)-torsion. Clearly, r(M/X) = P. Now Ass(M/X)g # P, for
otherwise 0c X <M would be a right standard prime bi-factor series of length 2.
Therefore, let Y be a sub-bimodule, Y2 X, r(Y/X)=Q # P. Since r(Y/X)2r(M/X) =
P, it follows that O2P, so Y/X is 6(P)-torsion. As M/Y is %(P)-torsion by the
maximality of X, this leads to a contradiction.

(if) Assume there exists a right standard prime bi-factor series of N of length greater
than 1, with, say, 0# N' < N at the top. As St(N) < St(M) ={P} by [5, Corollary 3.5],
P=r(N/N')= Ass(N/N')g. On the other hand, N/N' € M/N' is 6(P)-torsion by (i). As
s(N/N') is finitely generated, this is not possible.

ProrosiTION 1.5. Let R and S be noetherian k-algebras, let sMg be a bimodule that is
finitely generated on both sides, let GK(M) < =, and assume that Mg is equidimensional. If
M has a full right standard prime bi-factor series of length n, then r.stL(X)=n for any
sub-bimodule X of M.

Proof. Proceed by induction on n, the case n =1 being covered by Lemma 1.4. Let
n>1, and assume that the claim has been established for all m <n. Let 0=N,c N, c
...cN,_;=NcM be a full right standard prime bi-factor series of M, and let
0=XocX,c...cX,_;cX,=X be a right standard prime bi-factor series of X. We
wish to show that p =n. The distinct terms of the series {N N X;} form a right standard
prime bi-factor series of NN X. If all NN X, 0=i =<p, are distinct, then p<n —1<n, by
induction. Otherwise, let i be the largest index such that NNX;=NNX,_,. Then
N+X,/N+X,_,=X;/X;_,. Set P=r(M/N)=Ass(M/N)y and Q=r(Xi/X:-))=
Ass(X;/X;-1)g. Both P and Q are standard primes of Mg, so GK(R/P)=GK(R/Q) by
equidimensionality. Assume that N + X;_; 2 N. Then M/N + X;_, and hence N + X;/N +
Xi-1 is G(P)-torsion by Lemma 1.4(1), so

GK(R/P)>GK(N + Xi/N + X;_,) = GK(Xi/ X;-,) = GK(R/Q),
an obvious contradiction. It follows that X;_; £ N, and hence that

0OcX,c...cX,,=NNX,,=NNX,cNNX, c...cNNX,=NNX
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is a right standard prime bi-factor series of the sub-bimodule N N X of N. Its length is
(i—-1)+(p-i)=p -1 Byinduction,p—1=n-1, hence p =n.

THEOREM 1.6. Let R and S be noetherian k-algebras, let ;Mg be a bimodule that is
finitely generated on both sides, and let GK(M) < . Then:

(1) any two full right standard prime bi-factor series of M have the same length
r.stL{(M);

(i) a full right standard prime bi-factor series of M is also a full left standard prime
bi-factor series;

(iil) r.stL(M) = LstL{M).

Proof. (i) Since any standard prime factor series of My passes through the jumping
points J;, and hence each of the bimodules J;/J;_, satisfies the claim by Proposition 1.5,
this is clear.

(i) It is obviously enough to show that r.stL(M) =1 implies L.stL(M) = 1. Thus, let
P=rp(M)=Ass(M)g,and let 0=Coc C,c...cC,_; = C, = M be a left standard prime
bi-factor series of M with I(C,/C;_,) = Assg(C;/C;-,) = Q; € spec(S). Assume that n > 1.
Since M/C,,_, is 6(P)-torsion as a right R-module by Lemma 1.4, it follows from [6, 5.3
and 5.4] that GK(S/Q,) = GK(M/C,_,) <GK(R/P). On the other hand, GK(S/Q,) =
GK(C)) = GK(R/P), and GK(S/Q;) = GK(S/Q,), since the sequence {C;} is standard.
This contradiction shows that LstL{(M)=1.

(iii) This is an immediate consequence of (i) and (ii).

Henceforth, the common value of 1.stL(M) and r.stL(M) will be denoted by stL(M)
and will be referred to as the standard length. Note that the preceding theorem also shows
that the jumping points of any standard prime factor series of My coincide with the
jumping points of any standard prime factor series of ¢M. Thus, in particular, My is
equidimensional if and only if ¢M is equidimensional. Furthermore,

{GK(R/P) | P € St(Mg)} ={GK(S/Q) | Q € St(sM)}.

2. Multiplicities of standard primes. Given a right standard prime bi-factor series
& ={N;} of a bimodule Mg, the multiplicity uy(P, Mg) of the prime P e St(Mg) is the
number of times P occurs in &, that is, the number of times one has P =r(N,/N,_)) =
Ass(N;/N;_))r. As these series may have different lengths (see [7, p.172]), in general one
has to expect pwg(P, Mg) # ua(P, Mg) for two distinct standard series ¥ and 9. However,
if ¥ and J are full right standard prime bi-factor series of M, then the result below
shows that the multiplicities of any standard prime in either series are the same, allowing
us to speak simply of the multiplicity u(P, Mz) of P in M, without having to refer to a
particular series.

THEOREM 2.1. Let R and S be noetherian k-algebras, let Mg be a bimodule that is
finitely generated on both sides and has finite GK-dimension, and let ¥ and T be two full
right standard prime bi-factor series of M. Then pg(P,Mg)= ug(P,Mg) for all P e
St(MR).

Proof. Since all appearances of P occur between two adjacent jumping points, we
may assume that M is equidimensional. We proceed by induction on n = stL(M), the case
n =1 being trivial. Assume that the result holds for any bimodule (X with stL(X) <n.
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Let $={C;} and J ={B;} be the given series. Since stL(B,-,)=n —1, and since the
distinct terms of the series {C;NB,_;}, 0=<i=<n form a right standard prime bi-factor
series of B,_,;, we must have C,NB,_, = C;_; N B,_, for at least one index i. Let i be the
greatest such index, and set P = rg(C,/C;-,) = Ass(C;/C;-1)r. Since

B,y +Ci/B,y+Cioy=C/Cy,
it follows that
P,, = r(M/B,,_l) < r(B,,_I + Ci/Bn—l + Ci—l) = r(C,'/C[_l) = P,

whence P = P,, by equidimensionality. If B,_; S B,-, + C;—;, then C,/C;_; would be
€(P)-torsion by Lemma 1.4. As this is not the case, C;,_, € B,_,, which proves that
C,NB,_,=C;-1NB,_; occurs only for j=i. Thus, the distinct terms C;N B,_; form a
full right standard prime factor series of B, _; of length n — 1. Consequently, u (P, M) —
1=pu(P,B,_ ), by induction. Since obviously wg(P,M)= u(P,B,_) +1, it follows that
pe(P,M)= png(P,M). If Q e St(Mg), Q # P, then Q occurs in ¥ as Q =r(Cy/Cp-1) =

Ass(Cy/Cy-1)r with £ #i if and only if Q occurs in the series {C; N B, _,,j i} of B,_; as
Q=r(CiNB,-1/Cy-1NB,_1)=Ass(C, N B,_1/C,—1 N B,_1)r, §0 uAQ, M) =

w(Q, B,_;). Since Q#P=r(M/B,-,), we also have that u(Q,B,_,) = us(Q, M), so
,LLy(Q, M) = l-‘*f?(Q’ M)

Considering the special case R =S8 and a bimodule M that has a prime ideal P
belonging to both St(Mg) and St(xM), the right and left multiplicities of P need not be
the same. The following example demonstrates this, it even satisfies St(Mg) = St(xM).

ExampLE 2.2. Let M = R, the ring of upper triangular 2 X 2 matrices over k. Let

i) ool wenrnef) ]

It is easy to see that 0c Nc Q c R=M is a full left and right standard prime bi-factor
series of M with Q =r(N)= Ass(N)g, P=r(Q/N)= Ass(Q/N)z, and Q =r(R/Q)=

Ass(R/Q)x, so that St(Mg) = {P, O}. As P =I(N)= Assg(N), P =I(Q/N) = Assg(Q/N),
and Q =I(R/Q) = Assg(R/Q), we also have that St(xM) ={P, Q}. However, u(P, Mg) =

1, yet u(P, gM) =2. Similarly, u(Q, Mz) =2, but u(Q, kM) =1.

3. Lying over. Let R < S be a right finite extension of noetherian k-algebras, that is,
R is a noetherian subalgebra of the noetherian algebra S, and S is finitely generated as a
right R-module. In this section, standard primes are used to investigate the relationship
between spec(R) and spec(S), where R is assumed to have finite GK-dimension. Note that
in this set-up, GK(S) = GK(R) by [6, Proposition 5.5].

DEeriniTION. A prime ideal Q of § lies over the prime ideal P of R if P is minimal over
O NR. A prime P of R is said to have lying over, or to have LO, for short, if at least one
prime of § lies over P; if, in this case, only finitely many primes of S lie over P, then P is
said to have finite LO.

Due to Lenagan (see [8, Theorem 2.1]), if Sk is finitely generated and free, then every
prime of R has LO. The following example shows that this is no longer the case when Sg
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is merely projective. Although the example has been known for some time, the fact that it
has GK-dimension 2 does not seem to appear in the literature, so we include the simple
calculation. The fact that lying over may fail already for GK-dimension 2 is noteworthy in
view of the fact that if R is an affine noetherian k-algebra of GK-dimension 1, then R is PI
by [13], so it satisfies the second layer condition, so lying over holds for all primes of R by
[9, Theorem 4.6).

ExamprLE 3.1 (Lorenz [11], Hodges and Osterburg [3]). Let k be a field of
characteristic 2, containing a nonzero element A that is not a root of unity. Let
S=kix,x ', y,y "} (xy — Ayx). By [11, Example 1.8], S is a simple noetherian domain. If
R =S°, the subalgebra fixed by the automorphism o of S defined via o(x)=x"",
a(y) =y~ then both &S and Sy are finitely generated, indecomposable, and projective by
[3, Theorem 1], and R is noetherian by [3, Theorem 5]. The ideal P ={s + o(s) | s € S} is
the only nonzero proper ideal of the domain R, and since S is simple, LO does not hold
for P. It remains to show that GK(R)=GK(S)=2. Identifying x and y with their
canonical images in S, the elements xy’ with integers i and j form a basis for S over k.
The subspace V =k @kx D kx"'@ky@ky™' is a generating subspace for the algebra S.
As V"=V '@ 3 kx'y/, dim(V") - dim(V""')=4n for n = 1. Therefore, dim(V") =

lif+1j1=n k k k

1+ 3 4j=1+2(n + 1)n, whence GK(S) =2.
j=1

Being thus faced with the fact that lying over does not universally hold for finite
extensions of noetherian algebras with finite GK-dimension, one is led to search for
criteria that will allow one to recognize when a given prime ideal of R has LO. Since by
[S, Theorem 3.3] a prime P is a standard prime of a right R-module M if and only if P is
minimal over the annihilator of some nonzero submodule of M, a connection between
lying over and standard primes seems almost natural. Indeed, Q e spec(S) lies over
P € spec(R) if and only if P € St(S/Q)x = St(R/Q N R)r, as is easily seen from the proof
of [9, Lemma 3.2]. Generalizing this somewhat, we have the following result.

ProrosiTiION 3.2. Let R S be a right finite extension of noetherian k-algebras with
finite GK-dimension. Then the following statements are equivalent for an ideal I of S.
(1) S/1is equidimensional as an S-module
(2) (a) R/INR is equidimensional as an R-module.
(b) SR/INR)g =St(S/I)x ={P & spec(R) | P minimal over I N R}.

Proof. Note that in view of Theorem 1.6 one does not have to distinguish between
right and left equidimensional for an S-R-bimodule that is finitely generated on both
sides. Let I=BycB,c...cB;_;cB;c...cB,=S be a full standard prime bi-factor
series of (S/Ng with Q,;=Is(B;/B;-,) = Asss(B;/B;_,), and P, =rg(B;/B;,_,)=
Ass(B;/B;_1)x.

(1)=> (2). Since GK(S/Q;) = GK(R/P,) for 1=i=n, (§/])x is equidimensional, so
R/IINR=R+1/I<=S8/I is equidimensional, giving (2)(a). For (2)(b), observe that any
prime that is minimal over /N R belongs to St(R/I N R)g by [5, Theorem 3.3). Also,
St(R/INR)g = St(S/1)g by [5, Corollary 3.5]. Thus, in order to establish equality of the
three sets in (2)(b), let P e St(S/I)z. As (S/I)g is equidimensional, P is minimal over
rr(S/D)=rs(S/H)NR=INR by Lemma 1.1.
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2)=> (). Since {P,,...,P}=St(S/I)g =St(R/INR)g, and since R/INR is equi-
dimensional, it follows that GK(S/Q;) = GK(R/P)) = GK(R/P)=GK(S/Q,) for all 1=
i,j =n, showing that S/I is equidimensional.

We proceed to relate the standard primes of § to those of R. In order to obtain a
criterion for lying over, it is convenient to examine an S-S-bimodule M such that ¢My is
finitely generated on each side.

THEOREM 3.3. Let RcS be an extension (not necessarily finite) of noetherian
k-algebras with finite GK-dimension. Let M be an S-S-bimodule such that My is finitely
generated on both sides. Then:

(a) each Q e St(My) lies over some P e St(Mg);

(b) if O e St(Mj) lies over P e spec(R), then P € St(My);

(c) for every P e St(Mg) there exists a Q € St(Ms) that lies over P.

Proof. Clearly ¢Ms is finitely generated on both sides and GK(M) < . Using
Theorem 1.6, choose a full standard prime bi-factor series of ¢Mj:

0=NcNc...cN_cNec...ecN,,=M

with  Q; =rg(N;/N;_1) = Ass(N;//N;_y)s, QF =Is(N:/N;_1) = Asss(N;/N;_;). Refine this
series by choosing a full right standard prime bi-factor series for each (N;/N;_;)g:

N,'_1=Ci_0CCi'1C...CC,‘J-]CCi‘jC...CC[ﬁ(,‘)=N,’

with rg(Ci;/Cij-1) = Ass(C;;/Cij—1)r = P;j. By Theorem 1.6, this is also a full left
standard prime bi-factor series for ¢(N,/N;_{)g. Since Stg(N,/N,_,) = {Q}}, it follows that
Is(C;;/Cij-1) = Assg(C,;/C;j-1) = QF for all 1=j=n(i), and hence that GK(5/Q;)=
GK(S/Q¥)=GK(R/P;) for all 1=i=m, 1=j=n(i) by [6, 5.3 and 5.4]. Consequently,
the combined series {C;;} is a full standard prime bi-factor series of sMg. As g(N:/N;-,)
is finitely generated, the right R-module R/Q; N R = R/rx(N,/N;_;) embeds in a direct
sum Dy of finitely many copies of (N;/N;_,)z. Note that St(Dg) = St(N;/N;_)g. Now let
Q e St(Ms), so Q =Q; for some i Let P be minimal over Q;NR. Since S/Q; is
equidimensional, Proposition 3.2 implies that

P & St(R/Q; N R)g = St(Dg) = SUNi/N,o)r ={P; | 1 =j = n(i)},

and since the latter set is a subset of St(Mg), this proves (a) and (b). Finally, let
P e St(Mg), so P=P,; for some (i,j). As (N;/N;-;)r is equidimensional, Lemma 1.1
shows that P is minimal over rg(N,/N;-;) = Q; N R, proving (c).

In view of part (b) of the preceding result, the question arises whether Q e St(Mj)
when Q lies over P e St(Mg). However, this is generally not the case.

ExampLE 3.4 (see [5, p. 224]). Let k be a field, let F = k[x]/(x), considered as a
k[x]-k-bimodule, and set

Sz[kg] i] Rz{[f(g) f(OO)Hf(x)Ek[x]}:k[x]'
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Then R is a noetherian subalgebra of the noetherian k-algebra S, Sk is finitely generated

by [(1) 8], [8 1+0(x)], and [8 ?] and GK(S)=GK(R)=1. Let N=[8 g]

0 F xk[x] F k[x! F . .
Q1=[0 k]§Q3=[ (E] k], Q2=[ [0] 0] Then OCNCQICS is a full rlght
standard prime bi-factor series of Ss with rg(N)=Ass(N)s=Q,, rs(Q,/N)=
Ass(Q1/N)s = O3, r5(S/Q1) = Ass(S/Q1)s = Q,. This series is also easily seen to be a full
right standard prime bi-factor series of (Sg with rg(N) = Ass(N)g =P, = [Xk(EX] 8],
r=(Q1/N) = Ass(Q\/N)g =P, 1r(S/Q1) = Ass(S/Q1)r =P,=0. Now observe that
Q3N R =P, s0 Qs lies over P, e St(Sg), yet O3 ¢ St(Ss) = {01, Oz}

THEOREM 3.5. Let R = S be a right finite extension of noetherian k-algebras with finite
GK-dimension. The following statements are equivalent for a prime ideal P of R.

(1) P has LO.

(2) IP N R < P for some ideal I of S with GK(S/I) = GK(R/P).

(3) P e St(R/IN R)g for some ideal I of S.

(4) P e St(S/I)g for some ideal I of S.

Proof. (1)>(2). If P is minimal over Q N R for some Q e Spec(S), then P e
St(R/Q N R)g = St(S/Q)x. Looking at a full right standard prime bi-factor series of
s(8/Q@)r, we conclude that GK(S/Q) = GK(R/P). Also QPNR=QNRCcP.

(2)=> (3). Since /NRYSPNR)SIPNREP, either INRSP or SPNRcP. In
the first case, it follows from GK(R/P)=GK(R/INR)=GK(S/I)=GK(S/I)=
GK(R/P) that P is minimal over I N R, whence P € St(R/I N R)g. In the second case,
P=SPNR=rg(S/SP), so if J = I4(§/SP), then GK(R/J N R) = GK(S/J)=GK(S/SP)=
GK(R/P) by [6, 53 and 5.4). As JNR=JSNRcSPNR=P, P is thus minimal over
JN R, whence P e St(R/J 0O R)i.

(3)=> (4). This is clear since St(R/IN R)g =St(R +1/)g S St(S/D)r.

(4)=> (1). The S-S-bimodule M = §/1I satisfies the hypotheses of Theorem 3.3, so the
claim follows from part (c) of that resuit.

As a special case of the preceding theorem, P espec(R) has LO whenever
SP N R =P. (Note that this also follows as in the proof of [8, 2.1].) In the next section we
shall see that this condition characterizes a special case of lying over, called “lying directly
over” by Goodearl and Letzter [1].

4. Lying directly over.

DerFiNITION. Let R = S be rings. A prime ideal Q of S lies right (left) directly over the
prime ideal P of R if

(a) Q lies over P,

(b) P e annspec(S/Q)x (annspecg(S/Q)), that is, P is the right (left) annihilator of a
nonzero right (left) R-submodule of S/Q.

It will be shown below (Example 4.9) that the distinction between right and left in
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the above definition is necessary in general. The following result shows that for the
situation discussed in this paper, condition (a) follows from (b). For this, see also [1,
Lemma 5.3].

ProrosiTioN 4.1. Let RS be a right finite extension of noetherian k-algebras with
finite GK-dimension. Let P e spec(R), Q e spec(S). Then:

(i) if P e annspec(S/Q)r, then Q lies over P=PSNR;

(ii) if P e annspecg(S/Q), then Q lies over P=SPNR and Q is minimal over
Is(S/SP).

Proof. (i) Assume that P = rgx(X/Q) for a nonzero right R-submodule X/Q of S/Q.
By [5, Theorem 3.3], P € St(S/Q)r- As §/Q is equidimensional, P is minimal over Q N R
by Proposition 3.2. Note that P < PS N R in general. Since X(PSNR)S XPS<c Q0S=0,
PSNRcr(X/Q)=P.

(ii) If P=Ix(X/Q), 0= X/Q < (S/Q), then P=SPNR, analogous to what has
been shown in (i) on the right hand side. Now X can be assumed to be a right ideal of S,
so it follows from [6, 5.3] that GK(R/P)=GKx(X/Q)=GK(X/Q)s =GK(S/Q). Set
I=15(S/SP), and note that P =SP N R = rg(S/SP). By [6, 5.3 and 5.4], it follows that
GK(R/P)=GK(S/SP)=GK(S/I). As ISXSSPXcQ and SX¢Q, IcQ follows.
Consequently, GK(R/P) < GK(S/Q) = GK(S/I) = GK(R/P), so equality holds through-
out, proving that Q is minimal over /. Since GK(R/P)= GK(5§/Q)=GK(R/Q N R), and
since obviously @ N R € P, P is minimal over Q N R.

As a consequence of 4.1(ii) we have the following result which also appears in
[10, Proposition 4.2(iii)] under the additional assumption that ;S is also finitely generated.

CoroLLARY 4.2. Let Rc S be a right finite extension of noetherian k-algebras with
finite GK-dimension. Then at most finitely many prime ideals of S can lie left directly over a
given prime of R.

Proof. If Q € spec(S) lies left directly over P e spec(R), then Q is minimal over
I=15(S/SP) by 4.1(ii). As §/I is noetherian, the claim follows.

Although Letzter [10] has recently made considerable progress, it is still not known
whether only a finite number of prime ideals of S can lie over a given prime of R. What
Letzter has shown for a right finite extension of noetherian rings is that for a given prime
P of R at most finitely many prime ideals Q of S can lie over P for which the Goldie rank
of $/Q is a prescribed positive integer. This shows that at most countably many primes of
S can lie over P, a result which we can obtain with a different proof for the special case
that R c § is a right finite extension of noetherian algebras with finite GK-dimension.

CoroOLLARY 4.3. Let Rc S be a right finite extension of noetherian k-algebras with
finite GK-dimension. Let P € spec(R). Then the set of prime ideals of S that lie over P is at
most countable.

Proof. Let {Q; e spec(S) | i e I} be the set in question, and assume that / is not
empty. For each i € I, P e Stg(R/Q; N R), so by [5, Theorem 3.2] there exists a prime
ideal P, in the clique of P such that P, is the left annihilator of a nonzero submodule of
rR(RIQ:NR). As RIQ;NR=R+Q,;/Q,=S8/Q; as left R-modules, Q; thus lies left
directly over P, Since cliques in a noetherian ring are countable by a theorem of Stafford
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(see [2, 14.23]), the preceding corollary shows that [/ is the union of countably many finite
sets, hence countable.

The next result shows how to recognize whether a prime ideal Q of § lies left directly
over a prime ideal P of R. It should be compared with {1, 5.5] and [10, 4.1 and 4.2].

ProrosiTioN 4.4. Let R = S be a right finite extension of noetherian k-algebras with
finite GK-dimension. Let P e spec(R), Q € spec(S). Then the following statements are
equivalent.

(1) GK(S/Q) = GK(R/P), and there exists an S-R-bimodule factor E of ¢(S/Q)g with
re(E) = P, such that E is torsionfree as a right R/P-module.

(2) GK(S/Q)=GK(R/P), and there exists an S-R-bimodule factor F of s(S/SP)g
with Is(F) = Q, such that F is torsionfree as a left S/Q-module.

(3) Q lies left directly over P.

Proof. (1)=>(2). Let B/Q be the kernel of the canonical S-R-bimodule homo-
morphism S/Q — E. Then SP  B. Also, Q €I5(E), and since E is finitely generated on
each side and torsionfree as a right R/P-module, it follows from GK(§/Q)= GK(R/P),
that Q =I[3(F) and that E is torsionfree as a left §/Q-module. Thus one can set
F=§S/B=E.

(2)>(3). Let F=S/B, SP=¢BrcS. Then PcSPNR<BNR. As S/B is an
S/0-R/B N R-bimodule, finitely generated and faithful on each side, it follows that
GK(S/Q)=GK(S/B)=GK(R/BNR)=GK(R/P)=GK(S/Q), so GK(R/BNR)=
GK(R/P), so the ideal BN R of R cannot properly contain P. Thus R/P=R/BNR¢&
S/B as left R-modules. Now, S/B, being a finitely generated and torsionfree left
S/Q-module, embeds in a finite direct sum of copies of §/Q as a left S-module (see [2,
6.19]), and hence also as a left R-module. It follows that R/P embeds in a finite direct
sum of copies of zx(S/Q), so P e Assg(S/Q), so by 4.1(ii), Q lies directly over P.

(3)=>(1). If Q lies left directly over P, then GK(S/Q)= GK(R/P) by Proposition
32. Let P=1,(X/Q) for some left R-submodule X/Q #0 of §/Q, where X may be
assumed to be a right ideal of S. Let A=I[(X/Q)=20, and note that A is an
S-R-sub-bimodule of S. Since X/Q is a finitely generated right ideal of S/Q, §/A embeds
in a finite direct sum of copies of S/Q as a left S-module, showing that Q = [5(S/A), and
that S/A is torsionfree as a left §/Q-module. Obviously, P = rg(S/A), and (S/A)gse is
torsionfree since 5(S/A)xp is finitely generated on both sides and torsionfree on the left,
and since GK(R/P) = GK(S/Q)- Setting E =S5/A gives (1).

It has already been noted that if some prime ideal of S lies left directly over
P e spec(R), then SP N R = P. It turns out, that this equality is sufficient for P to have a
prime of S lying left directly over it.

THEOREM 4.5. Let R = S be a right finite extension of noetherian k-algebras with finite
GK-dimension. The following statements are equivalent for a prime ideal P of R.

(1) P =Ix(X) for some left R-submodule X of a left S-module.

(2) P=LNR for some left ideal L of S.

(3) P=SPNR

(4) There exists a prime ideal Q of S that lies left directly over P.
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Proof. (1) (2). Set L =I4(X).
(2)>@3). AsP<L,SPNR<LNR=P.
(3)=>(4). As P=SPNR=rx(S/SP), P e St(S/SP)z. Let

SP=BOCB1C...CB,'_ICB,'C...CB,,_ICB,,=S

be a full standard prime bi-factor series of (S/SP)gx with P, =rg(B;/B;_))=
ASS(B,'/B,'_I)R, Qi = l_g(B,'/B,'_l) = ASSS(Bi/B,'_l). Note that £ = S/B,,_l is an S/Qn'R/P,,'
module, faithful and torsionfree on either side. Note also that GK(S/Q,)=
GK(S/B,-;) = GK(R/P,), so (1) will follow from 4.4 if we can establish that P = P,. But
this follows from P = rg(S/SP)<rg(S/B,-,) = P,, and from the fact that GK(R/P,) =
GK(R/P) due to P & St(S/SP)x.

(4)=> (1). By definition of lying left directly over.

It has been established in [15] that the trace ideal of S in R plays a significant role in
the interplay between properties of R and S. Recall that the right trace ideal is
T(Sk) == {f(S)|f € Hom(Sg, Rg)}. It is proved in [14], that P e spec(R) has LO if
T(Sg) ¢ P. The following result sharpens this a little.

CoROLLARY 4.6. Let Rc S be a right finite extension of noetherian k-algebras with
finite GK-dimension. Let P € spec(R). Then:

(a) if T(Sg) & P, then some prime ideal of S lies left directly over P;

(b) if Sk is projective and some prime of § lies left directly over P, then T(Sg) ¢ P.

Proof. (a) For some f € Hom(Sk, Rg), f(S) ¢ P, so it follows from
fFOESPNR)=f(S(SPNR)<f(SP)=f(S)Pc< P

that SPN R < P. Hence SP N R = P, and the claim follows from 4.5.

(b) If some prime Q of S lies left directly over P, then by Proposition 4.4 there exists
an S-R-bimodule factor E of §/Q with rg(E) = P and Eg,p being torsionfree. Since Egp is
finitely generated, Egp embeds in a finite direct sum of copies of R/P as a right
R-module (see [2, 6.19]). Thus there exists a nonzero right R-module homomorphism
g:S—>R/P. If Sy is projective, then there exists f € Hom(Sg, Rg) with zf =g, where
n:R— R/P is the canonical map. Obviously, f(S) & P.

As another application of Theorem 4.5 we present a further criterion for a prime
ideal of R to have LO. For this, we extend the notion of a standard prime to arbitrary
(that is, not necessarily finitely generated) modules over a one-sided noetherian ring.

DeriNiTION. Let R be a left noetherian ring, and let M be a left R-module. A prime
ideal P of R is said to be a standard prime of M, if P is minimal over [x(X) for some
finitely generated nonzero submodule X of M. The set of standard primes of M is denoted
by St(M).

LEmMA 4.7. Let R be a left noetherian ring, let M be a left R-module, and let N be a
submodule of M. Then St(N) < St(M) = St(N) U St(M/N).

Proof. The first inclusion is trivial. Let P e St(M), and let X be a nonzero finitely
generated submodule of M such that P is minimal over lx(X). If X €N, then P e St(N),
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so assume that X¢N. Since (X NN(X/XNN)cl(X)csP, (XNN)cP or
I(X/XNN)cP. In the first case, P is minimal over /(X NN), and since R is left
noetherian, X NN is finitely generated, whence P e St(N). In the second case, P is
minimal over /(X/X NN)=I(X + N/N), so P € St(M/N).

THEOREM 4.8. Let R = 8 be a right finite extension of noetherian k-algebras with finite
GK-dimension. A prime ideal P of R has LO if and only if P € S{(xM) for some left
S-module M.

Proof. If Q e spec(S) lies over P, then P is minimal over QNR =Ix(R/QNR) =
Ir(R+Q/0Q). As R+ Q/Q is a finitely generated left R-submodule of S§/Q, we have that
P e Stg(S/Q). For the converse, let P be minimal over /z(X), X a finitely generated left
R-submodule of ¢M. Without loss of generality, we may assume that M = SX, hence that
sM is finitely generated. Now let

0=BycB,c...cB;_cB,c...cB,=M

be a standard prime factor series of ¢M. As P € St(xM), P e Stz(B;/B;_,) for some i, by
Lemma 4.7. Replacing M by B,/B;_,, we may therefore further assume that /;(M)=
Assg(M) = Q e spec(S). By [5, Theorem 3.2] there is some prime ideal P* e St(xX) that
belongs to the clique of P such that P* =I,(Y) for some nonzero submodule Y of zX.
Note that GK(R/P*)= GK(R/P). By Theorem 4.5, SP* N R = P*. Now, P*=I[g(Y)2
R(SY)=1s(SY)NR=QNR. Also, Is(S/SP*)SY = SP*Y =0, so I5(S/SP*) c [5(SY) = Q.
Consequently,

GK(R/P*)=GK(R/Q NR) =GK(S/Q) = GK(S/Is(S/SP*))
= GK(5/8P*) = GK(R/rg(5/SP*)) = GK(R/SP* N R) = GK(R/P*),
where we have used [6, 5.3 and 5.4], because (S/SP*)g is finitely generated on both

sides. Thus, GK(R/P)=GK(R/P*)=GK(R/Q NR)=GK(S/Q)." Since P2 Iz(X)2
IgM)=Is(M)NR =0 NR, Pis thus minimal over Q N R.

We end this section with a simple example that shows that the distinction between
left and right lying directly over is necessary.

ExampLE 4.9. Let k be a field, let S = Ms(k), and let R be the subring of upper
triangular 3 X 3 matrices over k. Note that R and S are noetherian with GK(R) =
GK(S) =0, and both Sk and gS are finitely generated. Let

k k k k k k 0 k k
P=10 k k|, P=|00 k|, PB=|0 k k
0 00 0 0 k 0 0 k
denote the prime ideals of R. Note that 0 is the only prime of S, and 0 lies over each P,. It

is easy to check that
(i) ASNR =P, SPNR =R, so 0 lies right directly, but not left directly over A,
(ii) SN R =P;, RSN R =R, so 0 lies left directly, but not right directly over P,
(iii) SN R =PSNR =R, so 0 lies over P,, but neither right nor left directly so.
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5. Finite lying over. It has been pointed out before that in general it is not known
whether a prime ideal of R that has LO also has finite LO. In this section, we provide an
affirmative answer to this question in some special instances. They involve the relationship
of r(S/R) with P, or rather the relationship between GK(R/r(S/R)) and GK(R/P). It is
well known that if R and S have a common ideal that is not contained in P, then P has LO
in the “classical” sense, that is P = Q N R for some prime ideal O of S (see, for example,
[12, 2.12.45]). Now, r(S/R) is the (unique) largest left ideal of S that is contained in R,
and it turns out that quite a bit of information can be obtained from the hypothesis that
r(S/R) ¢ P. Of course, similar results hold when P does not contain /(S/R), the largest
right ideal of § that lies in R.

Prorosition 5.1. Let R be a subring of a ring S, and let P be a prime ideal of R such
that r(S/R) & P. Then:

(i) P has LO;

(i) if O espec(S) lies over P and annspec(S/Q)r is not empty, then
annspec(S/Q)r = {P}, that is, Q lies right directly over P, and, furthermore, if in this case
Q lies over P' # P, then rg(S/R) = P';

(iii) if R is right (left) noetherian and Sp (gS) is finitely generated, then P has finite
Lo. :

Proof. (i) Since (PSNR)r(S/R)c P, the hypothesis yields PSNR<c P, hence
PSNR=P. Set [ =rg(S/PS). Then r(S/R)Pcr(S/P)crx(S/PS)=INR=PSNR=P,
and it follows that P is minimal over /N R. An easy application of Zorn’s Lemma shows
that there is a prime ideal Q of S such that P is minimal over O N R.

(ii) Let P* e annspec(S/Q)r, P* =rx(X/Q) for some right R-submodule X of S,
X< Q. Since X may be assumed to be a left ideal of S, it follows from Xr(S/R)P* <
XP*c Q that r(S/R)P*<QNRcP, hence P*c P. As clearly Q N R = P*, the mini-
mality of P over Q N R forces P* = P. Furthermore, if P’ # P is minimal over Q N R, then
r(S/R)P = Q N R < P’ implies that r(S/R)<c P'.

(i) Assume that Q espec(S) lies over P espec(R). As annspec(S/Q)r# D,
annspec(S/Q)x ={P} by (ii). Again, let I=r(S/PS), and let P=rg(X/Q) with S
sXr & Q. Then XSI < XPS c Q, so I < Q. If Q were not minimal over /,say /I Q'S O,
Q' espec(S), then INRSQ'NR=QNRcP. By (i), P is minimal over / N R, so both
Q’ and Q would lie over P. By Corollary 2.4 of [9] this is not possible whenever R is right
(left) noetherian and Sk (S) is finitely generated. Thus, any prime ideal of S that lies over
P is minimal over I. Since S is right (left) noetherian, this establishes (iii).

In [14, Proposition 9] it is shown that if R = S is a right and left finite extension of
noetherian prime algebras with finite GK-dimension, and if Ry is essential in Sg, then
lying over holds for a prime ideal of P of R, provided that GK(R/P)= GK(S/R). Note
that if both Sz and RS are finitely generated, then GK(R/I(S/R))=GK(S/R)=
GK(R/r(S/R)). If only S is assumed to be finitely generated, then one only has that
GK(R/I(S/R)) = GKr(S/R) = GK(S/R)r = GK(R/r(S/R)) by [6, 5.3 and 5.4]. Thus, [14,
Proposition 9] is a special case of the following. ‘

THEOREM 5.2. Let R = § be a right finite extension of noetherian k-algebras with finite
GK-dimension, and let P be a prime ideal of R. Then:

(i) if GK(R/P)= GK(R/r(S/R)), then P has finite LO;

https://doi.org/10.1017/50017089500031591 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500031591

FINITE EXTENSIONS OF NOETHERIAN ALGEBRAS 325

(ii) if GK(R/P)> GKgr(S/R), then there exists a unique prime ideal Q of S that lies
over P,and P=QNR.

Proof. (i) If r(S/R) ¢ P, then it is done by Proposition 5.1. If r(S/R) € P, then the
hypothesis gives GK(R/P)= GK(R/r(S/R)). Set I=1I5(5/r(S/R)), the unique largest
two-sided ideal common to R and S. By [6, 5.5], GK(S/I) = GK(R/I). Since R/r(S/R) is
an S/I-R/r(S/R)-bimodule that is faithful and finitely generated on both sides,
GK(S/I) = GK(R/r(S/R)) by [6, 5.3 and 5.4]. Consequently, GK(R/I) = GK(R/P), so P
is minimal over I. Any ideal of § that contains / and is maximal with respect to the
property that its intersection with R is contained in P is then a prime ideal that lies over
P. Now let Q be any prime ideal of S that lies over P. Then (Q +I)NR=(QNR)+I¢c
P, hence

GK(S/Q) = GK(R/Q NR) = GK(R/P)=GK(R/(Q + )N R)
= GK(S/Q + 1)< GK(S/Q).

Thus, the ideal Q + 1 of S cannot properly contain Q, so / < Q. Finally, as GK(S/I) =
GK(R/P)=GK(S/Q), Q must be minimal over /. Hence only a finite number of prime
ideals of S lie over P.

(i) if GK(R/P)> GKg(S/R)=GK(R/I(S/R)), then I(S/R) & P, so P has finite LO
by the left-handed version of Proposition 5.1. Let Q be a prime of § that lies over P. We
proceed to show that Q N R = P and that Q is unique. Let P* € annspec(S/Q)g, so O lies
over P* as well, by Proposition 4.1(i). Consequently, GK(R/P)=GK(S/Q)=
GK(R/P*). Now, if P* = rg(X/Q), QS sXr S S, then P*SN R = P* and XI(S/R)P*S <
Q. Let XI(S/R)c Q. Then I(S/R)c P*, contradicting GK(R/P*)=GK(R/P)>
GK(R/I(S/R)). Thus P*S < Q, whence P*=P*SNRcQNR<cSP,and P*=QNR=P
follows. Finally, if Q' e spec(S) lies over P, then I(S/R)Q'cI(S/R)YNQ'=Q'NR<
P=0QNRcQ. Since I(S/R)= Q would imply that /(S/R)< P, it follows that Q' = Q.
Since distinct prime ideals of S that lie over a given prime of R are incomparable by {9,
Corollary 2.4], Q is thus the only prime of S lying over P.

If GK(R/P)<GK(R/r(S/R), then P need not have LO, as is demonstrated by
Example 3.1, where R/P =k, so GK(R/P) =0, and r(S/R) =0, so that GK(R/r(S/R)) =
2. However, if GK(R/P) is not too small, one still has some information.

ProrosiTiON 5.3. Let R < S be a right finite extension of noetherian k-algebras with
finite GK-dimension, and let P € spec(R). Then:

(1) if P is minimal over r(S/R), then P has LO,

(ii) if GK(R/P)= GK(R/N), where N/r(S/R) denotes the prime radical of R/r(S/R),
then P has finite LO.

Proof. (i) Let P be minimal over r(S/R)=Ig(R/r(S/R)). Since R/r(S/R) is a
finitely generated left R-submodule of the left S-module S/r(S/R), P e Str(S/r(S/R))
whence the claim by Theorem 4.8.

(ii) If P2r(S/R), then we are done by Proposition 5.1. If P2r(S/R), then the
hypothesis implies that P is minimal over r(S/R), so P has LO by (i). Assume there exist
infinitely many primes Q; of S that lie over P. For each Q;, pick P; € annspecg(S/Q;),
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P =1x(Xi/Q)), Q:iGr(X))s €S. By Corollary 4.2, the P, may be assumed to be distinct.
For each i we have that SPr(S/R)X; < Q,, so either SF,c O, or r(S/R)X; < Q;. In the
first case, ,=SP,NR<cQ,NR<cP, implying P,=P since GK(R/P)=GK(S/Q;)=
GK(R/P). As this can happen only for one index i, r(S/R)X; € Q, and hence r(S/R)S P,
for infinitely many P. Since GK(R/P,) = GK(R/P)=GK(R/N), R/r(S/R) would thus
have infinitely many minimal primes, contradicting the fact that R is noetherian.

Note that if GK-dimension is exact for right R-modules, then no separate proof of
5.3(ii) is needed, since then GK(R/P) = GK(R/N) = GK(R/r(S/R)) whence the result by
5.2(i).
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