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IN a recent paper (1) Portnov used a form of Poisson integral to find the exact
solution for the temperature distribution in a freezing semi-infinite slab occupy-
ing the region x>0, and having an arbitrary time dependent temperature
applied at the face x = 0. Previously, Boley (2) had used a method based on
Duhamel's theorem to find solutions for problems involving melting, in both
finite and semi-finite regions, caused by time dependent heat fluxes. Steady-
state solutions have been investigated by Landau (3), Masters (4) and others (5).

It is now shown that the integral derived by Portnov will also provide exact
solutions for other important problems involving a change of phase in finite
slabs. In Section 1 the form of solution and its physical significance is discussed
briefly; in Section 2 the conditions required for its application to finite regions
are derived. In Section 3 some examples of initial temperatures meeting the
necessary conditions are given.

In Section 4 the solution of an ablation problem for a slab is presented, and
in Sections 5, 6, 7 and 8 it is shown that the method may be applied to finite
and semi-finite slabs, to solid and hollow spherical regions, and to the freezing
of liquid regions. In Section 9 some examples are given. It is shown that the
method gives results which agree with an example treated in (2).

1. The Form of solution
Let X{t) be the position of the moving boundary separating the two phases

of a melting slab 0<x<a^oo. Then it can be shown that if Vt(x, t) is a
solution of the heat equation

dt x dx2

the change of variable x = yX leads to the equation

Jx. — J\_ J\. V -—• ~~ , I _L. £j

dt dy cy

where the prime indicates differentiation of a function with respect to its argu-
ment. Use of the two-sided Laplace transform with respect to y results in an
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110 F. JACKSON

equation which can be solved readily, after which the inverse transform yields,
as a formal solution of (1.1), the integral

Xy')\-dy' (1.3)
9

Here 9 = 2(/fc/)*, X = X(6), (j>t(Xy) and <f>2{Xy) are arbitrary functions, and
U(x) is the unit step function. It can be seen that, in terms of the original
variables,

Ki(x, 0 = K«*0~* I exp\~^x~xn)\f(x')dx' (1.4)
J-oo L 4*i« J

where/(x) = (f>1(x)U(x) + (j>2(x)U(—x). Thus (1.3) represents the temperature
distribution in an infinite slab having an initial temperature equal to fix).
Portnov derives (1.3) without using any boundary conditions and, since the
integral can be shown to be a solution of (1.1) tending to fix) as t-*0, this
integral form of solution will be assumed to apply in each of the examples
worked out below. As will be shown the method of determining the unknown
functions X,<j>1, and <j>2 is to assume that they can be expanded as power series;
then (1.3) is used in each of the boundary conditions, the resulting equations
being repeatedly differentiated with respect to 9 and the results evaluated at
9 = 0. Each set of the resulting simultaneous algebraic equations may be solved
for the successive coefficients of the unknown series. Once those have been
found (1.3) may be put into the form

exp( —a2) £ 0ln(a0 — Xy)"d<x
•Xy/B •> = 0

exp( —a2) YJ 02n(a^ + ^J ;)"^a (1-5)
oo rt = 0

= i X w^"[(/)inI"erfc(~-^>'/^) + (~l)'l<^2nJ'' srfciXy/Oy] (1.6)
n = 0

where
i" erfc (x) = 2TT* I e'^ ^ — ^ - duf °

is the nth iterated integral of erfc x and is a tabulated function.
In order to attach a meaning to the functions 4>i and <f>2 consider first an

ablation problem where the region of interest is X(t)<x<a and the temperature
distribution within this region is assumed to be of the form (1.3). Then, as
?->0and X(t)->0, the initial temperature in the region 0<x<a is </>i(Xy) = <f>t(x).
Hence the function <j>1 is known since the coefficients of its series development
must correspond to those of the power series development of the initial tempera-
ture. The function </>2(x)U(—x) represents a fictitious initial temperature in
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THE MELTING AND FREEZING OF FINITE SLABS 111

the half-plane x<0 . Exactly the same remarks apply if (1.3) represents the
temperature in the solid part, X(t)<x<a, of a melting slab in the region
0<x<a. If, however, (1.3) represents the temperature in the liquid portion,
0<x<X(t) of the melting slab 0<x<a, both <!>t(x) and <j>2(x) represent
fictitious initial temperatures since the liquid region did not exist at t = 0.

2. Finite regions

For simplicity consider the ablation of a slab, X(t)<x<a, melting under the
application of a known time dependent flux Q{t).

The temperature V(x, t) within the slab is assumed to be given by (1.3).
The conditions to be applied are

(i) an initial condition,
(ii) V = Tm at x = X(J), where Tm is the temperature at which melting

takes place,
(iii) a heat balance between Q(t), the conduction of heat into the slab, and

rate of melting at x = X(t),
(iv) a condition of the*general type

K~ +HV =0 (2.1)
dx

at x = a.
There are four conditions but only three unknown functions, <f>u <j>2 and X.
As remarked in Section 1 the function (j>1 is determined by (i). The problem
appears to be overdetermined but it will now be shown that (iv) can be satisfied
if the initial temperature is not arbitrary but is chosen in a particular manner.

Let the initial temperature Fo be expanded in powers of a—x, that is

F0 = F 0 ( a - x ) = £ VOn(a-xJ, (2.2)
n = 0

and define the function *P\(x) by

¥i(*)= iVi*>f = V0(a-x) (2.3)
n = 0

Assume

<t>i(x)= t tin*" (2-4)
n = 0

£ -M" (2-5)
where 9 = 2(kt)*. Then

V{x,i) = I f " ^V\~X2{y
&~y')2\>,{Xy')U{Xy')+<l>2{Xy')U(-Xy')}^dy'

exp ( — a2)V0(a — aB — Xy)dac
^J-xy/e

+ — I exp ( — a )<p2{oci) + Xy)da (2.6)
— 00
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112 F. JACKSON

and boundary condition (iv) at x = a is
ri /"oo

^J-a
g (* —

-a/o

1 1 / r / 6

or, since this is true for all 0,

i-a/e » = <>

(2.7)

Equation (2.7) is trivially true for 0 = 0. The nth derivative of the right hand
side with respect to 6 evaluated at 9 = 0 will consist of the two integrals.

and terms containing

9 = 0 r,s<n (2.9)

Since all such terms typified by (3.4) are zero, the nth derivative of (2.7)
evaluated at 9 = 0 is (2.8) set equal to zero. The resulting equation is true if n
is even for then both integrals are odd functions of a. If n is odd the equation,
after evaluating the integrals, is

HVo^y-nKVo,, = 0 (2.10)

and the boundary condition is constant with respect to 0, i.e. true for all f >0 if

HVOt2,-(2n+l)KVOi2m+1 = 0, n = 1,2,3, (2.11)

If H — 0 then V02n+l = 0 and V0(a—x) must be a series in even powers of
a — x.

If K = 0 then V0y2n = 0 and V0(a — x) must be a series in odd powers of
a—x.

If neither H nor K is zero then the relationship

hV0,2n-(2n+l)V0,2n+1 = 0 , (2.12)

where h = H/K, must hold between the coefficients of the series expression for
V0(a-x).

3. Examples of initial temperatures
In most cases of practical importance the material begins to melt only after

its temperature has been raised from some previous level. Hence it will be
assumed that melting begins after the material has been heated from zero, and
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THE MELTING AND FREEZING OF FINITE SLABS 113

when the face x = 0 has reached the melting temperature Tm. Similarly a
freezing body will be assumed to be in the process of cooling from some previous
higher temperature. The following important examples have been adapted
from (5) (see pages 112, 113, 122, 242, 238 and 125).

A. The slab 0 < x < a , zero temperature at t = —tm, constant flux QO into
the region at x = 0. No flow of heat at x = a.

pea K { 6a2 n2
 n=\ n2

x cos nn{a — x)ja

...(3.1)g L e r f c f ^ V - r f c ^ ^
B. The slab 0<x<a, zero temperature at t = —tm constant flux QO into

the region at x = 0. x = a kept at zero temperature.

Kn2 o(K
. (2n+l)n(a-x)

x sin - —
2a

. {2na + x\ . .
i erfc 1 1 — i erfc

-.(3.2)

C. The slab 0<x<a. Constant temperature To>Tm at t= -tm. Radia-
tion at x = 0 into a medium at zero. No flow of heat at x = a.

Cl»ktJa2) (3.3)

where the an are the positive roots of

a tan a = ah.

D. The sphere 0 ^ r < a. Zero temperature at ? = —tm. Constant flux Qo

at r = a.

3Q^ £(5^3^) 2Q«f £ s 4 ( ^ ) - K 2 U « ) (3.4)
pea lOKa Xr n = 1 a^ sin an

where the an are the roots of
tan a = a.

E. The sphere 0 ^ r < a . Constant temperature To>Tm at f = — /„,.
Radiation into a medium at zero at r = a.

2hT0 £ , , 2 . a2al + (ah~\) . ,
2 X exp (-feagO " \ ' sin aan sin we., (3.5)

a[aza+aft(a/i l)J
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where the aB are the roots of

aacostaa + ah— 1 = 0.

F. The region O<jc<a with zero temperature at / = —tm. Constant flux
Qo into the solid at x = 0; at x = a radiation into a medium at zero.

Kh[_ i[( ) i]
(3.6)

where the an are the roots of
a tan a = ah.

In each case tm has to be found by setting V0(a) = Tm and letting x = 0 or
r — a. Tables of the first six values of the various a,, are given in (5) and it
can be seen that the series converge rapidly. Hence the value of tm can be
found by trial and error.

It can be seen immediately that (3.1) and (3.3) are even functions of a-x
and that (3.2) is an odd function of a — x thus satisfying equation (2.11) for the
cases H = 0 and K = 0.

The use of (3.4) and (3.5) in problems involving spheres will be shown in
Section 6 below.

(3.6) is now used to show that it satisfies (2.12), for

K0(a-x)= Q^

- X. • L r - " ; . • - ^ -2] J(sinaB){ancos(an(a-x)/a)

+ aft sin (an(a-x)/a)}

= 6o + Qo(a-X)- ?2o f (an
Kh K Kh „= l

exp {-kaltja2) sin

= 6 i > r i _ 2 y («n
2

JKfcL i

a2r(2r)! a2r(2r+l)!

+ fl2/»2) exp (-ka$tja2) sin «.

Qo[, 7 v (aB
2 + a2ft2) exp (-kagtja2) sin a j

L1 2^ J ( }

_2Qo y ( - l ) r 5 r / ( 2 l . + iXfl-x)2r+fc(a-x)2f+1} (3.7)
K/i r=ia2 ' (2r+l)!

where
s = y «2r-1(«n

2 + «2^2) exp j-kaltja2) sin an

https://doi.org/10.1017/S0013091500025852 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025852


THE MELTING AND FREEZING OF FINITE SLABS 115

From (3.7) it can be seen that (2.12) is satisfied. The rearrangement of (3.6) is
permissible since

0, 2r+l

V,0, 2r

h

2r+l
and

0,2r-1

«2

2aV
thus, for fixed n, both ratios tend to 0 as r ->• oo, hence the series (3.7) is absolutely
convergent and its terms may be grouped in any manner without altering the
value of their sum. The radius of the circle of convergence is infinite. Hence
(3.5), (3.7) and the corresponding series for ^ ( x ) defined in (2.3) will all
represent the same function.

The absolute convergence of the power series for each V0(a—x) given above
may easily be proved in similar fashion and hence each rearrangement into the
form *PI(JC) is justified.

4. The ablation of a slab, comprising the region 0<X(t)<x<a, subject to a
time-dependent flux at the moving boundary

Let

V(x,t) = I I""
71 J-c

(4.1)

be a solution of the heat equation in the solid region X(0)<x<a subject to the
conditions

V(x, 0) = V0(a-x) 0<x<a (4.2)

V{X(t), t}=Tm (4.3)

f ^ atx *(t) (4.4)
dx at

dL = o atx = a (4.5)
ox

where L represents the latent heat of fusion. It is assumed that *F1? <t>2 and X
have series representations as defined in (2.3)-(2.5) and that Q(0) can also be
expressed by

6(0)= £ Qnon.
n = 0

V0(a — x) must be an even function of a — x if (4.2) and (4.5) ars to be satisfied.
Condition (4.3) is

2)Vl(0L6 + X)d«+ - I exp(-a<2)<t>2(0Ld + X)da. (4.6)

As 0->O this becomes

2Tm = V1(0)(l+ erf ^ + ^ ( 0 X 1 - erf XJ.
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116 F. JACKSON

Therefore
Tm (4.7)

since ^ ( 0 ) = Tm.
Condition (4.4) is

0Q(0)- 2kpL ~ = - ^ exp ( - a2)>Pt(.ocd + X)dx

r-x/e "1
exp ( - a2)(j>2(a9 + X)da (4.8)

J — oo J

As 0->O this becomes

and therefore
*i=0 (4.9)

The first derivatives of (4.6) and (4.8) with respect to 0 are

0 = -1 I (a + Z')exp(-a2)«P;da+ ~ \ ' (a + Z') exp(-a2)</>^a

71*

f 7
 a(a+X

where y =
Evaluated at 9 = 0 the derivatives are

0 = ¥

go-4A:p
Hence

2 ^
AkpL

In the examples given later Qo = — X ^ n and X2 is zero.
The second derivatives of (4.6) and (4.8) are

(4.10)

(4.11)

0 = \ f" {X" î
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eQ" + 2Q'-2kpLX'"= -=±
«*

+ I " {a
J — 00

- y'y( - y+X') exp ( - y 2){«Fi(0) - «£2

At 6 = 0 these are

IQ.-ilkpLX, = - ^

Therefore
(4-12)

The second term is zero if X2 = 0.
Further equations and coefficients are derived in the same manner. In

Appendix A the first six equations are given.
To obtain the general equations for the unknown coefficients (4.6) and (4.8)

are" written as

+ (-!)»?% T exp (-a2) ̂ ^ da]

(4.14)
n = 0

and

n = 0

+ 2 ( J _ / 1<X ) - J 2<X jj

7 C * n = 1 |_ " J-y

+(-l)"<^2n exp(-a2)(a-y)"~1da
Jy J

= —- £ «!nKPin''1"1erfc(-y)+(-l)n-V2B''1~1erfc(y)]. ...(4.15)
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The zzth derivatives of these general equations evaluated at 6 — 0 are

0=to(T 02 (") ?^rr [ V e r f c ( - y)+( - !)r^2rir erfc (y)]e = 0 (4.16)

^ ( ^ t e ^ 1 erfc (-?)
+( - l ) ' " 1 0 2 r r - 1 erfc (7)1 (4.17)

J» = o
The general equations for <f>2n and A^+j are

- l ) ^ 2 r f erfc (7)], = OJ1 (4.18)

f (!)2 [ " )2kpLXn+1 = QB_!+ — f (r!)2 [ " ) — PPi,!1""1 erf (-y)
r B+i *„ 2(n!)r^i \rjafl"-rL

= OJ1 (4.1

= 0) (4.19)

where i" erfc (0) = has been used in (4.18).
2T(£+i)

5. Finite and semi-finite slabs
It may be seen from the previous section that the method used is applicable,

without change, for both finite and semi-infinite slabs. Finite regions are
treated merely by the choice of an appropriate initial temperature selected
according to the principles outlined in Section 3. The type of problem solved
in Section 3 will be referred to as the " Standard Form ".

6. Reduction of problems involving solid spheres to standard form
Consider a solid sphere, initially of radius a, which has, at t = 0, a tempera-

ture distribution V0(r) such that V0(a) = Tm. A flux Q(9) is applied so that
melting begins. The melt is continuously removed and the radius of the
sphere at any time is given by r = a—R{8) where 0^R(9)<a. In the most
general case Q(9) may also be dependent on the instantaneous radius of the
sphere but here Q(8) will be considered to be a known function of 9.

V{r, t) the temperature within the sphere, satisfies the equations

dt \dr2 r dr,

V(r,0) = V0(r) 0^r<a (6.2)

V{a-R,t} = Tm (6.3)

at r = a-R(9) (6.4)
dt or
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Putting U = rV the equations for U(r, t) are

— =kd-^ 0Sr<a-R(6),t>0 ...(6.5)
dt or

U(r, 0) = rV0(r) 0gr<a (6.6)

U{a-R,t} = (a-R)Tm (6.7)

Q(e)-Lp— =Kl—i=- + —— — } at r = a-r(0) (6.8)
dt }a-R a-R dr'

= 0 (6.9)
Although reduced to a problem of linear flow this is not the standard form

since the moving boundary moves towards the origin, not away from it. The
further substitution r' = a—r achieves the " standard form " since the equations
become

j ; ) ^ £ (6.10)
dt or'2

= (a-r')Vo(a~r') 0^r'<a (6.11)

W(R, t) = (a-R)Tm (6.12)

^ f J ^ } () (6.13)
dt [a-R a-Rd')

W(a, 0 = 0 (6.14)
where W{a-r, i) = U(r, t).

The form of solution of (6.10) satisfying (6.11) is

W{r', 0 = 1 T expI"~Rl{y
Q~y')2\a-Ry'W0(a-Ry')U(Ry')

+ <l>2(Ry')U(-Ry')}~dy' (6.15)
V

where
x¥1(Ry) = £ "^(/ty)" = (a — Ry)V0(a— Ry) (6.16)

B = 0

Equation (6.14) is satisfied if (a-r')V0(a-r') is an odd function of (a-r1),
that is if V0(r) is an even function of r.

Equation (6.12) is

(a-R)Tm = 4 I " e xP (-<x2yFi(<x0+19«fc

ioc (6.17)If"
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which, evaluated at 6 = 0, yields

2aTm = aTm(l+ erfK,) + 0 2 O (1 - erf KJ

and therefore
^20 = 0 (6.18)

Equation (6.13) is

(a-R)lOQ(6)-2Lpk~ \ +KTm6= —=^1 aexp(-a)24'1(*

+ J_a >
 aCXP ~" 20< + J .19)

J — 00 J

which, at 0 = 0, yields

-2aLpkRl = ^ J CPlo-*2o) = 0.
7 1 *

Therefore
« i = 0 (6.20)

Two more differentiations result in

02! =^11 (6.21)

R2 = KWli+KTm + aQ0 ( 6 2 2 )

(which is zero if ^ n ^ 0)

022= - V i 2-4H2CF, j + TJ (6.23)

^^ 3

oapkL

To obtain the general equations (6.17) is written

aTm-Tm £ Rn6" = \ £ «!fl"[«Pllli"erfc(
n = 1 n = 0

the «th derivative with respect to G, evaluated at 0 = 0, being
£ ()^L^¥lrrerfc(-

r = o \rjoti
+ (-l)^2,rerfc(K/0)]fl = o (6-25)

Therefore

"E (r!) (") ~

^ l (6.26)

-r [Vui
r erfc (-H/fl)+(- l)^2ri

rerfc (U/fl)], = o j
J
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Equation (6.19) is written

f Y £ QJP+1\-2apkL £ BK.0-1

n = 0 \n = 1

+ 2pkL( t n9Y £ i f H . f l ^ f £
\n = 1 J\n =1 / 2 n = 1

(6.27)

the «th derivative of which, evaluated at 6 = 0, is

a*pL"l (r+l)K.-,K,+ i
r = 1

-I) r -1r-1erfc(«/f l)] , = o.

(6.28)
Therefore

n—1
= «l

r = 1

x "X (r + l)KM_rRr
i- = i

«H (6-29)

Equations (6.26) and (6.29) are the general equations for the coefficients <j>2n

and /?„ + !• Once these have been found the expression for the temperature
distribution within the sphere is

«(r,t)= ^

a-Ry)}-
u

(a-Ry)n*

An application of this solution would be to find the time taken for a meteor
to be consumed as it passes through the earth's atmosphere or to calculate the
mass of material lost by a meteorite before striking the earth's surface.

E.M.S.—i
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7. Reduction of problems involving spherical shells to standard form
Consider a hollow spherical shell, initially comprising the region b<r<a,

which has at t = 0 a temperature distribution V0(r) such that V0(a) = Tm. A
flux Q{9) is applied at r = a so that melting begins. The melt is continuously
removed and the outer surface of the shell at any time is given by a—R(9) as
long as a — R(9) > b. As in the previous section Q{9) is a known function of 9
and does not depend on R(9).

If V(r, t) is the temperature distribution within the shell then the equations
for Fare

dV (d2V 2 dV\
— =k\—-H b<r<a — R, t>0 (7.1)
dt \dr2 r dr J
V(r, 0) = Fo(r) b<r<a (7.2)

V(a-R, t}=Tm (7.3)

Q(9)-Lp— =K— at r = a-R(6) (7.4)
dt dr

HV + Kd-f=0 atr = b (7.5)
dr

Substituting U = rVthese equations become

— =k~ b<r<a-R,t>0 ...(7.6)

dt dr

U(r, 0) = rV0(r) b<r<a (7.7)

U(a-R, t) = (a~R)Tm (7.8)

Q(9)-Lp— =K\^± + -l-—\ at r = a-R (7.9)
dt \a-R a-R dr)

HU - •—tu+ i—V =0 a t r = fc (7.10)
b2 b dr[

The further substitution r' = a—r transforms the equations into the standard
form since the problem then becomes one of ablation in a slab 0 < R{9) <r<a—b.
If W(a-r, i) = U(r, t) equations (7.6)-(7.10) become

X1^ 0<r'<a-b,t>0 ...(7.11)
dt dr2

0<r'<a-b (7.12)

(7.13)

K \ \ a t r K (7.14)
dt \a-R a-Rar')

~ W-K\=}W-{8^\=0 ntr' = a-b (7.15)
b {b b dr')
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The problem can be solved if a suitable initial temperature can be found.
Thus if H = 0, W(r', 0) must be expressible as an odd function of r' — (a—b).
This means that r V0(r) must be an odd function of r—b.

The rest of the solution is identical with the work of Section 6. The only
difference arises from the necessity of condition (6.14) for a solid sphere whereas
(7.15) allows a variety of situations at the inner surface of a hollow shell.

8. Cooling of molten regions by radiation
By using Portnov's method it is possible to find the temperature distribution

in both phases of a slab, initially liquid, cooling by radiation into a medium at
zero temperature so that a solid phase advances into the region x > 0 from the face
x = 0. It is sufficient to say here that two temperature distributions are
postulated and that the differentiations, etc., are carried out as above. The
algebra is, however, rather more cumbersome since sets of four simultaneous
equations have to be solved for four unknown coefficients. The first few
coefficients have been worked out and agree with those given in (2).

An important application would be to the cooling of spheres; for example
the cooling of the earth could be investigated. Preliminary work shows that
it is quite feasible to find short-time solutions for the case of a sphere, cooling
at the outer surface by radiation, with heat generation at a rate Ao exp [b(a—/•)]
where a is the radius of the sphere and Ao and b are positive constants. This
would be a realistic model to use in investigating the cooling of a molten earth
if heating by radioactive decay within the mantle is to be taken into account.

9. Some worked examples
The first example is one for which the first few terms have already been

worked out by Boley (2) using a method based on DuhameFs theorem.
A semi-infinite solid x>0, at zero temperature when t = —tm, constant

flux Qo into the slab at x = 0 for t> —tm.
At t = 0 the temperature is

^ i ) (9.1)

where tm has to found from

(9.2)

Therefore tm = nK2T^AkQl (9.3)

In this case x¥1(x) = V0(x), that is

~] (9.4)
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whence

(9.5)

It is found that

= QllnK2Tm 4>2i = -2Q3
0!3nkpLTmK2

y'-i^T'K*}-1] (9.6)

- {30n(kpL)3TmK2}-J - {87i

0, X2 = 0, X3 = Q2l(3n3/2kpLTmK)

X6 =

As a second example the case of a semi-infinite region exposed to a pulse
of heat is discussed.

In this example the semi-infinite region x > 0 is considered to be at zero
temperature at = —tm, at which time a flux of heat Q(t) — ra"*exp(-/-2r2),
in suitable units, is applied to the face x = 0. For large values of r this expres-
sion will be a good approximation to an instantaneous unit, pulse at t = 0 since
tm will be very small.

By direct application of Duhamel's theorem the temperature for - ? m < ? < 0
is found to be

"KkJ-u

When t = 0 this expression becomes

V0(x) = — fc^exp [-x2l4ktm~\ exp [-r2(fm-t)2 —
nK Jo T*

nK
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If r is large tm will be small and O(tH2) may be ignored so that a good approxima-
tion will be

^ p [ l m ] (9.8)
TtK

Provided that Q(t) is large enough to cause melting to begin when / = 0 the
value of tm may be found from

T =
nK

i.e.

t™=n-j-S (9-9)

4r k

Using this value of /,„ in (9.8)
V0(x)= Tmexp[-r2x2ln2K2T2] (9.10)

From this result the coefficients of $,(x) are found to be

<j,l 2 n = 1 til n = 0, 1, 2, 3, (9.11)

01.2H+1 = °

Equation (9.10) also shows that V0(x) is very small when r is large, except at
x = 0 where its value is Tm.

The series expansion for Q(t) in powers of 0 is found from

Q{0) = rn-* exp [-r204/16A:2]

= ™ L
therefore

2n+l

« = 0 ,4 , 8, 12 , . . . ( 9 1 2 )

n= 1, 2, 3, 5,6, 7 ,9 , ...

Using (9.11), (9.12) and the results of Section 4 it is found that
_ 4

< 2̂0 = ^m> 021 = °> *22 = , „ , (9.13)
*rzu m' T ^ I » - zz 4^4T3 v '

n K Tm

Xt = 0, X2 = — ^ — , X 3 = - — r ^ (9.14)
47c*A;pL 3n5/2kpLKTm

Thus a good approximation to X(t) is

' ^ ' " 3n^2pLKTm ' ( 9 - 1 5 )
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Now — = 0 when t = —5 = tf, say (9.16
dt 16r k

Hence the melting ceases after a layer with thickness

f ~ l6rpLk* ~

1 I2TS2'T'2

~ U4rpLk*

= -^f— (9.17)

has been removed.
As a last example the ablation of a finite slab, 0<;c<a, perfectly insulated

at x = 0 has been chosen.
Let the slab 0 < x < a be at zero temperature when / = —tm. For t > — tm a

constant flux Qo flows into the region and at t — 0 the face x = 0 is at tempera-
ture Tm so that melting begins. The face x = a is perfectly insulated so that
no heat can pass through it.

The initial temperature is given by Example A of Section 3. Rearranged in
powers of x the trigonometric series becomes the absolutely convergent series

\pca 3K Knz) K K \ 2a

where

Sn= X r2-2 cxp \_-r2kn2tJa2] (9.19)
r = 1

From 0i(O) = Tm it is found that

If /m is small the series representation for So given by (9.19) will be slowly
convergent and it will then be useful to use the alternative expression for
V0{a—x) given in Example A.

Using the coefficients <j>ln given in (9.18) it is found that

x _ T < A --Qo 6 _ o (2aSl-l)
X ZKa

6akpLK
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. K2QQS2 2Q2(2aSi-l)
2

12Xa3 9nKa\kpL) 24Ka{kpL)2

, n2Q2
0S2

30K3(kL)30Ka3(kpL) 45nKa\kpL)2 120Ka(kpL)3 !92Ka2(kpL)2

x
4 64a(kpL)2

= QlCaSt-l) 2Q2(2aSl-l) _ Qon
3'2S2

5 UOnMkpLf 45n3!2a2(kpL)2 30a3kpL

i-I)2 t 3

6 1921_ 32na\kpL)3 24na3{kpL)A' 4na2(kpL)3 4a{kpLf

n2Q2
0S2

a3(kpL)2J

10. Conclusion
It has been shown that Portnov's method provides a powerful means of

investigating many important problems of heat conduction where phase
changes occur. It is easily seen that the method is applicable to any situation
where the appropriate heat equation may be transformed into the case of linear
flow, for example the thin rod with radiation from its surface. By combining
step functions with additional " fictitious " temperature distributions cases
involving more than one moving boundary may be investigated and also slabs
with time dependent fluxes or temperatures at the fixed boundary.

Appendix
The first six sets of equations found from equations (4.6) and (4.8) when

Xi = X2 = 0.

1. (a)

(b) n

2. (3)0 =

(b) 2Q0-SkpLX2 = -

3. (a

(b) nHQl-

4. (a) 0 =

(b)
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5. (a) 0 =

(b) 4nHQ3-10kpLX5) = -

6. (a) 0 =

(b) 7r*(04 - 12A:pLZ6) = - K
12
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