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Abstract
Contact force is one of the most significant feedback for robots to achieve accurate control and safe interaction
with environment. For continuum robots, it is possible to estimate the contact force based on the feedback of robot
shapes, which can address the difficulty of mounting dedicated force sensors on the continuum robot body with
strict dimension constraints. In this paper, we use local curvatures to estimate the magnitude and location of single
or multiple contact forces based on Cosserat rod theory. We validate the proposed method in a thin elastic tube
and calculate the curvatures via Fiber Bragg Grating (FBG) sensors or image feedback. For the curvature feedback
obtained from multicore FBG sensors, the overall force magnitude estimation error is 0.062 ± 0.068 N and the
overall location estimation error is 3.51 ± 2.60 mm. For the curvature feedback obtained from image, the overall
force magnitude estimation error is 0.049 ± 0.048 N and the overall location estimation error is 2.75 ± 1.71 mm.
The results demonstrate that the curvature-based force estimation method is able to accurately estimate the contact
force.

1. Introduction
Continuum robots could easily change their configurations due to external contact, which will affect the
robot motion and eventually alter the control efforts [1, 2]. The contact force is of great significance
especially in medical settings such as cardiac ablation surgery, where the ablation area of the tissue
largely depends on the contact force [3]. Many work has been done to estimate the contact forces. Contact
force can be directly measured by embedding miniature force sensors on the robot body [4, 5]. However,
these methods are only effective when the contact occurs at the sensor location, for instance at the tip
of the robot. Also, the strict dimension constraints also limit the wide application of these approaches
in needle-sized continuum robots, especially in the minimally invasive surgical tools where the tool tip
often equipped with multiple treatment or diagnosis units [6, 7]. Alternatively, continuum robot task-
space contact force can be estimated based on joint-space sensor measurement. For example, Bajo et al.
[8, 9] proposed a method for tendon-driven continuum robot contact force sensing, but this requires
a dedicated force cell at the actuation unit. The joint-space force cells may not be available for some
continuum devices such as concentric tubes [10], steerable needles [11], or in MR-guided interventions
[12–15] where the MRI-conditional force sensor is not readily available.1

Alternatively, force can be estimated implicitly based on the measurements of continuum robot con-
figuration change. This is applicable since the intrinsic compliant nature of continuum robots allows the
robot configuration to be changed with the contact forces [16]. Many models have been proposed to pre-
dict the continuum robot shape based on contact force, including beam-based method [17], calibration
method [18], variable curvature method [19], and Cosserat rod theory [20]. Contact forces, in turn, can
be estimated by matching the measured shape with model shape.

Related works have been published to estimate the contact force using shape-based method, which
compares the difference between measured shape and model shape in the point cloud. Qiao [21]
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proposed a shape-based method to estimate contact forces by minimizing the difference between the
measured shape and model shape with Kalman filters. However, the estimation error is relatively large,
with force mean error of 30.59% and locations mean error of 17.20%. Aloi [22] proposed a shape-based
method using Fourier transformation. This method will estimate the force in a distributed fashion and
can detect the force location by observing the "peaks” of the distributed force profile. However, it cannot
provide useful information on the exact force magnitude and location if it is point contact.

Aside from shape-based method, curvatures can provide more robust information for force estimation.
This is because the curvatures remain invariant for any translations or rotations the continuum robot
undergoes. The curvatures along the continuum robot can be measured using multicore fiber Bragg
grating (FBG) sensors [23, 24] or intraoperative images with curvature estimation algorithms [25–29].
Several curvature-based methods have been investigated for force estimation. Qiao [30] utilized FBGS
to measure the curvatures along the manipulator and calculated the force (mean error of 9.8% error)
and locations (mean error of 3.6% error) directly using constitutive law. Al-Ahmad [31] utilized an
unscented Kalman filter to the measured curvatures, which achieved 7.3% error of force magnitude and
4.6% error of location. However, the estimated location error is still large because these methods cannot
solve subnode accuracy and require expensive FBG sensors embedded in the instrument.

In this paper, we present a curvature-based force estimation method that enables force estimation
in a subnode accuracy. We also illustrate curvature-based method has advantages over shape-based
method regarding the loss map convexity. Moreover, a local frame representation of Cosserat rod the-
ory is derived to achieve faster curvature computation, which avoids the time-consuming integration of
rotation matrix. Aside from obtaining the curvature feedback from FBG sensors, we also investigate the
feasibility of obtaining the curvature from image feedback using the line integral method. The result
shows that the contact force locations and magnitudes can be accurately estimated by curvature from
both FBG sensors and images. The contributions of this paper include:

• Distributed the contact force to adjacent nodes to solve the model in subnode accuracy.
• Derived a local frame representation of Cosserat rod theory to achieve faster computation.
• Investigated the method to compute local curvature based on image feedback.
• Experimentally validated the proposed estimation method on single and multiple contact force

cases.

The structure of the paper is arranged as follows. Section 2 describes the derivation of a local frame
representation of Cosserat rod theory for curvature calculation. Section 3 discusses the method to solve
the model in subnode accuracy and the methods to compute the feedback curvatures from multicore
FBG sensors and the images. Section 4 shows the experimental results of the force estimation regarding
the force magnitudes and the locations. Finally, Section 5 is the conclusion.

2. Model curvature calculation
2.1. Review of Cosserat rod model
Cosserat rod model describes the equilibrium state of a small segment of thin rod subjected to internal
and external distributed forces and moments. Previous works [32] have detailed the differential geometry
of a thin rod with Cosserat rod theory so that the deformation can be estimated by solving Ordinary
differential equations (ODEs) in (1)–(4) given external forces Fe and external moments Le. To distinguish
variables from different frames, we use lowercase letters for variables in local frame and uppercase letters
for variables in global frame.

Ṗ = Rv (1)

Ṙ = Rû (2)

Ṅ = −Fe (3)
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Ṁ = −Ṗ × N − Le (4)

where the dot symbol in ẋ represents the derivative of x respect to the arc length s, hat symbol in x̂
reconstruct vector x to a 3 by 3 skew symmetric matrix, P is the shape in global frame, R is the rotation
matrix of local frame relative to the global frame, N and M are internal force and moment in global
frame which obeys the constitutive law

N = RKSE (v − v∗) (5)

M = RKBT (u − u∗) (6)

v and u are differential geometry parameters of a rod, v∗ and u∗ are differential geometry parameters of
a rod with no external loads. KSE and KBT are the stiffness matrices. The boundary conditions for solving
the ODEs (1)–(4) are described as

N
(
loctip

) = Ftip (7)

M
(
loctip

) = T tip (8)

where Ftip and T tip are external force and torque applied at the tip. loctip is the tip position in arc length.
Thus, the rod shape P can be computed by solving the boundary value problem (BVP).

2.2. ODEs for model curvature calculation
The widely accepted Cosserat rod model in (1)–(4) are expressed in global frame. But it is beneficial to
use the model in local frame to calculate the curvatures. We firstly take the derivative of M in (6) and
combine with (4)

RûKBT (u − u∗) + RKBT u̇ = −Ṗ × N − Le (9)

Then, using the relation Ṗ × N = ˆ̇PN, Ṗ = Rv, and ˆ(Rv) = Rv̂RT (this is true when R ∈ SO(3)), we can
obtain

RûKBT(u − u∗) + RKBT u̇ = −Rv̂RTN − Le (10)

Multiplying RT on both side, and solve for u̇, we can have

u̇ = −K−1
BT

(
ûKBT(u − u∗) + v̂RTN + RTLe

)
(11)

We define local variables n = RTN, and le = RTLe. The meaning of the variables n and le are actually
the variables N and Le expressed in local frame, respectively. Hence, (11) becomes

u̇ = −K−1
BT

(
ûKBT(u − u∗) + v̂n + le

)
(12)

In order to solve n, we use (3) and multiply RT on the two sides and add ṘTN, which gives

RTṄ + ṘTN = −RTFe + ṘTN (13)

Again, we define RTFe = f e. Notice that the left-hand side in (13) is actually the derivative of RTN,
which is ṅ. Ṙ can be replaced by (2) on the right-hand side. Thus, we have

ṅ = −f e + ûn (14)

To sum up, the curvatures of a general rod can be calculated by

u̇ = −K−1
BT

(
ûKBT(u − u∗) + v̂n + le

)
(15)

ṅ = −f e + ûn (16)
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with boundary conditions

u
(
loctip

) = 0 (17)

n
(
loctip

) = f tip (18)

where loctip and ftip are the location and applied external force at the tip, respectively. (15) and (16)
can be simplified in a special case where the rod is straight (u∗ = 0 and v∗ = [0 0 1]T), with circular
cross-section (K11 = K22 = K33/2), nonshear and inextensible (v = [0 0 1]T), and no external moment
(le = 0). The simplified ODEs can be written as

u̇x = −ny/KBT ,11 (19)

u̇y = nx/KBT ,22 (20)

ṅx = −fx + uynz (21)

ṅy = −fy − uxnz (22)

ṅz = −fz − uynx + uxny (23)

where x, y, and z are the first, second, and third component of a vector, respectively. KBT ,ij means the
entry of KBT at row i and column j. And (21)–(23) is the same as (16). Note that both the integral vari-
ables and the boundary conditions are defined in local frame, the curvature ux and uy can be solved by
simple backward integration from the distal point (s = L) to the proximal point (s = 0), which requires
no iterative computation to solve a standard BVP. Therefore, the computational complexity is only deter-
mined by the number of nodes we divide along the arc length. Moreover, solving (19)–(23) will lead to
the same result as solving the model in (1)–(4), but the former method will have faster performance for
curvature calculation.

3. Force estimation approach
3.1. Point forces for Cosserat model
The force defined in Cosserat rod theory is distributed force whose unit is N/m. However, the objective
of this paper is to estimate the magnitude and location of point force whose unit is N. Conversion has to
be performed between point force and distributed force. Firstly, we define the applied point forces in a
new force vector which contains the locations and magnitude components of all forces.

f vec = [
s1, f 1

pt,x, f 1
pt,y, s2, f 2

pt,x, f 2
pt,y, . . . , sh, f h

pt,x, f h
pt,y

]T (24)

where si is the location of the ith point force, f i
pt,x and f i

pt,y are the components of the ith point force, and
h is the total number of forces acting on the continuum robot. The arc length of the manipulator can be
divided into q − 1 segments, and this gives

Loc = [
loc1, loc2, . . . , locq

]
(25)

where loci is the location of the ith node, Loc is the whole list of the nodes. In order to achieve subnode
accuracy, we convert the point forces to distributed forces f vec on the nodes Loc. Figure 1 shows an
example to distribute the point force f i

pt to two adjacent nodes j − 1 and j, the point force is distributed
linearly according to the arc length distance between the two nodes. Therefore, the distributed forces
can be calculated by

f j−1 = f i
pt

(
locj − locj−1

)2

(
si − locj−1

)
(26)

f j = f i
pt

(
locj − locj−1

)2

(
locj − si

)
(27)
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Figure 1. Distribution of point force to adjacent nodes to achieve subnode accuracy.

Figure 2. Loss maps computed by (a) shape (b) curvature.

where f j (N/m) is the distributed force, f i
pt (N) is the point force, locj−1 and locj are two adjacent nodes

for si. Note that the si is located between hte nodes locj−1 and locj, which allows the model to solve the
solution in subnode accuracy. In the case where multiple point forces are close and distributed to the
same node, the forces on that node will be superposed. After knowing the distributed forces along the
rod, the mechanics model is complete and curvature can then be calculated through the integration of
(19)–(23).

3.2. Curvature-based force estimation
A robust method for force estimation is to minimize the least square loss between the calculated curvature
with measured curvatures.

lossu(f vec) = ‖ucal − ũ‖2 (28)

where ucal is the curvature calculated from f vec and ũ is the curvature measured by sensors.
Similar to minimizing the loss of curvature, the loss of shape lossP(f vec) could also be used for the

objective function of the optimization algorithm. Figure 2 shows a simulation example of the loss of
shape lossP(f vec) and loss of curvature lossu(f vec) with various force magnitudes and locations. The loss
map is calculated by following steps: 1) Choosing f vec = [200 0.3 0]T as the ground truth, and calcu-
late the curvature ũ and shape p̃ using Cosserat rod theory. The ũ and p̃ can be assumed as the measured
data from sensors. 2) Calculate ucal and Pcal with the same method, but use different f vec whose first
component ranges from 100 to 290 mm and the second component ranges from 0 to 0.5 N. 3) Use (28)
to compute the loss for each pair of force magnitude and location. As illustrated in Fig. 2, the loss of
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Figure 3. Compute the curvatures using template disk. AI is the area surrounded by the template disk
and the shape, and b is the radius of the template disk.

curvature (b) shows better convex property than that of shape coordinates (a), and thus more robust
results can be calculated [33]. Therefore, we use curvature-based method to estimate the force.

3.3. Curvature feedback
Curvature feedback of a elastic tube can be obtained from either FBG sensors or images. For curvature
measurement using FBG sensors, multicore FBG fiber is typically used to compute the curvature through
the change of the Bragg wavelength [34]. In this paper, the curvature measurement using FBG sensors
is obtained directly from the software Shape Sensing v1.3.1 provided by the supplier.

To obtain the curvature feedback from the intraoperative image feedback, one of the major challenges
is that the shape of the tube on the image is noisy, especially when the resolution of the image is low.
This is because the tube shape can only be discretely captured by pixels of the image and the resulting
centerline of the tube is not continuous. Thus, it is inapplicable to compute the curvature based on the
basic geometry, which is the norm of the derivative of the tangent direction. The derivative of a noisy
shape will increase the noise magnitude and reduce the quality of the curvature feedback. Many methods
have been proposed to reduce the noise of the curvature feedback from the image feedback, including
segmentation methods [27, 28] and integral invariant methods [26, 29]. In this paper, we implemented
the integral invariant method proposed in ref. [25] to compute the curvature feedback of the elastic tube
from an image, which can be described as

‖u‖ ≈ 3AI

b3
− 3π

2b
(29)

where ‖u‖ is the norm of the curvature feedback at the center of the template disk, AI is the area sur-
rounded by the template disk and the shape, and b is the radius of the template disk (see Fig. 3). However,
this integral invariant method can only be used to compute the curvature feedback of a tube if the tube
only has in-plane bending. Special care has to be taken to compute the curvature feedback from image
of a tube with out-of-plane bending, which will be the focus of our future work.

4. Experiments and results
In this section, we will validate the curvature-based force estimation method on single, double, and triple
point force cases, with the curvature measured from FBG sensors or calculated via image feedback.
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Figure 4. Experiment setup for force estimation. The ATI force sensor with a probe is mounted on a
fixed vertical wall. The FBGS is inserted inside Nitinol tube for curvature measurement. Counterpart
of each force sensor with probe are designed to keep the shape of Nitinol in (a) and (b) the same, and
the force sensor can swap the location. Different height design of the probe in (c) allows for 3D shape
deformation.

4.1. Force estimation result using multicore FBG sensors
4.1.1. Experiment setup
As illustrated in Fig. 4, the experiments were performed by adding multiple forces to a straight Nitinol
tube. ATI force sensor (ATI Industrial Automation, United States) with 3D printed probe was mounted
on a fixed vertical board. The probes are designed with different height in order to contact the Nitinol
tube at various location and orientation (Fig. 4(c)). For every single probe that mounted on the force
sensor, a counterpart probe (Fig. 4(a) and (b)) is also designed to keep the same distance from the probe
head to the wall. This allows the force sensor with probe to be interchangeable with its counterpart such
that the shape of Nitinol tube shape remains unchanged. For example, the Nitinol tube in Fig. 4(a) and
(b) has the same shape, but the location of the force sensor is swapped. Thus, we can use one force sensor
to measure multiple external forces. Fiber Bragg gratings sensors (FBGS International NV, Belgium)
was inserted inside the Nitinol tube to measure the curvature.

4.1.2. System parameter calibration
The system calibration was conducted in two steps: (1) location calibration and (2) stiffness calibration.
Since the FBGS fiber is transparent, it is hard to identify the locations of gratings inside the fiber. But
the relative locations (spacing between adjacent gratings) are specified on the user manual (20 mm). The
objective of location calibration is to ensure the curvatures we measured are aligned with the positions on
the Nitinol. Three cases of single force at different locations were recorded, and the bias of the location
can be minimized by adding an offset to the results.

sest = scal + sbias (30)

where sest is the estimated location of the external force, scal is the result of the model, and sbias is the bias
to offset the error. After location calibration, we conducted stiffness calibration to match the calculated
force magnitude with the measured force magnitude. Notice that the stiffness change has trivial impact
on the location estimation, therefore the location calibration is still valid after completing the stiffness
calibration. The result of the calibration is listed in Table I.

4.1.3. Force estimation results
The error analysis of the force estimation result is grouped into three categories: single force estimation
analysis, double forces estimation analysis, and triple forces estimation analysis. For each category, the
experiment was performed 13 times by applying varying contact force (0.27–1.96 N) at 13 different
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Table I. Calibrated parameters.

Name Variable Value Unit
Nitinol tube length loctip 290 mm
Inner tube diameter din 1.118 mm
Outer tube diameter dout 1.397 mm
Young’s modulus Eni 67 GPa
Location bias sbias −3.12 mm

Table II. Force estimation RMSE using FBG sensor feedback.

Estimation 1 force 2 forces 3 forces Overall
Magnitude (N) mean 0.037 0.060 0.127 0.062

std 0.069 0.046 0.081 0.068
Location (mm) mean 2.95 2.58 4.69 3.51

std 2.17 2.06 4.06 2.60

(a) (b)

Figure 5. Experimental results for single force estimation. (a) Force magnitude estimation. (b) force
location estimation.

locations on the Nitinol tube. The step size of the integration of the ODEs for curvature calculation is
ds = 1 mm.

As summarized in Table II, the RMSE of single force estimation, double force estimation, and triple
force estimation are 0.037 ± 0.069 N, 0.060 ± 0.046 N, and 0.127 ± 0.081 N, respectively. Therefore,
the proposed method can estimate the force magnitude accurately, despite the fact that larger number of
forces can slightly reduce the estimation accuracy on force magnitude. The RMSE of the single-location
estimation, double-location estimation, and triple-location estimation is 2.95± 2.17 mm, 2.58 ± 2.06
mm, and 4.69 ± 4.06 mm, respectively. This indicates that a larger location error will occur when the
number of external forces increases.

Figures 5 and 6 summarize the force estimation results for single force and multiple forces, respec-
tively. The blue dots are the predicted result and the red dots are the measured results. Most of the cases
in Fig. 5 can be predicted accurately except case 1 (error magnitude of 8.72%). This error occurs because
the curvature can only be measured by the first few gratings (the spacing of adjacent gratings is 20 mm),
while the rest gratings will read 0 because no internal moment exists after the location where the force is
applied. In Fig. 6, each case has two or three values, which refer to the two or three forces, respectively.
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Figure 6. Experimental results for double and triple forces estimation. (a) Force magnitudes estima-
tion. (b) force locations estimation. During each experiment, the circle marker indicates the first force,
diamond marker indicates the second force, and the triangle marker indicates the third force (triple force
scenario).

The red dots and the blue dots are aligned well with each other, which demonstrates the accuracy of the
proposed estimation method.

4.2. Force Eestimation result using image feedback
In this subsection, we investigate the potential application of curvature-based force estimation method
in image-guided interventions. We assume the continuum robot with in-plane bending so that its shape
can be captured by one image. However, the 3D shape reconstruction of the continuum robot with out-
of-plane bending can be achieved by images captured from multiple viewing angles or 3D imaging
techniques such as MRI [35] or 3D ultrasould imaging [36].

4.2.1. Workflow to estimate the force from images
The process to estimate the contact force can be summarized as: (a) continuum robot centerline detec-
tion; (b) compute the curvature feedback based on the detected centerline; and (c) estimate the contact
force based on the curvature feedback. Here, we assume the continuum robot shape can be accurately
identified via various image segmentation techniques [37] or mounting active tracking coils on the con-
tinuum device [12, 38]. Thus, we will skip the image segmentation step in this preliminary study. To
obtain this ideal continuum robot shape from image feedback, we first deform the Nitinol tube with
random force, overlay the deformed tube (Fig. 7(a)) on a 128 × 170 grid with the pixel resolution of
0.5 mm × 0.5 mm (which is the ultrasound imaging resolution), and then threshold the grid (as shown
in Fig. 7(b)) to obtain Fig. 7(c). After obtaining continuum tube image, the centerline of the continuum
robot, as presented in Fig. 7(d) can be detected. This will be achieved by the skeletonization algorithm
proposed in refs. [39, 40], which is well-accepted imaging processing algorithm in the field of computer
vision. A sample continuum robot image and the corresponding result of the skeletonization algorithm
are presented in Fig. 7(d). After detecting the centerline of the continuum robot, the curvature feed-
back of the robot can then be computed through (29). Finally, the contact force can be estimated by the
curvature-based force estimation method by feeding the curvature feedback we computed.

4.2.2. Force estimation results
As presented in Fig. 8, the curvature feedback can be computed accurately from image data. This is a
critical step for the curvature-based force estimation method. After obtaining the curvature feedback,
we use them to estimate the force magnitudes and the corresponding locations. The step size of the
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Figure 7. (a) Shape of the deformed rod. (b) The blurred grid within the threshold. (c) The resulting
image of the deformed rod. (d) Centerline (red pixels) detection using skeletonization algorithm.

Figure 8. Curvatures computed from the imaging.

integration of the ODEs for curvature calculation is ds = 1 mm. The results of the curvature-based force
estimation are presented in Figs. 9 and 10. As summarized in Table III, the overall force magnitude
estimation error is 0.049 ± 0.048 N and the overall location estimation error is 2.75 ± 1.71 mm. For
single force estimation, the force magnitude estimation error is 0.045 ± 0.040 N and the location error
is 2.20 ± 1.73 mm. For double force estimation, the force magnitude estimation error is 0.051 ± 0.048
N and the location estimation error is 3.11 ± 1.64 mm. For triple force estimation, the force magnitude
estimation error is 0.050 ± 0.037 N and the location estimation error is 2.59 ± 1.41 mm. The result
shows that the curvature-based method can estimate the force locations accurately for either single force
or multiple force estimations. However, the force magnitude accuracy will be degraded if more forces
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Table III. Force estimation RMSE using image feedback.

Estimation 1 force 2 forces 3 forces Overall
Magnitude (N) mean 0.045 0.051 0.050 0.049

std 0.040 0.048 0.037 0.048
Location (mm) mean 2.20 3.11 2.59 2.75

std 1.73 1.64 1.41 1.71

Figure 9. Single force estimation result based on curvature computed from image. (a) Force magnitude
estimation. (b) Force location estimation.

Figure 10. Experimental results for double and triple forces estimation based on image feedback. (a)
Force magnitudes estimation. (b) Force locations estimation. During each experiment, the circle marker
indicates the first force, diamond marker indicates the second force, and the triangle marker indicates
the third force (triple force scenario).

are acting on the rod. Although moderate errors exist, this result validates the feasibility of applying
curvature-based force estimation method with image data to estimate the contact force.

5. Conclusions
In this article, we develop the curvature-based force estimation method to estimate the contact force mag-
nitude and location. The proposed method was validated on a straight 290 mm Nitinol tube, with single
or multiple forces acting at different locations. The curvature feedback was obtained from the multicore
FBG sensors and the images. The results showed that the model can estimate the force magnitude and
location accurately. For the curvature feedback obtained from multicore FBG sensors, the overall force
magnitude estimation error is 0.062 ± 0.068 N and the overall location estimation error is 3.51 ± 2.60
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mm. For the curvature feedback obtained from image, the overall force magnitude estimation error is
0.049 ± 0.048 N and the overall location estimation error is 2.75 ± 1.71 mm.

However, the accurate force estimation relies on reliable curvature calculation of the deformed con-
tinuum robot. One of the main challenges for practical implementation is to accurately extract the center
line from multiple images when robot is subjected to 3D deformation. 3D shape reconstruction may
have larger noise or error caused by multicamera calibration. Moreover, computing the curvature from
3D reconstructed shape remains a challenging task. Therefore, our future work will involve the study
of 3D contact force estimation, machine learning methods for curvature calculation, and evaluation of
the force estimation performance in clinical settings with 3D image feedback such as 3D ultrasound and
magnetic resonance imaging.

Author contributions. Qingyu Xiao, Xiaofeng Yang, and Yue Chen designed the study. Qingyu Xiao conducted data gathering.
Qingyu Xiao and Yue Chen wrote the article.

Financial support. This research was partially funded by Georgia Institute of Technology Startup Grant.

Conflict of interest. Not applicable.

Ethical standards. Not applicable.

References
[1] Y. Chen, L. Wang, K. Galloway, I. Godage, N. Simaan and E. Barth, “Modal-based kinematics and contact detection of soft

robots,” Soft Robot. 8(3), 298–309 (2021).
[2] Q. Xiao, M. Musa, I. S. Godage, H. Su and Y. Chen, “Kinematics and stiffness modeling of soft robot with a concentric

backbone,” J. Mech. Robot. 15(5), 051011 (2023).
[3] S. B. Kesner and R. D. Howe, “Robotic catheter cardiac ablation combining ultrasound guidance and force control,” Int. J.

Robot. Res 33(4), 631–644 (2014).
[4] M. Mitsuishi, N. Sugita and P. Pitakwatchara, “Force-feedback augmentation modes in the laparoscopic minimally invasive

telesurgical system,” IEEE/ASME Trans. Mechatron. 12(4), 447–454 (2007).
[5] P. Valdastri, K. Harada, A. Menciassi, L. Beccai, C. Stefanini, M. Fujie and P. Dario, “Integration of a miniaturised triaxial

force sensor in a minimally invasive surgical tool,” IEEE Trans. Biomed. Eng. 53(11), 2397–2400 (2006).
[6] A. Alipour, E. S. Meyer, C. L. Dumoulin, R. D. Watkins, H. Elahi, W. Loew, J. Schweitzer, G. Olson, Y. Chen, S. Tao and

M. Guttman, “MRI conditional actively tracked metallic electrophysiology catheters and guidewires with miniature tethered
radio-frequency traps: theory, design, and validation,” IEEE Trans. Biomed. Eng. 67(6), 1616–1627 (2019).

[7] A. L. Gunderman, E. J. Schmidt, A. N. Viswanathan, H. R. Halperin, J. Tokuda, R. T. Seethamraju and Y. Chen, "Mr-Guided
Tissue Puncture with On-line Imaging for High-resolution Theranostics,” In: 2020 International Symposium on Medical
Robotics (ISMR) (IEEE, 2020) pp. 57–61.

[8] A. Bajo and N. Simaan, "Finding Lost Wrenches: Using Continuum Robots for Contact Detection and Estimation of Contact
Location,” In: 2010 IEEE International Conference on Robotics and Automation (IEEE, 2010) pp. 3666–3673.

[9] A. Bajo and N. Simaan, “Kinematics-based detection and localization of contacts along multisegment continuum robots,”
IEEE Trans. Robot. 28(2), 291–302 (2011).

[10] Y. Chen, M. E. Poorman, D. B. Comber, E. B. Pitt, C. Liu, I. S. Godage, H. Yu, W. A. Grissom, E. J. Barthand R. J.
Webster III, “Treating Epilepsy Via Thermal Ablation: Initial Experiments with an Mri-Guided Concentric Tube Robot,”
In: Frontiers in Biomedical Devices. vol. 40672 (American Society of Mechanical Engineers,2017) pp. V001T02A002.

[11] Y. Chen, I. S. Godage, S. Sengupta, C. L. Liu, K. D. Weaver and E. J. Barth, “Mr-conditional steerable needle robot for
intracerebral hemorrhage removal,” Int. J. Comput. Ass. Rad. 14(1), 105–115 (2019).

[12] Y. Chen, J. Howard, I. Godage and S. Sengupta, “Closed loop control of an mr-conditional robot with wireless tracking coil
feedback,” Ann. Biomed. Eng. 47(11), 2322–2333 (2019).

[13] A. Gunderman, E. Schmidt, M. Morcos, J. Tokuda, R. T. Seethamraju, H. Halperin, A. Viswanathan and Y. Chen, “Mr-
tracked deflectable stylet for gynecologic brachytherapy,” IEEE/ASME Trans. Mechatron. 27(1), 407–417 (2021).

[14] A. L. Gunderman, S. Sengupta, E. Siampli, D. Sigounas, C. Kellner, C. Oluigbo, K. Sharma, I. Godage, K. Clearyand Y.
Chen, “A surgical platform for intracerebral hemorrhage robotic evacuation (aspihre): A non-metallic mr-guided concentric
tube robot, arXiv preprint arXiv: 2206.09848 (2022).

[15] K. W. Kwok, K. H. Lee, Y. Chen, W. Wang, Y. Hu, G. C. Chow, H. S. Zhang, W. G. Stevenson, R. Y. Kwong, W. Luk and
E. J. Schmidt, “Interfacing fast multi-phase cardiac image registration with MRI-based catheter tracking for MRI-guided
electrophysiological ablative procedures,” Circulation 130(Suppl._2), A18568–A18568 (2014).

[16] R. J. Webster III and B. A. Jones, “Design and kinematic modeling of constant curvature continuum robots: A review,” Int.
J. Robot. Res. 29(13), 1661–1683 (2010).

https://doi.org/10.1017/S0263574723000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000115


Robotica 1761

[17] A. Stilli, E. Kolokotronis, J. Fraś, A. Ataka, K. Althoefer and H. A. Wurdemann, "Static Kinematics for An Antagonistically
Actuated Robot Based on a Beam-mechanics-based Model,” In: 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE, 2018) pp. 6959–6964.

[18] L. Wang and N. Simaan, “Geometric calibration of continuum robots: Joint space and equilibrium shape deviations,” IEEE
Trans. Robot. 35(2), 387–402 (2019).

[19] T. Mahl, A. Hildebrandt and O. Sawodny, “A variable curvature continuum kinematics for kinematic control of the bionic
handling assistant,” IEEE Trans. Robot. 30(4), 935–949 (2014).

[20] D. C. Rucker, B. A. Jones and R. J. Webster III, “A geometrically exact model for externally loaded concentric-tube
continuum robots,” IEEE Trans. Robot. 26(5), 769–780 (2010).

[21] Q. Qiao, G. Borghesan, J. De Schutter and E. V. Poorten, “Force from shape—Estimating the location and magnitude of the
external force on flexible instruments,” IEEE Trans. Robot. 37(5), 1826–1833 (2021).

[22] V. A. Aloi and D. C. Rucker, "Estimating Loads Along Elastic Rods,” In: 2019 International Conference on Robotics and
Automation (ICRA) (IEEE, 2019) pp. 2867–2873.

[23] C. Gouveia, P. A. S. Jorge, J. M. Baptista and O. Frazao, “Temperature-independent curvature sensor using FBG cladding
modes based on a core misaligned splice,” IEEE Photonic. Tech. Lett. 23(12), 804–806 (2011).

[24] R. Xu, A. Yurkewich and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped
fbg sensors,” IEEE Robot. Automat. Lett. 1(2), 1052–1059 (2016).

[25] O. I. Frette, G. Virnovsky and D. Silin, “Estimation of the curvature of an interface from a digital 2D image,” Comp. Mater.
Sci. 44(3), 867–875 (2009).

[26] W.-Y. Lin, Y.-L. Chiu, K. R. Widder, Y. H. Hu and N. Boston, “Robust and accurate curvature estimation using adaptive
line integrals,” Eurasip. J. Adv. Sig. Process. 1(1), 2010–2014 (2010).

[27] T. P. Nguyen and I. Debled-Rennesson, "Curvature Estimation in Noisy Curves,” In: International Conference on Computer
Analysis of Images and Patterns (Springer, 2007) pp. 474–481.

[28] T. P. Nguyen and I. Debled-Rennesson, "Curvature and Torsion Estimators for 3D Curves,” In: International Symposium
on Visual Computing (Springer, 2008) pp. 688–699.

[29] H. Pottmann, J. Wallner, Y.-L. Yang, Y.-K. Lai and S.-M. Hu, “Principal curvatures from the integral invariant viewpoint,”
Comput. Aided Geom. Des. 24(8-9), 428–442 (2007).

[30] Q. Qiao, D. Willems, G. Borghesan, M. Ourak, J. De Schutter and E. V. Poorten, "Estimating and Localizing External Forces
Applied on Flexible Instruments by Shape Sensing,” In: 2019 19th International Conference on Advanced Robotics (ICAR)
(IEEE, 2019) pp. 227–233.

[31] O. Al-Ahmad, M. Ourak, J. Vlekken and E. V. Poorten, “Fbg-based estimation of external forces along flexible instrument
bodies,” Front. Robot. AI 8, 718033 (2021).

[32] B. A. Jones, R. L. Gray and K. Turlapati, "Three Dimensional Statics for Continuum Robotics,” In: 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE, 2009) pp. 2659–2664.

[33] S. Bubeck, “Convex optimization: Algorithms and complexity, arXiv preprint arXiv: 1405.4980 (2014).
[34] J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Exp.

20(3), 2967–2973 (2012).
[35] K.-W. Kwok, Y. Chen, T. C. P. Chau, W. Luk, K. R. Nilsson, E. J. Schmidt and T. T. Zion, “Mri-based visual and hap-

tic catheter feedback: simulating a novel system’s contribution to efficient and safe mri-guided cardiac electrophysiology
procedures,” J. Cardiov. Magn. Reson. 16(1), 1–3 (2014).

[36] X. Dai, Y. Lei, J. Roper, Y. Chen, J. D. Bradley, W. J. Curran, T. Liu and X. Yang, “Deep learning-based motion tracking
using ultrasound images,” Aip. Conf. Proc. 48(12), 7747–7756 (2021).

[37] R. A. Manakov, D. Y. Kolpashchikov, V. V. Danilov, I. P. S. Nikita Vitalievich Laptev and O. M. Gerget, "Visual Shape and
Position Sensing Algorithm for a Continuum Robot,” In: IOP Conference Series: Materials Science and Engineering (IOP
Publishing, vol. 1019, 2021) pp. 012066.

[38] T. T. Z. Yue Chen, W. Wang, R. Y. Kwong, W. G. Stevenson and E. J. Schmidt, “Intra-cardiac mr imaging & mr-tracking
catheter for improved mr-guided ep,” J. Cardiov. Magn. Reson. 17(1), 1–2 (2015).

[39] M. Kerschnitzki, P. Kollmannsberger, M. Burghammer, G. N. Duda, R. Weinkamer, W. Wagermaier and P. Fratzl,
“Architecture of the osteocyte network correlates with bone material quality,” J. Bone Miner. Res. 28(8), 1837–1845 (2013).

[40] T.-C. Lee, R. L. Kashyap and C.-N. Chu, “Building skeleton models via 3-D medial surface axis thinning algorithms,”
CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994).

Cite this article: Q. Xiao, X. Yang and Y. Chen (2023). “Curvature-based force estimation for an elastic tube”, Robotica 41,
1749–1761. https://doi.org/10.1017/S0263574723000115

https://doi.org/10.1017/S0263574723000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000115
https://doi.org/10.1017/S0263574723000115

	
	Introduction
	Model curvature calculation
	Review of Cosserat rod model
	ODEs for model curvature calculation
	Force estimation approach
	Point forces for Cosserat model
	Curvature-based force estimation
	Curvature feedback
	Experiments and results
	Force estimation result using multicore FBG sensors
	Experiment setup
	System parameter calibration
	Force estimation results
	Force Eestimation result using image feedback
	Workflow to estimate the force from images
	Force estimation results
	Conclusions

