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Abstract

This article proposes a new statistical model to infer interpretable population-level preferences from ordinal
comparison data. Such data is ubiquitous, e.g., ranked choice votes, top-10 movie lists, and pairwise sports
outcomes. Traditional statistical inference on ordinal comparison data results in an overall ranking of
objects, e.g., from best to worst, with each object having a unique rank. However, the ranks of some
objects may not be statistically distinguishable. This could happen due to insufficient data or to the
true underlying object qualities being equal. Because uncertainty communication in estimates of overall
rankings is notoriously difficult, we take a different approach and allow groups of objects to have equal ranks
or be rank-clustered in our model. Existing models related to rank-clustering are limited by their inability to
handle a variety of ordinal data types, to quantify uncertainty, or by the need to pre-specify the number and
size of potential rank-clusters. We solve these limitations through our proposed Bayesian Rank-Clustered
Bradley–Terry–Luce (BTL) model. We accommodate rank-clustering via parameter fusion by imposing a
novel spike-and-slab prior on object-specific worth parameters in the BTL family of distributions for ordinal
comparisons. We demonstrate rank-clustering on simulated and real datasets in surveys, elections, and
sports analytics.

Keywords: Bradley–Terry; fusion priors; item indifference; Plackett–Luce; rank aggregation; spike-and-slab

1. Introduction

In a traditional analysis of ordinal data, we assume I judges assess J objects by providing ordinal
preferences, Π. The ordinal preferences of each judge, Πi, may be provided in various forms, such as
complete rankings, partial rankings, or pairwise comparisons among available objects or some subset
thereof. Standard statistical model families for ranking data such as Mallows (Mallows, 1957) or Bradley-
Terry-Luce (Bradley & Terry, 1952; Luce, 1959; Plackett, 1975) derive or estimate the rank of each object
whereby each object receives a unique rank. An estimated overall ranking then orders all objects from
best to worst. Analyses of this kind, often referred to as rank aggregation (Dwork et al., 2001), are used to
rank candidates in ranked choice elections, (Gormley & Murphy, 2008; Mollica & Tardella, 2017), sports
teams or players in a league using pairwise game outcomes (Barrientos et al., 2023; Tutz & Schauberger,
2015), or genes based on ordinal comparisons of genomics data (Eliseussen et al., 2023; Vitelli et al.,
2018). In these scenarios we intentionally do not consider potential heterogeneity among judges. Our
goal is to learn a single ranking which is the desired outcome, whether it is an ordering of candidates or
an ordering of genes.
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However, requiring estimated ranks to be unique is not always useful or appropriate. For example,
some objects may be equal or indistinguishable in their true quality or ability. Consider an election
in which two candidates, both of the same political party, are running for an office. If voters express
their preferences solely on the basis of party, the candidates are inherently equal in quality. In another
situation, when the number of votes cast is small, estimated ranks assigned to each candidate could
exhibit substantial uncertainty, suggesting the candidates are indistinguishable in quality based on the
limited number of observed votes. In such situations, allowing for inference to estimate the candidates
as having the same rank or be rank-clustered may improve interpretability, prediction, and decision-
making when analyzing ordinal preferences.

In this article, we propose a Bayesian framework for ordinal data analysis that estimates an overall
ranking of objects with rank-clusters, develop a computationally-efficient Gibbs sampler for estimation,
and apply the model to real and simulated data. Specifically, we choose to model observed rank via
the Bradley–Terry–Luce (BTL) family of distributions which permits analysis of ordinal preferences
in many forms, such as complete rankings, partial rankings, pairwise comparisons, and groupwise
comparisons. To induce rank-clusters, we place a novel spike-and-slab fusion prior on the object-specific
parameters of BTL distributions. In contrast to existing work related to rank-clustering in the literature,
our model requires neither the parameter order nor the number or size of rank-clusters to be known in
advance. Instead, these quantities are treated as random variables and estimated simultaneously so that
their corresponding uncertainty is naturally reflected in the resulting inferences.

The rest of the article is organized as follows. We first review literature related to rank-clustering in
Section 2. Then, we propose the Partition-based Spike-and-Slab Fusion (PSSF) prior and apply it to a
BTL model for ordinal data in Section 3. We develop a computationally-efficient Gibbs sampler based on
reversible jump Markov chain Monte Carlo (RJMCMC) and demonstrate its accuracy on simulated data
in Section 4. To demonstrate a wide variety of methodological benefits of our proposed framework, in
Section 5, we apply the model to four real datasets: (i) complete rankings of sushi preferences provided
by Japanese adults, (ii) partial rankings of 2021 Minneapolis mayoral candidates expressed by voters
in a ranked choice election, (iii) complete and partial rankings of policy options from Eurobarometer
34.1, a survey which measures various European attitudes, and (iv) pairwise basketball game outcomes
from the 2023–2024 season of the National Basketball Association (NBA). We conclude with a brief
discussion in Section 6.

2. Background

Before reviewing the ordinal comparisons literature, it is helpful to introduce some basic terminology
and notation. Rankings are a type of ordinal preference that denotes a relative ordering of objects from
best to worst, potentially allowing ties. We use the operator ‘≺’ to denote a strict ordering of two objects;
e.g., A ≺ B states that object A is strictly preferred to B. An object’s rank is the place it receives in the
ranking.1 Rankings arise in different forms. Given a collection of objects, a ranking is called complete
when all objects are ranked. In contrast, a ranking is called partial when only a subset of the most-
preferred objects are ranked (e.g., a top-five ranking). In a partial ranking, we assume that unranked
objects are less-preferred than those ranked, but also that the preference order among the unranked
objects is unknown. Next, we call a ranking incomplete when a judge is asked only to rank a subset of
the complete collection of objects. In incomplete rankings, no information can be gleaned regarding
objects not considered. For example, if a voter is asked by an election pollster to rank candidates
from a single political party, the ranking should provide no information regarding their preferences
on candidates from other parties. We call incomplete rankings involving two objects (candidates in
the above example) a pairwise comparison, and incomplete rankings involving more than two objects

1Although some authors have drawn a distinction between the terms “ranking” and “ordering,” in this article we choose to
use solely the former in accordance with its popular usage.
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a groupwise comparison. Rankings may be both partial and incomplete; e.g., a top-three ranking of
mayoral candidates from a specific political party.

Next, we briefly review methods for estimating rank-clusters based on the BTL and Mallows families
of ordinal data models in turn. For a more thorough review of these standard model families, see Marden
(1996) and Alvo & Yu (2014).

2.1. Methods based on BTL distributions
Most work related to rank-clustering utilizes the BTL family, which comprises the Bradley–Terry and
Plackett–Luce distributions and their extensions. The Bradley–Terry model, proposed by Zermelo
(1929) and discovered independently by Bradley & Terry (1952), is parameterized by the vector ω ∈RJ

>0,
in which each ωj corresponds to the worth of object j. Specifically, the Bradley-Terry model specifies the
probability that object i will be ranked above object j in pairwise tournament as

P[i ≺ j∣ωi,ωj] =
ωi

ωi +ωj
. (1)

The Plackett–Luce model (Plackett, 1975) extended the Bradley–Terry to allow for multiple compar-
isons, partial rankings, and incomplete rankings, and has been justified under Luce’s Choice Axiom
(Luce, 1959) and Thurstone’s theory of comparative judgment (Thompson Jr. & Singh, 1967; Thurstone,
1927; Yellott Jr., 1977). In this model, a ranking π = {1 ≺ 2 ≺ ⋅ ⋅ ⋅ ≺ J} of J objects is assigned probability

P[Π = π∣ω1, . . . ,ωJ] =
J
∏
j=1

ωj

∑J
j′=j ωj′

, (2)

where often one sets ∑j ωj = 1 for identifiability. Rankings drawn from the Plackett–Luce model may
be interpreted as being created sequentially, where in the first stage an object is selected among all the
options, in the second stage an object is selected among all the remaining, and so on. Extensions of
distributions in the BTL family have been proposed to capture intricacies in ranked preferences such as
order of presentation effects, ties, and covariates (Chapman & Staelin, 1982; Critchlow & Fligner, 1991;
Gormley & Murphy, 2010; Rao & Kupper, 1967). Importantly, the BTL family can handle partial and
incomplete rankings by exploiting its reliance on Luce’s Choice Axiom.

Since BTL distributions have continuous parameters, rank-clusters may be estimated by employing
parameter fusion or shrinkage. Parameter fusion is the process of simultaneously estimating parameter
values and groups of parameters that should be set equal in value (i.e., “fusing” parameters together).
Masarotto & Varin (2012) analyze pairwise comparison data from sports tournaments with parameter
fusion techniques under the Bradley–Terry model. Masarotto & Varin (2012) estimate an overall
ranking of teams with rank-clusters by applying the frequentist fused lasso (Tibshirani et al., 2005),
in which the absolute difference between every pair of worth parameters is penalized after some
data-driven normalization. In this approach, the fused parameters are made equal and thus create
a rank-cluster among the corresponding objects. The approach of Masarotto & Varin (2012) was
extended to additional datasets in sports (Tutz & Schauberger, 2015) and academic journal rankings
(Vana et al., 2016; Varin et al., 2016). Jeon & Choi (2018) argued that shrinkage methods like those
proposed by Masarotto & Varin (2012) and Tutz & Schauberger (2015) were developed specifically for
pairwise comparisons, and thus have inappropriate penalty functions for application to richer kinds of
ordinal data like partial or complete rankings. As a result, Jeon & Choi (2018) proposed a modified
regularization penalty that may be applied to partial or complete rankings under the Plackett–Luce
model. Relatedly, Hermes et al. (2024) consider sparse estimation of a Plackett–Luce model with object-
level covariates under judge heterogeneity. In their setting, the number of heterogeneous preference
groups and the group membership of each judge are assumed fixed and known. To improve efficiency
of estimation across groups and predictive performance, they impose a lasso penalty on group-specific
covariate coefficients and a simultaneous fused lasso penalty between each pair of group-specific
covariate coefficients. We note that the setting studied by Hermes et al. (2024) is fundamentally different
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to ours, in that they assume (known) preference heterogeneity among the judges and the presence of
object-specific covariates.

Parameter fusion methods for rank-clustering exhibit four distinct disadvantages: First, maximum
likelihood estimation of models in the BTL family, even in their simplest forms, often suffers from
numerical instability and slow computational speed. As a result, numerous authors have proposed com-
plex algorithms to improve estimation accuracy or speed (Hunter et al., 2004; Maystre & Grossglauser,
2015; Nguyen & Zhang, 2023; Turner et al., 2020). Second, uncertainty quantification is challenging
and theoretically tenuous in lasso-based methods (Fan & Li, 2001; Tibshirani, 1996). Third, lasso
penalty parameters may be difficult to select, requiring data-driven or ad hoc techniques (Masarotto &
Varin, 2012; Tibshirani, 1996). Thus, interpretation of the resulting parameter estimates and associated
uncertainty is reliant on the specific choice of penalty parameter. Fourth, prior knowledge on the amount
and size of rank-clusters cannot be directly incorporated into the frequentist framework: Although
the penalty parameter influences estimation of rank-clusters, the specific meaning of various possible
choices is not directly interpretable.

Many of these disadvantages may be addressed using spike-and-slab priors, a Bayesian approach
to variable selection (George & McCulloch, 1997; Ishwaran & Rao, 2005; Mitchell & Beauchamp,
1988). Spike-and-slab priors assign weight to both a point-mass at 0 (“spike”) and a continuous density
function (“slab”). Although the specific formulations of these priors vary, they estimate parameters
which are precisely zero in a probabilistic framework that incorporates prior knowledge via interpretable
hyperparameters, as opposed to opaque penalty parameters. However, we are aware of only one variant
of this prior class for parameter fusion: Wu et al. (2021) apply spike-and-slab to differences in successive
parameters in a linear regression. In their method, the order of parameters from least to greatest in
coefficient value must be known in advance (as in the fused lasso). This is not practical in the canonical
ordinal data setting because the parameter order is equivalent to the overall ranking, whose estimation
is a primary goal. Thus, no Bayesian parameter fusions methods exist which may be directly applied
to ordinal data analyses with rank-clustering. Alternatively, one may consider the class of continuous
shrinkage priors, which include Bayesian variants of the lasso (Park & Casella, 2008) and fused lasso
(Casella et al., 2010) among others (e.g., Bhattacharya et al., 2015; Carvalho et al., 2010; Griffin &
Brown, 2005). However, continuous shrinkage priors do not place positive probability on coefficients
(or their differences) being precisely zero. Thus, parameter fusion must be performed via thresholding
the posterior distribution, which is often ad-hoc (Porwal & Rodriguez, 2021) and will not be considered
in this work.

2.2. Methods based on Mallows distributions
Alternatively, one may consider rank-clustering under the Mallows family of ranking models (Mallows,
1957). The Mallows family is parameterized by the overall ranking, π0, and a scale parameter θ ≥ 0 that
dictates how likely rankings of a given distance to π0 are to be drawn. Specifically, the probability of
drawing a ranking π from a Mallows(π0,θ) distribution is

P[Π = π∣π0,θ] =
e−θd(π,π0)

ψ(θ) , (3)

where d(⋅,⋅) is a distance metric and ψ(θ) is a function which provides an appropriate normalizing
constant. Foundational models in the family are defined by their distance metric, with common choices
being the Kendall’s τ (Kendall, 1938) and Spearman’s ρ (Spearman, 1904).

To our knowledge, the Clustered Mallows Model (CMM) proposed by Piancastelli & Friel (2024) is
the only rank-clustering method based on the Mallows model. Their work, proposed concurrently and
independently to ours, models item indifference (i.e., rank-clusters) by permitting the overall ranking
parameter π0 to include groups of objects that are tied in rank. The model is estimated in a Bayesian
framework from the observed ranking data. However, there are 3 major limitations to their work:
First and most importantly, the model requires both the number of rank-clusters and the number of
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objects per cluster to be pre-specified. Although the authors propose sensible and efficient tools for
model selection, the requirement opens the possibility of model misspecification. For example, given
seven objects there are 127 model specifications; given 10 objects there are 1,023 model specifications.
In addition, pre-specifying the rank-clustering structure removes any uncertainty in the number of
rank-clusters and their sizes from the inference task, which we believe to be of key interest in many
applications. Second, Bayesian inference of a Clustered Mallows model is in the class of doubly-
intractable problems since the proposed model’s normalizing constant is not available in closed form.
As a result, exact inference may be computationally slow, or approximation methods may need to be
used that require an inexact pseudolikelihood approach. Third, the Mallows model is best suited for
ordinal data in the form of complete or partial rankings, meaning the CMM cannot handle pairwise or
groupwise comparisons. As will be shown in Section 3, our proposed model avoids all three issues by
incorporating parameter fusion in the continuously-parameterized BTL model family.

3. The Rank-Clustered BTL model

In this section, we first develop a novel spike-and-slab prior for parameter fusion based on partitions.
Then, we employ the prior in a model for rank-clustering based on the BTL family of ordinal data
models.

3.1. PSSF prior
Suppose data are drawn exchangeably from a model,M, parameterized by the vector ω. We suppose ω is
of length J and let each ωj ∈Ω, Ω⊆R. Our goal is to estimate ω under the belief that some pairs or groups
of parameters in ω may be clustered (i.e., fused). We say that two parameters m,n ∈ {1, . . . ,J}, m ≠ n, are
clustered precisely when ωm = ωn. Clustered parameters may take on any value in their domain, Ω.

Before specifying the prior, we provide some notation on partitions. A partition of an object set
J = {1,2, . . . ,J} is a collection g = {C(1),C(2), . . . ,C(K)} of K disjoint nonempty subsets (henceforth
referred to as “clusters”) of J such that their union forms J . Let C−1(j) represent the cluster that
contains object j ∈ J . We let S(k) = ∣{C(k)}∣ be the size of the subset C(k), and denote by K the number
of clusters in g. To emphasize dependence on g, we often write Kg , Cg(k), etc. Lastly, we let G represent
the collection of all partitions g of J , and let Gk = {g ∈ G ∶ Kg = k}.

We are now ready to specify the PSSF prior. Under PSSF, ω is assumed to be generated via the
following hierarchical model:

G ∼ fG

νk∣G = g iid∼ fν k = 1,2, . . . ,Kg (4)
ωj = νC−1

g (j) j ∈ J .

In Equation (4), fG(⋅) is a probability mass function on G and fν(⋅) is a probability density function on
Ω. In words, the prior generates a partition g, and then assigns a unique value νk to each cluster C(k) ∈ g.
Last, each parameter in ω is assigned the value of ν corresponding to its cluster in g.

As an example, supposeJ ={1,2,3} and we draw g = {C(1),C(2)} such that C(1) = {2} and C(2) =
{1,3}, and draw ν = [5,10]. Then, ω = [10,5,10] because,

ω1 = νC−1
g (1) = ν2 = 10,

ω2 = νC−1
g (2) = ν1 = 5, and

ω3 = νC−1
g (3) = ν2 = 10.

3.1.1. Marginal prior probabilities
A useful feature of the PSSF prior is that, regardless of fG, the marginal distribution of each ωj follows fν.
This is because,
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P[ωj] =
J
∑
k=1

P[νk∣j ∈ C(k)]P[j ∈ C(k)] (5)

= P[ν1]
J
∑
k=1

P[j ∈ C(k)] (6)

= fν(⋅). (7)

Equation (5) holds as there cannot be more than J clusters and each object belongs to precisely one
cluster, Equation (6) holds by the exchangeability of νk, and Equation (7) holds since P[ν1] = fν(⋅) by
definition and the Law of Total Probability.

3.1.2. Relationship to spike-and-slab
We have not yet explained the proposed PSSF prior’s relationship to the spike-and-slab. It is easiest to
understand their connection by considering the joint prior distribution on two arbitrary component
parameters, ωm and ωn, such that m ≠ n. Due to the partitioning structure of parameters in the PSSF
prior, there is prior probability associated with a parameter cluster. Thus, their joint prior distribution
contains a “spike” component along the line ωm = ωn, with density of that line determined by fν.
Oppositely, given ωm ≠ ωn their joint prior distribution reflects independent draws from fν.

Figure 1 gives examples of the PSSF prior under varying choices of fG and fν. In all panels, we
let J = {1,2} and display the joint prior distribution of (ω1,ω2). In this setting, there are only two
unique partitions, g = {1,1} and g = {1,2}. Thus, we specify the prior fG by stating the so-called “cluster
probability,” i.e., the probability that g = {1,1}. Columns correspond to cluster probabilities 0.1,0.5, and
0.9, respectively. Rows correspond to fν = Normal(0,1) and Gamma(5,3), respectively. We notice that
as the cluster probability increases, so does the density of points in the spike component. Regardless of
fG, marginal distributions of each parameter follow fν. The marginal relationships seen in Figure 1 hold
identically even as J grows.

Furthermore, we show the difference between parameters, ω2 −ω1, between different scenarios in
Figure 2. The rows and columns are identical to that in Figure 1 and make clear the relationship between
the PSSF prior and the traditional spike-and-slab, which has a spike component at 0 and a background
slab density.

3.2. Rank-Clustered BTL model
We now introduce the Rank-Clustered BTL model for ordinal data. Let I be the number of judges who
assess J objects. Let Πi represent the ordinal preference provided by judge i, which may be a partial
ranking, complete ranking, pairwise comparison, or groupwise comparison. Let Ri be the number of
objects ranked by judge i, i.e., Ri = ∣Πi∣. When Ri < J, his/her ranking is partial. Let Si denote the objects
considered by judge i when forming his/her ranking, such that Si ⊆ J . When Si ⊂ J , his/her ranking
is incomplete. Ri and Si are assumed known.

Under the Rank-Clustered BTL model, we assume ordinal data is generated via the following Bayesian
model:

ω ∼ PSSF(fG ∝ Poisson(Kg ∣λ),fν = Gamma(νk∣aγ,bγ))

Πi∣ω iid∼ BTL(ω∣Si,Ri) i = 1, . . . ,I.
(8)

Rank-Clustered BTL applies the proposed PSSF prior under specific choices of fG and f ν to the BTL
family of distributions for ordinal data. Note that the data-generating BTL distribution is identifiable up
to scalar multiplication of ω. However, the proposed Bayesian model does not suffer from identifiability
issues due to the non-uniform prior on ω (Johnson et al., 2022). We emphasize that unlike existing
rank-clustering methods, the proposed model does not pre-specify the number of clusters, a specific
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Figure 1. Joint distribution of (ω1,ω2) under the PSSF prior with varying combinations of fG and fν.

Note: In all cases,J ={1,2}, and plots show 20,000 sampled values with marginal density estimates along the axes. Rows correspond

to the choice of fν and columns to fG.

Figure 2. Distribution of ω2 −ω1 under the PSSF prior with varying combinations of fG and fν.

Note: In all cases,J = {1,2}. Rows correspond to the choice of fν and columns to fG.
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rank-clustering structure, or the order of objects. These are treated as random variables and estimated
simultaneously.

3.2.1. Prior selection
We now discuss the selection of priors and hyperparameters. We set fG according to

fG(g) ∝ Poisson(Kg ∣λ). (9)

In words, the prior probability of drawing a specific partition g depends only on how many unique
clusters, Kg , it contains. This prior is intentionally vague to permit a variety of rank-clustering patterns.
Note that every partition with the same Kg has equal prior probability. As a consequence, cluster sizes
do not explicitly impact the prior probability of each g.2 Still, there is an implicit connection between
cluster size and Kg . For example, if Kg = J, every cluster must be a singleton. In this setup, one could set
λ ≈ 1 to encourage rank-clustering, or λ ≈ J to discourage rank-clustering. Next, we set fν according to

fν(νk) = Gamma(νk∣aγ,bγ). (10)

This Gamma prior has been used in Bayesian estimation of BTL models as it allows for closed-
form Gibbs sampling via data augmentation (Caron & Doucet, 2012; Mollica & Tardella, 2017). The
hyperparameters aγ and bγ control the prior distribution on the worth parameters. Since ω is invariant to
multiplicative transformations, aγ and bγ are generally non-influential. Nonetheless, because the ratios
between worth parameters could become very large when one object is strongly preferred over another,
(aγ,bγ) should be chosen to give some density to values near 0 to allow for such extreme ratios.

3.2.2. Goodness-of-fit
To assess the adequacy of an estimated Bayesian model to observed data, we use a posterior predictive
p-value (Gelman et al., 2013, p. 146),

p = P(T(Πrep;g,ν) ≥ T(Πobs;g,ν) ∣ Πobs),

where Πrep is a draw from the posterior predictive distribution, Πobs is the observed data, T(Π;g,ν)
is a discrepancy measure chosen to test a specific quality of the assumed model, and the probability is
taken over the posterior distribution of parameters g,ν and the posterior predictive distribution of Π.
Based on Yao & Böckenholt (1999) and Mollica & Tardella (2017), we employ a discrepancy measure
that considers the number of times item j beats item j′, denoted τjj′ , for j,j′ = 1, . . . ,J. Specifically,

T(Π;g,ν) =∑
j<j′

(τjj′ −τ*
jj′)2

τ*
jj′

,

where τ*
jj′ is the theoretical frequency expected under an assumed model with parameters g,ν. Under

a well-fitting model, the posterior predictive p-value would be near 0.5, with small values indicating
inadequate model fit.

4. Bayesian estimation

In this section, we develop a Gibbs sampler for Bayesian estimation of Rank-Clustered BTL models
and provide simulations to demonstrate its performance under varying numbers of observations and
rank-clusters.

2It is possible to specify fG such that cluster sizes explicitly impact the prior probability of each g. For example, one could
set fG ∼ Poisson(K(1)

g ∣λ), where K(1)
g is the size of the first-place rank-cluster in g. In this case, model estimation would be

unchanged beyond a substitution of the new prior likelihood for fG in Equation (14).

Downloaded from https://www.cambridge.org/core. 25 Jul 2025 at 16:53:28, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Psychometrika 9

Algorithm 1 Gibbs sampler for Rank-Clustered BTL models

1. Initialize g(0),ν(0) at random, ensuring that ∣ν(0)∣ = Kg(0) .
2. For t = 1,2, . . . ,T1,

(a)Sample g(t) via its full conditional using RJMCMC in order to traverse the space of partitions
of varying numbers of clusters.

(b)Sample ν(t) via its full conditional T2 times, which is possible via closed-form Gibbs sampling
with data augmentation.

4.1. Gibbs sampler
Equation (4) defines ω by the pair (ν,g). Thus, to estimate ω, we sample from the joint posterior
distribution of (ν,g). We do so using a RJMCMC Gibbs sampler that alternates between updating g
and ν via their full conditionals after data augmentation. The sampler is summarized in Algorithm 1.

Based on our experience fitting Rank-Clustered BTL models to real and simulated data, we recom-
mend initializing g(0) = {1,2, . . . ,J} (and thus Kg(0) = J) as it allows rank-clusters to be formed during
the estimation process (as opposed to being imposed by the analyst during initialization). For Step 2,
T1 should be sufficiently large to allow for convergence of the MCMC chain, although specific choices
are context-dependent. Step 2(a) performs RJMCMC on clusters of objects. Since RJMCMC can be
slow to converge in high dimensions, it is important to run multiple chains and assess for mixing and
convergence (Gelman et al., 2013). Step 2(b) relies on a closed-form Gibbs sampler. We find T2 ≤ 5 is
usually sufficient for posterior sampling.

4.1.1. Details of Step 2(a)
We now detail Step 2(a), which proposes a new partition g′ based on the current partition g. Since (ν,g)
are intricately tied, ν must simultaneously be updated to an appropriate ν′. The sampling of discrete
partitions is challenging to perform efficiently. In a seminal paper on RJMCMC, Green (1995) provided
a method for sampling partitions. We adapt that work for the Rank-Clustered BTL model.

Following Green (1995), we only propose g′ which are slight modifications of g: Precisely, we allow
only for “births” splitting one cluster into two, or “deaths” merging two clusters into one. Since all
partitions have positive probability, this process is irreducible, as required. There is no need to propose
g′ that shuffle the partitions but maintain the number of clusters, as these partitions may be obtained
by successive birth and death moves.

Births are attempted with probability bg = 0.5.3 In this case, we select a cluster k at random among
those with at least two objects. The cluster is split “binomially”, meaning that each object is placed
independently into one of the “child” subgroups, k1 or k2, with equal probability, conditional on each
subgroup ultimately containing at least one object. Deaths are attempted with probability dg = 1−bg =
0.5. In a death, two adjacent clusters are merged at random. Adjacency means that /∃ k ∶ νk ∈ (νk1,νk2).

Births and deaths require updating ν by increasing or decreasing its dimension by 1, respectively.
In a birth, we split a cluster’s worth νk into (ν′k1

,ν′k2
) using,

ν′k1 = uνk, ν′k2 = u−1νk, (11)

where u ∼ Unif(0.5,1.5). The corresponding death solves these equations simultaneously:

νk =
√

ν′k1
ν′k2

. (12)

For reversibility, we automatically reject proposed births where ν′k1
,ν′k2

are not adjacent.

3One could specify an alternative bg ∈ (0,1) or make bg a function of Kg (as in Green, 1995). For simplicity, we fix bg = 0.5.
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Per Green (1995), the Metropolis–Hastings probabilities for a birth and death, respectively, are
min(1,A) and min(1,A−1), where

A = P(ν′,g′∣Π)
P(ν,g∣Π) × q(ν,g∣ν′,g′)

q(ν′,g′∣ν,g)P(u) × ∣
∂(ν′k1

,ν′k2
)

∂(u,νk)
∣, (13)

where q(ν′,g′∣ν,g) is the transition probability of sampling (ν′,g′) given current parameter set (ν,g).
We now calculate each term in A. First,

P(ν′,g′∣Π)
P(ν,g∣Π) = P(Π∣ν′,g′)P[ν′∣g′]P[g′]

∑g′′ ∫ν′′ P(Π∣ν′′,g′′)P[ν′′∣g′′]dν′′P[g′′]
∑g′′ ∫ν′′ P(Π∣ν′′,g′′)P[ν′′∣g′′]dν′′P[g′′]

P(Π∣ν,g)P[ν∣g]P[g]

= P(Π∣ν′,g′)P[ν′∣g′]P[g′]
P(Π∣ν,g)P[ν∣g]P[g]

= P(Π∣ν′,g′)
P(Π∣ν,g) ×

Gamma(ν′k1
∣aγ,bγ)Gamma(ν′k2

∣aγ,bγ)
Gamma(νk∣aγ,bγ)

× P[g′]
P[g] , (14)

where P(Π∣ν,g) and P[g] are defined by Equation (8). Second,

q(ν,g∣ν′,g′)
q(ν′,g′∣ν,g)P(u) =

dg′ × 1
Kg′−1

(bg × 1
#{l∶Sl(g)≥2} ×

2
2Sg(k)−2

)( 1
1.5−0.5)

(15)

= dg′#{l ∶ Sg(l) ≥ 2}(2Sg(k)−1 −1)
bg(Kg′ −1) .

The numerator in Equation (15) is the death probability, dg′ , times the probability of selecting a pair of
adjacent partitions given Kg′ total partitions after a split (there are Kg′ −1 such pairs). The denominator
is the birth probability, bg , times the probability of selecting a specific cluster k among those with at least
two members. This term also includes the probability of dividing the Sg(k) objects in cluster k into two
non-empty subsets. There are (2Sg(k)−2)/2 such subsets, since there are 2Sg(k) total possible partitions,
two empty partitions, and two ways to obtain each two-way split. Third and last,

∣
∂(ν′k1

,ν′k2
)

∂(u,νk)
∣ =

�����������
[

∂
∂u ν′k1

∂
∂νk

ν′k1
∂
∂u ν′k2

∂
∂νk

ν′k2

]
�����������
=
�����������
[

∂
∂u uνk

∂
∂νk

uνk
∂
∂u νk/u ∂

∂νk
νk/u]

�����������
=
�����������
[ νk u
−νk/u2 1/u]

�����������
= 2νk

u
. (16)

4.1.2. Details of Step 2(b)
To update ν conditional on a partition g and our data, Π, we turn to a clever data augmentation trick for
Bayesian estimation of Plackett–Luce models as seen in Caron & Doucet (2012) and Mollica & Tardella
(2017). Here, we adapt their trick to account for the more general BTL family of distributions and rank-
clustering. Let Y = {Yir} be a collection of independent random variables, i = 1, . . . ,I and r = 1, . . . ,Ri,
sampled according to

Yir ∼ Exponential(∑
j∈Si

νg−1(j)−
r−1
∑
s=0

νg−1(πi(s))). (17)

The exponential rates are precisely the denominator terms from BTL densities that are burdensome to
calculate. The full conditional posterior probability P[ν∣Y,Π,g] is then,

P[ν∣Y,Π,g] ∝ P[Y ∣Π,g,ν]P[Π∣g,ν]P[g∣ν]P[ν]
∝ P[Y ∣Π,g,ν]P[Π∣g,ν]P[ν]
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=
I
∏
i=1

Ri

∏
r=1

(∑
j∈Si

νg−1(j)−
r−1
∑
s=0

νg−1(πi(s)))e−yir(∑j∈Si νg−1(j)−∑
r−1
s=0 νg−1(πi(s)))×

I
∏
i=1

Ri

∏
r=1

νg−1(πi(r))

∑j∈Si
νg−1(j)−∑r−1

s=0 νg−1(πi(s))
×

K
∏
k=1

νaγ−1
k e−bγνk

=
I
∏
i=1

Ri

∏
r=1

νg−1(πi(r))e
−yir(∑j∈Si νg−1(j)−∑

r−1
s=0 νg−1(πi(s))) ×

K
∏
k=1

νaγ−1
k e−bγνk . (18)

Given these cancellations, we notice a closed-form expression for the posterior:

P[ν∣Y,Π,g] ∝
I
∏
i=1

K
∏
k=1

νcki
k e−νk∑

Ri
r=1 yirδirk ×

K
∏
k=1

νaγ−1
k e−bγνk

=
K
∏
k=1

ν
aγ+

I
∑
i=1

cki−1

k e
−νk(bγ+

I
∑
i=1

Ri
∑
r=1

yirδirk)

∝
K
∏
k=1

Gamma(νk ∣ aγ +
I
∑
i=1

cki,bγ +
I
∑
i=1

Ri

∑
r=1

yirδirk), (19)

where

cki = ∣{j ∶ j ∈ πi,g−1(j) = k}∣ (20)

δirk = ∣{j ∶ j ∈ Si,j /∈ {πi(1), . . . ,πi(r−1)},g−1(j) = k}∣. (21)

Thus, we can sample ν from a closed-form Gamma distribution after augmentation of the conditioning
data Π and random variable g with Y.

Now that we have developed an efficient estimation algorithm for Rank-Clustered BTL models, we
turn to a numerical simulation to demonstrate estimation accuracy under different rank-clustering
regimes.

4.2. Numerical simulation
We now demonstrate accurate estimation of worth parameters and rank-clusters via a Rank-Clustered
BTL model in a numerical simulation. We assume there are J = 8 objects which form K=1, 2, 4, or 8 rank-
clusters. When K = J = 8, every object is independent; there are only singleton rank-clusters. In the true
worth parameter vector, ω0, rank-clustered objects have identical values and successive rank-clusters
are separated in value by a factor of 4 (see Table 1 for specific values). Fourfold increases induce strong
but not absolute separation between objects: For demonstration, in a pairwise tournament between an
object with ω1 = 1 and ω2 = 4, the probability of selecting object 2 is,

P[2 ≺ 1∣ω1 = 1,ω2 = 4] = ω2

ω1 +ω2
= 4

4+1
= 0.8.

We also vary the Poisson hyperparameter on the number of rank-clusters, λ ∈ {0.1,2,4,8}, which
encourages rank-clustering to different extents and allows us to measure robustness of results when
λ is somewhat misspecified. To assess consistency in the number of observations, we vary the number
of judges I ∈ {50,200,800}. Finally, to assess the influence of partial and incomplete rankings, we vary
the tuple (R,S) ∈ {(2,2),(4,4),(2,8),(4,8),(8,8)}, where R is the number of ranked objects and S is the
number of objects considered by each judge. When R < 8 the ranking is partial, when S < 8 the ranking
is incomplete. The set of considered objects, Si for each judge i, is selected independently and uniformly
at random.

For each combination of K, λ, (R,S), and I, we generate 20 independent datasets and fit
a Rank-Clustered BTL distribution to each, under hyperparameters aγ = 5 and bγ = 3. We set
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Table 1. Simulation settings for ω0 under

varying numbers of true rank-clusters, K

Setting: ω0

K = 1 {40,40,40,40,40,40,40,40}

K = 2 {40,40,40,40,41,41,41,41}

K = 4 {40,40,41,41,42,42,43,43}

K = 8 {40,41,42,43,44,45,46,47}

K = 1 K = 2 K = 4 K = 8

λ
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λ
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Figure 3. Boxplots of posterior mean absolute error for ω0 across combinations of the number of judges I, true number of rank-clusters

K, hyperparameter λ, number of ranked objects R, and number of assessed objects S.

Note: Errors are calculated after normalization of posterior samples such that∑j ω0j = 1.

T1 = 5,000 and T2 = 2 to obtain 10,000 posterior samples in each MCMC chain and remove the first
half as burn-in. We note that no MCMC chain of length 10,000 took longer than 20 minutes to run
(∼0.12 seconds/iteration); many ran in under 2 minutes. For identifiability, posterior estimates of ω0
are normalized post-hoc such that ∑j ω0j = 1.

We first examine the accuracy of estimation for ω0 across simulation settings. Figure 3 displays
boxplots of mean absolute error (MAE) for ω0 by number of judges I, true number of rank-clusters
K, and the choice of hyperparameter λ. In general, estimation is quite accurate. We see that for any
specific combination of K and λ, MAE decreases as I increases. Estimation error is higher when K is
large and I is small, most likely the result of error estimating a complex rank-clustering structure.

Figure 4 displays the mean posterior probability of rank-clustering across object pairs which are truly
rank-clustered (navy) or independent (gold) in ω0.

Results are further separated by the number of judges, I, true number of clusters, K, and hyperparam-
eter λ. For rank-clustered pairs, accuracy of recovery is generally high and increases with the number
of judges, I. Accuracy is best when hyperparameter λ ≈K, which occurs when prior belief regarding the
number of rank-clusters is approximately correct. If there is limited prior knowledge on the number
of rank-clusters, we suggest specifying a vague hyperparameter setting such as λ = J

2 and assessing
sensitivity of results to various choices of λ. The posterior probability of rank-clustering independent
object pairs is near 0 in all simulations, indicating excellent recovery accuracy of objects with distinct
worth parameters.

The numerical simulations in this section indicate that the proposed Rank-Clustered BTL model
is able to accurately estimate the relative worth of objects in a collection, including in the presence of
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Figure 4. Boxplots of the mean posterior probability of rank-clustering object pairs which are truly rank-clustered (left) or independent

(right) across combinations of I, K, λ, R, and S.

rank-clustering or partial/incomplete observed rankings. Estimation error decreases to 0 as the number
of observations increases. Overall, the model correctly identifies rank-clustered and independent object
pairs.

5. Applications

In this section, we apply the Rank-Clustered BTL model to four real datasets involving ordinal
comparisons. These four applications were chosen to highlight the applicability of our method to
various ordinal data types and domain areas and illustrate methodological values of our approach
which are summarized in Table 2. The data sets are comprised of sushi preferences of Japanese adults
(Kamishima, 2003), ranked-choice votes in a Minneapolis mayoral election (Minneapolis Elections and
Voter Services, 2021), policy preferences of respondents from Great Britain in a Eurobarometer survey
(Reif & Melich, 1993), and pairwise game outcomes among teams in the US NBA (National Basketball
Association, 2024).

5.1. Sushi preferences in Tohoku
We first study complete preference rankings of 10 sushi types from a benchmarking dataset by
Kamishima (2003). To allow our results to be comparable with an analysis of the sushi data by
Piancastelli & Friel (2024), we analyze the preferences of survey respondents who lived in Japan’s Tohoku
region until at least 15 years of age. There were 280 such respondents. We fit a Rank-Clustered BTL
distribution to the data with aγ = 5, bγ = 3, and λ = 2 to encourage rank-clustering but permit a wide
variety of outcomes. We ran a total of 32,000 MCMC iterations, which took approximately 12 minutes
(0.02 seconds/iteration). Figure 5 displays posterior rank-clustering probabilities (left) and parameter
posteriors (right). In the left panel, the color of the (i,j) square of the clustering matrix represents the
posterior probability that sushi types i and j are equal in rank at the population level. Additional results,
including goodness-of-fit and convergence diagnostics, are provided in the Appendices.

Sushi types are ordered according to posterior median worth. Based on the left panel in Figure 5,
fatty tuna appears to be strictly most preferred in this population, followed by tuna and shrimp rank-
clustered in second place. Salmon roe and sea eel exhibit high posterior probability of rank-clustering,
as do sea urchin, tuna roll, and squid; these two groups may themselves be rank-clustered. Egg and
cucumber roll are rank-clustered in last place. Our results demonstrate the proposed model’s ability to
rank-cluster objects with uncertainty under complete rankings in survey data.

We compare our results to those found by Piancastelli & Friel (2024) in a CMM. They estimate the
following ranking: fatty tuna ≺ tuna ≺ shrimp ≺ {salmon roe, sea urchin}≺{sea eel, tuna roll, squid}≺
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Table 2. Summary of applications by subsection

Setting Data type Methodological value

5.1 Sushi preferences in

Tohoku

Complete rankings of 10 sushi

types

Rank-clusters sushi types by preferences.

Comparing inferred overall ranking with that

of the Clustered Mallows Model.

5.2 Minneapolis mayoral

election votes

Top-3 partial rankings of 17

candidates

Interpretable overall ranking captures the

winner’s mandate in ranked-choice

elections. Comparing inferred overall

ranking with those from a standard BTL

model and two election procedures.

5.3 Eurobarometer survey

policy preferences

Partial rankings of 7 policy

options

Inferred overall ranking permits identification

of similarly preferred options to aid

policymakers.

5.4 Basketball game

outcomes

Pairwise comparisons (game

winners) among 30 teams

Inferred overall order captures

similarly-performing teams. Setting with

limited information and low signal.
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Figure 5. Primary results from Rank-Clustered BTL analysis of Tohoku sushi data.

Note: Left: Posterior rank-clustering probabilities. Main diagonal displays posterior median estimate of worth parameter after normal-

ization. Red squares indicate maximum a posteriori rank-clusters. Right: Posterior distributions of sushi-specific worth parameters.

{egg, cucumber roll}. Our results are, unsurprisingly, similar, but differ in illuminating ways. Tuna and
shrimp are rank-clustered in our model. The rank-clusters {salmon roe, sea eel} and {sea urchin, tuna
roll, squid} swap the rank of sea eel and sea urchin. These two rank-clusters exhibit some posterior
probability of rank-clustering themselves. These differences showcase how the model pre-specification
required by CMM limits the flexibility of results and may not fully show what the data has to offer or
fully account for uncertainty in the estimated ranks and rank-clusters. The Rank-Clustered BTL model
requires no pre-specification and permits complex posterior summaries of rank-clustering, including
uncertainty in the number of rank-clusters and their respective sizes.

5.2. 2021 Minneapolis mayoral election
Our second example analyzes real rank-choice votes from the 2021 mayoral election in Minneapolis,
Minnesota (Minneapolis Elections and Voter Services, 2021). This election included 17 candidates
(excluding write-ins and one who received no votes) and asked voters to rank their top-three choices,
in order. A total of 145,337 votes were cast in this election. To mimic exit polling data, we randomly
sample 1000 valid votes for analysis, which we treat as a random sample of preferences from the
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Figure 6. Primary results from Rank-Clustered BTL analysis of mayoral votes.

Note: Party abbreviations are in parentheses after candidate surnames. Left: Posterior rank-clustering probabilities. Main diagonal

displays posterior median estimate of worth parameter after normalization. Red squares indicate maximum a posteriori rank-clusters.

Right: Posterior distributions of candidate-specific worth parameters.

population of Minneapolis voters. We want to estimate the overall preferences of Minneapolis voters
regarding mayoral candidates and learn which candidates, if any, are rank-clustered at the population
level. Clustering candidates may be of interest to political scientists or local political organizations for
the purpose of understanding voter preferences (Dimock et al., 2014; Gunther & Diamond, 2003).
For example, if the winner of the election is deemed to be rank-clustered with other candidate(s),
their mandate may be considered weak. Conversely, if the winner is a singleton first-place rank-
cluster—clearly ranked above all other candidates—their mandate may be considered strong. We fit
a Rank-Clustered BTL to the data with aγ = 5, bγ = 3, and λ = 2 to encourage few rank-clusters.
We ran a total of 80,000 MCMC iterations, which took approximately 72.5 minutes (approximately
0.05 seconds/iteration). Figure 6 displays posterior rank-clustering probabilities (left) and parameter
posteriors (right). In the left panel, the color of the (i,j) square of the clustering matrix represents the
posterior probability that candidates i and j are equal in rank at the population level. Additional results,
including goodness-of-fit and convergence diagnostics, are provided in the Appendices.

In Figure 6, candidates are ordered by their posterior median estimate of worth. Cluster 1 consists
of Jacob Frey, the winner and incumbent. We note that Frey is not rank-clustered with other candidates
with high posterior probability, suggesting a relatively strong mandate. Cluster 2 consists of Kate Knuth
and Sheila Nezhad, both female, non-incumbent DFL candidates. Last, Cluster 7 consists of 6 candidates
with minimal support.

Figure 7 compares point estimates of rank for each candidate across four methods. The first
and second rows display assigned ranks from ranked choice and “first-past-the-post” (FPP) election
procedures, respectively. We calculate FPP ranks by ordering candidates by the number of first place
votes he/she received (ignoring all second and third place votes).4 The third and fourth rows display
maximum a posteriori ranks from a standard Bayesian BTL and our Rank-Clustered BTL, respectively.
Frey wins the election in all methods. The BTL and Rank-Clustered BTL models roughly reflect the
deterministic algorithms, although we notice some swaps in candidate ranks which may be attributed
to differences between first place and second or third place votes. For example, Conner received fewer
first place votes than Turner, but far more second and third place votes (see Appendices for vote
totals). As a result, deterministic algorithms rank Turner above Conner, while the BTL model takes

4If the actual election had utilized FPP tabulation, results may have been different based on the differing voter strategies
encouraged by ranked choice and FPP elections.
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Figure 7. Comparison of estimated rank for each candidate across four aggregation methods: Ranked Choice, First-Past-the-Post (FPP),

BTL, and Rank-Clustered BTL (RC BTL).

Note: Candidates are ordered by their rank in the actual ranked choice election.

into account the additional preference information and ranks Conner above Turner. In summary, the
overall ordering estimated by the Rank-Clustered BTL differs from a standard BTL model and two
deterministic election procedures. Furthermore, our model confirms that Frey is strictly preferred over
the remaining candidates by voters.

5.3. Eurobarometer 34.1 survey data
We analyze data from the Eurobarometer 34.1 survey (Reif & Melich, 1993), which included the
following question:

Question 28: There are various actions that could be taken to eliminate the drugs problem. In your
opinion, what is the first priority? And the next most urgent? (Ask respondent to rank all 7, with
1 as the most urgent.)

1. Information campaigns about the dangers of drugs.
2. Hunting down drug pushers and distributors.
3. Legal penalty for drug taking.
4. Looking after and treating drug addicts and rehabilitating them.
5. Funding research into drug substitutes, and into the treatment of drug addiction.
6. Fighting the social causes of drug addiction.
7. Reinforcing the control or distribution and usage of addictive medicines.

We subset the data to respondents from Great Britain to avoid heterogeneity and non-proportional
sampling among respondents from different European countries. There were 1005 valid responses
among this group (out of 1,031 total surveyed), of which 970 were complete rankings and the rest
ranked between one and five items (a top-six ranking is inherently equivalent to a complete ranking
since all survey options were presented). We seek to identify a population-level ordering of the priorities
that accounts for potential equality or indistinguishability among the options based on the survey data.
These data were previously studied by Wang et al. (2017) with a mixed-membership model to learn
about heterogeneity of opinions among survey respondents. Our analysis, although a simplification of
the diverse population’s heterogeneous preferences, provides a simpler interpretation to policy-makers
interested in understanding rank-ordering of policy preferences.

We fit a Rank-Clustered BTL model to the data with aγ = 5, bγ = 3, and λ = 2 to encourage
rank-clustering. We ran a total of 16,000 MCMC iterations, which took approximately 12.5 minutes
(0.047 seconds/iteration). Figure 8 displays posterior rank-clustering probabilities (left) and parameter
posteriors (right). In the left panel, the color of the (i,j) square of the clustering matrix represents the
posterior probability that policies i and j are equal in rank at the population level. Additional results,
including goodness-of-fit and convergence diagnostics, are provided in the Appendices.
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Figure 8. Primary results from Rank-Clustered BTL analysis of Eurobarometer 34.1 data.

Note: Left:Posterior rank-clustering probabilities. Main diagonal displays posterior median estimate of worth parameter after normal-

ization. Red squares indicate maximum a posteriori rank-clusters. Right: Posterior distributions of policy-specific worth parameters.

Policy option 2 (hunting drug pushers) is strictly preferred to the rest among the population of
survey respondents from Great Britain, whereas options 5 (funding research) and 3 (legal penalty) are
rank-clustered last. The results indicates to policymakers that respondents in Great Britain strongly
prioritize Option 2 in comparison to the rest, while pairs of Options 1 and 4 and Options 3 and 5,
are, respectively, indistinguishable within each pair, with 1 and 4 being strongly preferred to 3 and 5.
By rank-clustering similarly-preferred options, interpretation of constituent preferences is simplified
for policymakers.

5.4. 2023–2024 NBA game outcomes
Last, we analyze outcomes of 1,230 games from the 2023–2024 season of the National Basketball
Association (NBA) of the United States of America (National Basketball Association, 2024). In this
season, 30 teams each played 82 games, including between two and five games against every other team.
We seek to estimate an overall ranking of teams that allows for potential equality in ranking.

We fit a Rank-Clustered BTL model to the data with aγ = 5, bγ = 3, and λ = 1 to encourage
rank-clustering given the limited ordinal comparison data provided by pairwise matchups. We
ran a total of 320,000 MCMC iterations, which took approximately 22.6 hours (approximately
0.25 seconds/iteration). Figure 9 displays posterior rank-clustering probabilities (left) and parameter
posteriors (right). In the left panel, the color of the (i,j) square of the clustering matrix represents the
posterior probability that teams i and j are equal in rank at the population level. Additional results,
including goodness-of-fit and convergence diagnostics, are provided in the Appendices.

In this setting, the Rank-Clustered BTL model estimates an ordering of professional basketball teams
with uncertain rank-clustering patterns. Uncertain rank-clustering may result from two aspects of this
application. First, pairwise comparisons provide little information in relation to partial or complete
rankings, by construction. Second, game outcomes provide low signal measurements of team ability
(Baumer et al., 2023). That is because many factors influence game outcomes, such as skill, home
advantage, injuries, roster changes, and luck (Cai et al., 2019). Consistent with the low signal and limited
information setting, an 80% posterior credible interval indicates that there are between 6 and 9 rank-
clusters. Every team has less than 0.037 posterior probability of belonging to a singleton rank-cluster.

As seen in the left panel of Figure 9, four teams (Boston Celtics, Oklahoma City Thunder, Denver
Nuggets, and Minnesota Timberwolves) appear to be rank-clustered for first place. Based on regular
season data alone, our model suggests that these 4 teams were of roughly indistinguishable ability.
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Figure 9. Primary results from Rank-Clustered BTL analysis of 2023–2024 NBA data.

Note: Left: Posterior rank-clustering probabilities. Main diagonal displays posterior median estimate of worth parameter after normal-

ization. Right: Posterior distributions of team-specific worth parameters.

Conversely, we observe that 6 teams (Toronto Raptors, San Antonio Spurs, Portland Trail Blazers,
Charlotte Hornets, Washington Wizards, and Detroit Pistons) all have a high posterior probability
of rank-clustering in last place. Instead of reporting the uncertain ranking of these teams with some
granularity, we recommend to infer that these teams were the worst teams of the league in this
season. These rank-clusters, despite not accounting for the complexities of the sport, provide useful
and interpretable summaries of the teams’ abilities across the regular season. A similar analysis could
be used in the future to predict postseason performance.

6. Discussion

In this article, we proposed the Rank-Clustered BTL model for estimating an overall ranking of objects
with rank-clusters. The model employs the BTL family of distributions for ordinal comparisons. We
proposed PSSF prior to estimates model parameters in a Bayesian framework. The model requires
neither pre-specification of the number or size of the rank-clusters (improving upon Piancastelli & Friel,
2024), nor specification of lasso-based penalty parameters (improving upon Hermes et al., 2024; Jeon
& Choi, 2018; Masarotto & Varin, 2012). In a simulation study, we demonstrated the model’s ability to
accurately and consistently estimate the relative worth of objects in a collection while simultaneously
estimating rank-clusters. We used Rank-Clustered BTL on four real datasets under different types of
ordinal comparison data.

In contrast to the only other spike-and-slab based prior for parameter fusion Wu et al. (2021),
PSSF prior we developed does not require a known parameter order. Visual inspection of the prior
distribution makes obvious its connection to spike-and-slab: “spike” components correspond to param-
eter clusters and “slab” components correspond to independent parameters. Estimation of parameters
under this model requires reversible jump MCMC. To overcome potentially slow or computationally-
burdensome estimation in this setting, we proposed a computationally efficient Gibbs sampler. The
sampler alternates between updating the partition of objects, based on the seminal work of Green (1995),
and updating object-level worth parameters following a data augmentation trick for standard Plackett–
Luce models by Caron & Doucet (2012) that was later adapted for Plackett–Luce mixtures by Mollica &
Tardella (2017).

The proposed PSSF prior requires selecting hyperpriors for partitions, fG, and the continuous values
for each unique parameter, fν. In this work, we specified fG ∝ Poisson(Kg ∣λ) to be intentionally vague
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over the large space of partitions and fν ∝ Gamma(aγ,bγ) based on conjugacy. However, alternative
hyperpriors are available. A Negative Binomial or Beta Negative Binomial distribution for fG may be
more appropriate when stronger prior knowledge of Kg is available. If PSSF were to be applied to linear
regression for parameter fusion, a Normal or t−distribution may be substituted for fν.

A useful benefit of estimating parameter values and clusters in a single Bayesian framework is the
avoidance of issues associated with selective inference (Taylor & Tibshirani, 2015) or, more colloquially,
double dipping (Kriegeskorte et al., 2009). Selective inference occurs when the same data is used twice
in the process of model selection and/or estimation, e.g., to estimate some latent structure underlying
the data and subsequently to estimate parameters conditional on that estimated structure. In our
context, selective inference would occur if ordinal preference data was used first to identify rank-
clusters and then used again to estimate worth parameter values conditional on those clusters. We note
that selective inference occurs in the estimation of the related CMM by Piancastelli & Friel (2024),
which requires selecting the number and size of rank-clusters among objects before fitting the model.
Selective inference often leads to invalid inference in part because uncertainty regarding the estimated
clustering structure is not taken into account. However, Rank-Clustered BTL models do not perform
selective inference because parameter values and rank-clusters are estimated simultaneously. As such,
we believe our parameter estimates to be more credible than those from the aforementioned methods
in the literature because they rely on a fully Bayesian approach that incorporates uncertainty across the
posterior distributions of both the rank-clustering structure and the specific parameter values (Gelman
et al., 2013, p. 24).

Results from Rank-Clustered BTL models are useful in a variety of inferential contexts. As noted
in other fusion literatures on rankings, estimated overall rankings may be easier to understand and
interpret when rank-clusters of objects are identified, as rank-clusters lead to fewer rank levels of objects
to distinguish (Masarotto & Varin, 2012). In contexts where model results are used for prediction, such
as in sports, estimating rank-clusters may improve predictive accuracy (Tutz & Schauberger, 2015).
Similarly, estimating rank-clusters is important in the context of decision-making: In peer review, for
example, rank-clusters can be beneficial for communicating uncertainty in the assessment of preferences
and for better transparency in funding decisions. We might imagine a scenario where a government
agency is only able to fund two grants, however, two grant proposals are rank-clustered in second place.
In this case, rank-clustering can be used to communicate uncertainty in the relative quality of the top
proposals. A potential danger is that under this uncertainty, decision makers may be tempted to resort
to unfair tie-breaking methods, e.g., selecting the proposal with the most famous author. Instead, tie-
breaking should occur based on a fairer or more principled method, such as a partial lottery (Fang &
Casadevall, 2016; Heyard et al., 2022; Roumbanis, 2019).

We list a few possible directions for future research. First, in this work we have not considered
the level of interconnectedness among the assessed objects (e.g., if separate groups of judges assess
completely distinct sets of objects). This is particularly relevant in the case of pairwise comparison data,
in which some pairs of objects may never experience a head-to-head match-up. Second, the PSSF prior
could be imposed as a prior for more complex BTL models or to other models entirely. In the former,
the PSSF prior could be applied to preference learning via BTL distributions that incorporate covariates
(e.g., Baldassarre et al., 2023; Chapman & Staelin, 1982; Gormley & Murphy, 2010; Hermes et al., 2024)
or ties in the observed ordinal comparison data (e.g., Rao & Kupper (1967)). In that case, the prior may
be modified to permit covariate parameter estimation in addition to rank-clustering. In the latter case,
the PSSF prior may be applied to regression for variable fusion, and its performance may be compared to
other existing Bayesian variable fusion methods (e.g., Casella et al., 2010; Shimamura et al., 2019; Song &
Cheng, 2020). Third, we notice that the PSSF prior bears some resemblance to a Dirichlet process prior
(Escobar & West, 1995). Specifically, we may consider fν in PSSF as a base distribution in a Dirichlet
process. However, the Dirichlet process’ concentration parameter is related to but distinct from fG in
PSSF. Thus, the connection between Bayesian nonparametrics and Bayesian parameter fusion requires
further study. Fourth, the proposed model could be studied in the framework of a latent class mixture
model in order to introduce clustering among both objects (i.e. rank-clusters) and judges (i.e., preference
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heterogeneity) simultaneously. Doing so would result in a novel form of biclustering. However, the
identifiability of such a model is not clear and would require theoretical investigation.

The proposed Rank-Clustered BTL model accurately estimates rank-clusters, permitting complex
summaries beyond the traditional overall ranking and allowing for improved interpretability of the
results. The Bayesian Rank-Clustered BTL model relies on a novel, spike-and-slab type prior for
parameter fusion, and is estimated in a computationally-efficient manner. The applications in survey
data, voting, and sports to aid informed inference and decision-making illustrate methodological
versatility and broad applicability of our proposed rank-clustering approach.

Supplementary material. The supplementary materials include R code and data required to reproduce our simulations and
data analysis.

Data availability statement. An R implementation of the Rank-Clustered BTL is publicly available at https://github.
com/pearce790/rankclust. Furthermore information on the package can be found at https://pearce790.github.io/rankclust/
index.html.
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Appendix A. Additional application results

Appendix A.1. Additional results from Section 5.1
Figure A.1 displays stacked bar charts of ranks received by each sushi type by the survey respondents from Tohoku. Figure A.2
shows a comparison among results obtained using the proposed Rank-Clustered BTL, a standard BTL, and the Clustered
Mallows model.

Table A.1 contains posterior predictive p-values based on the discrepancy measure defined in Section 3.2.2. A p-value is
calculated for both a standard BTL distribution and a Rank-Clustered BTL distribution fit to the observed data. All statistics
are well above a standard 0.05 threshold, indicating acceptable fit to the observed data. We recall that posterior predictive
p-values are used as tools to assess potential model misfits, and not to compare or choose among the models (Gelman et al.,
2013, p. 150).

Figures A.3 and A.4 contain trace plots for K and ω after burn-in for each chain. We find the trace plots to demonstrate
satisfactory mixing and convergence.

Appendix A.2. Additional results from Section 5.2
Figure A.5 displays stacked bar charts of the sampled votes by rank level for each candidate.

Candidates are ordered by their final placement according to the official ranked choice voting algorithm. The incumbent,
Jacob Frey, receives the largest share of first place votes, although Kate Knuth and Sheila Nezhad also receive substantial
support. The remaining candidates receive comparatively few votes. Most candidates are associated with the Democratic–
Farmer–Labor (DFL) party, which is affiliated with the national Democratic Party. Laverne Turner and Bob “Again” Carney
Jr. are the only Republicans (GOP) in the race. The remaining candidates represent Grassroots–Legalize Cannabis (GLC),
Libertarian (LIB), Socialist Workers Party (SWP), For the People Party (FPP), Independence (INC), Independent (IND), and
Humanitarian–Community Party (HCP).
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Table A.1. Posterior predictive p-values

based on a standard BTL and Rank-

Clustered BTL (RC-BTL) to assess

goodness-of-fit in the Sushi data analysis

Model BTL RC-BTL

p-value 0.30 0.24
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Figure A.1. Stacked bar charts of ranks received by each sushi type.
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Figure A.2. Comparison of results among comparator methods for the Sushi data analysis.
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Figure A.3. Trace plot of K in the Sushi data analysis.
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Figure A.4. Trace plots of ω in the Sushi data analysis.
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Figure A.5. Number of votes by rank level and candidate. Candidates are ordered by their position in the official ranked choice election.

Note: Acronyms on the tops of bars represent each candidate’s political party.

Table A.2. Posterior predictive p-values

based on a standard BTL and Rank-Clustered

BTL (RC-BTL) to assess goodness-of-fit in the

Minneapolis mayoral election data analysis

Model BTL RC-BTL

p-value 0.41 0.30

Table A.2 contains posterior predictive p-values based on the discrepancy measure defined in Section 3.2.2. A p-value is
calculated for both a standard BTL distribution and a Rank-Clustered BTL distribution fit to the observed data. All statistics
are well above a standard 0.05 threshold, indicating acceptable fit to the observed data. We recall that posterior predictive
p-values are used as tools to assess potential model misfits, and not to compare or choose among the models (Gelman et al.,
2013, p. 150).

Figures A.6 and A.7 contain trace plots for K and ω after burn-in for each chain. We find the trace plots to demonstrate
satisfactory mixing and convergence.

Appendix A.3. Additional Results from Section 5.3
Figure A.8 displays stacked bar charts of ranks received by each policy option by the survey respondents from Great Britain.
Figure A.9 shows a comparison between results obtained using the proposed Rank-Clustered BTL and a standard BTL model.
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Figure A.6. Trace plots of K in the Minneapolis mayoral election data analysis.

Figure A.7. Trace plots of ω in the Minneapolis mayoral election data analysis.
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Figure A.8. Stacked bar charts of ranks received by each policy option.
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Table A.3. Posterior predictive p-values

based on a standard BTL and Rank-Clustered

BTL (RC-BTL) to assess goodness-of-fit in the

Eurobarometer survey data analysis

Model BTL RC-BTL

p-value 0.32 0.35
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Figure A.9. Comparison of results among comparator methods for the Eurobarometer survey data analysis.
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Figure A.10. Trace plot of K in the Eurobarometer survey data analysis.

Table A.3 contains posterior predictive p-values based on the discrepancy measure defined in Section 3.2.2. A p-value is
calculated for both a standard BTL distribution and a Rank-Clustered BTL distribution fit to the observed data. All statistics
are well above a standard 0.05 threshold, indicating acceptable fit to the observed data. We recall that posterior predictive
p-values are used as tools to assess potential model misfits, and not to compare or choose among the models (Gelman et al.,
2013, p. 150).

Figures A.10 and A.11 contain trace plots for K and ω after burn-in for each chain. We find the trace plots to demonstrate
satisfactory mixing and convergence.

Appendix A.4. Additional results from Section 5.4
Figure A.12 displays stacked bar charts of the season record of each NBA team across the 2023–2024 season. Figure A.13 shows
a comparison between results obtained using the proposed Rank-Clustered BTL and a standard BTL model.

Table A.4 contains posterior predictive p-values based on the discrepancy measure defined in Section 3.2.2. A p-value is
calculated for both a standard BTL distribution and a Rank-Clustered BTL distribution fit to the observed data. All statistics
are well above a standard 0.05 threshold, indicating acceptable fit to the observed data. We recall that posterior predictive
p-values are used as tools to assess potential model misfits, and not to compare or choose among the models (Gelman et al.,
2013, p. 150).

Figures A.14 and A.15 contain trace plots for K and ω after burn-in for each chain. We find the trace plots to demonstrate
satisfactory mixing and convergence.
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Figure A.11. Trace plot of ω in the Eurobarometer survey data analysis.
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Figure A.12. Stacked bar charts of ranks received by each NBA team across the 2023–2024 season.

Note: Winning = rank 1; losing = rank 2.
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Figure A.13. Comparison of results among comparator methods for the 2023–2024 NBA season analysis.
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Table A.4. Posterior predictive p-values

based on a standard BTL and Rank-Clustered

BTL (RC-BTL) to assess goodness-of-fit in the

2023–2024 NBA season analysis

Model BTL RC-BTL

p-value 0.61 0.60
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Figure A.14. Trace plot of K in the 2023–2024 NBA season analysis.
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Figure A.15. Trace plot of ω in the 2023–2024 NBA season analysis.
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