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Transport phenomena in high Reynolds number wall-bounded stratified flows are
dominated by the interplay between the turbulence structures generated at the wall and the
buoyancy-induced large-scale waves populating the channel core. In this study, we want to
investigate the flow physics of wall-bounded stratified turbulence at relatively high shear
Reynolds number Reτ and for mild to moderate stratification level – quantified here by the
shear Richardson number varying in the range 0 � Riτ � 300. By increasing stratification,
active turbulence is sustained only in the near-wall region, whereas intermittent turbulence,
modulated by the presence of non-turbulent wavy structures (internal gravity waves), is
observed at the channel core. In such conditions, the wall-normal transport of momentum
and heat is considerably reduced compared with the case of non-stratified turbulence.
A careful characterization of the flow-field statistics shows that, despite temperature
and wall-normal velocity fluctuations being very large at the channel centre, the mean
value of their product – the buoyancy flux – vanishes for Riτ � 200. We show that this
behaviour is due to the presence of a ∼ π/2 phase delay between the temperature and
the wall-normal velocity signals: when wall-normal velocity fluctuations are large (in
magnitude), temperature fluctuations are almost zero, and vice versa. This constitutes a
blockage effect to the wall-normal exchange of energy. In addition, we show that the
friction factor scales as Cf ∼ Ri−1/3

τ , and we propose a new scaling for the Nusselt number,
Nu · Re−2/3

τ ∼ Ri−1/3
τ . These scaling laws, which seem to be robust over the explored range

of parameters, complement and extend previous experimental and numerical data, and are
expected to help the development of improved models and parametrizations of stratified
flows at large Reτ .

Key words: stratified turbulence

† Email address for correspondence: alfredo.soldati@tuwien.ac.at

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 945 A3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

51
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:alfredo.soldati@tuwien.ac.at
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.514&domain=pdf
https://doi.org/10.1017/jfm.2022.514


F. Zonta, P. Hadi Sichani and A. Soldati

1. Introduction

A turbulent channel flow heated from the top and cooled from the bottom – so that
warm and thus lighter fluid overlays cold and thus heavier fluid – is called stably
stratified-turbulent channel flow. This flow is subject to a vertical (wall-normal) buoyancy
force that, interacting with turbulence, can strongly change momentum, energy and mass
transport. The complex physics of wall-bounded stably stratified turbulence is governed
by the interplay between inertial and buoyancy forces, flavoured also by the presence of
viscous forces and thermal diffusion. This interplay is commonly quantified in terms of
three main dimensionless numbers: the Reynolds number Re – the ratio of inertial to
viscous forces – the Richardson number Ri – the ratio of buoyancy to inertial forces –
and the Prandtl number Pr – the ratio of momentum to thermal diffusivities. The study
of stably stratified turbulence in the presence of boundaries is of great importance in a
number of industrial processes, from energy supply/removal in heat transfer equipment to
chemical/nuclear reactors (Dostal, Hejzlar & Driscoll 2006; Pitla et al. 2006), but it has
also significance in a number of environmental flows, including for example the dynamics
of the nocturnal atmospheric boundary layer (Mahrt 2014), or the motion of organic matter
in terrestrial water bodies (LaCasce & Bower 2000; Lovecchio, Zonta & Soldati 2014).

Since the first works of Monin & Obukhov (1954) and Bolgiano (1959), which
were motivated by the study of the atmospheric boundary layer, a number of field
measurements, experiments, simulations and theoretical models have been developed
(we refer the reader to Fernando (1991), Zonta & Soldati (2018) and Caulfield (2021),
for a more complete overview on the topic) with the main purpose of inferring
flow stability properties and suitable scaling laws for the relevant global quantities
(i.e. energy/momentum fluxes, length scales, mixing efficiency) as a function of the
observed/imposed stratification. Reportedly, detailed experimental measurements of
stratified flows, in particular in proximity of a wall, are extremely challenging and
difficult to realize when non-optical techniques are employed (Arya 1975; Komori et al.
1983; Ohya, Neff & Meroney 1997). Yet, accurate measurements by optical techniques
have become available recently (Williams et al. 2017), and have contributed a lot to
the advancement in the field, although their accuracy in the near-wall region remains
problematic.

In this context, numerical simulations – granting access to the entire velocity and
temperature field down to the region very close to the wall – have emerged as a valuable
tool to understand and characterize the local as well as the global structure of the flow. It is
therefore not surprising that large eddy simulations and direct numerical simulations (LES
and DNS) of thermally stratified channel turbulence have been performed more and more
frequently in the last twenty years. Among the first numerical studies of wall-bounded
stratified flows, Garg et al. (2000) employed wall-resolved LES to compute the dynamics
of incompressible stratified turbulence in both closed and open channel flow configurations
at a constant Reynolds and Prandtl numbers (Reτ = 180 and Pr = 0.71) but at different
Richardson number Riτ (i.e. different stratification levels). Note that the subscript τ

indicates parameters expressed in wall units, i.e. using the shear velocity uτ as reference
velocity. Based on the value of Riτ , the flow was divided into a buoyancy-affected flow
(Riτ < 30, characterized by general turbulence attenuation), a buoyancy-controlled flow
(30 < Riτ < 45, with the possibility of transient and local flow relaminarization) and
a buoyancy-dominated flow (Riτ > 45, with a complete flow relaminarization). Similar
trends, showing the occurrence of local flow laminarization, were observed by Iida, Kasagi
& Nagano (2002) in their DNS of stratified channel turbulence at similar Reynolds and
Richardson numbers (Reτ = 150, Riτ � 40). As discussed by Armenio & Sarkar (2002),
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such findings were, however, in contrast with the linear stability analysis of Gage & Reid
(1968) that, compared with the results of Garg et al. (2000) and Iida et al. (2002), predicted
a complete flow laminarization to occur only at much higher values of Riτ . A clearcut
explanation of this inconsistency was given only later (Moestam & Davidson 2005;
García-Villalba & del Álamo 2011). In particular, performing DNS of stratified channel
turbulence up to Reτ = 550 and Riτ = 960, and employing large computational domains,
García-Villalba & del Álamo (2011) were able to show that the local flow laminarization
at subcritical values of Riτ occurs when the computational domain is not large enough
to contain the minimal flow unit required to sustain turbulence. In such an instance,
laminar patches appear, increase in size and become as large as the entire computational
domain, hence making a back transition to turbulence – which would be observed in larger
computational domains – not possible.

All previous studies were particularly important since they demonstrated not only that
the overall momentum and heat transfer rates are reduced for increasing stratification, but
also that the structure of wall-bounded turbulence can be selectively modified. The current
state of DNS research in the field of stably stratified channel turbulence is summarized in
the (Reτ , Riτ ) phase space diagram shown in figure 1 (adapted from Zonta & Soldati
2018). The black solid line represents the boundary ideally separating the laminar region
(above the curve), from the turbulent one (below the curve). This curve, which has been
obtained by best fit of the data reported in Gage & Reid (1968), should not be taken as
a sharp boundary between two regimes, but more likely as a blurry transition region in
which the flow is expected to (gradually) change behaviour from turbulent to laminar flow.
There is indeed strong evidence that, when the marginal stability curve is approached,
the flow becomes intermittent (stratification is so strong that laminar patches appear
in the near wall region, although the mean flow is still able to sustain turbulence, see
García-Villalba & del Álamo 2011; Brethouwer, Duguet & Schlatter 2012). The symbols
below the curve represent previous DNS (Iida et al. 2002; Moestam & Davidson 2005;
Yeo, Kim & Lee 2009; García-Villalba & del Álamo 2011; Zonta, Onorato & Soldati
2012b), which reach a maximum Reynolds number Reτ = 550. Simulations at a larger
Reynolds number were performed more recently by other authors (Deusebio, Caulfield &
Taylor 2015; Williamson et al. 2015; He 2016), but in different flow configurations (i.e.
Couette flow or open channel). For weakly to moderate stratification, buoyancy-driven
wave-like motions (internal gravity waves, IGWs) appear at the channel core and coexist
with classical near-wall turbulence (see inset ‘Flow 1’ below the curve highlighting the
presence of IGW via visualization of temperature contours on a longitudinal section of the
channel). In this case, statistics still scale well in wall units. As already mentioned, when
stratification is increased so as to approach the marginal stability curve, the situations
is more complicated, since buoyancy is able to influence not only the flow region far
from the boundary, but also the region close to it. This generally leads to the collapse
of near-wall turbulence and to the corresponding appearance of laminar patches. For very
strong stratification – stronger than the critical strength dictated by the marginal stability
curve – the flow becomes laminar (see inset ‘Flow 2’ above the curve, showing a complete
laminarization of the flow).

With the final aim of assessing the current physical description and corresponding
parametrizations of stratified wall-bounded turbulence at high Reynolds numbers, we
perform a series of DNS of stably stratified channel flow at Reτ = 1000, i.e. well beyond
the current state-of-the art limit of Reτ = 550 (see figure 1), and for 0 � Riτ = 300.
Computations at high Reynolds number are crucial in this field, given the lack of
indications that results obtained by low Reynolds number simulations can be upscaled
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Figure 1. Comprehensive sketch of the (Reτ –Riτ ) diagram for stratified turbulence in closed channels (adapted
from Zonta & Soldati 2018). Circles represent the critical Riτ,cr (marginal stability curve) obtained from the
linear stability analysis of Gage & Reid (1968), and properly rearranged to fit for the present parameter space.
The proposed parametrization of the marginal stability curve (solid line) is: log(Riτ,cr) = m × [log(Reτ )]b +
n × [log(Reτ ) − d]a + c, where the value of the parameters is a = −0.1843, b = 1.047, c = 1.914, d = 1.927,
m = 1.651 and n = −2.204 (Zonta & Soldati 2018). The symbols below the curve – in the range 0 � Reτ �
550 – represent previous DNS found in the literature (Iida et al. 2002; Moestam & Davidson 2005; Yeo et al.
2009; García-Villalba & del Álamo 2011; Zonta et al. 2012b). The simulations performed in this work are
indicated by the filled squares (�). The two insets, labelled Flow 1 and Flow 2, are used to visualize the typical
flow structure (temperature contours) in the stratified-turbulence region (Flow 1) and in the strongly stratified
laminar region (Flow 2).

to the scale of real phenomena, especially in environmental and large-scale industrial
applications. The present study represents a first effort in this direction: the detailed
dataset produced by the present computationally intensive simulations at high Reτ , can
definitely help LES and Reynolds-averaged Navier–Stokes simulations to develop reliable
subgrid-scale and turbulence closure models that properly account for buoyancy effects in
realistic applications.

The paper is built as follows. In § 2 we describe the governing equations and the
numerical method employed to run the simulations. In § 3, building on top of a detailed
analysis of the flow-field structure and statistics, we characterize IGWs from a qualitative
and quantitative viewpoint, we discuss the influence of stratification on the wall-normal
transport of momentum and heat and we present possible parametrizations and scaling
laws for the friction factor and for the Nusselt number. Conclusions are finally drawn
in § 4.

2. Methodology

We consider a stably stratified-turbulent flow inside a horizontal straight channel. The
origin of the coordinate system is located at the centre of the channel and the x-, y- and
z-axes point in the streamwise, spanwise and wall-normal directions, respectively. A stable
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stratification in the wall-normal direction z is maintained by keeping a positive temperature
difference �T = Tt − Tb between the top (fixed temperature Tt) and the bottom (fixed
temperature Tb) walls. At the same time, the flow is driven along the streamwise direction
x by an imposed mean pressure gradient. Conservation of mass, momentum and energy,
written in dimensionless form and under the Oberbeck–Boussinesq approximation, is

∇ · u = 0, (2.1)

∂u
∂t

+ (u · ∇)u = −∇p′ + 1
Reτ

∇2u + Riτ θδi,3 + δ1,i, (2.2)

∂θ

∂t
+ (u · ∇)θ = 1

Reτ Pr
∇2θ, (2.3)

where u is the velocity vector, p′ is the fluctuating kinematic pressure, θ = (T −
Tref )/(�T/2) is temperature and δ1,i is the mean pressure gradient that drives the flow
in the streamwise direction only (note that δi,j = 1 if i = j, while δi,j = 0 if i /= j).
Equations (2.1)–(2.3) have been obtained using the half-channel height h as reference
length, the centreline temperature Tref = (Tt + Tb)/2 as reference temperature and the
shear velocity uτ = √

τw/ρ as reference velocity – with τw the shear stress at the
wall. Superscripts, which will be used throughout the paper to indicate dimensionless
variables, are omitted in (2.1)–(2.3) for ease of notation. The three main parameters of
the flow are the shear Reynolds number Reτ = ρuτ h/μ, the shear Richardson number
Riτ = β(�T/2)gh/u2

τ and the Prandtl number Pr = μcp/λ. The acceleration due to
gravity is g. Fluid density ρ, viscosity μ, thermal conductivity λ, specific heat cp and
thermal expansion coefficient β are all evaluated at the reference temperature Tref . Present
simulations are run at fixed Reynolds and Prandtl number (Reτ = 1000 and Pr = 0.71)
but at different values of the Richardson number Riτ = 50, 100, 200, 300. A reference
simulation at Riτ = 0 (neutrally buoyant) is also performed. From a physical point of view,
the simulation set-up can represent the flow of air inside a channel of height 2h ∼ 1.5 m at
a reference bulk Reynolds number Reb = ρubh/μ = 2 × 104 and subject to a wall-to-wall
temperature difference up to ≈10 K.

The initial conditions for the simulations have been prescribed following the strategy
already used in previous investigations (Armenio & Sarkar 2002; García-Villalba & del
Álamo 2011). First, we run the preliminary case of the turbulent channel flow at Reτ =
1000 and Riτ = 0 (temperature is a passive scalar), until we converge to a statistically
steady state. Then, we use one of the last flow fields of the case at Riτ = 0 as initial
condition for the simulation at Riτ = 50, which we run until convergence to a new
statistically steady state. Similarly, we use one of the last flow fields of the simulation at
Riτ = 50 as initial condition for simulation at Riτ = 100, and so on with the other cases.
A comprehensive overview of the most important parameters of the simulations is
provided in table 1. Note that the size of the computational domain and the spatial
resolution, reported in table 1, have been chosen to fulfil the requirements imposed by
the DNS. In particular, we explicitly compare the employed grid resolution with the
minimum value of the Kolmogorov length scale (occurring at the wall) – computed as
ηk = (ν3/ε)1/4, with ε the turbulent kinetic energy dissipation and ν = μ/ρ the kinematic
viscosity – with the grid spacing. Also listed in table 1 is the value of the key response
parameters in stratified turbulence, the Nusselt number Nu = 2qwh/(λ�T), with qw the
heat flux at the wall. A thorough discussion on the behaviour of Nu, and of other important
macroscopic parameters, will be given in § 3.5.
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Simulation Riτ Reb Nu Grid points �x+ �y+ �z+
w �z+

c η+
k,w

S0 0 19 940 28.15 1024 × 1024 × 1025 12.2 6.1 0.004 3.1 1.4
S50 50 22 800 9.56 1024 × 1024 × 1025 12.2 6.1 0.004 3.1 1.4
S100 100 24 040 6.81 1024 × 1024 × 1025 12.2 6.1 0.004 3.1 1.4
S200 200 26 320 5.27 1024 × 1024 × 1025 12.2 6.1 0.004 3.1 1.4
S300 300 28 300 4.64 1024 × 1024 × 1025 12.2 6.1 0.004 3.1 1.4

Table 1. Stably stratified channel turbulence at Reτ = 1000 and Pr = 0.71: summary of the simulation
parameters. For all simulations, the size of the computational domain is 4πh × 2πh × 2h along x, y and z,
respectively. The grid resolution, �x+, �y+ and �z+, is expressed in wall units. While the grid resolution is
constant along x and y, it does change in the wall-normal direction from a minimum value close to the wall
(�z+

w ) to a maximum value at the channel centre (�z+
c ). The value of the Kolmogorov scale at the wall, η+

k,w,
is also given.

The governing equations are discretized using a pseudo-spectral method based on
transforming the field variables into wavenumber space, through Fourier representations
for the periodic (homogeneous) directions x and y, and Chebyshev representation for
the wall-normal (non-homogeneous) direction z. Periodicity along x and y is assumed
for both velocity and temperature, while no-slip velocity and imposed-temperature
conditions are assumed at the two walls. Time advancement is achieved using an
implicit Crank–Nicolson scheme for the diffusive terms and an explicit Adams–Bashforth
scheme for the convective/nonlinear terms. As customarily done in pseudo-spectral
methods, convective/nonlinear terms are computed in physical space and then transformed
to wavenumber space using a dealiasing procedure (2/3 rule). Further details on the
numerical method can be found in Zonta, Marchioli & Soldati (2012a), Zonta et al. (2012b)
and Zonta & Soldati (2014).

3. Results

3.1. Qualitative behaviour of the flow structure
We look first at the qualitative structure of the flow, focusing in particular on the
instantaneous temperature distribution θ on a (y − z) cross-section of the channel located
at x = Lx/2. Results, which are shown in figure 2 for Riτ = 0 (panel a, neutrally buoyant
case) and for Riτ = 300 (panel b, stably stratified case), will be conveniently discussed
by keeping the neutrally buoyant case (Riτ = 0, figure 2a) as reference. For Riτ = 0,
temperature is a passive scalar and, as such, it is purely transported by velocity. Vortical
structures rising from the boundaries are therefore free to travel over long distances,
since they are only bounded by the physical constraint imposed by the walls. Under the
action of these vortical structures, a fluid particle with a given temperature is brought to a
region with a different temperature, where it thermalizes by diffusion (see figure 2a). This
naturally gives a high degree of mixing. For Riτ = 300, the situation is different. While
vortical structures are still dominating the near-wall region, their influence away from the
boundary appears limited. The reason is that vortical structures are in this case subject
to an additional vertical (i.e. in the wall-normal direction) constraint imposed by gravity,
which reduces their range of influence to approximately half of the channel height (this
is rather clear upon comparison of figure 2a,b). As a consequence, the channel results
divided into a top, hot part, and a bottom, cold part (figure 2b). These two parts behave
almost independently each other, and are separated by IGWs (streaky structure developing
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Figure 2. Contour maps of temperature, θ , on a ( y–z) cross-section located at x = Lx/2. (a) Refers to the
neutrally buoyant case, Riτ = 0 and (b) refers to the stably stratified case at Riτ = 300.

at the channel centre). The physics of IGWs is simple: because of the background density
profile – with density decreasing with height – a fluid particle that is displaced in the
wall-normal direction by velocity fluctuations is subject to a restoring buoyancy force
that tends to bring it back to its initial position. The fluid particle trespasses its initial
equilibrium position and overshoots inertially, giving rise to an oscillation that constitutes
the essence of IGWs. We anticipate here, but it will become clear by looking at the fluid
statistics in the next paragraphs, that IGWs appear inside a thermocline – i.e. a region
where temperature changes much more than it does above and below it, hence representing
a sort of thick interface that hinders the wall-normal transfer of momentum and heat. Due
to their importance in the dynamics of stably stratified flows, IGWs have been analysed in
detail in a number of previous studies (we refer the reader to Staquet & Sommeria (2002),
for a comprehensive review on the topic). IGWs will be further characterized from a more
quantitative and qualitative viewpoint in § 3.4.

To appreciate the different flow structure induced by the stable stratification, we
now turn our attention to the distribution of temperature θ and axial velocity ux on a
longitudinal (x–z) plane located at y = Ly/2. Results are shown in figure 3: panel (a) and
panel (b) refer to Riτ = 0 (temperature and axial velocity, respectively), while panel (c) and
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panel (d) refer to Riτ = 300 (temperature and axial velocity, respectively). The flow moves
from left to right. As expected, for Riτ = 0, temperature (figure 3a) – which is a passive
scalar – is efficiently mixed throughout the entire height of the channel by the dominant
vortical structures. The flow (figure 3b) appears organized into taller vortices which are
emitted from the wall and contain ensembles of smaller-scale vortices. The wall-normal
extension of these taller vortices scales with the channel height ∼2h. For Riτ = 300, on the
other hand, the situation is controlled by the presence of IGWs, which – as clearly visible in
both the temperature and velocity maps – dominate the central region of the channel. The
presence of these structures naturally modifies the entire dynamics of the flow, inducing an
extra confinement to the wall-normal development of vortices, and reducing at the same
time their capability of effectively mixing the flow. As a side observation, we note that
the temperature field in the proximity of the channel centre appears stretched and tilted at
an angle with respect to the horizontal direction. This is due to the presence of a strong
vertical shear in that region.

3.2. Velocity and temperature statistics
We now characterize the flow from a statistical viewpoint. Unless differently stated, all
results will be presented in wall units (denoted by superscript +), obtained normalizing
velocities by uτ , lengths by lτ = ν/uτ , times by tτ = ν/u2

τ and temperatures by θτ =
qw/uτ . In figure 4 we show the behaviour of the mean streamwise velocity 〈u+

x 〉 as a
function of the wall-normal coordinate, in linear (figure 4a) and semilog (figure 4b) scale.
Brackets indicate time and space average over the homogeneous directions. Results are
rendered according to the following colour code: blue (up-triangle) refers to the neutrally
buoyant case (Riτ = 0), yellow (down-triangle) refers to Riτ = 50, green (square) refers
to Riτ = 100, purple (diamond) refers to Riτ = 200 and red (circle) refers to Riτ = 300.
The law of the wall, 〈u+

x 〉 = z+, and 〈u+
x 〉 = (1/κ) log(z+) + 5.5, with κ the von Kármán

constant, is also shown in figure 4(b) by a solid line. As expected (see in particular
figure 4b), in the neutrally buoyant case the mean velocity closely follows the law of
the wall, since temperature is a passive scalar that does not influence the velocity field.
In the stably stratified cases, we observe an increase of the mean axial velocity, which is
particularly pronounced in the core part of the channel (see both figure 4a,b), as the shape
of the velocity profile deviates significantly from the classical logarithmic behaviour and
approaches a nearly laminar, parabolic shape (García-Villalba & del Álamo 2011). This
tendency towards a laminarization in the core part of channel is due to the conversion of
turbulent kinetic into potential energy, which occurs when a fluid particle moves in the
wall-normal direction within the flow. Note also that, since the mean pressure gradient is
kept constant among the different simulations, the mean wall stress remains constant, and
so does the slope of the velocity at the wall, with all profiles collapsing onto that of the
neutrally buoyant case (z+/h+ < 0.1).

As shown in figure 5, stratification modifies the behaviour of the mean temperature
field 〈θ〉, which takes a layered structure formed by a near-wall layer (0 < z+/h+ < 0.1),
a transition layer (0.1 < z+/h+ < 0.8) and a core layer (0.8 < z+/h+ < 1). Note that
temperature in figure 5(a) is shown in outer units, i.e. not rescaled in wall units. Compared
with the neutrally buoyant case, stratification reduces the mean temperature gradient in
the near-wall layer (i.e. it reduces the Nusselt number), while at the same time increasing
it in the core layer. This latter observation is of particular importance, since it indicates
the tendency for turbulent stratified channel flows to develop a kind of thick interface
– the thermocline – inside which the temperature changes more vigorously than it does
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Figure 3. Contour maps of temperature θ (a,c) and streamwise velocity ux (b,d) on a (x–z) longitudinal section
located at y = Ly/2. (a,b) Refer to the neutrally buoyant case, Riτ = 0 and (c,d) refer to the stably stratified
case at Riτ = 300. The temperature tilting induced by the vertical shear at the channel centre is also explicitly
indicated (c).

immediately above and below. The thermocline, which forms right where the mean shear
vanishes, constitutes a barrier for wall-normal momentum and heat transport. Reportedly
(Ferziger, Koseff & Monismith 2002; García-Villalba & del Álamo 2011; Zonta et al.
2012b; Zonta & Soldati 2018), there is a strong connection between the presence of a
thermocline and the presence of IGWs (which, as discussed in § 3.1, occur at the channel
centre), in the sense that IGWs develop where a thermocline exists. Interestingly, the
temperature gradient in the core region of the channel does not increase monotonically
for increasing Riτ : it first increases (going from Riτ = 0 to Riτ = 100), and then reduces
(going from Riτ = 100 to Riτ = 300). We anticipate here, but we will come back to
it later, that this non-monotonic trend of the temperature profile at the channel centre
can be explained by looking at the intertwined behaviour of the turbulent (or buoyancy)
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Figure 4. Mean fluid streamwise velocity 〈u+
x 〉 as a function of the wall-normal direction, z+, in linear (a) and

semilog scale (b) for the different cases considered in the present study. Comparison between the reference
case of unstratified turbulence (Riτ = 0), and the stratified turbulence at Riτ = 50, Riτ = 100, Riτ = 200 and
Riτ = 300 (filled symbols). The classical law of the wall 〈u+

x 〉 = z+ and 〈u+
x 〉 = (1/κ) log(z+) + 5.5, with κ

the von Kármán constant, is also shown for comparison in (b) (solid line).

and diffusive fluxes. In the transition layer, between the near-wall and the core layers,
the temperature gradient remains small, as the flow is characterized by a higher degree
of mixing. Not surprisingly, when rescaled in wall units, i.e. by keeping the friction
temperature θτ = qw/(ρcpuτ ) as reference, the mean temperature profile Θ+ = (θ −
θw)/θτ recovers a monotonic behaviour (figure 5b). This is particularly visible in the inset
of figure 5(b), where a close-up view of the mean temperature profile in the core region of
the channel is given. Note also that, for the neutrally buoyant case, and similarly to what
happens for the streamwise velocity 〈u+

x 〉, the behaviour of Θ+ can be parameterized by
Θ+ = Pr · z+, in the boundary layer, and by Θ+ = 2.3 log(z+) + 3.11, in the core region
(see Alcántara-Ávila et al. 2021).
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Figure 5. Mean fluid temperature 〈θ〉 in linear (a) and log (b) scale as a function of the wall-normal distance
expressed in wall units, z+. Comparison between the reference case of unstratified turbulence (Riτ = 0), and
the stratified turbulence at Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300 (filled symbols). The correlation
〈Θ+〉 = Pr · z+ and 〈Θ+〉 = (1/κ) log(z+) + Bθ , with coefficients κθ = 0.436 and Bθ = 3.11 taken from
Alcántara-Ávila, Hoyas & Jezabel Pérez-Quiles (2021), is also shown for comparison (solid line, b). A close-up
view of the mean temperature in the core region of the channel is offered in (b) for clarity.

To evaluate the influence of stratification on turbulence, we now look at the root mean
square of the streamwise 〈u′+

x,rms〉, spanwise 〈u′+
y,rms〉 and wall-normal 〈u′+

z,rms〉 velocity
fluctuations, and at the root mean square of temperature fluctuations 〈Θ ′+

rms〉. Results,
which are presented in figure 6, clearly show that all velocity and temperature fluctuations
are essentially unaffected by stratification in the near-wall region (z+/h+ < 0.1), where
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they recover the behaviour of canonical near-wall turbulence. Farther from the wall,
in the region 0.3 < z+/h+ < 0.8, 〈u′+

x,rms〉 decreases first and increases later compared
with the neutrally buoyant case, while the opposite behaviour – increasing first and
decreasing later – is observed for 〈u′+

z,rms〉. Note that the cross-over between the profiles of
stratified and neutrally buoyant turbulence occurs around z+/h+ 	 0.5, and is somehow
influenced by Riτ . In contrast, 〈u′+

y,rms〉 is characterized by a clear increase that – provided
Riτ > 0 – seems independent of the value of Riτ . This behaviour, and in particular the
increase of 〈u′+

x,rms〉 and 〈u′+
y,rms〉, is associated with the increase of velocity gradient (see

also figure 7(a) and the discussion therein) in that region, which enhances turbulence
production, while the corresponding decrease of 〈u′+

z,rms〉 is due to the conversion of
turbulent kinetic energy (in the vertical direction) into potential energy. In the core region
of the channel, z+/h+ > 0.8, 〈u′+

x,rms〉 strongly decreases while 〈u′+
z,rms〉 develops a peak

that is not visible in neutrally buoyant turbulence and is due to the presence of IGWs.
Correspondingly, a marked peak at the channel centre is also observed for the temperature
fluctuations, figure 6(d). Note that, for 〈Θ ′+

rms〉, there is a clear cross-over between the
different cases of stratified turbulence: for increasing Riτ , temperature fluctuations tend
to increase in the transition layer, 0.1 < z+/h+ < 0.8, and decrease in the core layer
0.8 < z+/h+ < 1 (although they remain much larger than the neutrally buoyant case).
To summarize, previous observations indicate that the structure of turbulence is not
influenced near the wall, since velocity fluctuations, and also the ratio between the
wall-normal and the streamwise velocity fluctuations, 〈u′+

z,rms〉/〈u′+
x,rms〉, remains almost

constant among the different cases. At the same time, in the buffer region there is a
decrease of 〈u′+

z,rms〉/〈u′+
x,rms〉, which indicates that stratification hinders the energy transfer

from the streamwise to the wall-normal component. Then, at the channel centre, velocity
and temperature fluctuations are essentially induced by IGWs.

3.3. Momentum and heat fluxes
We focus here on the wall-normal behaviour of momentum and heat fluxes, two key
quantities in turbulent transport phenomena. The momentum flux can be obtained from
the Reynolds-averaged streamwise momentum equation as

τtot = 1 − 2z+

Reτ

= ∂〈u+
x 〉

∂z+︸ ︷︷ ︸
τv

xz

+〈u′+
x u′+

z 〉︸ ︷︷ ︸
τ t

xz

, (3.1)

where the turbulent (τ t
xy) and viscous (τ v

xy) counterparts to the overall stress are explicitly
indicated. The behaviour of τ t

xy and τv
xy (symbols) is shown in figure 7(a), together with

the behaviour of τtot (solid black line). Increasing Riτ , we note a general reduction of
τ t

xy, in particular in the core region, where 〈u′+
x u′+

z 〉 	 0 for Riτ � 200. Accordingly, a
corresponding increase of τv

xy – and hence of the velocity gradient ∂ux/∂z – is observed,
so that the overall linear behaviour of the total shear stress is recovered (3.1). This is clearly
visualized in the inset of figure 7(a), where a close-up view of the behaviour of τ t

xy and
τv

xy at the channel centre, 0.8 < z+/h+ < 1, is given. In view of the present results, it
is clear that the velocity increase observed at the channel centre (see figure 4) is due to
the reduction of turbulent momentum flux in the wall-normal direction (i.e. reduction of
u′

xu′
z), and to the corresponding increase of the relative importance of τv

xy therein (Armenio
& Sarkar 2002; Yeo et al. 2009).
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Figure 6. Wall-normal behaviour of the root mean square of the velocity fluctuations in the streamwise
direction (〈u′+

x,rms〉, panel a), in the spanwise direction (〈u′+
y,rms〉, panel b) and in the wall-normal direction

(〈u′+
z,rms〉, panel c). The wall-normal behaviour of the temperature fluctuations is also shown (〈Θ ′+

rms〉, panel d).
Comparison between the reference case of unstratified turbulence (Riτ = 0), and the stratified turbulence at
Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300 (filled symbols).

Linked to the previous analysis of the wall-normal momentum flux, we now consider
the wall-normal heat flux, whose behaviour can be obtained from the Reynolds-averaged
energy balance equation as

〈u′
zθ

′〉 − α
∂〈θ〉
∂z

= −α

[
∂〈θ〉
∂z

]
w

= qw, (3.2)

where α = ν/Pr is the thermal diffusivity. Normalizing (3.2) by qw = −α[∂θ/∂z]w, and
recalling that qw = θτ uτ , we finally obtain (Armenio & Sarkar 2002; García-Villalba &
del Álamo 2011)

〈u′
zθ

′〉
qw

−
α

∂θ

∂z
qw

= 〈u′+
z Θ ′+〉︸ ︷︷ ︸

qt

− 1
Pr

∂〈Θ+〉
∂z+︸ ︷︷ ︸

qd

= 1. (3.3)

The two terms qt and qd, explicitly indicated in (3.3), represent the turbulent (usually
referred to as buoyancy flux) and the diffusive counterparts to the total heat flux, and
their behaviour is shown in figure 7(b). By looking at the profile of qt, it is apparent that,
while moving away from the wall – and no matter the value of Riτ – qt increases sharply
until it reaches a maximum value of approximately qt 	 0.95 around z+/h+ 	 0.1. In
neutrally buoyant conditions, this peak value is kept almost unaltered throughout the entire
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Figure 7. (a) Wall-normal behaviour of the viscous shear stress, τ v
xy = ∂〈u+

x 〉/∂z+ and turbulent shear stress,
τ t

xy = 〈u′+
x u′+

z 〉. The linear behaviour of the total shear stress, τtot/(ρu2
τ ) is also shown by the black solid

line. Comparison between the reference case of unstratified turbulence (Riτ = 0), and the cases of stratified
turbulence at Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300 (filled symbols). (b) Wall-normal behaviour
of the diffusive heat flux, qd = Pr−1∂〈Θ+〉/∂z+ and turbulent heat flux (buoyancy flux), qt = 〈u′+

z Θ ′+〉.
Comparison between the reference case of unstratified turbulence (Riτ = 0), and the cases of stratified
turbulence at Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300 (filled symbols).

channel, clearly corresponding to the constant flux hypothesis customarily assumed in
neutral boundary layers (Tennekes & Lumley 1972; Ortiz-Suslow et al. 2021). At larger
Riτ , we observe a significant decrease of qt in the core region of the channel. This
decrease is so important that, for Riτ > 200, qt 	 0. Interestingly, and in agreement with
previous observations (Ohya et al. 1997; García-Villalba & del Álamo 2011), we cannot
find evidence of the speculated mean counter-gradient flux (or, in other words, negative
qt) at the centre of the channel (Komori et al. 1983; Armenio & Sarkar 2002).

We further observe that previous studies discussing the possibility of a mean
counter-gradient flux considered low-Reτ flows. Here, we focus on flows at much higher
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Interaction between thermal stratification and turbulence

Reτ , for which the energy containing boundary layer structures cannot reach very far
from the wall. Since we may assume that the mean counter-gradient flux is the outcome
of a number of local counter-gradient events (uncorrelated thermal and flow structures)
driven by the interaction between near-wall structures and IGW, it is unlikely that a
mean counter-gradient flux can be observed at high Reτ . However, we cannot exclude
the presence of a mean counter-gradient flux in strongly stratified conditions, when the
flow becomes largely inhomogeneous and intermittent. Between the near-wall and the
core regions of the channel there is a region in which qt remains almost constant and
close to unity for all cases considered here, with only a slight decrease for increasing Riτ .
The diffusive heat flux qd has a mirror-like behaviour compared with qt, since the total
heat flux is constant across the channel (see (3.3)): qd decreases sharply while moving
away from the wall and it subsequently increases – with the only exception of Riτ = 0, for
which it remains uniform and very low – in the core region of the channel. This trend of qd
is important to explain the non-monotonic behaviour of the temperature profile observed in
figure 5 (qd is, by definition, proportional to the mean temperature gradient). Note indeed
that the mean temperature gradient along the wall-normal direction can be conveniently
expressed as (Armenio & Sarkar 2002)

∂〈θ〉
∂z

=
[
∂〈θ〉
∂z

]
w

[
1 − 〈u′

zθ
′〉

uτ θτ

]
, (3.4)

where [∂〈θ〉/∂z]w is the dimensionless mean temperature gradient at the wall, i.e. the
Nusselt number. Equation (3.4), together with the observation that the buoyancy flux qt =
〈u′

zθ
′〉/uτ θτ = 〈u′+

z Θ ′+〉 becomes almost zero for Riτ > 200 (see figure 7b), indicates that
for large stratification the temperature gradient at the channel centre perfectly matches
the temperature gradient at the wall. Since the temperature gradient at the wall (i.e. the
Nusselt number) decreases for increasing Riτ , the same does the temperature gradient at
the channel centre (but only once Riτ is large enough for qt to be approximately zero). To
summarize, the temperature gradient at the channel centre initially increases for increasing
stratification, until the stratification becomes so strong to completely damp the turbulent
heat transfer (buoyancy flux), i.e. qt = 〈u′+

z Θ ′+〉 	 0, at the channel centre. When it
happens, the temperature gradient at the channel centre – which becomes equal to the
temperature gradient at the wall (Nusselt number) – decreases for increasing Riτ .

Despite the large fluctuations of temperature and wall-normal velocity observed around
the channel centre for increasing Riτ (figure 6c,d), the buoyancy flux 〈u′+

z Θ ′+〉 reduces
remarkably down to the point at which, for Riτ � 200, it completely vanishes. To
understand the reason behind this behaviour, we focus on the distribution of temperature,
Θ ′+, and wall-normal velocity fluctuations, u′+

z , on a wall-parallel plane (x–y) located at
the channel centre. This is shown in figure 8 for Riτ = 0 and Riτ = 300. While for Riτ = 0
(figure 8a,b), the picture displays the typical features of fully developed turbulence, with
spots of positive and negative temperature and wall-normal velocity randomly distributed
over the considered plane, for Riτ = 300 (figure 8c,d) the situation is different, and there
seems to be a connection between Θ ′+ and u′+

z , which are both organized into stripes
extending along the spanwise direction y. However, stripes of u′+

z appear to lag behind
those of Θ ′+. The phase lag between u′+

z and Θ ′+ distributions can be estimated by
looking at the coherency spectrum

Cu′+
z ,Θ ′+(κw) =

∫ ∞

−∞
Ru′+

z ,Θ ′+(s) exp (−2πjsκw) ds, (3.5)
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Figure 8. Temperature and velocity fluctuations on a wall-parallel (x–y) plane located at the channel centre
for Riτ = 0 (a,b) and for Riτ = 300 (c,d). Phase of the cross-spectrum, φ(Cu′+

z ,Θ ′+ ), as a function of the
wavenumber κw = kh for Riτ = 0 (e) and for Riτ = 300 ( f ).

with κw = kh the dimensionless wavenumber and Ru′+
z ,Θ ′+ the correlation coefficient

between u′+
z and Θ ′+. In particular, it is intriguing to focus on the phase of Cu′+

z ,Θ ′+(κw).
As shown in figure 8( f ), we clearly notice that, for Riτ = 300, u′+

z and Θ ′+ are shifted by
π/2 (see Iida et al. 2002). Such a phase delay is instead not observed at Riτ = 0 (see
figure 8e). It is important to note that the presence of this phase shift explains why,
although temperature and wall-normal fluctuations are both very large at the channel
centre, their correlation – that is, the buoyancy flux 〈u′+

z Θ ′+〉 – is almost zero: where
Θ ′+ is maximum in magnitude, u′+

z 	 0 and vice versa, consistently with the presence of
a wavy motion (IGW).

Not only the average value of the buoyancy flux qt is important, but also its distribution
in space and time. To understand it, we focus on the two limiting cases Riτ = 0 and
Riτ = 300 and we look at the behaviour of qt on a wall-parallel plane (x–y) located
at the channel centre (figure 9a,b), and normalized by the corresponding maximum
value qt,max observed on that plane. Then, we compute the probability density function
Π(qt/qt,max) (figure 9c). For Riτ = 0 (blue line in figure 9c), Π(qt/qt,max) is highly
asymmetric, with the most probable value occurring for qt/qt,max = 0 and with larger
positive fluctuations compared with negative ones. This suggests that, although the mean
temperature difference between the walls induces a net positive wall-normal energy flux
(i.e. the mean value 〈u′+

z Θ ′+〉 > 0), u′+
z Θ ′+ can often be negative, indicating the presence

of regions characterized by local counter-gradient heat fluxes. The occurrence of localized
counter-gradient heat fluxes is an extremely important phenomenon that has been observed
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Figure 9. Contour map of the turbulent heat flux qt = 〈Θ+u′+
z 〉 on a wall-parallel (x–y) plane located

at the channel centre for Riτ = 0 (a), for Riτ = 300 (b) and corresponding probability density function
Π(qt/qt,max) (c).

also in other situations (Huisman et al. 2012; Zonta & Chibbaro 2016; Hadi Sichani
et al. 2020). From a physical point of view, small positive and negative values of Θ ′+u′+

z
are due to turbulence, which is characterized by uncorrelated velocity and temperature
fluctuations. These small positive and negative values of Θ ′+u′+

z , which are equally likely
events, balance each other and do not contribute to the net heat transport (Shang, Tong &
Xia 2005). Only large velocity and temperature fluctuations produced by larger coherent
structures are correlated and contribute to the net heat flux. And clearly, large positive
fluctuations are larger than negative ones, so to produce a positive net heat flux.

The asymmetry of Π(qt/qt,max) is almost completely absent at Riτ = 300. In particular,
while the probability of observing positive fluctuations is globally reduced (i.e. there is a
reduction of large correlated velocity and temperature fluctuations), negative fluctuations
are rather persistent, so that the average value of qt/qt,max is close to zero. This is nicely
rendered by the contour maps of qt/qt,max shown in figure 9(b): while most of the plane is
characterized by a correlation qt/qt,max ≈ 0 (and corresponding to the most probable value
of Π(qt/qt,max) in figure 9), small and rare patches of large positive qt/qt,max coexist with
small and rare patches of large negative qt/qt,max.

3.4. Internal gravity waves
In the previous chapter, we described IGWs on a qualitative basis (see in particular
figures 2–3 and comments therein). To characterize such structures on a more quantitative
basis, we introduce here the buoyancy frequency N (or Brunt–Väisälä frequency), which
represents the frequency of oscillation – in a stratified medium – of a lump of fluid that is
displaced by velocity fluctuations in the wall-normal direction. In dimensionless form, it
is defined as

N = Nh/uτ =
√

−gβ
∂〈θ〉
∂z

h
uτ

, (3.6)

and can naturally be used to evaluate the characteristic frequency of oscillation of IGWs.
The behaviour of N as a function of the wall-normal distance is shown in figure 10(a) for
the different values of Riτ . We observe that N is large at the centre of the channel –
and peaks at the centreline – due to the sharpening of the mean temperature profile
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therein (figure 5), while it is rather small in the remaining part of the channel. Note that
the behaviour of N in the proximity of the wall – shaded area in figure 10(b) – is not
particularly important for the present discussion, since the temperature gradient in that
region is mostly influenced by the presence of the boundary rather than by buoyancy.
In the framework of the present discussion, it is interesting to look at the time-averaged
premultiplied streamwise energy spectra of wall-normal velocity fluctuations, kxEu′2

z
(kx),

at the channel centreline (Iida et al. 2002; Yeo et al. 2009; Zonta et al. 2012b). Results
are presented in figure 10(b) for the different values of Riτ . We consider in particular
the case Riτ = 300, for which stratification is more important. We note that kxEu′2

z
(kx)

develops a peak – which is not observed for Riτ = 0 – at the dimensionless wavenumber
k̂x = kxh ≈ 5 (where kx is the wavenumber in dimensional form). We can hypothesize
that this peak is due to the presence of IGWs, which induce vertical velocity fluctuations
at the frequency N (Zonta et al. 2012b). To demonstrate this relationship, we assume
that IGWs move in the streamwise direction with the mean centreline velocity, uIGW .
For Riτ = 300, u+

IGW 	 47 (or, in dimensional form, uIGW = uτ u+
IGW 	 1 m s−1). The

corresponding frequency of such waves is ωIGW = uIGW × kx/2π 	 1 s−1. Considering
now the value of the buoyancy frequency at the channel centreline, we get N 	 38 or, in
dimensional form, N = N uτ /h 	 1 s−1, in close agreement with the previous estimate.
Also shown in figure 10(a) is the range of frequency peaks, which correlates well with
the range of wavenumber peaks shown in figure 10(b). The previous estimate is based
on an oversimplified scenario, in which IGWs are monochromatic waves that travel at the
advection velocity and are characterized by the frequency N. However, it is known (Staquet
& Sommeria 2002) that the frequency of IGWs obeys the dispersion relation

ω = ±N cos φ = ±N

√
k2

x + k2
y√

k2
x + k2

y + k2
z

, (3.7)

in which the wave vector k = (kx, ky, kz) is not necessarily directed along x, and can
have an angle φ to the horizontal plane. From (3.7), it clearly emerges that IGWs are
characterized by frequencies in the range 0 < ω � N. In addition, due to the advection
velocity uIGW at the channel centre, the observed wave frequency is modified by the
Doppler shift, which takes the form ωDS = uIGWk̂x. Therefore, the frequency of IGWs
can be expressed by the relation

ω = ωDS ± N cos φ = uIGWk̂x ± N cos φ. (3.8)

From (3.8), and under the assumption of cos φ = 1, it emerges that the observed peak
wavenumber k̂x in figure 10(b) corresponds to the Doppler shift uIGWk̂x = N. This result
seems consistent with the recent analysis of Maffioli, Delache & Godeferd (2020), in
which – employing spatio-temporal analysis of an unbounded stratified flow – it was
shown that the dominant contributions to the wave energy in stratified turbulence come
from frequencies close to N.

Using the buoyancy frequency N, we can calculate the gradient Richardson number as

Rig = N2

S2 =
−gβ

∂〈θ〉
∂z(

∂〈ux〉
∂z

)2 , (3.9)
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Figure 10. (a) Wall-normal behaviour of the mean Brunt–Väisälä frequency N for the different cases of
stratified turbulence (Riτ = 50, Riτ = 100, Riτ = 200 and Riτ = 300). (b) Time-averaged premultiplied
streamwise energy spectra of wall-normal velocity fluctuations kxE(u′

zu
′
z) evaluated on a wall-parallel (x–y)

plane located at the channel centre.

where S is the mean shear rate. The gradient Richardson number is a measure of the
relative importance of the buoyant consumption of turbulence, N2, compared with the
shear production of turbulence, S2. In the literature (Miles 1961; Rohr et al. 1988; Holt,
Koseff & Ferziger 1992; Piccirillo & Van Atta 1997), Rig 	 0.25 has been identified as
a critical threshold to evaluate the flow structure in unbounded stratified flows, where
Rig is uniform in space. For Rig 	 0.25, turbulence does not grow or decay. At larger
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Figure 11. Wall-normal behaviour of the gradient Richardson number Rig (a) and of the turbulent Prandtl
number Prt (b) for the different values of Riτ . The threshold value Rig = 0.2 is also explicitly shown in panel
(a) (dashed line).

Rig, turbulence decays, while at smaller Rig turbulence grows. Naturally, in wall-bounded
flows, Rig varies in the wall-normal direction from small values close to the wall, to large
values close to the centre of the channel. This is represented in figure 11, where we plot Rig
in logarithmic scale as a function of the dimensionless wall-normal distance, for different
Riτ . Current results are in good agreement with previous observations (Armenio & Sarkar
2002; Taylor, Sarkar & Armenio 2005; García-Villalba & del Álamo 2011; Zonta et al.
2012b), showing in particular the sharp increase of Rig around Rig 	 0.2. This sharp
increase, which occurs at the channel centre (where ∂〈θ〉/∂z is large while ∂〈ux〉/∂z → 0)
identifies the region of the channel in which buoyant consumption of turbulence dominates
over shear production of turbulence, and sets the boundaries where IGWs are observed
(z+/h+ > 0.8). Based on the previous observations, it seems reasonable to set the value
Rig = 0.2 as the critical threshold above which turbulence is significantly damped by
buoyancy in wall-bounded stratified turbulence.

A further crucial aspect of stratified turbulence is the evaluation of irreversible mixing
of momentum and energy (Fernando 1991; Ivey, Winters & Koseff 2008). A common
approach to evaluating mixing in stratified turbulence is to rely on the concept of turbulent
eddy viscosity, Km, and diffusivity, Kθ , which are defined as (Pope 2000)

Km = 〈u′w′〉
∂〈u〉
∂z

, Kθ = 〈θ ′w′〉
∂〈θ〉
∂z

. (3.10a,b)

The ratio between Km and Kθ is usually referred to as turbulent Prandtl number (Launder
& Spalding 1972), and can be written in dimensionless form as

PrT =
〈u′w′〉∂〈θ〉

∂z

〈w′θ ′〉∂〈u〉
∂z

. (3.11)

The evaluation of PrT as a function of the distance from the wall and for different
stratification levels (i.e. different Riτ ), is a major aspect in the field of turbulence modelling
(Grachev et al. 2007; Venayagamoorthy & Stretch 2010). In figure 11(b) we plot PrT as
a function of z+/h+. Near the boundary, and regardless of Riτ , we observe that PrT 	 1.
Above z+/h+ 	 0.2, there is slight dependence of PrT on Riτ , but PrT remains bounded in
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García-Villalba & del Álamo (2011) Reτ = 180

García-Villalba & del Álamo (2011) Reτ = 550

Present work  Reτ = 1000

Rib ⁓ Riτ 
2/3

Figure 12. Bulk Richardson number, Rib, as a function of the shear Richardson number, Riτ , for the present
simulations at Reτ = 1000, and for previous simulations at Reτ = 180 and Reτ = 550 (García-Villalba & del
Álamo 2011). The proposed scaling Reb ∼ Ri2/3

τ is also explicitly indicated.

the range 0.8 < PrT < 1.2. At the channel centre, where stratification effects are stronger,
the behaviour of PrT does not have a clear trend for increasing Riτ , although PrT does not
depart much from unity. We therefore conclude that the assumption PrT ≈ 1, customarily
taken in turbulence modelling (Laskowski et al. 2007; Zonta 2013), seems a reasonable
choice for mild to moderate stratification levels.

3.5. Macroscopic characterization of the flow: Rib, Cf , Nu
Although the shear Richardson number Riτ is customarily used to characterize the flow
in numerical simulations of wall-bounded stratified turbulence (Zonta & Soldati 2018), its
use in experiments/field measurements is much more limited. The reason is the difficult
experimental evaluation of the shear velocity, which in turn requires the measurement of
the shear stress at the wall. As a consequence, in many experiments the bulk Richardson
number Rib = β(�T/2)gh/(2u2

b) is usually preferred, since the bulk velocity ub is an
easily accessible quantity. To draw a link between simulations and experiments/field
measurements, it is interesting to evaluate the behaviour of the bulk Richardson number
Rib, as a function of the shear Richardson number Riτ . This behaviour is shown in
figure 12. Present results (filled symbols, •, red), which are plotted together with literature
results obtained at lower Reτ (open symbols), confirm previous indications that Rib ∝
Ri2/3

τ . In view of its independence on Reτ – at least over approximately one decade, from
Reτ = 180 up to Reτ = 1000 – the proposed Rib scaling seems a general property of the
flow that can be used as a robust parametrization tool, as will be shown below.

Perhaps the most important quantities to be monitored in wall-bounded stratified
turbulence are the overall momentum and heat transfer rates, which are commonly
quantified in terms of the friction factor Cf – shear stress to kinetic energy ratio – and
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Figure 13. Friction factor Cf as a function of the shear Richardson number Riτ . Results of present study (filled
symbols) are shown together with results obtained in previous studies (Garg et al. 2000; Armenio & Sarkar
2002; García-Villalba & del Álamo 2011; Zonta et al. 2012b; Zonta 2013). The proposed scaling Cf ∼ Ri−1/3

τ

is also explicitly indicated.

by the Nusselt number Nu – convective to conductive heat transfer ratio – as

Cf = 2τw

ρu2
b
,

Nu = 2qwh
λ�T

.

⎫⎪⎬
⎪⎭ (3.12)

Results obtained from the present simulations are shown by filled symbols (•, red) in
figures 13–14, together with the results obtained in previous studies (Garg et al. 2000;
Armenio & Sarkar 2002; García-Villalba & del Álamo 2011; Zonta et al. 2012b; Zonta
2013). Focusing on Cf (figure 13), it is clear that an increase of stratification (increase
of Riτ ) reduces the wall-normal momentum transfer, via the reduction of wall-normal
turbulent transport and via the corresponding increase of the volume flowrate (keeping
the imposed pressure gradient constant). Interestingly, recalling that Rib ∝ Ri2τ /3 (see
figure 12), and considering that Cf /4 = Rib/Riτ , we obtain Cf ∼ Ri−1/3

τ (García-Villalba
& del Álamo 2011). This scaling law, which is shown in figure 13 together with the
reported numerical results, predicts fairly well the behaviour of Cf for a broad range of
Riτ , with some departure observed only at very large stratification levels (when local flow
laminarization is likely to appear).

The fair collapse observed for Cf is not recovered for the Nusselt Number Nu (not shown
in figure 14). Interestingly, when rescaled by Re−2/3

τ , the collected results collapse nicely
(figure 14) and scale as Nu × Re−2/3

τ ∼ Ri−1/3
τ (therefore giving Nu × Re−2/3

τ ∼ Cf ). The
proposed scaling differs from classical analogies widely used in the literature – such as the
Chilton and Colburn one Cf /2 = Nu × Re−1 × Pr−1/3 (Bird, Stewart & Lightfoot 2007) –
to relate heat, mass and momentum transfer coefficients in forced convection phenomena.
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Figure 14. Rescaled Nusselt number Nu × Re−2/3
τ as a function of the shear Richardson number Riτ . Results

of present study (filled symbols) are shown together with results obtained in previous studies (Garg et al. 2000;
Armenio & Sarkar 2002; García-Villalba & del Álamo 2011; Zonta et al. 2012b; Zonta 2013). Note that the
values of Nu in Zonta et al. (2012b) and Zonta (2013), obtained at Pr = 3, have been rescaled by Pr1/3. The
proposed scaling Nu × Re−2/3

τ ∼ Ri−1/3
τ is also explicitly indicated.

It is reasonable to expect that the interaction between buoyancy and momentum modifies
the main transport processes in a non-trivial way that is hard to predict by simplified
assumptions. An in-depth analysis and a corresponding accurate parametrization of the
actual flow field are therefore required to shed some light on the proposed scaling, which,
however, appears rather robust.

4. Conclusions

We analysed the flow physics of stratified wall-bounded turbulence at high Reynolds
number by running a series of DNS of stably stratified channel flow at fixed Reynolds
and Prandtl number (Reτ = 1000 and Pr = 0.71, respectively) and at different values of
the shear Richardson number, up to Riτ = 300. From a physical viewpoint, the simulation
set-up can be assimilated to the flow of air inside a channel of height 2h ∼ 1.5 m at a
reference bulk Reynolds number (based on h) Reb = 2 × 104 and subject to a wall-to-wall
temperature difference up to ≈10 K.

For the considered range of Riτ , active turbulence is sustained close to the walls,
where the strong mean shear generates small-scale vorticity that is not affected by the
imposed stratification. Farther from the wall, where vortices and flow structures are larger,
stratification has an important influence. Even for low-to-moderate levels of stratification,
buoyancy effects dominate in this region, as the mean shear is small (the channel
centre is a symmetry plane). Interestingly, although temperature and wall-normal velocity
fluctuations are very large at the channel centre, their correlation – which represents
the buoyancy flux – decreases so much that, for Riτ � 200, it becomes nearly zero.
We show that this behaviour is due to the presence of a ≈π/2 phase shift between
the temperature fluctuations and the wall-normal velocity fluctuations that causes no
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correlation between the two signals. These findings are consistent with the presence
of IGWs at the channel centre. It is worth observing that, although hypothesized in
previous works (Komori et al. 1983; Armenio & Sarkar 2002), we did not find evidence
of any mean counter-gradient heat flux, even at the largest stratification considered here.
These results, however, can supply further motivation to examine this flow at even higher
stratification levels. Finally, we focused on the behaviour of the overall momentum and
heat transfer rates, represented by the friction factor, Cf , and the Nusselt number, Nu,
respectively. We showed that the friction factor scales as Cf ∼ Ri−1/3

τ , while the Nusselt
number scales as Nu × Re−2/3

τ ∼ Ri−1/3
τ . We remark here that the current large-scale

dataset of stably stratified channel turbulence at Reτ = 1000 are expected to help LES and
Reynolds-averaged Navier–Stokes similations to build efficient and reliable subgrid-scale
and closure models for wall-bounded buoyancy-influenced turbulence (Lazeroms et al.
2013).
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