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ALMOST CONVERGENCE, SUMMABILITY AND 
ERGODICITY 

J. PETER DURAN 

1. I n t r o d u c t i o n . 1.1. T h e notion of almost convergence introduced by 
Lorentz [15] has been generalized in several directions (see, for example [1; 8; 
11 ; 14; 17]). I t is the purpose of this paper to give a generalization based on the 
original definition in te rms of invar iant means. This is effected by replacing 
the shift t ransformation by an "ergodic" semigroup se of positive regular 
matrices in the definition of invar iant mean. T h e resulting " ^ - i n v a r i a n t 
means" give rise to a summabi l i ty method which we dub J^ -a lmos t con­
vergence. 

In section 3 we s tudy the set L(s/) of J^ - inva r i an t means. W e show t h a t 
there is a sublinear functional P + on the space of bounded sequences such t h a t 
each member of L(s/) m a y be regarded as a Hahn-Banach extension with 
respect to P+ of the limit functional on the space of convergent sequences. 
This generalizes results in [8; 13; 17]. In section 4 we characterize the space of 
J^ -a lmos t convergent sequences, unifying and generalizing results in [1 ; 8; 15; 

17]. 
Matr ix methods stronger than J^ -a lmos t convergence are characterized in 

section 5. We prove also t h a t when s/ is sui tably restricted such methods 
always exist. Section 6 is devoted to examples. Here we use a theorem of 
Eberlein [9] to show t h a t the logarithmic method contains the collective 
Hausdorff method for bounded sequences. 

In section 7 we generalize results in [3] and [4] concerning the mult ipl icat ive 
behaviour of the J^ -a lmos t convergent sequences. Section 8 is concerned with 
matr ix t ransformations of spaces of almost convergent sequences (cf. [19]). 

T h e au thor wishes to thank Professor W. F . Eberlein for several helpful 
discussions. 

2. P r e l i m i n a r i e s . 2 .1 . We denote by ^ # the Banach spaces of all bounded 
sequences of real number x = (x0, Xi, . . .) with norm 

| | s | | = sup \xn\. 
n 

Each member of *Jé has a cont inuous extension to a function on /3N, the 
Stone-Cech compactification of the nonnegat ive integers. T h e space C(/3N) of 
all cont inuous real-valued functions on /3N is thus na tura l ly isomorphic to ^ # . 
We shall therefore not distinguish between these spaces in the sequel. 
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ALMOST CONVERGENCE 373 

For each x 6 Je we write lim sup x (respectively lim inf x) for lim supw xn 

(respectively, lim inin xn). If x £ c, the space of convergent sequences, we write 
lim x for limw xn. We denote by c0 the space of all sequences which converge 
to 0. If x G Jf, |x| denotes the sequence defined by \x\n = \xn\. 

2.2 For x Ç Jf, let x denote the restriction of x to /3N\N. The map x ^ j c i s 
a continuous surjection of^# onto C(/3N\N). If we denote the natural norm in 
C(/3N\N) by || ||0 then we have ||x||0 = lim sup |x|. 

Now let A be a positive regular matrix. A may be thought of as a bounded 
linear operator on Je. Since A is regular A (c0) ^ £o- Hence A induces an 

operator A on C(/3N\N) defined by A x — A. x » It has the following easily 
verifiable properties. 

(2.2.1) 1 ^ 0 (i.e. Âx ^ 0 whenever x è 0) 

(2.2.2) Au = u where u = (1, 1, . . .) 

(2.2.3) | | l | |o = 1 

2.3. A functional <t> £_Jé* is called a mean if <j>(u) = 1, </> ^ 0 (i.e., <£(x) ^ 0 
whenever x ^ 0). By the Riesz Representation Theorem we may think of a 
mean as a probability measure on /3N. We shall denote by L the set of all 
means supported in /3N\N. Again by the Riesz Representation Theorem we may 
think of L as contained in C(/3N\N)*. The viewpoint we adopt will be dictated 
by convenience. 

3. j / - invariant means. 3.1. Let se be a semigroup of positive regular 
matrices. Multiplication can be thought of either as matrix multiplication or as 
composition of operators on Je. 

Definition. An J%f-invariant mean is an element # of L satisfying 0(x) = 
(j>(Ax) for all A £ se and x Ç ~#. We denote by L(sé) the (possibly empty) 
set of all j / - invar iant means.S$ is said to be admissible if L(s/) ^ 0. 

3.2. In order to develop a theory with content we shall place certain regu­
larity restrictions on the semigroup se'. Specifically, we shall usually demand 
t h e j / be ergodic in the following sense: 

Definition. S$ is ergodic if there is a net [Aa] of matrix operators on Je, 
called a system of averages forS$, which satisfies: 

(3.2.1) for each a and each x £ Jt, Aax is in the closed convex hull (in 
C(0N\N)) of the set {Ax\A £ sf\, and 

(3.2.2) lima||,4ax - ÂaÂx\\o = 0 for each A G se and x ^ Je. 

Our definition is derived from the definition of an ergodic semigroup given 
in [7]. It follows that if se is abelian or, more generally amenable, then s/ is 
ergodic [5]. 
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We assume for the rest of this section that<$/ is ergodic. 

3.3. We wish to characterize the set L(s/). As a first step in this direction 
let I denote the functional defined on c by l(x) = lim x. It will turn out that 
there is a sublinear functional defined on^^such that L(s/) consists precisely 
of all the Hahn-Banach extensions of / with respect to this functional. 

Definition. For x Ç *Jé we define 

P+(x) = lim sup lim sup Aax 
a 

P_(x) = lim inf lim inf Aax. 
a 

We summarize the elementary properties of P+ and P_ in the following 

LEMMA. 

(3.3.1) P±(x) ^Oifx^O, 

(3.3.2) P±(ax) = aP±(x) if a ^ 0, a G R, 

(3.3.3) P + (x + J) ^ P+(x) + P+(y), 

(3.3.4) P±(x - Ax) = Ofor all A £ ssf, x £ Je, and 

(3.3.5) P+(x) = - P _ ( - x ) . 

Proof. We prove only 3.3.4. 

\P+(x — Ax)\ < lim sup lim sup \Aax — AaAx\ 
a 

= lim sup \\Âax — ÂaÂx\\o 
a 

= 0 

by 3.2.2. Similarly, P_(x - Ax) = 0. 

3.4. THEOREM. Let <t> 6 ~#*. Then <j> G L(s/) if and only ifP- (x) ^ 4> (x) ^P+ (x) 
for each x £ ^# . 

Proof. Suppose that <j> £ L(s/). If x Ç Jt, then <j>(x) = <j>(Aax) because by 
3.2.1 Aax is a uniform limit of convex combinations of functions of the form 
Âx, A G s$ and <j> is supported in /3N\N. Moreover since 0 is a mean 

<t>(Aax) ^ <£(sup {Âx(t)\t G /3N\N} • u) = lim sup Aax. 

Since a is arbitrary we conclude that <t>(x) ^ P+(x). 3.3.5 now shows that 
P_(%) ^ 0(*). 

Suppose conversely that <j> Ç ^ # * and P_(x) ^ <£(x) ^ P + (x) for all 
x G J ^ . I f x ^ O w e have 0 ^ P- (x) ^ 0(x). Hence <f> ^ 0. Since P±(w) = 1, 
</> is a mean. The ^-invariance of <j> follows from 3.3.4. That <j> is supported in 
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j8N\N is a consequence of the easily verified fact that P±(x) = 0 if x G c0. 
Hence <t> G L(s/). 

Several convenient corollaries follow from the preceding theorem. 

3.5. COROLLARY. L(S/) consists exactly of all the Hahn-Banach extensions of 
I to ̂  with respect to P+. In particular, L{stf) is not empty. 

3.6. COROLLARY, (a) P+(x) = lima lim sup^4ax = infa lim sup^4ax. 
(b) P-(x) = lima lim inf Aax = supa lim inf Aax. 

Proof. We prove only (a). It suffice to show that P+(x) = infa lim sup Aax. 
The inequality ^ being obvious, we need only show that P+(x) S Km sup Aax 
for each a. This follows from the proof of Theorem 3.4 and Corollary 3.7. 

3.7. COROLLARY. For each x G ^ , P+(x) = sup \<t>(x)\4> G L(s/)} and 
P_(x) = inf {<t>(x)\<t> G L(s/)}. 

Proof. If 0 G L(s/) then by Theorem 3.4 0(x) g P+(x) so P+(x) ^ sup 
{<Ê(x)|$ G L ( J ^ ) } . However, the Hahn-Banach Theorem and Corollary 3.5 
imply that for given x we may choose <j> G L(s/) such that #(x) = P+(x). 
This proves the first half of the corollary. The second half is proved similarly. 

The idea of the above proof is found in [8]. 

4. ja/-almost convergence. 4.1. Let s/ be an admissible semigroup of 
positive regular matrices. 

Definition, x G ^ is said to be J^-almost convergent to a real number a if 
<t>(x) = a for all 0 G L(s/). This is written F(jzf) — lim x = a or simply 
F — lim x = a when the semigroup is clear from the context. The space of all 
^-almost convergent sequences is denoted by F(s/) or simply F. 

It is clear that F = P0 © R^ where F0 consists of all sequences which are 
«^-almost convergent to 0 and R is the set of real numbers. F0 is a closed sub-
space of<Jé since it is an intersection of kernels of continuous linear functionals. 
Hence F is closed as well. Note also that both F and F0 are invariant under s/. 

If x G ^ is summable by some matrix A G S$, say lim Ax = a, then 
F{s/) — lim x = a as is easily seen. Hence the matrices in s/ are consistent 
for bounded sequences. 

4.2. The archetypal example of J^-almost convergence is, of course, almost 
convergence itself. Here s/ consists of the iterates of the shift matrix S defined 
by (Sx)m = xm+i. Another example is Banach-Hausdorff summability [8]. 
These and other examples will be discussed more fully below. 

4.3. Now suppose thatS$ is ergodic. We are in a position to characterize the 
j / -a lmos t convergent sequences. If E C ^ , let sp E denote the closed span of 
E. If E C C(j8N\N) let sp°E denote its closed span in C(/3N\N). 
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THEOREM. Let a 6 R. The following conditions on a sequence x Ç ^ are 
equivalent, 

(4.3.1) F - l imx = a. 

(4.3.2) lima||iTax — au\\0 = 0. 

(4.3.3) P+(x) = P-(x) = a. 

(4.3.4) x £ sp°{y - Ay\y ^Jé,A G sé\ + au. 

(4.3.5) x £ sp(c0 + {y - Ay\y t^Jf, A £ s/}) + au. 

Proof. The equivalence of the first three conditions follows immediately 
from the definitions of F — lim and P± and from Corollary 3.7. For the 
remainder of the proof we assume without loss of generality that a = 0. 

Suppose now that 4.3.2 is satisfied, i.e. suppose that Aax —> 0 in the norm of 
C(/3N\N). Then x = lima(x — Aax) so that 4.3.4 will follow if we can show 
that for each a, x — Âax Ç sp°{y — Ây\y Ç ^f, A £ se } . By 3.2.1, Aax is a 
limit of convex combinations of images of x under members of £#. If ^ctiÂiX is 
such a combination then 

x - !>*£<£ = !><(£ - Âtx) G sp°{3/ - Ay\y ^J^,A £<$/}. 

This proves 4.3.4. 
To prove that 4.3.4 implies 4.3.5 suppose that 

x G sp°{y — Ây\y £ ^ , A £ s/}. 

It will suffice to produce a sequence in c0 + sp{y — Ay\y £ ^ , i ^ j / j which 
converges weakly to x. (Here sp denotes linear span.) 

Now clearly there is a sequence {wn} ÇZ sp {y — Ay\y £ «^, 4̂ G s/} such 
that ||x — wn\\§ —> 0 and we can assume that ||z#w||o ^ IWI + 1/2. 

For each n we can choose an integer Kn such that \wk
n\ ^ ||x|| + 1 whenever 

k ^ Kn. Further, {Kn} can be chosen to increase to infinity. 
Define zn by 

n = j X k ~ W"> i f k < K* 
k \ 0 , if & ^ X». 

Clearly zw G Co for each n. 
Our object is to showr that zn + ^w converges to x weakly in ^# . For this 

we must prove that \zn + wn) is uniformly bounded and converges to x point-
wise on jôN. 

Now 

1**1, if k < Kn H! 
Hence lis* + a/»!! ^ llxll + 1 for all n. 
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Let / £ 0N\N be fixed. Then zn{t) + wn(t) = wn(t) -> x(t). If k G N is 
fixed, choose iV so that Kn ^ k whenever n ^ N. Then 0 / + w / = xk for 
w ^ TV. It follows that zn + wn -+ x pointwise on /3N. 

To see that 4.3.5 implies 4.3.1, let <j> G L(stf). 4>(c0) = {0} because 0 is 
supported in /3N\N. Also #(y — 4y) = 0 for all y 6 ^ and i G^/ . Linearity 
and continuity of 0 now imply that <£(x) = 0. Since 0 is arbitrary, F — lim 
x = 0. 

4.4. Remark. It is clear that in 4.3.4 and 4.3.5 we may replace se by any 
subset of s/ which generates it as a semi-group. 

5. Matrices containing j / - a l m o s t convergence. 5.1. Definition. Suppose 
that Ja/ is admissible and B is a regular matrix. B is said to contain J^-almost 
convergence if cB Z) F where cB = {x Çi<J£\Bx £ c) is the bounded con­
vergence field of B. 

5.2. THEOREM. Let se be ergodic. The regular matrix B contains se-almost 
convergence if and only if each matrix of the form B(I — A), A £ 3/, maps ^ # 
into Co. Moreover, in this case lim Bx = F(sf) — lim x for each x £ F (s/). 
(I is the identity matrix.) 

Remark. It will be clear from the proof and Remark 4.4 that it suffices to 
consider only those matrices B(I — A) where A lies in some set of generators 
for s/. 

5.3. Recall that a matrix is a Schur matrix if it maps^# into c. We shall 
need the following elementary facts about Schur matrices (see [16]). 
(5.3.1) If D = (dm>n) is a Schur matrix, then \\mmdmtn = 8n exists for each n 
and lim Dx = ^5T=O5A for each x Ç ^ . 
(5.3.2) A matrix D maps^# into c0 if and only if 

00 

lim X) \dm.n\ = 0. 
m n=0 

5.4. We recall also the fact that a matrix D maps c0 into itself if and only if 

00 

(5.4.1) \\D\\ = sup X) \dm,n\ < + 0 0 , and 
m n=0 

(5.4.2) lim dm,n = 0 for each n. 
m 

5.5. Proof of Theorem 5.2. Suppose that cB 3 F. Since x — Ax £ F0 for 
each x by 4.3.5, B(I — A){<JK) C c, i.e. B(I — A) is a Schur matrix. Now 
B(I — A)(c0) Q c0 because B, A and I are regular. Hence limm{B(I — A)}mtn = 
0 for each n by 5.4.2. It follows from 5.3.1 that B(I - A)(JZ) C c0. 

Suppose conversely that B(I — A) (^ ) C c0 for each 4̂ G ^ / . Since I? is 
regular it maps c0 + {x — Ax\x £ ^ , A £ J3^} into c0. It follows from 4.3.5 
and the fact that B is a bounded operator on ~ # that JB (^0) ^ c0. Hence 
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B (F) Ç c and F — lim x = lim Bx for all x (E F since i7 = F0 0 R^ and i? is 
regular. 

Remark. It is an immediate consequence of Theorem 5.2 and 5.3.2 that B 
sums every almost convergent sequence if and only if B is strongly regular. 
This is a theorem of Lorentz [15]. (Cf. also [18; 1].) 

5.6. Theorem 5.2 gives a necessary and sufficient condition for a regular 
matrix to contain J^/-almost convergence. However, it leaves unanswered the 
question of whether there are any such matrices. We have been unable to 
answer this question in general. We give a partial answer in the following 

THEOREM. Let A be a positive regular matrix and assume that A is triangular, 
i-e., amt7l = 0 when m < n. Lets/ = {An\n = 0, 1, . . .}. Then there is a regular 
matrix B which contains se -almost convergence. Moreover B may be chosen to be 
positive. 

Remark. We must produce a matrix B such that B(I — A)(^ ) Ç c0. We 
shall assume without loss of generality that ^= 0a f f l i„ ^ 1, am,m < 1 for each m 
because A differs from such a matrix only by a matrix which m a p s ^ into c0. 

5.7. The proof of the theorem will be preceded by a definition and two 
lemmas. 

Definition. A matrix D satisfies condition (K) if 

(5.7.1) dm,n = 0 for m < n, 

(5.7.2) dmtm > 0 for all m, and 

(5.7.3) dmtn S 0 for 0 ^ n < m. 

LEMMA. / / D satisfies condition (K) then D~l is positive. 

Proof. It suffices to prove the lemma for finite (square) matrices. We do this 
by induction on the size of the matrix. The lemma is obvious for 1 X 1 matrices. 

Now suppose the lemma is true for k X k matrices. Let D be a (k + 1) X 
(k + 1) matrix satisfying (K). Let C = D~l. Then C is triangular. Since the 
matrix obtained from C by deleting the last row and last column is the inverse 
of the matrix obtained from D by deleting the last row and last column and 
this latter matrix is a k X k matrix satisfying (K), it follows that citj ^ 0 for 
i = 0, 1, . . . , k — 1 and all j . Thus, it remains to show that ckJ ^ 0 for 
j = 0, 1, . . . , *. 

if j = k, ckJ = dktk-
1 > o. 

Suppose that j < k. Then 

Je k 

0 = (DC)k,j = ^ dkticitj = ^2 dkticitj. 
i=0 i=j 
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Hence 

But for j ^ i' S k — 1, citj ^ 0 by induction while dkji rg 0 since D satisfies 
condition (K). Hence dktkcktj ^ 0 and since dk>k > 0, ckJ ^ 0. 

5.8. Now let C = (I — A)~\ I - A satisfies condition (K) so C ^ 0 by 
Lemma 5.7. 

LEMMA. ||C|| = oo. 

Proof. Suppose ||C|| were finite. Then I — A would be an invertible trans­
formation on ~#. By 4.3.5 we would have u £ F0. This is absurd. 

5.9. Proof of Theorem 5.6. We claim first that for each k = 1, 2, . . . cn+ktn S 
cn>n. For k = 1 we have 

- ^n+l,n ^ 

1 a w + i > w + i 

because an+i>n ^ 1 — an+ijTl+i. Assuming the claim is true for cn+ijTl, . . . , cn+k-itTl, 
we have 

Cn+k,n = "̂  ~ [ttn+k.nCn.n *T" • • • T~ ^w+A;,n+A;—1 * Cn+k— l,n\ 
*• &n+k)n+k 

< -, {an+k,n + . . . + &n+k,n+k— l\Cn,n ^ Cn,m 
1 — an+ktTl+k 

proving the claim. 
Set ym = Y^=Qcm,n- By Lemma 5.8 there is an increasing sequence {mk} of 

positive integers such that ymk —+ oo. Define a matrix B by bk>n = cmktJymk. 
Then clearly 5 ^ 0 , Y.n=obk,n = 1 for every k and l i m ^ ^ = 0 for every n by 
the claim and the choice of mk. Thus B is a positive regular matrix. Moreover 

jr \{B(i - A)u.n\ = I /T«.-»o. 
w=0 

By the remark following Theorem 5.2 and 5.3.2, B contains J^/-almost con­
vergence. 

5.10. Before giving some examples we draw a corollary from Theorem 5.6. 

COROLLARY. If s/ is generated by a single triangular matrix, then L(s/) is 
infinite dimensional. 

More generally, if s/ is an admissible semigroup such that there is a regular 
matrix containing se-almost convergence, then L(s/) is infinite dimensional. 

Proof. By Theorem 5.6, we need only prove the second statement. If L(s/) 
were finite dimensional, then F0 and hence F would have finite codimension 
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in ^é. If i? is a regular matrix such that cB 2 F, then cB would have finite 
codimension in~# also. However, it is well-known that there is no such regular 
matrix. 

6. Examples. 6.1. Let se consist of the positive regular Hausdorff matrices. 
Then ^/-almost convergence coincides with the notion of Banach-Hausdorff 
summation introduced in [8]. (That any J^-invariant mean is a Banach limit 
follows from the fact that s/ contains a strongly regular matrix.) The well-
known decomposition of a regular Hausdorff matrix into its positive and 
negative parts shows that any bounded sequence which is summed by some 
regular Hausdorff matrix is Banach-Hausdorff summable. Thus Banach-
Hausdorff summation is a generalization of the collective Hausdorff method 
for bounded sequences. 

Let H denote the Hôlder-Cesaro matrix. Eberlein has announced the follow­
ing surprising result [9]: 

6.1.1. If A is any regular Hausdorff method, then 

lim | | i ? n - i ? ^ 4 | | 0 = 0. 
n 

The foregoing theorem states that the sequence [Hn] of iterates of H is a 
system of averages for S$. Since H is itself a Hausdorff matrix, an immediate 
consequence of 6.1.1 is 

6.1.2. The notions of Banach-Hausdorff summation and {Hn : n = 0, 1, . . .}-
almost convergence coincide. 

Garten and Knopp [11] term a sequence x if^-summable if limw lim in(Hnx = 
limra lim supHnx. If follows that from 6.1.1 and 4.3.3 that a bounded sequence 
x is i^-summable if and only if it is Banach-Hausdorff summable. Thus 
iJœ-summation is a good deal stronger than ordinary Holder summation for it 
sums any bounded sequence summed by any regular Hausdorff method. 

6.2. The results of the preceding paragraph allow us to prove the following 

THEOREM. The regular matrix A contains Banach-Hausdorff summation if 
and only if 

(6.2.1) lim X 
m n=0 n + lam'n J&tl+l = 0. 

For example, the logarithmic matrix L(1) defined by 

\ 2YI < n < m and m > 1 
LK

mtn = \n\ogm 
( 0, otherwise, 

is such a matrix. 

Proof. Since Banach-Hausdorff summation coincides with {Hn : n = 0, 1,...} -
almost convergence, Theorem 5.2 shows that A contains Banach-Hausdorff 
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summation if and only if A (I — H) {*Jt ) Ç c0. A short calculation combined 
with 5.3.2 shows that this is the case if and only if 6.2.1 holds. That the 
logarithmic matrix is such a matrix is verified in a straightforward way. 

Remarks. Fuchs has shown that there is no matrix which contains the 
collective Hausdorff method for all sequences [10]. Theorem 6.2 shows that for 
bounded sequences the situation is quite different - such matrices do indeed 
exist. Also, since ii/^-summation is strictly stronger than ordinary Holder 
summation, the second part of the theorem generalizes (for bounded sequences) 
the classical theorem that logarithmic summation is stronger than Holder 
summation (see [12]). 

Borwein [2, Theorem 5] has shown that if x is any sequence summed by 
L(1) and A is any regular Hausdorff method, then x is summed by L(1)A. The 
second part of the Theorem 6.2 shows that for bounded sequences we can say 
considerably more, viz. if x is a bounded sequence and A is any regular 
Hausdorff matrix, then L(1)x and L{1)Ax differ only by a sequence which con­
verges to 0. 

6.3. We say that a bounded sequence x is Banach-logarithmic (B — L(1)) 
summable to a if <j>(x) = a whenever 0 £ L has the property that <j>(y) = 
<j>(L{l)y) for all y Ç ^ . This is simply almost convergence with respect to the 
semigroup generated by L(1). 

The question now arises: "Which matrices contain B — L(1) summation?" 
Theorem 5.2 gives one kind of answer to this question. In order to give con­
crete examples, we define the logarithmic matrix of order k by 

Lmln = \ n log n . . . logjc^n • log*m ' ^ ^ 
' 0, otherwise. 

Here \ogkx is defined inductively as logix = log x, \ogkx = logfc_i(log x). 
We now have 

6.4. THEOREM. For each k = 1 , 2 , . . . , L(k+1) contains B — L(k) summation. 
(B — Hk) summation is defined in the obvious way.) 

Proof. Let k > 1 be fixed. We must show that L{1i+l) (I — L{1c)) maps ~ # 
into c0. By 5.3.2 this means we must show that 

limf: |Z,(*+1)(/-Lw)m,„|=0, 

i.e. 

(*) lim £ 
m n=k+l 

l 

- z 

n . . . \ogkn logera 

1 1 
fcj / . . . log*/ • logera n . . . \ogk-in log*/ 

0. 
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Now the sum involved in (*) is 

1 m 1 

logk+im n^k+i n . . . \ogk-in 

For convenience, let us write 

1 

logkn I. . . log*_i/(logit/) 

Then 

/(*) = 

(**x 

< 

x • log x . .. logfc-ixOogjtx)2 ' 

1 m 1 

—-— £ 
logk-in 

—— _ j f(x)d 
I logkn Jn 

1 ( 1 ^ 1 

+ 

+ z 
1 

logfc+im I logera „ S f i » . . . log*-!?* nék+i n . . . ( l o g ^ ) 2 j 

^ > 0 as m —» oo. 
logfe+im 

6.5. T h e question of whether there is a matr ix which contains B — L{k) 

summabi l i ty for all k is answered by the following general 

T H E O R E M . Let {A(n)} be a sequence of positive regular triangular matrices. 
Letstfn be the semigroup generated by A(n) and assume that F(s/n+1) 3 F(j$fn) 
for n = 1, 2, . . . . Then there is a regular matrix B such that cB 2 F{s/n) for 
each n. 

Proof. Le t C (s ) = / — A^s). By Theorem 5.6 there are positive regular 
matr ices B™ such t h a t B^C^i^) D c0 for 5 = 1 *. Let us write 
6(w, n;k) for Bm>n

w. 
Choose mi such t h a t 

(a) 6 ( m l f l ; l ) < 2 " \ 

(b) X) 6 ( w i , » ; l ) > 2 - \ and 

(c) S |(5<1)C(1))ro„„|<2-1. 

Now suppose t h a t mu . . . , w4_i have been chosen so t h a t for j = 1, . . . , 
* - 1 

(a ') b (mj, i;j) < Tj for l < i < j , 
co -̂  

Q>') ] £ b(mjt n;j) > 77—r , and 
n=0 J T 1 

(«') S I (50)Cu))m,,„| < ST' for 1 < i < j . 
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It is easy to see that mk can then be chosen so that (a'), (V) and (c') are 
satisfied for j = 1, . . . , k. 

Set b(i, n) = b(mu n; i). Then clearly B is regular and BC{S)(^ ) Ç c0 for 
all 5. 

7. Multipliers. 7.1. Let s/ be an admissible semigroup. We shall suppose 
throughout this section that there is at least one matrix which contains 
J^-almost convergence. 

Definition, x G ^ is called a multiplier if F if xy G F whenever y G F. 
(Multiplication is coordinatewise.) We denote the set of multipliers of F by 

Note that <Jt'F C F because u G F. 

It is the purpose of this section to characterize the space ^ F. When F 
consists of the sequences which are almost convergent in the ordinary sense, 
this has been done by Chou [3] and Chou and the author [4]. The results we 
obtain are direct generalizations of these theorems. 

7.2. THEOREM. If X G <Jt'F and y G F, then 

F — lim xy = (F — lim x) (F — lim y). 

Proof. Let A by any member of s/. It suffices to show that for all z G ^ , 
F — lim x(z — Az) = 0 

Let B be any regular matrix such that cB Ç F. Since x(z — Az) G F, 
B(x(z — Az)) G c for all z f ^ . We must show that in fact B (x(z — Az)) G Co 
for all z G ^ . An application of the second part of Theorem 5.2 will then give 
the desired result. 

Let M[x] be the matrix with entries xmôm>n where 8m>n is the Kronecker delta. 
Then B(x • (z - Az)) == B • M[x] • (I - A)(z). Thus B • M[x] • (I - A) is a 
Schur matrix. Hence by 5.3.1 and 5.4.2 we will be done if we can show that 
B • M[x] - (I — A)(c0) Ç c0. This, however is obvious since B, M[x] a n d / — A 
each map c0 into itself. 

7.3. If 0 G L, let supp <j> denote the support of <t>. 

Definition. KF = f7{supp <t>\4> G L(j/)}. KF is called the support set of the 
method F. 

If B C N we denote by i?* the closure of B in /3N minus B itself, XB is the 
characteristic sequence (function) of B. 

7.4. LEMMA. KF = fl {£*|£ £ N arcd 7̂  - lim XB = 1} 

Proof. Suppose that B C N and F — lim xs = 1. Then i3* is a closed set in 
0N\N and 0(£*) = *(x*) = 1 for each 0 G L ( j / ) . Hence supp 0 Ç £* and 
i£ F C B*. 

Now suppose that / G 0N\N and t Q KF. Since i£F is compact and the sets 
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{B*\B C N} form a basis for the topology of 0N\N, there is a set B C N 
such t h a t £ * contains KF but not/ . If 0 6 L ( J / ) then 0(x*) = 4>(B*) = 1 so 
F — lim %s = 1. It follows that 

t € H {£*|£ Ç N, F - l i m x . = 1}. 

7.5. We are now in a position to prove the following 

THEOREM. The following conditions on a sequence x £ *Jt are equivalent: 

(7.5.1) x Ç eJi'F and F — lim x = a, 

(7.5.2) F - lim (x - au)2 = 0, 

(7.5.3) x = aonKF, 

(7.5.4) For each e > 0 the characteristic function of the set { 
is S$-almost convergent to 1. 

Proof. That 7.5.1 implies 7.5.2 follows immediately from Theorem 7.2. 
That 7.5.2 implies 7.5.3 is obvious since (x — au)2 is a nonnegative continu­

ous function and each <£ £ L(sé) is a regular Borel measure. 
Now suppose that x ^ a on KF. 

Let y G F, say F — lim y = b. Then if 0 G L(s/), 

<j)(xy) = I x ^ 0 = a I 3>d<£ = a • <£(;y) = «6. 
•^ supp <£ *J supp # 

Thus xy £ F and x Ç ^ # F . Taking y = u in the above computation we see 
that F — lim x = a. 

The equivalence of 7.5.3 and 7.5.4 is proved exactly as in [3]. 

7.6. As in [3], we have 

COROLLARY. Let XB be the characteristic function of B C N. XB is a multiplier 
if and only if it is almost convergent to 0 or 1. 

8. Matrix transformations of spaces of almost convergent sequences. 

8.1. We shall need the following lemma of Attala [1, Lemma 3.2]. 

LEMMA. Let {An) be a sequence of operators on C(/3N\N) induced by matrices. 
Then ||-4n||o —> 0 if and only if ||^4wx||0 —> 0 for each x £ *^ . 

8.2. Let B be an infinite matrix. Let 

I \B\ | = S U p E K.nl 
m n=0 

We recall the well-known facts that \\B\\ < + oo if and only if B(^ ) Ç ^ 
if and only if B(c0) Ç ^ . Moreover if \\B\\ < + oo then \\B\\ is the norm of B 
considered as an operator on ^Jé. 
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8.3. We assume throughout the remainder of the paper that se is an ergodic 
semigroup and that \An) is a system of averages for s/ which is a sequence. 

LEMMA. Let B be an infinite matrix. Then F{s/) — lim Bx = 0 for all 
x Ç ^ if and only if \\B\\ < + oo and \\ÂnB\\0 -> 0. 

Proof. Lemma 8.3 is an immediate consequence of 4.3.2, 8.1 and 8.2. 

8.4. Now let *€ be an ergodic semigroup. We have the following generaliza­
tion of a theorem of Schaefer [19]. 

THEOREM. Let B be an infinite matrix. B{F(^)) C F(stf) and F(s/) — lim 
Bx = F(^ê) — lim x for all x £ F{^) if and only if 

(8.4.1) p | | < +oo , 

(8.4.2) F{s/) - lim ] £ bm,n = 1, and 

(8.4.3) F(s/) - lim bm>n = O/ar eacft n, 
m 

(8.4.4) ||JreJB(I - Olio -> 0/or each C £ ^ . 

Pr<w/. Suppose that B(F(<tf)) £ F ( J / ) and F (s/) - lim 5x = F(&) -
lim x for each x € F(<*f). Then p | | < + oo by 8.2 since c„ Ç F("«f) and 
F ( j / ) Ç Jt. 8.4.2 follows because 

oo 

u £ F(ctf)f F(f$) — lim w = 1 and (i?w)m = ^ 6OTtW. 

8.4.3 follows by similar reasoning applied to the sequence en = ( 0 , . . . 0 ,1 , 0 , . . . ) 
where 1 appears in the wth position. 8.4.4 is an immediate consequence of 8.3 
and the fact that F(^) - lim (x - Cx) = 0 for all x (4.3.5). 

Conversely suppose that 8.4.1 through 8.4.4 are satisfied. By 8.4.3, 
F{s/) — lim Ben = 0 for all n. Hence F — lim Bx = 0 whenever x £ c0 since B 
is linear and | \B\ \ < + oo. By 8.4.4 and Lemma 8.3 F(s/) - \imB{x - Cx) = 
0 for all x. We now use the linearity and continuity of B to conclude from 4.3.5 
that F(s/) — lim Bx = 0 whenever F(s/) — lim x = 0. This, combined with 
8.4.3 proves the theorem. 

Remark. Condition 8.4.4 has a concrete reformulation, for if D is any infinite 
matrix satisfying D(c0) Q c0 then it is easily seen that 

oo ^ 

\\D\\o = lim sup X \dm,n\-
m n=0 

8.5. COROLLARY. B{C) C F(S^) and F (s/) — lim Bx = lim x for all x £ c 

if and only if 
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(8.5.1) | | 5 | | < + o o , 

(8.5.2) F(s/) — lim bm%n = 0 for all n, and 

(8.5.3) F(s/) - lim £ bm,n = 1. 

Proof. We simply t akeJ^ = {/} in Theorem 8.4. 

Remark. This generalizes a theorem of J. P. King [14]. 

8.6. COROLLARY. F(^) C F ( J / ) if and only if \\An(I - C)\\0 -> 0 for each 

Proof. Take B = I in Theorem 8.4. 

Remark. The corollary is Theorem 2.2 of [1] when both *% andJ3/ are cyclic. 

8.7. Remark. We do not include the corollary obtained by the choice^/ = {1} 
since a sharper result (viz. Theorem 6.2) has already been given. 
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