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Abstract

A Toeplitz decomposition of a locally convex space E into subspaces (Ek) with continuous projections
(/\) is a decomposition of every x e E as x = J2k Pkx where ordinary summability has been replaced
by summability with respect to an infinite and row-finite matrix. We extend to the setting of Toeplitz
decompositions a number of results about the locally convex structure of a space with a Schauder
decomposition. Namely, we give some necessary or sufficient conditions for being reflexive, a Montel
space or a Schwartz space. Roughly speaking, each of these locally convex properties is linked to a
property of the convergence of the decomposition. We apply these results to study some structural
questions in projective tensor products and spaces with Cesaro bases.
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Keywords and phrases: Decompositions of locally convex spaces, reflexive, Montel and Schwartz spaces,
summability and bases, tensor products, sequence spaces.

1. Introduction

Up to what point can one substitute ordinary summability by a matrix summability
method in the definition of a Schauder decomposition and, still, obtain nice results
about the locally convex structure of the space in terms of the locally convex structure
of its pieces? Our purpose here is to extend to the setting of decompositions defined in
terms of matrix summability methods—Toeplitz decompositions—a number of results
about the locally convex structure of a space with a Schauder decomposition.
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20 Pedro J. Paul, Carmen Saez and Juan M. Virues [2]

In the second section we extend the well-known characterization of semi-reflexive
locally convex spaces having a Schauder decomposition [Ka] to the setting of de-
compositions defined in terms of more general matrix summability methods. The
connection between shrinking and /-complete decompositions with semi-reflexivity
has a long history in basis theory and sequence spaces [Ja, Ka, Sil] and we give
appropriate notions within the framework of Toeplitz decompositions. In the third
section we extend the well-known Mazur's compactness criterion and apply it to ob-
tain conditions for a space with a Toeplitz decomposition to be a Montel space. In
the proof we use a double limit technique that enables us to obtain somewhat sim-
plified (even for the ordinary summability case) proofs. A similar treatment of the
quasi-normability and Schwartz property is carried on in the fourth section. These
sections can be considered as a continuation of the study started by Diaz and Minarro
[DM 1, DM2, Mi] for Frechet spaces. These results are then applied in the last two sec-
tions to study stability questions in projective tensor products and spaces with Cesaro
basis. This paper continues our study of locally convex properties of spaces with a
Toeplitz basis; previously we have studied similar problems related to completeness
[PSVI] and barrelledness [PSV2].

1.1. Terminology and notation Although our notation and terminology will be
mostly standard, for instance, <p is the space of finitely nonzero sequences, c is the
space of convergent sequences, e[k] stands for the &-th unit sequence (we refer the
reader to [Jr, PeB, Si2, Ru, V] or [Wi2]), let us recall a few facts from summability
theory. Let T = [tnk] be an infinite matrix of scalars from the field K of real or
complex numbers. The matrix T is said to be: row-finite if each row of T is in (p,
an Sp i -matrix if each column of T is convergent to 1, and reversible if for every
sequence v e c the infinite system of linear equations Tx = y has a unique solution.
It is well-known [Wi2, 5.4.5-5.4.9] that each row-finite and reversible T has a unique
two-sided inverse matrix 7"1 such that each row of T~l is in i1 and for each y e c
the unique solution of Tx — y is T~ly. An important particular case is that of a
triangle. Following Wilansky [Wi2], a lower triangular infinite matrix with non-zero
diagonal entries is called a triangle. A triangle is always row-finite and reversible, and
its inverse is also a triangle. We shall denote by E the ordinary summability matrix,
that is, the triangle with all of its lower triangular entries equal to 1. More generally, if
A = [ank] is a row-finite, reversible and regular (that is, a sequence-to-sequence limit
preserving) matrix, then T := AT, is a row-finite, reversible and Spt matrix such that
sup{|rnt| :n,keM] < \\A\\, where ||A|| := sup{£ t la^l : n e N} < oo is called
the row-norm of A. If A is a triangle then T = AY, is also a triangle.

Let £ be a locally convex space. We shall denote by E' its topological dual and by
^(E) a basis of absolutely convex and closed zero-neighborhoods. Given U € W(E)
its Minkowski's functional will be denoted by qv. (For the standard locally convex
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space terminology we refer the reader to [Jr, K6, PeB] or [Wil].) The convergence
field of a row-finite matrix T in E is the space cT(E) of all sequences (xk) from E
such that the product T(xk) is a convergent sequence in E. The sequences in cT(E)
are said to be T-convergent. For (xk) e cT(E) the limit of the sequence T(xk) is
called the T-limit of(xk) and will be denoted by T- limx*, in other words

T- lim A:* := lim YJ tnkxk.
" k

We simply denote by cT the convergence field of T in K. If T is a row-finite and
reversible matrix then the norm ||JC || T := || Tx H^ makes cT a Banach space (isomorphic
toe).

DEFINITION. Let T = [/„*] be a row-finite matrix of scalars. A sequence (Pk) of
non-trivial, mutually orthogonal and continuous linear projections defined on a locally
convex space E is said to be a Toeplitz decomposition ofE with respect to the matrix
T or, shortly, a T-decomposition of E, if

* = 7- lim Pi*, for every x e E.

Alternatively, if we define the sequence of operators

Tn : x € E -+^Tn(x) := > tnkPkx e E,

then (P*) is a 7-decomposition of E whenever limn Tnx = x for every x € E. Note
that E-decompositions are the familiar Schauder decompositions.

It is important to note that the Tn 's are not projections in general (they are increasing
projections in the case of a Schauder decomposition). However, we do have Tn Pk =
PkTn — tnkPk for all n, k 6 N. Note also that the sequence of operators (Tn) is
precisely the product T(Pk); hence saying that lim,, Tnx = x is the same as saying that
the sequence T(Pkx) converges to x. Define Ek := Pk{E). Since Ek does not reduce
to the zero subspace and for every xk e Ek we have xk = limn Tnxk = limn tnkxk, it
follows that limn tnk = 1. Hence, T is an Spi -matrix.

Still another way of looking at a Toeplitz decomposition is as follows. Every Ek is a
complemented subspace of E and we can identify every x e E with the vector-valued
sequence (Pkx) € ]"[ Ek, so that E becomes a linear subspace of Y[ Ek that, with the
topology translated from E, has the set of all finite sequences as a dense subspace
because limn Tnx = x for every x e E and T is row-finite.

We now extend some of the terminology commonly used for Schauder decomposi-
tions (see [Ka, Sil, We]). A r-decomposition (Pk) of a locally convex space E is said
to be: triangular if T is a triangle, regular if T can be factorized as T = A E for some
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regular matrix A, finite-dimensional if every Ek is finite-dimensional, equicontinuous
if the sequence of operators (Tn) is equicontinuous, and complete (respectively in-
complete, respectively /-complete) if for each sequence (xk) e f ] Ek such that the
product T(xk) is a Cauchy sequence in E (respectively a weakly Cauchy sequence,
respectively a bounded sequence) there exists x € E such that xk = Pkx for every
k € N and, a fortiori, T(xk) converges to x. Note that ^-complete means exactly
complete for the weak topology.

Using primes to denote adjoint operators, for every x € E and every x' e E' we
can write

(*,*') = lim(r.jc, JC') = lim V /„* [Pkx, x') = lim Y tnk [x, P'kx') = lim(*, 7 > ' ) .
n n ™™ n . n

This shows that (P'k) is also a T-decomposition of E' endowed with the weak topology
a (£ ' , E). If we define E't := P'k(E'), then the dual of Ek can be identified with E'k.
The computation above also shows that the sequence (T^x') is a (£", £)-bounded for
every x' e E'. A T-decomposition (Pk) of a locally convex space E is said to be
shrinking if (Pt') is also a T-decomposition of E' endowed with the strong topology
P (£", E) and is said to be simple if (T^x') is a y3 (£ ' , £')-bounded sequence for every
x' € £ ' .

EXAMPLE 1.1. A AT-space is a locally convex sequence space A containing <p such
that the k-th projection, defined by 7Tk((xn)n) := xke

[k], is continuous for every t e N .
A AT-space A. is said to have property T-AK if x = T-limxke

[k] for every sequence
x = (xk) 6 A.. Thus, a sequence space A has property T-A K if and only if the sequence
(nk) is a (one-dimensional) 7-decomposition of X or, in other words, if the sequence
of operators defined by zn := ]P t rnt7rt, that is (rn) := r( j r t ) , satisfies x = limn rn (xk)
for every sequencer = (xk) e k (see [Bui, Bu2] or [Me]). (When dealing with scalar
sequence spaces, we shall keep the notations (nk) and (zk) throughout the paper). In
particular, X has property S-A K means precisely that (em) is a Schauder basis of A.

We shall be interested in matrices T such that cT has property T-AK. These
matrices were characterized by Buntinas [Bu2, Theorems 8-10].

THEOREM 1.2 (Buntinas's Theorem). Let T be row-finite and reversible Sprma-
trix. Then the following conditions are equivalent:

(1) The sequence of coordinate projections (jtk) is a T-decomposition of Cr-
(2) The sequence of operators (rn) is equicontinuous on Cj.
(3) If we denote T'1 by [snk] then sup { £ , | £ * tmktnkskj | : m, n e N] < oo.
(4) The dual (cj)' can be identified with the multiplier space of Cj into Cj formed

by the sequences y such that the coordinatewise product xy is in cTfor every x € cT

and, in this case, the bilinear form of the dual pair is given by {x, y) = T- lim xy.
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The first known non-trivial examples of matrices T such that cT has property T-A K
are the series-to-sequence Cesaro matrices of order a > 0; this was proved by Zeller
[Ze]. Therefore, to avoid clumsy repetitions, a row-finite and reversible Spi -matrix
T such that cT has property T-A K will be called a Zeller-Buntinas matrix. For such
a matrix T we will consider its equicontinuity constant defined by bT := supn ||rn||,
where | | r j | is the norm of xn as a bounded operator from the Banach space cT into
itself. Note also that if T is a Zeller-Buntinas matrix then cT is a sum space in the
sense of Ruckle [Ru].

2. Reflexive spaces

As promised, we start by extending a well-known characterization of semi-reflexive
locally convex spaces having a Schauder decomposition [Ka] to the setting of Toeplitz
decompositions.

THEOREM 2.1. Let (Pk) be a T-decomposition of a locally convex space E. Then
the following conditions are equivalent:

(1) E is semi-reflexive.
(2) (Pk) is y-complete and shrinking, and each Ek is semi-reflexive.
(3) (Pk) is ^-complete and shrinking, and each Ek is semi-reflexive.

PROOF. (1) implies (2): Each Ek is semi-reflexive because it is a complemented
subspace of E. To prove that (Pk) is a T-decomposition of E'[fi (£', £)], start by
noting that each P'k is weak-to-weak continuous, hence it is also strong-to-strong
continuous [Jr, 8.6], [Wil, p. 168]. Since E is semi-reflexive it follows [Ko, Sec-
tion 23.3.(4)] that E'[fi (£", £)] is a barrelled space with dual E. This fact implies

that UmeN(£i + E2 H 1" E'm) i s d e n s e i n E'\.P ( £ ' ' £ ) ] because it is a convex
set which is dense in E'\q (£", £)] and it also implies, on the other hand, that the
sequence (rn') is fi (£', £)-equicontinuous because, as pointed out above, (T'nx') is
a (£', £')-bounded for every x' e E'. Now the fact that T is a Spi -matrix implies that
the ft (£', E)-equicontinuous sequence (7n') has the property that (Tn'x') converges
strongly to x' for every x' in the 0 (£', £")-dense set [JmeN(E[ + E'2 -I 1- E'm). It
follows that (7 '̂.*') converges strongly to x' for every x' € E' [K6, Section 39.4.(1)],
and this is the same as saying that {P'k) is a T-decomposition of E'[fi (E1, E)]. It re-
mains to show that (Pk) is y-complete or, equivalently, that whenever (xk) e J~[ Ek is
such that T(xk) is bounded then there exists x e E such that Pkx = xk for each k € N.
Every such sequence (xk) defines a linear functional / on UmeN^'i + ^2 "I ^ ^m)
as follows. Take / (*') := (x*, JC') whenever x' e E'k and *: e N. Since the sum
E[ + E'2-\ h E'm is actually a direct sum, because the spaces Ek's are the ranges of
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mutually orthogonal and continuous linear projections, it follows that we may extend
/ to the whole of {JmeN(E[ + E'2 + • • • + E'm) by linearity. Let us see now how we
may extend / to the whole of E'. Let B be the polar set of {T(xk)} in E' and fix
*' = £"=i*t e B n Er=i E'k (with *i € E'k). Then

1 > sup V , x x'y
= sup

Take the limit as n —• oo to deduce, using that T is an Spi-matrix, that \f (x')\ < 1.
By the Hahn-Banach theorem,/ can be extended to all of E' verifying that \f (x')\ < 1
for all x' € B. Since E is semi-reflexive/ must coincide with the linear form defined
on £" by some x e E and this element x obviously verifies Pkx = xk for all k € N.

(2) implies (3) is trivial, so let us prove that (3) implies (1). Take x" e E". Since
every Ek is semi-reflexive we have that xk := Pk"x" e £* for each k e H. Now (Pt") is
a 7-decomposition of £"'[CT (£"', £')] because (Pt) is shrinking. Therefore, T(xk) =
T(P'k'x") is a CT (E, £")-Cauchy sequence and the hypothesis of /J-completeness yields
the existence of some x e E such that Pkx = xk for every k e M. Finally we obviously
have x" — x so that E is semi-reflexive. •

This theorem can be dualized to obtain conditions for the barrelledness of a locally
convex space with a 7-decomposition endowed with its Mackey topology. This
barrelledness result complements those obtained in [PSV2].

COROLLARY 2.2. Let Ebea locally convex space and let (Pk)bea T-decomposition
of E endowed with its Mackey topology /u, (E, E'). Then the following conditions are
equivalent:

(1) E[fi (£, £")] is barrelled.
(2) (Pk) is a T-decomposition of E[fi (E, £")]. each Ek is barrelled and (Pk') is a
y-complete T-decomposition of E'[a (£", £)].
(3) (Pk) is a T-decomposition of E[/3 (E, £")], each Ek is barrelled and (Pk) is a

complete T-decomposition of E'\a (£", E)].

It is well-known that a locally convex space is reflexive if and only if it is semi-
reflexive and barrelled [Jr, 11.4.2]. A direct application of Theorem 2.1 and Corol-
lary 2.2 gives the following corollaries.

COROLLARY 2.3. Let (Pk) be a T-decomposition of a barrelled space E. Then the
following conditions are equivalent:

(1) E is reflexive.
(2) (Pk) is y-complete and shrinking, and each Ek is reflexive.
(3) (Pk) is ^-complete and shrinking, and each Ek is reflexive.
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COROLLARY 2.4. Let Ebea locally convex space and let (Pk)bea T-decomposition
ofE endowed with its Mackey topology /u. (E, E'). Then the following conditions are
equivalent:

(1) E[n (£, £')] is reflexive.
(2) Both (Pk) and (P'k) are y -complete and shrinking for the respective weak topolo-

gies a (E, E') and a (E1, E), and each Ek is reflexive.
(3) Both (Pk) and{P'k) are complete and shrinking for the respective weak topologies

a (E, E') and a (£", E), and each Ek is reflexive.

3. Compact sets and Montel spaces

It is well-known that to deduce that a locally convex space with a basis is a Montel
space one must impose some uniform convergence condition on the series representing
a given element in terms of the basis elements (see [BMS] for the case of Kothe
sequence spaces or [DM2] and [Mi] for the case of Frechet spaces with Schauder
decompositions). The condition we shall consider is a straightforward reformulation
of the one introduced by Minarro [Mi] within the setting of Schauder decompositions
of Frechet spaces, itself being an extension of Mazur's compactness criterion for bases
[GW].

DEFINITION. Let (Pk) be a r-decomposition of a locally convex space E. We say
that (Pk) has property (M) if the pointwise convergence to the identity of the sequence
of operators (7n) is uniform in each bounded subset of E.

To see that this property is, within our setting, the analogue of Mazur's compactness
criterion for bases, we shall make use of a double limit technique. This Double Limit
Lemma is certainly well-known for double sequences but we need a reformulation in
terms of convergence of nets (one could, just as well, work with filters instead of nets).

Let us recall briefly the terminology and results about nets in locally convex spaces
that we shall use (we refer the reader to [Ke, Chapter 2 and Chapter 6] or [K6,
Section 2, Section 6 and Section 15] where the framework is that of topological spaces
or uniform spaces).

DEFINITION. A directed set is a pair {J?', ^) where ^ is a set and >- is a partial
order relation in ^ such that for every i\, i2 € ^ there is i3 6 ^ such diat i3 >- i\
and i"3 >• i2. Let £ be a locally convex space. A net in £ is a mapping {*, : i e ^}
from J into E where (<?', >•) is a directed set; J is usually called the index set of the
net. When the index set is the set N of all positive integers with its usual ordering, the
notion of a net is simply the familiar notion of a sequence. Since there seems to be
no possibility of confusion, in what follows we will use the same symbol >- to denote
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the order relations whenever we have different index sets. A net {v; : / € j£?} is said
to be a subnet of {*, : i € J) if there is a function i : I e S£ -> i(/) € */ such that
y, = x1(0 and that for each i0 e «/ there is /0 e S£ such that if / > l0, then i(l) >- i0.
As it is the case with subsequences, one usually writes {*;«) : I € S£} to denote a
subnet of a given net {*, : i e <?}. Given two directed sets {J, >) and (^, >), we
may define an order relation in ^ x ^ by saying that (M, j i ) >- (12, ji) if '1 >• '2 and
j \ > h- With this order relation the pair {J x ^ , >) is a directed set and a net of
the form {*,, : (1, j) 6 ^ x ^ J is called a double net.

A net {*, : / e c/} in £ is said to be convergent to a point x € E, and we write
x = lim,jc,, if for every zero-neighborhood U e W(E) there is iv e */ such that
x — x,: € U for all 1 >- iv; and is said to be a Cauchy net if for every zero-neighborhood
U e W(E) there is iv G J^ such that JC,-, — xh e U for all i!, i2 >- iv- Every
convergent net is a Cauchy net and a locally convex space E is said to be complete if
every Cauchy net in E is convergent to a point in E. Every subnet of a convergent
(respectively Cauchy) net is also convergent to the same limit (respectively Cauchy).

LEMMA 3.1 (Double Limit Lemma). Let E be a locally convex space and [xy :
(i,j) 6 y x 0?} be a double net in E such that for each i 6 y there exists the
limit v, = lim, Xy and for each j e ^ there exists the limit Zj = lim,;Cy. If the
convergence of[xtj : j e ^ \ to yt is uniform with respect to i in J', then the three
nets {xij : (i,j) e J? x ^ \ , {v, : / e <?\ and [ZJ : j e J?} are Cauchy nets. If, in
addition, E is complete then the three nets above are convergent to the same limit.

PROOF. Let U e *2f(E) be a zero-neighborhood. Since the convergence of {*,, :
j G ^ \ to y, is uniform with respect to i in y , there exists j v e £ such that
Rudy — y,) < 1, for all j >• j v and all i e J'. Now {xiju : i € J\ is a Cauchy
net because it converges to ziu by hypothesis, hence there exists iv e ^ such that
qufrhju ~ x>2iu) 5 1, for all /,, i2 >- iv Therefore, for all iu h > iu we have

quiyu - yi2) < quiyu - xilJu) + qu(xilju - xi2ju) + qu(xi2ju - y,2) < 3.

This shows that {y( : i e J2"} is a Cauchy net in E. On the other hand, for all it, i2 > iu

and all 71,72 >• ju we have

qu(Xi,j, - xilj2) < qu(xi[jl - y,,) + qv(yh - yh) + qu{yh - xi2j2) < 5,

hence the double net {xtJ : (i,j) e J x ^ } is also a Cauchy net in E. Finally, use
the continuity of the seminorm qv to deduce from the equalities Zj, = lim,•xiji and
Zj2 = lim, xy2, and the inequality qu(xiljl — xi2J2) < 5, which is true for all ij, i2 >- iu
and; , , j 2 >- ju, that

j , -zh) < 5, for ally,,>2 >- 7i/-
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So, [ZJ : j e c/} is also a Cauchy net in E.
If, in addition, E is complete then a straightforward computation shows that the

limits of the three Cauchy nets coincide. •

LEMMA 3.2. Let (Pk) be a T-decomposition of a locally convex space E. Let

D C E be such that limn Tnx = x uniformly with respect to x in D. Then:

(1) If P/c(D) is precompact for each k e N, then D is precompact.
(2) If(Pk) is complete and Pk(D) is relatively compact for each k e H, then D is

relatively compact.
(3) If {Pk) is complete and D is a sequence of the form D = T(xk) where Xk € Ek

for each k € N, then T(xt) converges in E.

PROOF. AS it is well-known (see [Jr, 3.5.1], [Ke, Theorem 32 of Chapter 6] or [Ko,
Section 5.6]) a set D in a locally convex space is precompact if and only if every net
in D has a Cauchy subnet. So, to see (1), consider a net {zr • r e SP,\ in D and let
us prove that it has a Cauchy subnet. Denote by E the completion of E, by Dk the
set Pk(D), and by Dk the closure of Dk in E. Then each Dk is a compact subset
of E and, consequently, Z := YlT=i ^* *s a compact space for the product topology.
Since [(PkZr)k '• r e 32} is a net in Z, there exists a subnet [(PkZr(S))k '• s € 5?\
that converges to some element (xk) e Z. In particular, for each n e M we have
linij Tnzr(s) = £ * tnkxk, the n-th term of T{xk). Since limn Tnzr(S) = zr(S) is uniform
with respect to s in y by hypothesis, we may apply the Double Limit Lemma, with
N playing the role of S and 5? playing the role of ^ , to deduce that {zr(j) : s e J?}
is a Cauchy net in E and this concludes the proof that D is precompact.

To see (2), proceed analogously to prove that T{xk) is a Cauchy sequence noting
that, in this case, each Dk coincides with the closure of Dk in Ek. Moreover, since
(Pk) is a complete T-decomposition, what we now obtain is that the Cauchy sequence
T(xk) converges in E.

To see (3) denote by zn the n-th element of D = T(xk) and apply the Double Limit
Lemma to the double sequence [Tp zn : p,n e N}: For a fixed n it converges uniformly
as p —*• oo by hypothesis, and for a fixed p it converges to zp as n —>• oo because T is
an Spi-matrix and each xk is in Ek. Therefore, the Double Limit Lemma tells us that
T(xk) is a Cauchy sequence and, since (Pk) is complete, it must converge. •

Let us recall at this point that a locally convex space E is said to be semi-Montel
if every bounded set of E is relatively compact. The extension to locally convex
spaces of the results given by Diaz and Minarro [DM1, DM2] for Frechet spaces with
Schauder decompositions are contained in the following results.

"THEOREM 3.3. Let E be a locally convex space with a T-decomposition (Pk).
Consider the conditions
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(1) E is semi-Montel. '
(2) (Pk) has property (M) and each Ek is semi-Montel.

Then the following hold: If (Pk) is equicontinuous, then (1) implies (2), whereas if
(Pk) is complete, then (2) implies (1).

PROOF. Assume that (Pk) is equicontinuous and that (1) holds. Then (Tn) is an
equicontinuous sequence that converges pointwise to the identity on E. Use that E is
semi-Montel and [K6, Section 39.4.(2)] to deduce that (Tn) converges uniformly on
bounded sets. On the other hand, it is obvious that if E is semi-Montel then each Ek

is semi-Montel.
That (2) plus the completeness of (Pk) imply (1) follows from Lemma 3.2 part (2)

above. •

REMARK 3.4. (1) Note that a 7-decomposition of a locally convex space E is
shrinking exactly when it has property (M) as a r-decomposition of E[a (E, E')]. In
particular, since a locally convex space E is semi-reflexive if and only if E[a (E, E')]
is semi-Montel, Theorem 3.3 provides an alternative proof of the fact that (3) implies
(1) in Theorem 2.1.

(2) Property (M) implies that the decomposition is shrinking. The usual Schauder
basis of V (with 1 < p < oo) shows that the converse need not hold.

(3) Property (M) implies that the decomposition is y-complete provided that it is
complete; see Lemma 3.2 part (3).

(4) The example V\a (V, tq)] (with 1 < p < oo and p"1 + q~l = 1) or, more
generally, any reflexive infinite-dimensional Banach space endowed with its weak
topology, shows that property (M) need not imply equicontinuity. More generally,
it can be proved that if £ is an infinite-dimensional normed space, then no regu-
lar and triangular 7-decomposition can be an equicontinuous 7-decomposition of
E[a (E, £')].

COROLLARY 3.5. Let (Pk) be a T -decomposition of a barrelled and sequentially
complete locally convex (in particular, Frechei) space E. Then E is a Montel space
if and only if(Pk) has property (M) and each Ek is a Montel space.

PROOF. On one hand, barrelledness implies that the decomposition is equicontinu-
ous and sequential completeness implies that the decomposition is complete. On the
other hand, every barrelled semi-Montel spaces is a Montel space so the equivalence
follows from Theorem 3.3. •

COROLLARY 3.6. Let E be a sequentially complete (DF)-space with a Toeplitz
decomposition (Pk) with respect to a Zeller-Buntinas triangle T. Then E is a Montel
space if and only if(Pk) has property (M) and each Ek is a Montel space.
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PROOF. The conclusion follows from the fact that if E is a sequentially complete
(DF)-space with a Toeplitz decomposition (Pk) with respect to a Zeller-Buntinas
triangle T, then E is barrelled if and only if every Ek is barrelled [PSV2, Corollary 2
to Theorem 2]. • •

REMARK 3.7. The space t°°[n (£°°, I1)] is a striking example of a non-barrelled,
semi-Montel space with a complete Schauder basis that has property (A/) because, as
is well-known [Ko, Section 22.4.(3)], a bounded subset C c lx is relatively compact
for the weak topology a {l},l°°) if and only if limn sup,^ £ ° ! n |JC,| = 0.

4. Quasi-normable and Schwartz spaces

Quasi-normable and Schwartz spaces were introduced by Grothendieck in the
1950's. A locally convex space E is said to be quasi-normable if for each U e ^(E)
there exists V e W(E) such that for all e > 0 there exists a bounded set De c E
such that V c Ds + eU. It is well-known [Jr, 10.7.3] that E is a Schwartz space
if and only if it is quasi-normable and all of its bounded subsets are precompact. A
subclass of the class of quasi-normable spaces has been defined more recently by Peris
[Pr]. A locally convex space E is said to be quasi-normable by operators if for each
U € ^(E) there exists V e ty£(E) such that for all e > 0 there exists a continuous
linear mapping fe : E -+ E such that/*(V) is bounded and (idE -fs)(V) csU.
This class has much better stability properties than the class of quasi-normable spaces.

As was the case with semi-reflexivity or Montel's property, some conditions must
be imposed on the convergence of (Tnx) to x to obtain respective characterizations
of quasi-normable (by operator) spaces and Schwartz spaces. For the case of Kothe
echelon spaces this was already noted by Grothendieck (see [Gr, BMS, BDe, BD, Is,
Mi]). These properties are collected in the following definition.

DEFINITION. Let (Pk) be a 7-decomposition of a locally convex space E. We say
that (Pk) has property (5) if for each U e W(E) there exists ffef(£) such that
the convergence of the decomposition in W is uniform with respect to the seminorm
induced by U, that is, limn sup {qu(x — Tnx) : x e W) = 0. It is not difficult to see
that if (Pk) has property (5) then it also has property (M) and is equicontinuous.

We say that (Pk) has property (QN) if for each U e <2f(E) there exists W € <&{E)
such that for all e > 0 and k eN there exists a bounded set De

k c Ek such that

(WnEk)C Dl + e(UDEk).

Property (QN) means that all the steps Ek are quasi-normable in a uniform way,
that is, given the zero-neighborhoods U n Ek, the corresponding zero-neighborhoods
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Wk that would ensure the quasi-normability of each Ek are all of the form Wk =
W D Ek for some fixed zero-neighborhood W e ^(E) that depends only on U.
This condition (QN) is weaker than Minarro's condition (qn) [Mi, 4.12] defined for
Schauder decompositions on Frechet spaces.

We say that (Pk) has property (QNO) if for each U € <^(E) there exists W e
such that for all e > 0 and k e N there exists a continuous linear mapping

Ek-+ Ek such that / / ( W n £*) is bounded and

Again, property (QNO) means that all the steps Ek are quasi-normable by operators
in a uniform way. Of course, property (QNO) implies property (QN).

Property (5) by itself does not imply property (<2A0» even for Schauder decom-
positions (see the Remark following Theorem 4.2 below). However, if (Pk) is a
finite-dimensional T-decomposition, then both (QN) and (QNO) hold automatically.
To see this consider U e ^/(E) and take W = U. Then U D Ek is an absolutely
convex set in the finite-dimensional space Ek, so we may apply [Jr, 10.6.2] to deduce
that given £ > 0 there exists a finite number of elements x\,x{,... , xe

mk € Ek, with
mk = dim(Ek) such that

Here acx(B) denotes the closed, absolutely convex hull of a set B. Now, for each
k € H, define the set Dk := acx ({jcf.jcf,... ,xs

mt}) to prove that (QN) holds, and
take any linear mapping fk such that//(f/fl Ek) c acx({jc[, x\,... ,*£,}) to prove
that (QNO) holds.

The theorems in this section are formulated for the case when T is a Zeller-Buntinas
triangle T that can be factorized as T = A E for some regular triangle A. Recall that,
in this case, \tnk\ < \\A\\ for all n, k e N, where ||i4|| is the row-norm of A. We use
this notation throughout the section.

LEMMA 4.1. Let T be a Zeller-Buntinas triangle with equicontinuity constant bT.
Let E be a locally convex space with an equicontinuous T-decomposition (Pk). Then
there is a basis %T(E) of absolutely convex and closed zero-neighborhoods in E such
that

qu(Tnx) < bTqu(x) for every x e E, n e N and U e <MT(E).

PROOF. Fix any basis ^/(E) of absolutely convex and closed zero-neighborhoods
defining the topology of E and for every U e ^/(E) define a new seminorm on E by

ql(x):= sup [qv(Tnx) : n e M].
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A straightforward computation, using the equicontinuity of the operators (Tn) and the
fact that (Tnx) converges to x for all x e E, shows that the family of seminorms
[qjj : U € <2f(E)} also defines the topology of E. Fix a seminorm qjj of this type,
x e E and n € N. Let U° be the polar of U in E'. Given x' € U°, the scalar sequence
({PkX, x'}) is in cT so, by the definition of || ||r, we may write

qT
v(x) = sup {|(r.x, JC')| : n e N,*' e £/°} = sup {||((P^,x'))| r : *' e f/°}.

To estimate qJj{Tnx) note that the orthogonality of the projections (Pk) implies, for
every/fc e N and*' € IT, that ({PkTnx,x')) = xn({Pkx,x')). Therefore

T
u(Tnx) = sup{\\{{PkTnx,x'))\\T:x' e U°) = sup {\\rn({Pkx,x'))\\T : x' e IT}

<bTSup{\\({Pkx,x'))\\T:x'<=U°}=bTqT
u(x)

for all n e N and x e E. Now take %T(E) to be the closed unit balls determined by
the family of seminorms {qjj : U e W(E)}. •

THEOREM 4.2. Let T be a Zeller-Buntinas triangle that can be factorized as
T = AT, for some regular triangle A. Let E be a locally convex space with a
T-decomposition (Pk) that has property (S). Then

(1) E is quasi-normable if and only if(Pk) has property (QN).
(2) E is quasi-normable by operators if and only if(Pk) has property (QNO).

PROOF. Since property (5) implies that the T-decomposition is equicontinuous,
we may use the previous lemma to restrict ourselves to the case when the basis of
zero-neighborhoods is the family ^/T(E). In what follows, we denote the triangle T~l

by [skn] and, for each k e N, define ak := ]T*=1 \skn\.
The direct implications are not as straightforward as might seem at first glance.

For, in general, we do not have (A + B) D C C (A n C) + (B n C), even if A, B
and C are convex and closed sets of a locally convex space E. For instance, take A
to be the unit interval in the X-axis of IR2, B the unit interval in the 7-axis and C the
segment joining the origin and the point (1, 1). So we need to carefully check all the
details. To prove the direct implication in (1) let U € ^/T(E) be given. Since E is
quasi-normable, there is W € ^T{E) such that for all 8 > 0 there is a bounded set
D C E (depending on U, W and S) such that W C D + SU. Let us see that W is
as required by property (QN). Given e > 0 and k e N, let S = e/(bTak) and, with
the bounded set D corresponding to U, W and this value of S, define Dk := Pk(D)
which, obviously, is a bounded subset of Ek. We have to prove that

(WnEk) C Dk + e(UDEk).
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Since Pk is linear, it is clear that

(WnEk) C Pk(W) C Pk(D) + 8Pk(U) = Dk + 8Pk(U),

so it remains to prove that 8Pk(U) C s(U fl Ek). Now, if x € U then, using the
property established in Lemma 4.1,

< akqv(Tnx) < akbTqu(x),

so that <5/>*(*) e 8akbT(UnEk) = e(UnEk).
To prove the direct implication in (2), proceed analogously making suitable changes;

in particular, take fk := Pk(f \Ek), the projection into Ek of the restriction to Ek of
the existing / .

To prove the reverse implication in (1), let U 6 ^T(E) be given. Then we may
assume that a single W e ^T{E) works for both (5) and (QN). Then for each e > 0
and k € M there exists n0 e N and a bounded set Dk c Ek (depending on U, W, n0

and e) such that

(i) qv(x - Tnox) < eqw(x) for all x e E and

Since, as pointed out above, property (5) implies the decomposition is equicontinuous,
there exists a zero-neighborhood V c W such that qw{Tnx) < qv(x) for &\\ n € N.
Using that Pk is the &-th term of the sequence T~l(Tn), for each k e H and x e E we
have

(iii) qw{Pkx) = qw\JTjSknTnx\ <J2\skn\qw(Tnx) <akqv(x).

We claim that the bounded set D := Y17=\ ^o*"*0* satisfies V c D + 2s U. Indeed,
given x e V we have x — Tnox e e U by inequality (i), so it is enough to show that
Tnox e D + s U. It follows from (iii) that ak

l Pkx € W <~\ Ek. Now, use (ii) to obtain
that for each k = 1,2,... ,n0 there exist dk € Dk andxk e {U C\ Ek) such that

Accordingly,

A A / s \
Tnax = > tnokPkx = > tnokak dk + ————xkfeT ^ T V l|A||a*2* /

"0 n0

k=l
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Finally, note that the first sum is in D and the second sum is in s U because \tnk\ < \\A\\
for all n, k e N and U is absolutely convex.

To prove the reverse implication in (2), proceed analogously making suitable
changes; in particular, take / := J^Li W * A- •

REMARK 4.3. Grothendieck conjectured [Gr, Chapter II, p. 102] that condition (S)
by itself would imply that a (double index) Kothe echelon space is quasi-normable
provided that is has a Schauder decomposition (other than the natural one) with
property (5) (reformulated in terms of the defining Kothe matrix). However, this
conjecture turned out to be false [BMS, Example 3.11] even if all the steps of the
decomposition are normable. This lead to the introduction of property (QN) (again
reformulated in terms of the defining Kothe matrix).

THEOREM 4.4. Let T be a Zeller-Buntinas triangle that can be factorized as
T = AE for some regular triangle A. Let E be a locally convex space with a
T-decomposition (Pk). Then the following hold.

(1) If E is a Schwartz space and (Pk) is equicontinuous, then (Pk) has properties
(S) and (QN).
(2) If (Pk) has properties (S) and (QN) and the bounded subsets of each Ek are

precompact, then E is a Schwartz space.

PROOF. (1) (Note, for later use, that the hypothesis that T is a Zeller-Buntinas
triangle of the form A E is not used in this part to prove that (Pk) has property (5); we
only use that T is row-finite). Since E is a Schwartz space, it is quasi-normable and, by
the previous theorem, it follows that (Pk) has property (QN). Let us now see that (Pk)
also has property (S). Given U € W(E), the equicontinuity of (Pk) ensures that there
exists W e ^(E) such that W C U and qu(Tnx) < qw(x) for all x e E and n e N.
Use again that E is quasi-normable to ensure that there exists V € *% (E) such that
for all e > 0 there exists a bounded set De c E with V C DE + e W. We shall prove
that limn sup {qu(x — Tnx) : x € V} = 0. Fix S > 0 and consider the corresponding
bounded set Ds. This set Ds is precompact because £ is a Schwartz space. Therefore,
there exists a finite collection X\, Xi,... , xm e E such that Ds c U7=i (*/ + ^ ^0 and
we may take n0 € N such that qu(xj — Tnxj) < S for ally = 1 , 2 , . . . , m and n > n0-
Now, given z e V, since V c Ds + SW c UJLiC*; + 2S W)> there must exist some
j 6 {1,2,... , m) such that z — xj e 25 W. Therefore, for all n > w0 we have

- Tnz) < qu(z -Xj)+ qu(Xj - TnXj) + qv(TnXj - Tnz)

< qw(z -xj) + S + qw(z -xj) <5S,

where we have used the facts that W C U and qv(Tnx) < qw(x) for all x e E and
n e N. Since z is arbitrary in V, this shows that (Pk) has property (5).
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(2) By the previous theorem E is quasi-normable. Since property (5) implies
property (M), it follows from Lemma 3.2.(1) and the hypothesis that the bounded
subsets of each Ek are precompact that the bounded subsets of E are also precompact.
Therefore, E is a Schwartz space. •

A careful reading of the above proofs shows that the hypothesis that T is a Zeller-
Buntinas matrix is used only to deduce that if E is quasi-normable (respectively by
operators), then E has property (QN) (respectively (QNO)). Using this remark and the
fact that finite-dimensional ^-decompositions always have property (QN) we obtain
the following corollaries.

COROLLARY 4.5. Let T be a triangle that can be factorized as T = AH for some
regular triangle A. Let E be a locally convex space with a finite-dimensional and
equicontinuous T-decomposition (Pk). Then E is a Schwartz space if and only if(Pk)
has property (S).

COROLLARY 4.6. Let T be a triangle that can be factorized as T = A E for
some regular triangle A. Let E be a Frechet space with a finite-dimensional T-
decomposition (Pk). Then E is a Schwartz space if and only if(Pk) has property (S).

5. Projective tensor products

In this section we study the stability of some structural properties in projective
tensor products. The general problem is the following: given two locally convex
spaces E and F having a certain property (P) to find out whether the projective
tensor product E®XF inherits that property (P). The first positive answers were
obtained by Grothendieck [Gr] for products of Frechet spaces and the properties of
quasi-normability and being a Schwartz space. Since then, many papers on this topic
have been published (see [BMS, BDe, BD, BDT, Jr] or [PeB]). The answer is not
always positive for other properties (such as distinguishedness, Montel, reflexivity).
So, the question arises: Under what conditions does the projective tensor product
inherit the properties of its factors? The main difficulty seems to be the fact that
one cannot always locate the bounded sets of the projective tensor product via tensor
products of bounded subsets of each factor (see [BDT, Pr, T] and references therein).
As it turns out, most of the questions have a positive answer when every bounded
subset of the tensor product is contained in the closed hull of the tensor product of two
bounded sets of each factor. When this occurs the pair (E, F) is said to have property
(BB). Our starting point is, again, the work of Diaz and Minarro [DM1, DM2]. In
these two papers, they assume that one of the Frechet factors has a suitably 'good'
Schauder decomposition that enables them to decompose the projective tensor product
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and to link the properties of the factors. In this section we present some results of
this type, offering somewhat simplified proofs, valid within the setting of Toeplitz
decompositions.

Throughout this section E and F stand for a pair of locally convex spaces and
E®nF will denote their projective tensor product. The projective tensor product
topology is defined by means of the seminorms

:= inf

where U runs through ^ (£), V runs through <%/ (F) and the infimum in taken over all
possible finite representations of z e E ® F. As usual, the completion of E<S)W F will
be denoted by E®n F. We start by studying how properties of a r-decomposition of
one factor lift to a natural ^decomposition induced on the product.

PROPOSITION 5.1. Let (Pk) be an equicontinuous T-decomposition of E. Then the
following hold.

(1) (Pk (g> idF) is an equicontinuous T-decomposition of E®^F with Ek®,,F as
step subspaces.
(2) //(£", F) has property (BB) and (Pk) has property (M), then (Pk <g> idF) has

property (M).
(3) If(Pk) has property (S), then (ft ® idF) has property (5).

PROOF. (1) The proof is a straightforward computation for elements in E <8> F.
Then use equicontinuity to deduce (1). To prove (2) assume that B c E and C C F
are bounded sets. Given z e acx(B <8> C) write it as z = Y17=i ^-'x< ® y> w n e r e

(JC,, yt) e B x C for each i = 1,2,. . . . m and E7=i 1̂ 1 ^ L G i v e n u € W(E) and

nuv(z - (Jn <8> idF)£) = nuv I ̂  A.,(JC, - Tnxt)
\

< sup qv(x - Tnx) supgv(y) .
\_xeB J lyeC J

The equicontinuity of the r-decomposition implies that the convergence is uniform
on the closure of acx(5 ® C) and property (BB) implies that it is uniform over every
bounded set of £®w F. This proves (2).

The proof of (3) is analogous. D
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We are now ready to extend to the setting of Toeplitz decompositions some of the
results obtained by Diaz and Minarro for tensor products of Frechet spaces [DM1,
DM2].

THEOREM 5.2. Let (Pk) be a finite-dimensional T-decomposition of E. Assume
that either the pair (E, F) has property (BB) and (Pk) is equicontinuous and has
property (M), or that (Pk) has property (S). Then the following hold.

(1) If F is semi-reflexive, then E(&nF has the same property.
(2) If F is semi-Montel, then E®nF has the same property.

PROOF. By applying Lemma 3.2, Remark 3.4 and Proposition 5.1 we obtain
that, in either case, (Pk <g> idF) is an equicontinuous, shrinking and y-complete T-
decomposition of E®nF having property (M). On the other hand, since each Ek is
finite-dimensional, each step Ek0^ F is isomorphic to a finite product of copies of F.
In particular, each Ek®nF is semi-reflexive or semi-Montel whenever F is. Finally,
apply Theorem 2.1 and Theorem 3.3. •

COROLLARY 5.3. Let (Pk) be a finite-dimensional T-decomposition of a Frechet
space E. Assume that either the pair (E, F) has property (BB) and E is a Montel
space, or that E is a Schwartz space. Then the following hold.

(1) If F is reflexive, then E®nF is reflexive.
(2) // F is Montel, then E®n F is Montel.
(3) If F is distinguished and T is a Zeller-Buntinas triangle, then E®n F is distin-

guished.

PROOF. If E is Montel, then (Pk) has property (M), by Corollary 3.5, and is
equicontinuous because E is barrelled. If E is Schwartz, then (Pk) has property (5)
as was pointed out in the proof of Theorem 4.3.(1). Therefore, (1) and (2) follow
from Theorem 5.2. To prove (3) note again, since each Ek is finite-dimensional, that
each step £*<£>* F is isomorphic to a finite product of copies of F. In particular,
each Ek<g)nF is distinguished whenever F is. Since (Pk) is shrinking, the conclusion
follows from [PSV2, Corollary 4]. •

EXAMPLES 5.4. (1) Taskinen [T] exhibited a Frechet-Montel space E having a
finite-dimensional and unconditional Schauder decomposition having property (M)
but such that £ § „ £ is not a Montel space. This shows that property (BB) can-
not be suppressed in general to lift the property (M) from (Pk) to (Pk <8> idF) in
Theorem 5.2.(2).
(2) Let A. be a Frechet /C-space of sequences containing y and having prop-

erty T-AK. As mentioned in the introduction, the coordinate basis is a one-
dimensional Toeplitz decomposition with respect to the row-finite and Spt matrix
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T. Let [a(n) : n > 1} be an echelon system on A., that is, each step sequence
a(n) := (ain)) is such that every a^ ^ 0 and (aM/a(n+1)) x e k for all n e M
and x € k. Then the injections (l/a(n+l))k °-> (l/a(n))X are continuous and the
echelon space E := f]n (l/ain))k endowed with the projective limit topology is a
Frechet AT-space (see [FP] and references therein). If (qj) is a sequence of seminorms
generating the topology of k, then the topology of E is generated by the seminorms
qjn(x) '•= <lj (a(n)x) as j , n run through N. Let us show that the sequence of projec-
tions (nk) (for the notation see Example 1.1) is a r-decomposition of E. It is easy to
check that for every m e N w e have

rMn)x)(»)v\ _ = aw(zmx).

Now use that k has property T-A K to deduce that

qjn{x - xmx) = qj (aMx - a"" -*-(*W*))_-t°.

Let S(k) be the closure of <p in the multiplier space from k into k, seen as the space of
all continuous diagonal matrix mappings from k into itself endowed with the topology
of uniform convergence on the bounded subsets of k. It was proved in [FP] that if for
each n e N there exists j > n such that (a<-n)/a<J)) e S(k), then £ is a Montel space.
If, additionally, A. is a Banach space, then this condition is equivalent to E being a
Schwartz space. This gives us examples of spaces E without natural Schauder basis
to which Corollary 5.3 can be applied.

6. Application to Cesaro bases

Next in importance to Schauder bases are Cesaro bases. If Schauder bases are in-
terpreted as one-dimensional decompositions with respect to the matrix £ of ordinary
summability, then Cesaro bases are one-dimensional decompositions with respect to
the triangular matrix of Cesaro summability

C, :=

1
1 1/2
1 2/3 1/3
1 3/4 2/4 1/4
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Of course, C\ is obtained as the product A \ E where A i is the regular triangle

A, :=

1
1/2 1/2
1/3 1/3 1/3
1/4 1/4 1/4 1/4

As pointed out above, C\ is the first example of a Zeller-Buntinas triangle different
from E. The Cesaro duality between sequence spaces, in which cC| plays the role that
£' plays in Kothe duality, was studied by Florencio [Fl, F2, F3] and Florencio and
Perez Carreras [FPel, FPe2]. We think that it is valuable to rewrite some of the above
results within this context.

THEOREM 6.1. Let E and F be locally convex spaces and assume that E has a

Cesaro basis.

(1) The following conditions are equivalent.

(1.1) E is semi-reflexive.
(1.2) The basis is y-complete and shrinking.
(1.3) The basis is ^-complete and shrinking.

(2) If E is a Frechet space, then E is a Montel space if and only if the basis has
property (M).
(3) If the basis is equicontinuous, then E is a Schwartz space if and only if the basis

has property (S).
(4) If the basis is equicontinuous and has property (M), the pair (E, F) has property

(BB) and F is semi-reflexive or semi-Montel, then E<g>n F has the same property as
F.
(5) If the basis has property (S) and F is semi-reflexive or semi-Montel, then E®n F

has the same property as F.
(6) If E is a Frechet-Montel space, the pair (E, F) has property (BB) and F is

distinguished, then E®n F has the same property as F.
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