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WIENER INDEX AND TRACEABLE GRAPHS
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Abstract

In this short paper, we show that, with three exceptions, if the Wiener index of a connected graph of order
n is at most (n + 5)(n − 2)/2, then it is traceable.
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1. Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). For a
graph G, we let dG(v) be the degree of a vertex v in G and dG(u, v) be the distance
between two vertices u and v in G.

The Wiener number W(G) of a connected graph G is a well-known distance-based
graph invariant. Also called the Wiener index, it is defined [10] as the sum of distances
between all pairs of vertices in G, namely,

W(G) =
∑

{u,v}⊆V(G)

dG(u, v) =
1
2

∑
v∈V(G)

DG(v),

where DG(v) =
∑

u∈V(G) dG(v, u).
The chemistry and mathematics literature has many results and applications on the

Wiener index. See, for example, the recent papers [2–9, 11] and the references quoted
therein.

A graph is said to be traceable if it possesses a Hamiltonian path. In this paper, we
will provide a new sufficient condition in terms of the Wiener index for a connected
graph to be traceable.

Before proceeding, we introduce some further notation and terminology. Denote by
Kn the complete graph on n vertices. Let G and H be two vertex-disjoint graphs. The
join of G and H, denoted by G + H, is the graph with vertex set V(G) ∪ V(H) and edge
set E(G) ∪ E(H) ∪ {uv | u ∈ V(G) and v ∈ V(H)}. For other notation and terminology
not defined here, the reader is referred to [1].
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2. A new sufficient condition for a connected graph to be traceable

We first introduce the following result about traceable graphs.

L 2.1 [1]. Let G be a nontrivial graph of order n with degree sequence
(d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. Suppose that there is no integer
k < (n + 1)/2 such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1. Then G is traceable.

For the sake of brevity, we will write di and Di instead of dG(vi) and DG(vi),
respectively, in the proof of the following theorem.

T 2.2. Let G be a connected graph of order n ≥ 4. If

W(G) ≤
(n + 5)(n − 2)

2
,

then G is traceable unless G � K1 + (Kn−3 ∪ 2K1) or K2 + (3K1 ∪ K2) or K4 + 6K1.

P. Suppose that G is a nontraceable connected graph with degree sequence
(d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn and n ≥ 4. By Lemma 2.1, there is an
integer k < (n + 1)/2 such that dk ≤ k − 1 and dn−k+1 ≤ n − k − 1. Since G is connected
and dk ≤ k − 1, we have k > 1. Thus,

W(G) =
1
2

n∑
i=1

Di

≥
1
2

n∑
j=1

(d j + 2(n − 1 − d j)) (2.1)

=
1
2

n∑
j=1

(2(n − 1) − d j)

= n(n − 1) −
1
2

n∑
j=1

d j

≥ n(n − 1) −
1
2

(k(k − 1) + (n − 2k + 1)(n − k − 1) + (k − 1)(n − 1)) (2.2)

= n(n − 1) − 2 −
(n − 2)(n − 3)

2
+

(k − 2)(2n − 3k − 5)
2

≥ n(n − 1) − 2 −
(n − 2)(n − 3)

2
(2.3)

=
(n + 5)(n − 2)

2
.

Combining this fact and our assumption that W(G) ≤ (n + 5)(n − 2)/2, we have
W(G) = (n + 5)(n − 2)/2. So, all inequalities in (2.1)–(2.3) should be equalities. Thus:
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(a) from (2.1), we know that all vertices in G have eccentricity no more than 2;
(b) from (2.2), we know that d1 = · · · = dk = k − 1, dk+1 = · · · = dn−k+1 = n − k − 1

and dn−k+2 = · · · = dn = n − 1;
(c) from (2.3), we know that k = 2 or 2n = 3k + 5.

If k = 2, then G is a connected graph with d1 = d2 = 1, d3 = · · · = dn−1 = n − 3 and
dn = n − 1, which implies that G � K1 + (Kn−3 ∪ 2K1).

If 2n = 3k + 5, then n ≤ 10, as k < (n + 1)/2. Thus n = 7, k = 3, or n = 10, k = 5.
By (b), we know that G is a connected graph of order seven with d1 = d2 = d3 = 2,
d4 = d5 = 3, d6 = d7 = 6, or G is a connected graph of order 10 with d1 = · · · = d6 = 4,
d7 = · · · = d10 = 9, which implies that G � K2 + (3K1 ∪ K2), or G � K4 + 6K1.

It is easy to check that none of the graphs K1 + (Kn−3 ∪ 2K1), K2 + (3K1 ∪ K2) and
K4 + 6K1 is traceable. This completes the proof. �

Since W(G) ≥ n(n − 1)/2 for all graphs G, and W(G) = n(n − 1)/2 if and only if
G � Kn, and Kn is traceable, we ask: is there an upper bound for W(G) between
n(n − 1)/2 and (n + 5)(n − 2)/2 that guarantees that G is traceable without exceptions?
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