
BULL. AUSTRAL. MATH. SOC. 58J70, 58J72, 35A30

VOL. 61 (2000) [507-521]

POTENTIAL SYMMETRIES OF
INHOMOGENEOUS NONLINEAR DIFFUSION EQUATIONS

C. SOPHOCLEOUS

In this paper potential symmetries are sought of the inhomogeneous nonlinear diffu-
sion equations ut = xl~M\xN~l}(u)uA . The functional forms of f(u) that admit
such symmetries are completely classified. A complete list is presented of the sym-
metries, which depend on the values of the parameters M and N. We give examples
of similarity solutions using potential symmetries. In some cases, the potential sym-
metries enable us to convert non-invertible mappings of nonlinear partial differential
equations to linear ones.

1. INTRODUCTION

We consider generalised radial diffusion equations of the type

f { )» = x ^ Y x r f{u)dx-\'
which are of considerable interest in mathematical physics. Some cases have been used to
model physical situations in fields involving diffusion processes [2, 11, 5]. In particular,
when f(u) — un, (1) has a large number of applications for both n > 0 ("slow diffusion")
and n < 0 ("fast diffusion") [7, 12]. There is a continuing interest in finding exact
similarity solutions to these equations [15, 8, 9, 17]. In [16] a complete classification of
Lie point [10] and Lie-Backlund [3, 1] symmetries is presented.

Bluman, Kumei and Reid [4, 3] introduced a method for finding a new class of sym-
metries for a system of partial differential equations (PDEs) A(i , u), in the case when at
least one of the PDEs can be written in conserved form. If we introduce potential variables
v for the PDEs so written as further unknown functions, we obtain a system Z(x,u,v).
Any Lie group of transformations for Z(x, u, v) induces a symmetry for A(x, u). When
at least one of the generators corresponding to the variables x and u depends explicitly
on the potential v, then the local symmetry of Z(x, u, v) induces a nonlocal symmetry of
A(x,u). These nonlocal symmetries are called potential symmetries.
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In this paper we search for potential symmetries for (1). We classify all the functions
f(u) that admit such symmetries. We present a generalisation for the results obtained
for the well-known nonlinear diffusion equation ut — \f{u)ux] [3]. If we introduce the
potential v, (1) can be written as a system

(2) vx = xM~lu, vt = xN-lf(u)ux

of two PDEs. We determine infinitesimal transformations of the form

x' = x + eX(x, t, u,v) + O (e2),

t' = t + eT{x,t,u,v) + 0{e2),

u' = u + eU(x, t,u,v) + O (e2),

(3) v' = v + eV(x,t,u,v) +

admitted by (2). These transformations induce potential and point symmetries for (1)
and point symmetries for the integrated form

(4) vt = xN

of (1), where u — xx~Mvx.

We note also that the second PDE in (2) can be written in conserved form. With
the introduction of a potential w, (2) yields the system

(5) vx = i M - 'u , wx = xl~Nv, wt = G(u),

where F = dG/du. The subsystems

(6) wx = i 1 - ^ , wt = G{xx-Mvx),

(7) wxx - (N - l)x~lwx = xM~Nu, wt = G(u),

(8) wt - G(xN~Mwxx -{N- l)*"-**-1^)

arise from (5). We classify all Lie infinitesimal group of transformations of the form

x' - x + eX(x,t,u,v,w) + O(e2},

t' = t + eT(x, t, u, v, w) + O(e2),

v! = u + eU(x,t,u,v,w) + O(e2),

v' = v + eV(x,t,u,v,w) +

(9) w' = w + eW(x,t,u,v,w) +

admitted by (5). Lie point symmetries of (5) induce potential symmetries for (1) and
(2), nonlocal symmetries for (4), Lie-Backlund symmetries for (6)-(8) and Lie point
symmetries for (1), (2), (4) and (6)-(8).

The symmetry analysis is carried out in Section 2. In Section 3 we give examples
of similarity solutions while in the final section we introduce the infinite-parameter Lie
groups of (1) to derive non-invertible mappings from non-linear PDEs to linear PDEs.
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[3] Nonlinear diffusion equations 509

2. P O T E N T I A L S Y M M E T R I E S

Equations (2) admit Lie transformations of the form (3) if and only if

(io) r « {v, - xM-'u} = o, ru{vt-x
N-lf(u)ux} = o,

where F'1^ is the first extended generator of

T = X7T + T ! + £ /!- + H Pox at au ov

which is given by the relation

r ^ = r + [DXU - (DxX)ux - (DxT)ut] £- + [DtU - (DtX)ux

-(DtT)ut] £ - + [DXV - (DxX)vx - (DxT)vt] | p

+ [DtV-(DtX)vt-(DtT)vt]jL

Here Dx and Dt are total derivatives with respect to x and t, respectively. Equations
(10) lead to a set of determining equations that enable us to find the functional forms of
f(u) and the generators X, T, U and V and consequently the desired transformations
can be derived.

We omit the calculations, which have been greatly facilitated by the computer alge-
braic package REDUCE [6]. The procedure for determining Lie point symmetries is well
explained in [3] and [14]. In the following analysis let I\ (i = 1,2,..., m) be m linearly
independent infinitesimal generators associated with an m-dimensional Lie infinitesimal
transformation group, that is,

The point symmetries for (2) can be summarised as follows.

C A S E 1. f(u) arbitrary. Here the system (2) admits a three-parameter Lie group when

N ^ 2 — M and a four-parameter one when N = 2 — M. The infinitesimal generators

are given by

(i) JV ? 2 - M, I \ = j t , T2 = £- and

(h) JV = 2 - M, M # o, r l f r2, r3, r4 - xl~MJL;

(hi) N = 2, M = O, r l t r2, r'3 = xinx^ + 2t^ + v^, r4 = * ^ .
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C A S E 2. / = e*u. In this case we obtain a four-parameter Lie group when N ^ 2 - M
and a five-parameter one when N = 2 - M, with infinitesimal generators

(i) J V ^ 2 - i i f , M / o , r l , r 8 , r , , r 8 = A t | - 1 - ^ , - 1 ;
(ii) N = 2 - M , M ± o, i \ , r2, r3, r4, r5;

(in) JV ^ 2, M = o, rx> r2, r3) r 5 = A * ^ - J ^ - i n z ^ ;

(iv) N = 2, M = o, rL) r2, r3l r4, r5.

CASE 3. / = p(u + q)n, where n ^ 0, -2. Here we have the following infinitesimal
generators in each subcase:

(i) N^2-M, M / 0 , Fu T2l r 3and

(ii) N = 2 - M, M ± o, r i , r2l r3) r4, r6i

(iii) N?2, M = 0, r1 ; T2, T3 and
, d d d
6 dt du dv'

(iv) /v = 2, M = o, r\, r2 ! r3) r4 j r6.

C A S E 4. f — p(u + q)~2- In this case we distinguish six different subcases:

(i) N^2-M, N^2 + 3M, M^0, Tu T2, T3, T6 (n = -2);

(ii) TV = 3M + 2, M / 0, Ti, T2, T3, T6 and

(iii) H = 2-M, M ^ 0, I \ , T,, Tj, T,, T, and

« = " ("+ s x ") s + ( U +

J?

u) |6pMi + M (w + -j
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where r) = v + {q/M)xM and y = ^(r],t) is an arbitrary solution of the
linear heat equation

(12j % 2 at ~ '
(iv) N # 2, M = o, r\, r2l r3, r j ;

(v) N = 2, M = o, Tx, r2) r3l r4l r6,

T'8 = -x\nx(v + q\nx) — + (u +q)[v+ lnx{u +2qj\ —

+ \2pt + q\nx(v + qlnx)]—,

T̂  =4pi2— -a;lnx[2pi + (T; + glna;)2l —
at L J aa;

+(u + g)[6pt + (u + glnx)2 + 2\nx(u + q){v + qlnx)j —

+ [q\nx{v + qxf + 2pt(2v + 3q In xj\ -^~

and Too (M=0), where T; = v+q In 2; and y = #(77, <) is an arbitrary solution
of the linear heat equation (12).

CASE 5. / = (s/(u2 +pu + q)) explr f (du)/(u2 +pu + q)], where p, q and r are arbi-
trary constants. In this final case we have the following results:

(i) N?2-M, ru r2, r3;

(ii) N = 2-M, M^O, Ti, T2, r3) T4 and

(13) r,0 = ra-^ + ( r - p ) . |

(iii) N = 2, M = 0, r\, r2) T'3, T4 and

r[0=vx + (rp)t^

Symmetries Fi - Fi0 project to point symmetries of (4) and symmetries Fi — F6

to point symmetries of (1), while symmetries F7 — Fio induce potential symmetries
admitted by (1).

Now we classify the point symmetries of the form (9) admitted by (5). Here, depend-
ing on the form of f(u), we have ten cases. Each case has a number of subcases depending
on the values of M and N. As before, we summarise the results without presenting any
calculations.
CASE 1. f(u) arbitrary. We have four different subcases:

+t^-+x^- + Mv— + (M-N + 2)v>%-,
at ox ov aw
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(ii) N = 2 - M, M ± o, r l f r2l r3, r4 j r5 = xl~M?--
ox

(iii) N = 2, M ? o, r l t r2) r3) r4 = ^ + i m ^ ;

(iv) JV = 2, M = 0, I \ , T2) r 3 = 2 ^ + x l n x ^ + ^ + 2 U ; | - ) r4) T5.

Symmetries I\ — F5 project to point symmetries for each of (1), (2), (4) and (6)-(8).

CASE 2. / = eAu. We have:

(i) N + 2 - M, N / 2 + M/2, M ^ 0, r l t T2, T3, T4 and

^ ^ ^

(ii) N = 2 + M/2, M ? 0, Tu T2, T3, T4, T6 and

T7 - ~2\xl-M'2i- + Mx-M'2^- - - (XM2w -
ox au 2 s-

+ 2\Mvx-M'2) | - + (2 In i + XMwxM<2)

(iii) N = 2 - M , M ^ o, r l t r2, r3, r4) rB, r6;

(iv) N ± 2, M = o, r,, r2) r3, r4 and r6 =

(v) iv = 2, M ^ O , rXl r2, r3 >r4 l r6;
(vi) N = 2, M = 0, Ti, r2> T3) T'4J r 5 and

4 | | |r = A 4 - | - | |
dt du dv dw

Symmetry IT̂  projects to a point symmetry for each of (1), (2), (4) and (6)-(8).

Symmetry F7 projects to a point symmetry of (1) and (6)-(8), while it induces a potential

symmetry admitted by (2) and a nonlocal symmetry admitted by (4).

CASE 3. / — p(u + q)n, n arbitrary. We have:

(i) TV ̂  2 + M, N # 2 - M, N # 2, M ± 0, r\, T2) T3, T4l T8 - nt%-
ot

-(u + q)~{y + (q/M)xM)^-(w + (q/M(M -N + 2))xM~N+2) | - ;

(ii) N = 2 - M, M ? o, rlt r2, rl, r4, r5> r8;
(iii) N = 2 + M, M ? o, rlf r2, r3, r4, r8 = nt- - {u + q)-^

-(v + (q/M)xM) ^-{™ + (q/M) In x) | ^ ;

(iv) /v / 2, M = o, ri, r2, r3, r4, rj - « t ^
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(v) N = 2, M ? 0, F j , F2, F3 l F4, F8;

(vi) W = 2, M = 0, r l f F2, F3, F4, F5, F™ = n*f- - (u + q)^-
at du

)2)
Symmetry F8 projects to a point symmetry for each of (1), (2), (4) and (6)-(8).

CASE 4. / = p(u + q)n, n = {SN - M - 6)/(M -2N + 4). We have:

N^2-M, N^2 + M, N^2, M ^ 0, I\, F2j F3, F4, F8

and

F9 = x3~N^- -(M-2N + 4)(« + q)x2~N^-
ox au

Symmetry Fg projects to a point symmetry of (1) and (6)-(8), while it induces a potential
symmetry admitted by (2) and a nonlocal symmetry admitted by (4). We note that in
the above subcase, if N = 2, M ^ 0, then n = - 1 (case 6), if N - 2 - M, M ^ 0, then
n = - 4 / 3 (case 5) and if N = 2 + M, M / 0, then n = - 2 (case 8). For the subcase
TV ^ 2, M = 0, we obtain the same symmetries as in case 3(iv) (n = -3 /2 ) .

CASE 5. / = p{u + g)n, n = - 4 / 3 . We have:

(i) N = 2 - M, M ? o, Fi, r2, r3, r4, r5, r8) r9;
(ii) N = 2,M = 0, r l f F 2 , F'3I F 4 J F 5 j F8" a n d

F9 = x(lnx)2- 3lnx(u + q)—+ \w-vlnx- -^(lni)2 | —
ox ou L 2 J ov

+ \nx \w- ^(lnx)2] —.
L 2 ] dw

CASE 6. / = p(u + g)n, n = - 1 . We have:

(i) N?2, N?2 + M, N?2-M, M?0,ru r2, F3, F4, p t | - - F8;

(ii) iv = 2 - M, M ± o, r l t r2, rs, r4, r8, pt-^ - r8;

(iii) iV = 2 + Af, M # 0, r l t F2, F3, F4, pt— - F'8;

(iv) N ? 2, M = o, r,, r2j r3, r4) pt^ - ri';

(v) N = 2, M£ 0, r,, F2> F3, F4, p i ^ - F8 and
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( + ){2 + Mlnx)—- (v + Mpt + qxMInx
au v(u + q){2 + Mlnx)

ox au

+ ±xM)?--(2pt + Mptlnx + -l-
M ) dv \ M

(vi) N = 2, M = o, rlt r2) r3, r4l r5, pt£- - r™.

Symmetry Tio projects to a point symmetry for each of (1), (2), (4) and (6)-(8).

C A S E 7. / = p{u + q)n, n = - 2 / 3 . We have:

(i) N?2,N?2-M,N?2+M,M*0,ru T2, T3> r4 , T8;

(h) N = 2 - M, M ? o, rlt r2, r3, r4) r5, r8 and

-H-+£•
TM

(ih) N = 2 + M, M / o, r l t r2, r3> r4) r8;
(iv) ^ , 4 2 ^ = 0 , ^ , r2, r3) r4> rg;

(v) N = 2, M^ o, rx, r2, r3 j r4, r8;
(vi) TV = 2, M = o, r i , r2, r3J r4, r5, r̂ " and

r'n = \w+'j-{\nx)2]x—-3{u + q)(v + qlnx)—- \qw+

Symmetry Fn projects to a point symmetry of (6) and (8) and induces a potential
symmetry admitted by (1) and (2), a nonlocal symmetry of (4) and a Lie-Backlund
symmetry of (7).

C A S E 8. / = p(u + q)n, n = -2. We have:

(i) N ± 2 + M, N / 2 - M, N # 2, M ± 0, r l f T2, T3, T4, r8;

(ii) N = 2 - M, M ± o, rlf r2, r3l r4, r5, r8 and

+ (« + ,) [&"(« + q) * M fv + i l " ) ] I;

- 2"M'} k'} k
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and

(14) 1 loo — 2- ^nT. (U + q) i*nn"^ Q^nTi H \^^n r )-z ,
OX OU OV OW

where r\ = v + (q/M)xM and y = F(t, rj) satisfies (12);

(in) iv = 2 + M,M^o,r 1 , r2, r3, r4, r8,

rls = - , - « [2 (, + i I ) + ^ ( . +

(« + «) [2i"(« + 9) - M (» + 1 ^ ) ] I ;

and

(15)

where £ = w + (v/M)x~M + {q/M) \nx + (q/M2) and z = F(f, 0 satisfies
the linear equation

p d2z pdz dz

Wde ~~q"dl ~ ~di = '
(iv) N = 2, M ± o, rx, r2) r3, r4, r8;

(v) N = 2, M = o, i\, r2, r3, r4, r5, rj,

pi — T \ (ID 4. —l\r\ -ri2 I — 9 In r(ii1 12 — x I I w + 2 *• ^ J ^

+(u + g) [2 In x(u + g) + (v + q In x)] ^~

- \q( t u + - ( l nx ) 1 - 2glnx(t; + glna;) - 2pd —-

— In a; g I u; + - (In x)2 I + (D + g In 1) (t) — g In x) — 2pt -̂ —
L V 2 / J aw

and Fioo, where 77 = v + qlnx and y = F(t,r]), satisfies (12).

Symmetries Fi2 and Fi3 project to point symmetries of (6) and induce potential
symmetries admitted by (1) and (2), nonlocal symmetries admitted by (4), Lie-Backlund
symmetries of (7) and Lie-Backlund symmetries equivalent to contact symmetries of (8).

CASE 9. / = s/{u2 +pu + q). We have:

(i) N £ 2 - M, Fi, F2, F3, F4;
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(ii) N = 2-M, M ? o, ru r2, r3, r4l r5 and

F;
14 = z ( 2 u + p l n z ) — -2(u2+pu + q) —

(iii) iv = 2, M = o, r l s r2, r, , r4, r 5 and

) — -2(u2+pu + q)

-(pv + qlnx)— + (v2 - 2st - q{lnx)2) —.
ov v ' aiu

Symmetry Fx4 projects to a point symmetry of (2), (4) and (6) and induces a potential
symmetry admitted by (1), a Lie-Backlund symmetry admitted by (7) and a contact
symmetry of (8).

CASE 10. / = [s/{u2 + pu +qf)exp[r f {du)/(u2+pu +qj\, r ^ 0. We have:

(i) N^2-M, rlf r2, r3l r4j

(ii) N = 2 - M, M / 0, I \ , T2, r s , r4 , r 5 and

(16) +

(iii) N = 2, M = o, r\, r2, r3, r4, r5 and

T'i5 = {r - P + 4 ) t ^ + («i + 2a; In x) —

-(u2 +pu + q)— + {2v -pv-q\nx) —v 'au ov
i A

+- \8w - 2pw + v2 - q{lnx)2] —.

We note that if r = 0 then F15 = F3 and F'15 = T'3. Symmetry Fi5 projects to a point
symmetry of (2), (4) and (6) and induces a potential symmetry admitted by (1), a Lie-
Backlund symmetry admitted by (7) and a contact symmetry of (8).

3. SIMILARITY SOLUTIONS

As in the case of point symmetries, potential symmetries may be used to derive
similarity transformations (solutions). Such transformations reduce by one the number
of independent variables of a system of partial differential equations. We present two
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examples of similarity solutions which are obtained using potential symmetries. In the
first, we use a potential symmetry of (1) derived using (2) and in the second we use a
potential symmetry obtained using (5). Similarly, any symmetry which was obtained in
the previous section may be employed to derive similarity solutions.

We consider the point symmetry Fio (13) of (2) (potential symmetry of (1)) with
/ = (s/(u2 + g2)) expjrtan"1 ("/?)] and N = 2 - M, M ^ 0. The corresponding
invariant surface conditions are

vxl~Mux + qrtut + u2 + q2 - 0,
2

vx1~Mvx + qrtvt + j^xM = 0,

which admit the three integrals

Cl=v2 + ^-x2M, c2 = lnt + rtan-1 (-
M2 \q

(
q \r

From the above relations we derive the similarity solutions

(17) u = q tan \F2(T]) - - \nt] , v = F^TJ) cos [7? + - In t] ,

L r J L r J

where 77 is the similarity variable and is defined implicitly by

(18) F1(77)sin

Substitution of (17) into (2) provides

(19) ^ =

where the independent variable 77 is defined by (18). Employing the solution of (19),
(18) and the first relation in (17) will produce a similarity solution of (1) with / —
(s/(u2 + q2)) expfrtan-1 (u/q)], N = 2-M.

It was pointed out in [13] that a wider class of similarity solutions may be obtained
by the direct introduction of (17) in (1). We can therefore substitute the first relation in
(17) into (1). In this way, we obtain a relation involving 77, i<\, F2, derivatives of F\, F2

and t which appears as a parameter. That this relation is identically zero for any value
of the parameter t leads to the system of ordinary differential equations

(f̂ iY , ,
\dq J ~*~' \' dq \dq ) ' dq dq2 dq dq2

^ sin2 (F2 + 77) exp (rF2) = 0,
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- 2 ^ ^ ] cos2 (F2 + rj) exp (rF2) = 0,

2dFx 2dFxdF2] (dFA3
 2
3
 2
cot

- 2 [j? + * ? ^ ] tan (F2+ .,)=<>,
3

As pointed out in [13], the solution of this system will also contain that of (19).

In the second example we consider the point symmetry Fi5 (16) of (5) (potential

symmetry of (1)) which is in the second part of (10). The corresponding invariant surface

conditions are

which admit the integrals

C = In t - T—^ 1" ( M V + q2x2M),

r2 + 4 _. / Mw \
C l = l n t + — — t a n —r- ,

T

c2 = In t + -
+ 4 _ / u \

tan"1 I - I ,
r \qj

c3 = lnf - ^ t ^ l n (a:Mt; - 2Mto) .

From these integrals we obtain the similarity solutions

u = q tan[F2{T]) - rx In<], u = -^2;M tan[FX(77) - n In t],

(20) w = ^x™ t an^fo) - r,lnt] - ^ ^ ^ W ,

where the similarity variable is defined implicitly by
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where rY = r/(r2 + 4) and r2 - 4/(r2 + 4).

Substitution of (20) into (5) provides

drj dr) M dr]
rf + qrr2F3 + 2sMexp (rF2) - 0.

Direct introduction of (20) into (1) reduces the latter to a complicated system of six
ordinary differential equations.

4. NON-INVERTIBLE MAPPINGS

In [3] it is shown that an invertible mapping which transforms a non-linear PDE into
a linear PDE does not exist if the nonlinear PDE does not admit an infinite-parameter
Lie group of contact transformations. Also such mappings do not exist for a non-linear
system of PDEs if the system does not admit an infinite-parameter Lie group of trans-
formations. If such infinite-parameter groups exist then the non-linear PDE (or system
of non-linear PDEs) can be transformed into a linear PDE (or system of linear PDEs)
provided that these groups satisfy certain criteria [3].

Equation (1) does not admit an infinite-parameter Lie group of contact transforma-
tions [16]. But as we have seen in Section 2, its auxiliary system, given by (2) admits
an infinite-parameter Lie group of point transformations in the cases 4(iii) and 4(iv)
(11). Similarly, the auxiliary system (5) admits an infinite-parameter Lie group of point
transformations in the cases 8(ii), 8(v) (14) and 8(iii) (15). In these cases the infinitesi-
mal generators satisfy the criteria required [3] so that the auxiliary systems (2) and (5)
can be linearised by invertible mappings. In turn, these mappings lead to non-invertible
mappings of (1).

The procedure for determining such invertible mappings is well explained in [3]. The
infinite symmetry given by (11) leads to the invertible mapping

M ' M u + q'

which transforms any solution \u'(x',t'),v'(x',f)j of the linear system of PDEs

(21) U'X,=V', U't,:

to a solution (u(x,t),v(x,t)j of the non-linear system (2) (with / — p(u + q)~2 and
N = 2 — M, tf/0) and hence to a solution u(x,t) of (1). Similarly, it can be shown
that the invertible mapping

x' = v + q In x, if = t, u' = In x, v' =
u + q
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transforms the linear system (21) into the nonlinear system (2) (with / = p(u + g)~2and
N = 2, M = 0).

Finally, we employ the appropriate symmetries of the system (5) to derive invertible
mappings. Hence, from the infinite symmetry (14) we deduce the mapping

M ' ' 2q ' ~ M ' u + q

which transforms the linear system

(22) u'x, - v', v'x, = w', u't, =pw'

into the nonlinear system (5) (with / = p{u+ q)~2 and N = 2 - M, M / 0). Similarly,
it can be shown that the invertible mapping

x' = v + qlnx, t' = t, u' = —w — —v2, v' — lnx, w' =
2q u + q

transforms the linear system (22) into the nonlinear system (5) (with / = p(u + q)~2 and

Symmetry (15) leads us to the mapping

/ " — M 1 9

i ! ( 9 M\ I * M i MxM

~ ~M V ~MX ) ' V ~ ~MX ' W ~ u + q'

which transforms the linear system

u'xi = v', v'i = w', u',i — —TW' v'

M2 q

into the nonlinear system (5) (with / = p(u + q)~2 and N — 2 + M, M ^ 0).
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