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Abstract
For a klt singularity, C. Xu and Z. Zhuang [33] proved the associated graded algebra of a minimizing valuation
of the normalized volume function is finitely generated, finishing the proof of the stable degeneration conjecture
proposed by C. Li and C. Xu. We prove a family version of the stable degeneration: for a locally stable family of
klt singularities with constant local volume, the ideal sequences of the minimizing valuations for the normalized
volume function form families of ideals with flat cosupport, which induce a degeneration to a locally stable family
of K-semistable log Fano cone singularities. In the proof, we give a method to construct families of Kollár models,
which are a crucial tool introduced by Xu–Zhuang to prove finite generation for valuations of higher rational rank.
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1. Introduction

Along with recent developments of the algebraic theory of K-stability of Fano varieties, an analogous
K-stability theory for klt singularities – the local counterparts of Fano varieties that are fundamental in
the MMP (minimal model program) – is studied, through the normalized volume function introduced
in [18]. For a klt singularity 𝑥 ∈ (𝑋,Δ), the normalized volume of a real valuation 𝑣 ∈ Val𝑋,𝑥 centered
at x is

v̂ol𝑋,Δ (𝑣) � 𝐴𝑋,Δ (𝑣)dim𝑋 · vol𝑋 (𝑣), (1.1)

where 𝐴𝑋,Δ (𝑣) denotes the log discrepancy, and vol𝑋 (𝑣) denotes the volume introduced in [8]. The
infimum v̂ol(𝑥; 𝑋,Δ) � inf𝑣 v̂ol𝑋,Δ (𝑣) is called the local volume of the klt singularity 𝑥 ∈ (𝑋,Δ).

The local K-stability theory is particularly interested in the minimizer of v̂ol, that is, a real valuation
𝑣m ∈ Val𝑋,𝑥 such that v̂ol(𝑥; 𝑋,Δ) = v̂ol𝑋,Δ (𝑣m), as highlighted in the Stable Degeneration Conjecture
proposed in [18, Conj. 7.1] and [22, Conj. 1.2]: There exists a minimizer 𝑣m of v̂ol𝑋,Δ , which is unique up
to scaling and is quasi-monomial; the associated graded algebra 𝑅0 = gr𝑣m (𝒪𝑋,𝑥) is finitely generated,
and induces a klt degeneration (𝑋0 = Spec(𝑅0),Δ0), which is a K-semistable log Fano cone singularity
under the natural torus action, and is the unique such K-semistable degeneration.

The Stable Degeneration Conjecture has been proved is a series of works: The existence, uniqueness,
and quasi-monomial property of a minimizer are proved in [4], [32], [29]; the K-semistability of the
degeneration is proved in [22] assuming finite generation; and finally, the finite generation is proved in
[33]. See [20] and [39] for surveys and more comprehensive references.

The minimizing valuation 𝑣m, or the K-semistable degeneration, is associated with a klt singularity
canonically. Then we ask whether the K-semistable degenerations for a family of klt singularities form
a family. We consider locally stable families in the sense of [15]. As the local volume function v̂ol is
constructible and lower semi-continuous by [29] and [5], we consider families of klt singularities with
constant local volume.

Instead of the minimizing valuation 𝑣m ∈ Val𝑋,𝑥 itself, we consider the ideal sequence𝔞• = {𝔞𝜆}𝜆∈R≥0

associated with it, where 𝔞𝜆 � { 𝑓 : 𝑣m( 𝑓 ) ≥ 𝜆} ⊂ 𝒪𝑋,𝑥 . Note that the ideal sequence is used to define
the volume and the associated graded algebra. We will prove the following:

Theorem 1.1 (Theorem 5.4). Let S be a semi-normal scheme essentially of finite type over a field of
characteristic zero. Let 𝜋 : (𝑋,Δ) → 𝑆 be a locally stable family of klt pairs, with a section 𝑥 : 𝑆 → 𝑋
of 𝜋, such that

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (1.2)

is a locally constant function on S, where (𝑋𝑠 ,Δ𝑠) is the fiber over a point 𝑠 ∈ 𝑆, and 𝑥𝑠 = 𝑥(𝑠) ∈ 𝑋𝑠 .1
Suppose 𝑣m

𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 is a minimizer of the normalized volume function for 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠), scaled such
that 𝐴𝑋𝑠 ,Δ𝑠 (𝑣

m
𝑠 ) = 1 for all 𝑠 ∈ 𝑆. Then there is an ideal sequence 𝔞• ⊂ 𝒪𝑋 cosupported at 𝑥(𝑆) ⊂ 𝑋

such that the following hold:

1We will say 𝜋 : (𝑋, Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) , meaning an S-point of the S-scheme X, is a locally stable family of klt
singularities. See Section 2 for our notations.
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(1) 𝔞𝜆/𝔞>𝜆 is flat over S for all 𝜆 ≥ 0.
(2) For every 𝑠 ∈ 𝑆, 𝔞𝑠,• � {𝔞𝜆𝒪𝑋𝑠 }𝜆 is the ideal sequence on 𝑋𝑠 associated with 𝑣m

𝑠 .
(3) Let 𝑋0 = Spec𝑆 (gr𝔞 (𝒪𝑋 )), where

gr𝔞 (𝒪𝑋 ) �
⊕
𝜆≥0

𝔞𝜆/𝔞>𝜆, (1.3)

then the canonical morphism 𝜋0 : 𝑋0 → 𝑆 is flat, of finite type, with normal and geometrically
integral fibers. The grading induces an action of a torus T � (Gm,𝑆)

𝑟 on 𝑋0, whose fixed locus is
the image of a section 𝑥0 : 𝑆 → 𝑋 .

(4) There exists a T-invariant effective Q-divisor Δ0 on 𝑋0 such that 𝜋0 : (𝑋0,Δ0) → 𝑆 is a locally
stable family of K-semistable log Fano cone singularities, and (𝑋0,𝑠 ,Δ0,𝑠) is the degeneration of
𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠) induced by 𝑣m

𝑠 for every 𝑠 ∈ 𝑆.

Our proof uses the theory of Kollár models developed in [33], which is a higher rank analogue of
Kollár components introduced in [28]. In [33], it is shown that the minimizing valuation 𝑣m occurs on
a Kollár model, and every such quasi-monomial valuation has a finitely generated associated graded
algebra which induces a klt degeneration. We will generalize these results to families of klt singularities.
The key is to construct a family of Kollár models that accommodates the minimizing valuation on each
fiber, with the same coordinates when the dual complexes of different fibers are identified:

Theorem 1.2 (Theorem 5.1). Let 𝑆 = Spec(𝐴), where A is a DVR essentially of finite type over a field
of characteristic zero, with the generic point 𝜂 ∈ 𝑆 and the closed point 𝑠 ∈ 𝑆. Let 𝜋 : (𝑋,Δ) → 𝑆 with
𝑥 ∈ 𝑋 (𝑆) be a locally stable family of klt singularities such that

v̂ol(𝑥𝜂 ; 𝑋𝜂 ,Δ 𝜂) = v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠). (1.4)

Suppose 𝑣m
𝜂 ∈ Val𝑋𝜂 ,𝑥𝜂 and 𝑣m

𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 are minimizers of the normalized volume for 𝑥𝜂 ∈ (𝑋𝜂 ,Δ 𝜂)

and 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠), respectively, scaled such that 𝐴𝑋𝜂 ,Δ𝜂 (𝑣
m
𝜂 ) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣

m
𝑠 ). Then there exists a locally

stable family of Kollár models 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) at x over S such that

𝑣m
𝜂 ∈ QM(𝑌𝜂 , 𝐸𝜂) and 𝑣m

𝑠 ∈ QM(𝑌𝑠 , 𝐸𝑠), (1.5)

and they are identified under the canonical isomorphism QM(𝑌𝜂 , 𝐸𝜂) � QM(𝑌𝑠 , 𝐸𝑠) in 4.4.

Theorem 1.1 implies a representability for semi-normal schemes:

Theorem 1.3 (Corollary 5.5). Let S be a reduced scheme that is essentially of finite type over a field of
characteristic zero, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable family of klt singularities. Then
there exists a locally closed stratification

⊔
𝑖 𝑆𝑖 → 𝑆 satisfying the following condition: If 𝑔 : 𝑇 → 𝑆

is a morphism of schemes where T is semi-normal, then the base change 𝜋𝑇 : (𝑋𝑇 ,Δ𝑇 ) → 𝑇 with
𝑥𝑇 ∈ 𝑋𝑇 (𝑇) admits a degeneration to a locally stable family of K-semistable log Fano cone singularities
over T if and only if g factors through some 𝑆sn

𝑖 → 𝑆, where 𝑆sn
𝑖 is the semi-normalization of 𝑆𝑖 .

The local volume is a measurement of the singularity (see, for example, [25]). We can compare the
condition of constant local volume with the classical theory of equisingular plane curves:

Example 1.4. Let k be an algebraically closed field of characteristic 0. For a plane curve 𝐶 ⊂ A2
k

that is
(singular and) unibranch at the origin 0 ∈ A2, one can associate a tuple (𝑎, 𝑏, . . .) of positive integers,
called the Puiseux characteristic. Two such curves are equisingular (at 0) if and only if they have the
same Puiseux characteristics (see [36], [34], [35]).

For 0 ≤ 𝜆 < 1
𝑎 + 1

𝑏 , the pair (A2, 𝜆𝐶) is klt at 0 ∈ A2. Moreover, in Lemma 5.7 we show that

v̂ol(0;A2, 𝜆𝐶) =

{
𝑎𝑏

(
1
𝑎 + 1

𝑏 − 𝜆
)2

if 1
𝑎 − 1

𝑏 ≤ 𝜆 < 1
𝑎 + 1

𝑏 ,

4(1 − 𝜆𝑎) if 0 ≤ 𝜆 < 1
𝑎 − 1

𝑏 .
(1.6)
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In particular, the local volume of 0 ∈ (A2, 𝜆𝐶) only depends on 𝜆 and the first two terms of the Puiseux
characteristic of 𝐶 ⊂ A2 at 0. Therefore, Theorem 1.1 applies to families of equisingular unibranch
plane curves; see Corollary 5.8.

Outline of the proof

We sketch the proof of Theorem 1.2.
The base S is the spectrum of a DVR, so we can degenerate the ideal sequence 𝔞•(𝑣m

𝜂 ) on the generic
fiber 𝑋𝜂 to an ideal sequence 𝐼• on X with flat cosupport over S. Then 𝐼• has constant multiplicity over
S; by the lower semi-continuity of the lc thresholds, the closed fiber 𝐼𝑠,• computes v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠). By
a stronger uniqueness of minimizer implicitly in [6], we conclude that 𝔞𝑠,• is the saturation of 𝐼𝑠,•; see
Lemma 2.18.

Note that 𝑣m
𝜂 computes the lc threshold of 𝐼𝜂,• = 𝔞•(𝑣m

𝜂 ) on (𝑋𝜂 ,Δ 𝜂). Then we can construct a
model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) relatively of Fano type over X such that 𝑣m

𝜂 ∈ QM(𝑌𝜂 , 𝐸𝜂), by a similar
argument that has been used in [22, Thm. 4.2], [31, Thm. 4.48], and [33, Lem. 3.2]; see Lemma 4.2.
Since 𝐼• has constant lc threshold, 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1

∗ Δ + 𝐸) → 𝑆 is a locally stable family, so we can find
a real valuation 𝑣𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 that is monomial on (𝑌𝑠 , 𝐸𝑠), corresponding to 𝑣m

𝜂 as in 4.4. Since 𝑣𝑠
computes the lc thresholds of 𝐼𝑠,• on (𝑋𝑠 ,Δ𝑠), so we can conclude 𝑣𝑠 = 𝑣m

𝑠 by the uniqueness.
Now the closed fiber (𝑌𝑠 , 𝐸𝑠) is slc (semi-log canonical) by the construction, whereas we would like

it to be qdlt so that we can get a family of Kollár models. The key is that 𝑣m
𝜂 and 𝑣m

𝑠 are special valuations,
namely, monomial lc places of special Q-complements, so they compute the lc threshold of 𝐼• after any
small perturbation of Δ to Δ + 𝜖𝐷; see Lemma 3.10. A heuristic is that such perturbations exclude any
lc center on (𝑌𝑠 , 𝐸𝑠) that does not contain the center of 𝑣m

𝑠 . This method was used in the proof of [33,
Prop. 4.6]. In our situation, however, the model (𝑌, 𝐸) constructed above may change when we perturb
the boundary.

Instead, note that 𝑣m
𝑠 can be viewed as the limit of the weighted blow-up valuations of 𝑣m

𝜂 and the
discrete valuation 𝑣0 induced by 𝑋𝑠 , when the weight of 𝑣0 goes to +∞. Then the perturbation allows us
to find a special Q-complement for which all these weighted blow-ups are monomial lc places. Hence
we get a model of qdlt Fano type model accommodating them by [33, Thm. 3.14], whose anticanonical
model is a locally stable family of Kollár models as desired.

2. Preliminaries

2.1. Birational geometry and singularities

All schemes that we consider will be quasi-compact, separated and essentially of finite type over a field
of characteristic zero.

A pair (𝑋,Δ) consists of a reduced, equidimensional scheme X with a Weil Q-divisor Δ . We further
assume that X satisfies Serre’s condition (S2), satisfies (G1) (namely, Gorenstein in codimension 1),
and is regular at the generic point of every component Δ; see [14, Def. 1.5]. Let 𝐾𝑋 denote a canonical
divisor on X. The pair (𝑋,Δ) is said to be local (resp., semi-local) if X is the spectrum of a local (resp.,
semi-local) ring.

A singularity 𝑥 ∈ (𝑋,Δ) consists of a pair (𝑋,Δ) that is essentially of finite type over a field k of
characteristic 0, and a k-point 𝑥 ∈ 𝑋 (𝑘).2 Since we are interested in the properties near the point x for a
singularity 𝑥 ∈ (𝑋,Δ), we always assume X is affine, and sometimes localize at x if necessary.

We follow the standard terminology about singularities of pairs in [14] when Δ ≥ 0, but add the
prefix “sub-” when Δ is not necessarily effective, for example, sub-lc, sub-klt. We also need the notion
of slc pairs (short for semi-log canonical, see [14, §5]), which is a non-normal variant of lc pairs.

2It is possible to consider arbitrary closed points, and on more general excellent schemes. But many theorems for the normalized
volume are only proved in this case in the literature, sometimes even assuming k is algebraically closed. Also, requiring 𝑥 ∈ 𝑋 (𝑘)
is compatible with our definition that a family of singularities is given by a section.
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2.1.1. Qdlt pairs
We recall the concept of qdlt pairs introduced in [9].
Definition 2.1 (cf. [9, Def. 35], [33, Def. 2.1, 2.2]). A pair (𝑋,Δ) is said to be simple-toroidal if Δ is
reduced and every 𝑥 ∈ 𝑋 has an open neighborhood 𝑈 ⊂ 𝑋 such that (𝑈,Δ |𝑈 ) � (𝑉, 𝐷)/𝐺, where
(𝑉, 𝐷) is an snc pair, and G is a finite abelian group acting on V that preserves each component of D
and acts freely on 𝑉 \ 𝐷.

A pair (𝑋,Δ) is said to be qdlt if it is lc, and (Spec𝒪𝑋,𝑧 ,Δ |Spec𝒪𝑋,𝑧 ) is simple-toroidal for every lc
center 𝑧 ∈ (𝑋,Δ).
Lemma 2.2 [9, Prop. 34]. Let (𝑋,Δ) be a local slc pair of dimension r. Suppose 𝐷1, . . . , 𝐷𝑟 are
reduced Q-Cartier divisors on X such that 𝐷1 + · · · + 𝐷𝑟 ≤ Δ . Then (𝑋,Δ) is simple-toroidal, and
Δ = 𝐷1 + · · · + 𝐷𝑟 , where each 𝐷𝑖 is normal and irreducible.

2.1.2. Models
Definition 2.3. Let (𝑋,Δ) be a pair. A birational model (or simply, a model)

𝑓 : (𝑌, 𝐸) → (𝑋,Δ) (2.1)

for (𝑋,Δ) consists of a pair (𝑌, 𝐸) where Y is a normal scheme and E is a reduced Weil divisor on Y,
and a projective birational morphism 𝑓 : 𝑌 → 𝑋 . It is called a model at a point 𝑥 ∈ 𝑋 if all components
of E are centered at x.

A model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is said to be snc (resp., simple-toroidal) if Ex( 𝑓 ) has pure codimension
one in Y, and (𝑌, Supp( 𝑓 −1

∗ Δ + Ex( 𝑓 ) + 𝐸)) is snc (resp., simple-toroidal). It is called a log resolution3

if moreover E contains all components of 𝑓 −1
∗ Δ and Ex( 𝑓 ).

Lemma 2.4 (cf. [3, Cor. 1.4.3]). Let (𝑋,Δ) be a klt pair, and 𝔞 ⊂ 𝒪𝑋 be a coherent ideal with
lct(𝑋,Δ;𝔞𝑐) ≥ 1 for some 𝑐 > 0. Suppose 𝐸1, . . . , 𝐸𝑟 are exceptional prime divisors over X such that

𝐴𝑋,Δ+𝔞𝑐 (𝐸𝑖) � 𝐴𝑋,Δ (𝐸𝑖) − 𝑐 ord𝐸𝑖 (𝔞) < 1 (2.2)

for all 𝑖 = 1, . . . , 𝑟 . Then there exists a model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) where 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖 is the sum of all

f-exceptional divisors. Moreover, we may assume Y is Q-factorial.
Proof. Let 𝑔 : (𝑊, 𝐸) → (𝑋,Δ) be an snc model, where 𝐸 =

∑𝑟
𝑖=1 𝐸𝑖 is the sum of the given divisors,

such that 𝑔−1𝔞 · 𝒪𝑊 = 𝒪𝑊 (−𝐴) for an effective divisor A and 𝑔−1Δ + Ex(𝑔) + 𝐴 has snc support. The
conditions 𝐴𝑋,Δ+𝔞𝑐 (𝐸𝑖) < 1 still hold if we replace c with 𝑐 − 𝜖 for some 𝜖 � 1. Thus we may assume
that lct(𝑋,Δ;𝔞𝑐) > 1. Let 𝐹 =

∑𝑠
𝑗=1 𝐹𝑗 be the sum of all g-exceptional divisors other than 𝐸1, . . . , 𝐸𝑟 ,

and choose 0 < 𝛿 � 1 such that

𝐴𝑋,Δ+𝔞𝑐 (𝐹𝑗 ) = 𝐴𝑋,Δ (𝐹𝑗 ) − 𝑐 ord𝐹𝑗 (𝔞) > 𝛿 (2.3)

for all 𝑗 = 1, . . . , 𝑠. Let 𝐹 ′ =
∑𝑠

𝑗=1 (𝐴𝑋,Δ+𝔞𝑐 (𝐹𝑗 ) − 𝛿)𝐹𝑗 . Suppose we can run a relative 𝐹 ′-MMP over X
with scaling of a g-ample divisor H on W, which terminates with a relative minimal model 𝑓 : 𝑌 → 𝑋
such that Y is Q-factorial. Then the MMP 𝜙 : 𝑊 � 𝑌 contracts all the 𝐹𝑗 and none of the 𝐸𝑖 , hence
𝑓 : 𝑌 → 𝑋 is the desired model. It remains to show that such an MMP exists and terminates.

First assume that X is affine. Write 𝐾𝑊 + Δ𝑊 = 𝑔∗(𝐾𝑋 + Δ), then Δ𝑊 + 𝑐𝐴 has snc support, and
(𝑊,Δ𝑊 + 𝑐𝐴) is sub-klt. Let 𝐴′ = 𝑔−1

∗ 𝑔∗𝐴 be the part of A that is not g-exceptional, and

Δ ′
𝑊 = Δ𝑊 + 𝑐𝐴 + 𝐹 ′ = 𝑔−1

∗ Δ + 𝑐𝐴′ +
𝑟∑
𝑖=1

(1 − 𝐴𝑋,Δ+𝔞𝑐 (𝐸𝑖))𝐸𝑖 + (1 − 𝛿)𝐹. (2.4)

3This seems to be a nonstandard use of terminology as we allow log resolutions to be only toroidal, rather than snc. However, the
theory of resolution of singularities works as usual. For example, we can take a log resolution that is a local isomorphism over the
simple-toroidal locus (see [2]). Anyway, toroidal pairs are logarithmic regular in the sense of logarithmic geometry (see [1, §2.3]).
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Then (𝑊,Δ ′
𝑊 ) is klt. Note that𝒪𝑊 (−𝐴) is relatively globally generated over X, hence globally generated

since X is affine. By the Bertini theorem, we can choose a general effective Q-divisor 𝐺 ∈ |−𝐴|Q such
that (𝑊,Δ ′

𝑊 + 𝑐𝐺) is also klt. Then we can run the relative (𝐾𝑊 +Δ ′
𝑊 + 𝑐𝐺)-MMP over X with scaling

of H, which terminates with a Q-factorial relative minimal model by [3]. Since

𝐾𝑊 + Δ ′
𝑊 + 𝑐𝐺 = 𝐾𝑊 + Δ𝑊 + 𝑐(𝐴 + 𝐺) + 𝐹 ′ ∼𝑋,R 𝐹

′, (2.5)

the (𝐾𝑊 + Δ ′
𝑊 + 𝑐𝐺)-MMP is the same as the relative 𝐹 ′-MMP with scaling of H.

In general, the MMP with scaling descends from a Zariski open covering by [27, Thm. 2.5]. �

2.1.3. Locally stable families
We use the notion of locally stable families of pairs following [15].

Let S be a reduced scheme. A (well-defined) family of pairs 𝜋 : (𝑋,Δ) → 𝑆 consists of a morphism
of schemes 𝜋 : 𝑋 → 𝑆 that is flat and of finite type, with reduced, equidimensional, (S2) fibers, and a
Weil Q-divisor Δ on X that has well-defined pullbacks (see [15, Thm-Def. 4.3]). If S is normal and 𝜋
has normal fibers of pure dimension n, then it suffices to assume that Supp(Δ) → 𝑆 has pure relative
dimension 𝑛 − 1. In general, we always assume components of Δ are relative Mumford divisors on X
(see [15, Def. 4.68]).

A family of pairs 𝜋 : (𝑋,Δ) → 𝑆 is said to be locally stable if the fibers (𝑋𝑠 ,Δ𝑠) are slc for all 𝑠 ∈ 𝑆,
and 𝐾𝑋/𝑆 + Δ is Q-Cartier (see [15, Def-Thm. 4.7]). If moreover (𝑋𝑠 ,Δ𝑠) are klt (resp., qdlt, lc) for all
𝑠 ∈ 𝑆, we say 𝜋 : (𝑋,Δ) → 𝑆 is a locally stable family of klt (resp., qdlt, lc) pairs.

If S is normal, then a locally stable family of klt pairs 𝜋 : (𝑋,Δ) → 𝑆 is also called a Q-Gorenstein
family of klt pairs, since the essential condition is that 𝐾𝑋/𝑆 + Δ being Q-Cartier.

Definition 2.5. Let S be a reduced scheme. A family of singularities over S consists of a (well-defined)
family of pairs 𝜋 : (𝑋,Δ) → 𝑆 where 𝜋 is affine, together with a section 𝑥 : 𝑆 → 𝑋 of 𝜋; we denote the
section by 𝑥 ∈ 𝑋 (𝑆), meaning an S-point of the S-scheme X. Note that 𝑥 : 𝑆 → 𝑋 is a closed immersion.
In the fiber (𝑋𝑠 ,Δ𝑠) at a point 𝑠 ∈ 𝑆, the section x gives a 𝜅(𝑠)-point 𝑥𝑠 ∈ 𝑋𝑠 (𝜅(𝑠)), where 𝜅(𝑠) is the
residue field of 𝑠 ∈ 𝑆.

A locally stable family of klt singularities over S consists of a family of singularities 𝜋 : (𝑋,Δ) → 𝑆
with 𝑥 ∈ 𝑋 (𝑆), such that 𝜋 : (𝑋,Δ) → 𝑆 is a locally stable family of klt pairs.

Definition 2.6. Let S be a reduced scheme, 𝜋 : (𝑋,Δ) → 𝑆 be a family of pairs. A family of models

𝑓 : (𝑌, 𝐸) → (𝑋,Δ) (2.6)

consists of a projective birational morphism 𝑓 : 𝑌 → 𝑋 such that 𝜋 ◦ 𝑓 is flat, and a relative Mumford
divisor E on 𝑌/𝑆 (see [15, Def. 4.68]), such that every fiber 𝑓𝑠 : (𝑌𝑠 , 𝐸𝑠) → (𝑋𝑠 ,Δ𝑠) is a model.

Let 𝑥 ∈ 𝑋 (𝑆) be a section. Then 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is called a family of models at x if moreover
every fiber 𝑓𝑠 : (𝑌𝑠 , 𝐸𝑠) → (𝑋𝑠 ,Δ𝑠) is a model at 𝑥𝑠 , that is, all components of 𝐸𝑠 are centered at 𝑥𝑠 .

2.2. Valuations

2.2.1. Real valuations
All valuations that we consider will be real valuations.

Let X be an integral scheme with function field 𝐾 (𝑋). A real valuation v on 𝐾 (𝑋) gives a valuation
ring O𝑣 of 𝐾 (𝑋) of rank 1 with an order-preserving embedding of the valuation group Γ𝑣 ↩→ R, which
recovers the valuation 𝑣 : 𝐾 (𝑋)× → R. By convention, we set 𝑣(0) = +∞.

The rational rank of 𝑣 ∈ Val𝑋 is rat.rank(𝑣) � dimQ(Γ𝑣 ⊗Z Q).
The set of all real valuations on K centered on X is denoted by Val𝑋 . For 𝑥 ∈ 𝑋 , let

Val𝑋,𝑥 � {𝑣 ∈ Val𝑋 : center𝑋 (𝑣) = 𝑥}. (2.7)
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More generally, if 𝑋 =
⋃
𝑖 𝑋𝑖 is a reduced scheme, where 𝑋𝑖 are the irreducible components of X, then

we write Val𝑋 �
⊔
𝑖 Val𝑋𝑖 .

Suppose 𝑓 : 𝑌 → 𝑋 is a dominant morphism, where Y is an integral scheme, then we have an induced
map Val𝑌 → Val𝑋 by restricting a valuation on 𝐾 (𝑌 ) to the subfield 𝐾 (𝑋) via f. If f is birational and
proper, then this is a bijection, and we usually identify Val𝑌 = Val𝑋 .

A real valuation 𝑣 ∈ Val𝑋 can be evaluated at functions, coherent ideals, and Cartier divisors on X,
as well as their R-linear combinations (e.g., R-Cartier R-divisors).

2.2.2. Quasi-monomial valuations
Let (𝑌, 𝐸 =

∑
𝑖 𝐸𝑖) be an snc pair. Suppose 𝑦 ∈ 𝑌 is a generic point of a stratum 𝐸1 ∩ · · · ∩ 𝐸𝑟 ⊂ 𝑌 , and

𝑡1, . . . , 𝑡𝑟 ∈ 𝒪𝑌 ,𝑦 is a regular system of parameters such that 𝐸𝑖 is defined by 𝑡𝑖 near y for all 𝑖 = 1, . . . , 𝑟 .
Then there is an isomorphism 𝒪̂𝑌 ,𝑦 � 𝜅(𝑦) [[𝑡1, . . . , 𝑡𝑟 ]].

For 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) ∈ R
𝑟
≥0, there exists a unique real valuation 𝑣𝛼 ∈ Val𝑌 satisfying the following:

if 𝑓 ∈ 𝒪𝑌 ,𝑦 is written as 𝑓 =
∑
𝑚∈N𝑟 𝑐𝑚𝑡

𝑚1
1 · · · 𝑡𝑚𝑟

𝑟 in 𝒪̂𝑌 ,𝑦 � 𝜅(𝑦) [[𝑡1, . . . , 𝑡𝑟 ]], then

𝑣𝛼 ( 𝑓 ) = inf{〈𝛼, 𝑚〉 : 𝑐𝑚 ≠ 0} ∈ R≥0 ∪ {+∞}, where 〈𝛼, 𝑚〉 =
𝑟∑
𝑖=1
𝛼𝑖𝑚𝑖; (2.8)

see [12, Prop. 3.1]. We call 𝑣𝛼 a monomial valuation at 𝑦 ∈ (𝑌, 𝐸), and denote by QM𝑦 (𝑌, 𝐸) the set
of all monomial valuations at y. Finally, we define QM(𝑌, 𝐸) �

⋃
𝑦 QM𝑦 (𝑌, 𝐸), where y ranges over

all generic points of all strata of (𝑌, 𝐸).
Following [33], we consider a generalization of monomial valuations to simple-toroidal pairs.

Definition 2.7. Let (𝑌, 𝐸 =
∑
𝑖 𝐸𝑖) be a simple-toroidal pair. Suppose 𝑦 ∈ 𝑌 is a generic point of a

stratum
⋂𝑟
𝑖=1 𝐸𝑖 ⊂ 𝑌 . Then locally at y there is a finite abelian cover

𝜇 : (𝑌 ′, 𝐸 ′) → (𝑌, 𝐸) (2.9)

which is étale away from E, such that (𝑌 ′, 𝐸 ′ =
∑
𝑖 𝐸

′
𝑖 ) is snc, and 𝜇∗𝐸𝑖 = 𝑚𝑖𝐸

′
𝑖 for some 𝑚𝑖 > 0. Let

𝑦′ ∈ 𝜇−1 (𝑦), then 𝑦′ is a generic point of
⋂𝑟
𝑖=1 𝐸

′
𝑖 ⊂ 𝑌

′. For 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) ∈ R
𝑟
≥0, define 𝑣𝛼 ∈ Val𝑌

to be the restriction of 𝑣′𝛼′ ∈ QM𝑦′ (𝑌
′, 𝐸 ′) corresponding to 𝛼′ = (𝛼1/𝑚1, . . . , 𝛼𝑟/𝑚𝑟 ). Thus

𝑣𝛼 (𝐸𝑖) = 𝑣
′
𝛼′ (𝜇∗𝐸𝑖) = 𝑚𝑖𝑣

′
𝛼′ (𝐸 ′

𝑖 ) = 𝛼𝑖 . (2.10)

Note that 𝑣𝛼 does not depend on the choice of a finite abelian cover.
We call 𝑣𝛼 a monomial valuation at 𝑦 ∈ (𝑌, 𝐸), and denote by QM𝑦 (𝑌, 𝐸) ⊂ Val𝑌 the set of all such

𝑣𝛼. The relative interior QM◦
𝑦 (𝑌, 𝐸) ⊂ QM𝑦 (𝑌, 𝐸) consists of 𝑣𝛼 for which 𝛼 ∈ R𝑟>0. By definition

there is a canonical bijection

QM𝑦 (𝑌, 𝐸) � R
𝑟
≥0, 𝑣 ↦→ (𝑣(𝐸1), . . . , 𝑣(𝐸𝑟 )), (2.11)

which is a homeomorphism when Val𝑌 is equipped with the weakest topology such that the evaluation
map Val𝑌 → R, 𝑣 ↦→ 𝑣( 𝑓 ) is continuous for all 𝑓 ∈ 𝐾 (𝑌 )× (see [12, Lem. 4.5]).

More generally, let (𝑌, 𝐸) be a pair where 𝐸 =
∑
𝑖 𝐸𝑖 is reduced, such that (Spec𝒪𝑌 ,𝑦 , 𝐸 |Spec𝒪𝑌 ,𝑦 ) is

simple-toroidal for all generic points y of all strata
⋂
𝑖∈𝐼 𝐸𝑖 ⊂ 𝑌 . Then we define

QM(𝑌, 𝐸) �
⋃

𝑦
QM𝑦 (𝑌, 𝐸) =

⊔
𝑦

QM◦
𝑦 (𝑌, 𝐸). (2.12)

Remark 2.8. Let (𝑌, 𝐸) be a pair where E is a reduced Weil divisor. Then (𝑌, 𝐸) is simple-toroidal if
and only if 𝑌 \ 𝐸 ↩→ 𝑌 is a toroidal embedding without self-intersection such that the rational convex
polyhedral cones 𝜎𝑍 ⊂ 𝑁𝑍

R
associated to all strata 𝑍 ⊂ 𝑌 are simplicial (see [13, II.§1] for the relevant

notions).
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In fact, if (𝑌, 𝐸) is Zariski locally, at a point 𝑦 ∈ 𝐸 , isomorphic to the quotient (𝑉, 𝐷)/𝐺 where
(𝑉, 𝐷) is snc and G is a finite abelian group, then the action of G on (𝑉, 𝐷) is formally isomorphic to an
action of 𝐺 ′ on A𝑛 where 𝐺 � 𝐺 ′ ⊂ (Gm)

𝑛, and D corresponds to a union of coordinate hyperplanes
𝐷 ′ ⊂ A𝑛 (see [14, 3.17]). Then (A𝑛, 𝐷 ′)/𝐺 ′ is an affine toric variety associated to a simplicial cone,
and (𝑌, 𝐸) is formally isomorphic to (A𝑛, 𝐷 ′)/𝐺 ′ at 𝑦 ∈ 𝐸 . That is,𝑌 \𝐸 ↩→ 𝑌 is a toroidal embedding,
and the associated cones are simplicial; it has no self-intersections since every stratum is normal.

Conversely, assume 𝑌 \ 𝐸 ↩→ 𝑌 is such a toroidal embedding, then every component of E is Q-
Cartier (see [13, II.§1, Lem. 1]). To see (𝑌, 𝐸) is simple-toroidal in the sense of Definition 2.1, we may
take a composition of cyclic covers, and assume every component of E is Cartier. In this case, the cone
𝜎𝑍 ⊂ 𝑁𝑍

R
is spanned by a basis of the lattice 𝑁𝑍 , hence (𝑌, 𝐸) is snc.

Let 𝑍 ⊂ 𝑌 be a stratum, with the generic point 𝑧 ∈ 𝑍 . Recall that 𝜎𝑍 ⊂ 𝑁𝑍
R

is the dual cone of the
cone of effective Cartier divisors supported on E and passing through Z (see [13, II.§1, Def. 3]). Then
there is a canonical isomorphism

QM𝑧 (𝑌, 𝐸) � 𝜎
𝑍 (2.13)

and 𝜎𝑍 ∩ 𝑁𝑍 corresponds to the lattice generated by valuations given by prime divisors over Y. Hence
we can equip QM(𝑌, 𝐸) with an integral structure (see [13, page 71]).

By the results in [13, II.§2], if 𝑓 : (𝑌 ′, 𝐸 ′) → (𝑌, 𝐸) is a toroidal resolution, then

QM(𝑌 ′, 𝐸 ′) = QM(𝑌, 𝐸). (2.14)

Conversely, if 𝜎 ⊂ QM𝑦 (𝑌, 𝐸) is a rational simplicial cone, then there exists a toroidal proper birational
morphism 𝑓 : (𝑌 ′, 𝐸 ′) → (𝑌, 𝐸) with (𝑌 ′, 𝐸 ′) simple-toroidal and QM𝑦′ (𝑌

′, 𝐸 ′) = 𝜎 for some 𝑦′ ∈
𝑓 −1(𝑦). Moreover, we can choose (𝑌 ′, 𝐸 ′) such that every f -exceptional divisor corresponds to an edge
of 𝜎, and Ex( 𝑓 ) supports an f -ample divisor, by [33, Lem. 3.16].

Lemma 2.9. Let (𝑌, 𝐸 + 𝐹) be a local simple-toroidal pair, where 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖 and 𝐹 =

∑𝑠
𝑗=1 𝐹𝑗 have

no common components. Let 𝑌0 =
⋂𝑠

𝑗=1 𝐹𝑗 , and 𝐸0 = 𝐸 |𝑌0 . Then (𝑌0, 𝐸0) is simple-toroidal, and there
is a commutative diagram

QM(𝑌, 𝐸) QM(𝑌, 𝐸 + 𝐹) QM(𝑌0, 𝐸0)

R𝑟
≥0 R𝑟+𝑠

≥0 R𝑟
≥0

𝑖

�

𝑝

� �

𝛼 ↦→(𝛼,0) (𝛼,𝛽) ↦→𝛼

(2.15)

so that the composition in the first row is a canonical isomorphism

𝑝 ◦ 𝑖 : QM(𝑌, 𝐸) � QM(𝑌0, 𝐸0). (2.16)

Moreover, if 𝑣𝛼 ∈ QM(𝑌, 𝐸) maps to 𝑣̄𝛼 ∈ QM(𝑌0, 𝐸0), and 𝛽 = (𝛽 𝑗 ) ∈ R
𝑠
≥0, then

𝑣𝛼 ( 𝑓 ) ≤ 𝑣𝛼,𝛽 ( 𝑓 ) ≤ sup{𝑣𝛼,𝛽 ( 𝑓 ) : 𝛽 ∈ R𝑠≥0} = lim
𝛽→∞

𝑣𝛼,𝛽 ( 𝑓 ) = 𝑣̄𝛼 ( 𝑓 ), (2.17)

for every 𝑓 ∈ 𝒪𝑌 , where 𝑓 ∈ 𝒪𝑌0 is the image of f, and 𝛽→ ∞ means each 𝛽 𝑗 → ∞.

Proof. By localization and passing to a finite abelian cover, we may assume that (𝑌, 𝐸 + 𝐹) is snc, and⋂𝑟
𝑖=1 𝐸𝑖 ∩

⋂𝑠
𝑗=1 𝐹𝑗 = {𝑦}, where 𝑦 ∈ 𝑌 is the closed point. Write 𝑅 = 𝒪𝑌 ,𝑦 , and take a regular system

of parameters 𝑡1, . . . , 𝑡𝑟 , 𝑥1, . . . , 𝑥𝑠 ∈ 𝑅 such that 𝐸𝑖 = div(𝑡𝑖) and 𝐹𝑗 = div(𝑥 𝑗 ). Then

𝒪𝑌0 ,𝑦 � 𝑅0 � 𝑅/(𝑥1, . . . , 𝑥𝑠) (2.18)
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is a regular local ring, and 𝑡1, . . . , 𝑡𝑟 ∈ 𝑅0 is a regular system of parameters defining 𝐸0. Write

𝑓 =
∑
𝑚∈N𝑟

∑
𝑛∈N𝑠

𝑐𝑚,𝑛𝑡
𝑚1
1 · · · 𝑡𝑚𝑟

𝑟 𝑥
𝑛1
1 · · · 𝑥𝑛𝑠𝑠 ∈ 𝑅̂ � 𝜅(𝑦) [[𝑡1, . . . , 𝑡𝑟 , 𝑥1, . . . , 𝑥𝑠]], (2.19)

so that

𝑓 =
∑
𝑚∈N𝑟

𝑐𝑚,0𝑡
𝑚1
1 · · · 𝑡𝑚𝑟

𝑟 ∈ 𝑅̂0 � 𝜅(𝑦) [[𝑡1, . . . , 𝑡𝑟 ]] . (2.20)

Hence

𝑣𝛼 ( 𝑓 ) = inf{〈𝛼, 𝑚〉 : 𝑐𝑚,𝑛 ≠ 0} ≤ inf{〈𝛼, 𝑚〉 + 〈𝛽, 𝑛〉 : 𝑐𝑚,𝑛 ≠ 0}
≤ sup

𝛽≥0
inf{〈𝛼, 𝑚〉 + 〈𝛽, 𝑛〉 : 𝑐𝑚,𝑛 ≠ 0}

= lim
𝛽→∞

inf{〈𝛼, 𝑚〉 + 〈𝛽, 𝑛〉 : 𝑐𝑚,𝑛 ≠ 0}

= inf{〈𝛼, 𝑚〉 : 𝑐𝑚,0 ≠ 0} = 𝑣̄𝛼 ( 𝑓 )

(2.21)

since 〈𝛼, 𝑚〉 + 〈𝛽, 𝑛〉 =
∑𝑟
𝑖=1 𝛼𝑖𝑚𝑖 +

∑𝑠
𝑗=1 𝛽 𝑗𝑛 𝑗 ≥ min 𝑗 𝛽 𝑗 when 𝑛 ≠ 0. �

Definition 2.10. Let X be an integral scheme. A real valuation 𝑣 ∈ Val𝑋 is said to be quasi-monomial
if 𝑣 ∈ QM(𝑌, 𝐸) for some snc pair (𝑌, 𝐸) with a birational morphism 𝑓 : 𝑌 → 𝑋 of finite type. The set
of quasi-monomial valuations on X is denoted by Valqm

𝑋 ⊂ Val𝑋 . It is equivalent to require (𝑌, 𝐸) to be
simple-toroidal.

Note that divisorial valuations are exactly quasi-monomial valuations of rational rank 1. The set of
divisorial valuations on X is denoted by Valdiv

𝑋 ⊂ Valqm
𝑋 .

2.2.3. Log discrepancies
Let (𝑋,Δ) be a pair such that 𝐾𝑋 + Δ is Q-Cartier. Suppose 𝑓 : 𝑌 → 𝑋 is a birational morphism of
finite type, and F is a prime divisor on Y. Then the log discrepancy

𝐴𝑋,Δ (𝐹) � 1 + ord𝐹 (𝐾𝑌 − 𝑓 ∗(𝐾𝑋 + Δ)) (2.22)

only depends on the valuation ord𝐹 ∈ Val𝑋 . The log discrepancy extends to a function

𝐴𝑋,Δ : Val𝑋 → R ∪ {+∞} (2.23)

such that

𝐴𝑋,Δ (𝑣) � sup
(𝑌 ,𝐸)

∑
𝑖
𝑣(𝐸𝑖) · 𝐴𝑋,Δ (𝐸𝑖) (2.24)

where the supremum ranges over all log resolutions 𝑓 : (𝑌, 𝐸 =
∑
𝑖 𝐸𝑖) → (𝑋,Δ); see [12, §5].

Lemma 2.11. Let (𝑋,Δ) be a pair such that 𝐾𝑋 + Δ is Q-Cartier. Suppose

𝑓 : (𝑌, 𝐸 = 𝐸1 + · · · + 𝐸𝑟 ) → (𝑋,Δ) (2.25)

is a log resolution. Then

𝐴𝑋,Δ (𝑣) ≥
𝑟∑
𝑖=1
𝑣(𝐸𝑖) · 𝐴𝑋,Δ (𝐸𝑖) (2.26)

for all 𝑣 ∈ Val𝑋 , and the equality holds if and only if 𝑣 ∈ QM(𝑌, 𝐸).

https://doi.org/10.1017/fms.2025.10111 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10111


10 Z. Chen

Proof. Note that the value
∑𝑟
𝑖=1 𝑣(𝐸𝑖) · 𝐴𝑋,Δ (𝐸𝑖) does not change if we replace (𝑌, 𝐸) with a toroidal

resolution, and the set QM(𝑌, 𝐸) also remains the same. Hence we may assume that 𝑓 : (𝑌, 𝐸) → (𝑋,Δ)
is an snc model, so the inequality follows by definition.

If the equality holds, then it is proved that 𝑣 ∈ QM(𝑌, 𝐸) in [12, Cor. 5.4] when X is regular and
Δ = 0. In general, we can reduce it to the regular case as follows. Let Δ𝑌 be the crepant pullback of Δ ,
so that

Δ𝑌 =
𝑟∑
𝑖=1

(1 − 𝐴𝑋,Δ (𝐸𝑖)) · 𝐸𝑖 , (2.27)

and

𝐴𝑋,Δ (𝑣) = 𝐴𝑌 ,Δ𝑌 (𝑣) = 𝐴𝑌 (𝑣) −
𝑟∑
𝑖=1
𝑣(𝐸𝑖) · (1 − 𝐴𝑋,Δ (𝐸𝑖)). (2.28)

If 𝐴𝑋,Δ (𝑣) =
∑𝑟
𝑖=1 𝑣(𝐸𝑖) · 𝐴𝑋,Δ (𝐸𝑖), then 𝐴𝑌 (𝑣) =

∑𝑟
𝑖=1 𝑣(𝐸𝑖), hence 𝑣 ∈ QM(𝑌, 𝐸). �

Definition 2.12. Let (𝑋,Δ) be an lc pair. A real valuation 𝑣 ∈ Val𝑋 is called an lc place for (𝑋,Δ) if
𝐴𝑋,Δ (𝑣) = 0. Let LCP(𝑋,Δ) ⊂ Val𝑋 denote the set of all lc places for (𝑋,Δ). A point 𝑧 ∈ 𝑋 is called
an lc center of (𝑋,Δ) if 𝑧 = center𝑋 (𝑣) for some 𝑣 ∈ LCP(𝑋,Δ). Note that LCP(𝑋,Δ) ⊂ Valqm

𝑋 .

2.3. Local volumes

2.3.1. Ideal sequences
We consider ideal sequences indexed by R≥0. They are called graded systems of ideals by [8], and
filtrations by [6].
Definition 2.13. Let X be a scheme. An ideal sequence 𝔞• = {𝔞𝜆}𝜆≥0 on X consists of coherent ideals
𝔞𝜆 ⊂ 𝒪𝑋 for 𝜆 ∈ R≥0, satisfying the following conditions:
(1) 𝔞𝜆 ⊂ 𝔞𝜇 if 𝜆 ≥ 𝜇;
(2) 𝔞𝜆𝔞𝜇 ⊂ 𝔞𝜆+𝜇 for all 𝜆, 𝜇 ≥ 0.
(3) 𝔞0 = 𝒪𝑋 , and 𝔞𝜆 =

⋂
𝜆′<𝜆 𝔞𝜆′ for all 𝜆 > 0.

Let 𝑥 ∈ 𝑋 be a point, with the prime ideal 𝔭𝑥 ⊂ 𝒪𝑋 . We say an ideal sequence 𝔞• is centered at x if 𝔞𝜆
is 𝔭𝑥-primary for all 𝜆 > 0. In this case, 𝔞• is uniquely determined by the corresponding ideal sequence
𝔞•𝒪𝑋,𝑥 = {𝔞𝜆𝒪𝑋,𝑥}𝜆 of 𝒪𝑋,𝑥 ; hence we may assume x is a closed point by localization if necessary.

Suppose X is integral and 𝑣 ∈ Val𝑋 . The ideal sequence 𝔞•(𝑣) associated with v is defined by

𝔞𝜆 (𝑣) � { 𝑓 ∈ 𝒪𝑋 : 𝑣( 𝑓 ) ≥ 𝜆}. (2.29)

If center𝑋 (𝑣) = 𝑥, then 𝔞•(𝑣) is an ideal sequence centered at x.
A real valuation v on X can be evaluated at an ideal sequence 𝔞• by

𝑣(𝔞•) = inf
𝜆>0

𝑣(𝔞𝜆)
𝜆

= lim
𝜆→∞

𝑣(𝔞𝜆)
𝜆

∈ R≥0 ∪ {+∞}. (2.30)

Note that 𝑣(𝔞•(𝑣)) = 1.
Definition 2.14. Let X be an integral scheme, 𝑥 ∈ 𝑋 be a closed point, and 𝔞• = {𝔞𝜆}𝜆≥0 be an ideal
sequence centered at x. Let 𝑛 = dim𝑥 (𝑋). The multiplicity of 𝔞• is

e(𝔞•) = e𝑋 (𝔞•) � lim sup
𝜆→∞

length𝒪𝑋
(𝒪𝑋/𝔞𝜆)

𝜆𝑛/𝑛!
. (2.31)

The limit superior is actually a limit by [7, Thm. 1.1] under our assumptions for schemes.
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Suppose 𝑣 ∈ Val𝑋,𝑥 . The volume of v is

vol(𝑣) = vol𝑋 (𝑣) � e𝑋 (𝔞•(𝑣)), (2.32)

where 𝔞•(𝑣) ⊂ 𝒪𝑋 is the ideal sequence associated with v. The set of valuations with positive volume
is denoted by Val+𝑋,𝑥 . Note that Valqm

𝑋,𝑥 ⊂ Val+𝑋,𝑥 by Izumi’s Theorem; see [6, Prop. 2.7].

Definition 2.15 (cf. [6, Def. 3.1]). Let X be an integral scheme, 𝑥 ∈ 𝑋 be a closed point, and 𝔞• be an
ideal sequence centered at x. The saturation 𝔞̃• of 𝔞• is the ideal sequence defined by

𝔞̃𝜆 =
{
𝑓 ∈ 𝒪𝑋 : 𝑣( 𝑓 ) ≥ 𝜆 · 𝑣(𝔞•) for all 𝑣 ∈ Valdiv

𝑋,𝑥

}
. (2.33)

It has the following basic properties:

(1) [6, Lem. 3.8] 𝔞𝜆 ⊂ 𝔞̃𝜆 for all 𝜆 ≥ 0;
(2) [6, Cor. 3.16] e𝑋 (𝔞•) = e𝑋 (𝔞̃•);
(3) [6, Prop. 3.12] 𝑣(𝔞•) = 𝑣(𝔞̃•) for all 𝑣 ∈ Val+𝑋,𝑥 .

Lemma 2.16. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity, and 𝔞• be an ideal sequence centered at x with

lct(𝑋,Δ;𝔞•) < +∞. (2.34)

Suppose 𝔞̃• is the saturation of 𝔞•. Then

lct(𝑋,Δ; 𝔞̃•) = lct(𝑋,Δ;𝔞•), (2.35)

and a valuation 𝑣 ∈ Val𝑋,𝑥 computes the lc threshold of 𝔞̃• if and only if it computes that of 𝔞•.

Proof. We have

lct(𝑋,Δ; 𝔞̃•) = inf
𝑤 ∈Valdiv

𝑋,𝑥

𝐴𝑋,Δ (𝑤)

𝑤(𝔞̃•)
= inf

𝑤 ∈Valdiv
𝑋,𝑥

𝐴𝑋,Δ (𝑤)

𝑤(𝔞•)
= lct(𝑋,Δ;𝔞•) (2.36)

since 𝑤(𝔞̃•) = 𝑤(𝔞•) for every 𝑤 ∈ Valdiv
𝑋,𝑥 . For a general real valuation 𝑣 ∈ Val𝑋,𝑥 , we have

𝐴𝑋,Δ (𝑣)

𝑣(𝔞̃•)
≥
𝐴𝑋,Δ (𝑣)

𝑣(𝔞•)
(2.37)

since 𝔞• ⊂ 𝔞̃•. Thus, if v computes the lc threshold of 𝔞̃•, then it also computes that of 𝔞•. Conversely,
assume v computes the lc threshold of 𝔞•. Then v also computes the lc threshold of the ideal sequence
𝔞•(𝑣) associated with itself by [12, Thm. 7.8]. Hence

inf
𝑤 ∈Valdiv

𝑋,𝑥

𝐴𝑋,Δ (𝑤)

𝑤(𝔞•(𝑣))
= lct(𝑋,Δ;𝔞•(𝑣)) =

𝐴𝑋,Δ (𝑣)

𝑣(𝔞•(𝑣))
< +∞. (2.38)

Then there exists a divisorial valuation 𝑤 ∈ Valdiv
𝑋,𝑥 such that 𝑤(𝔞•(𝑣)) > 0. By rescaling, we may

assume that 𝑤(𝔞•(𝑣)) = 1, so that 𝑤( 𝑓 ) ≥ 𝑣( 𝑓 ) for all 𝑓 ∈ 𝒪𝑋,𝑥 . Thus

vol𝑋 (𝑣) ≥ vol𝑋 (𝑤) > 0. (2.39)

By [6, Prop. 3.12], 𝑣(𝔞̃•) = 𝑣(𝔞•). Hence v also computes the lc threshold of 𝔞̃•. �
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2.3.2. Normalized volumes and the minimizers
Definition 2.17 (cf. [18, §1]). Let 𝑥 ∈ (𝑋,Δ) be a klt singularity, and 𝑣 ∈ Val𝑋,𝑥 be a real valuation.
The normalized volume of v is

v̂ol(𝑣) = v̂ol𝑋,Δ (𝑣) � 𝐴𝑋,Δ (𝑣)𝑛 · vol𝑋 (𝑣) ∈ R≥0 ∪ {+∞} (2.40)

where 𝑛 = dim𝑥 (𝑋), and by convention +∞ · 0 = +∞.
The local volume of 𝑥 ∈ (𝑋,Δ) is

v̂ol(𝑥; 𝑋,Δ) � inf
{
v̂ol𝑋,Δ (𝑣) : 𝑣 ∈ Val𝑋,𝑥

}
. (2.41)

The local volume is positive by [18, Thm. 1.2]. A real valuation 𝑣 ∈ Val𝑋,𝑥 is called a minimizer for the
normalized volume if v̂ol(𝑣) = v̂ol(𝑥; 𝑋,Δ).

Let 𝑥 ∈ (𝑋,Δ) be a klt singularity. There exists a minimizer 𝑣 ∈ Val𝑋,𝑥 of the normalized volume by
[4, Main Thm.] and [29, Rmk. 3.8], which is unique up to scaling by [32, Thm. 1.1] and [6, Cor. 1.3],
and is quasi-monomial by [29, Thm. 1.2].

Lemma 2.18. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity, and 𝑣m ∈ Val𝑋,𝑥 be a minimizer of the normalized
volume. Let 𝑛 = dim𝑥 (𝑋). Then the following hold:

(1) 𝑣m computes the lc threshold of 𝔞•(𝑣m), and

v̂ol(𝑥; 𝑋,Δ) = lct(𝑋,Δ;𝔞•(𝑣m))𝑛 · e𝑋 (𝔞•(𝑣m)) = inf{lct(𝑋,Δ;𝔞•)𝑛 · e𝑋 (𝔞•)} (2.42)

where 𝔞• ranges over all ideal sequences centered at x;
(2) if 𝑣 ∈ Val𝑋,𝑥 computes the lc threshold of 𝔞•(𝑣m), then 𝑣 = 𝑐 · 𝑣m for some 𝑐 ∈ R>0;
(3) if 𝔞• = {𝔞𝜆}𝜆 is an ideal sequence centered at x such that v̂ol(𝑥; 𝑋,Δ) = lct(𝑋,Δ;𝔞•)𝑛 · e𝑋 (𝔞•),

then 𝔞̃𝜆 = 𝔞𝑐𝜆 (𝑣m) for some 𝑐 ∈ R>0, for all 𝜆 ≥ 0.

Proof. (1). By [23, Thm. 27], we have

v̂ol(𝑥; 𝑋,Δ) = inf{lct(𝑋,Δ;𝔞•)𝑛 · e𝑋 (𝔞•)}. (2.43)

Since 𝑣m(𝔞•(𝑣m)) = 1, and e𝑋 (𝔞•(𝑣m)) = vol𝑋 (𝑣m) by definition, and

lct(𝑋,Δ;𝔞•(𝑣m)) ≤
𝐴𝑋,Δ (𝑣

m)

𝑣m(𝔞•(𝑣m))
= 𝐴𝑋,Δ (𝑣

m), (2.44)

we have

lct(𝑋,Δ;𝔞•(𝑣m))𝑛 · e𝑋 (𝔞•(𝑣m)) ≤ 𝐴𝑋,Δ (𝑣
m)𝑛 · vol𝑋 (𝑣m) = v̂ol(𝑥; 𝑋,Δ). (2.45)

Thus the equality holds, and 𝑣m computes the lc threshold lct(𝑋,Δ;𝔞•(𝑣m)).
(2). Suppose v computes the lc threshold of 𝔞•(𝑣m), that is,

lct(𝑋,Δ;𝔞•(𝑣m)) =
𝐴𝑋,Δ (𝑣)

𝑣(𝔞•(𝑣m))
. (2.46)

By scaling, we may assume that 𝑣(𝔞•(𝑣m)) = inf 𝑣(𝔞𝜆 (𝑣m))/𝜆 = 1. Thus 𝑣(𝔞𝜆 (𝑣m)) ≥ 𝜆, that is,

𝔞𝜆 (𝑣
m) ⊂ 𝔞𝜆 (𝑣) (2.47)

for all 𝜆 ≥ 0. Hence

vol𝑋 (𝑣) = e𝑋 (𝔞𝜆 (𝑣)) ≤ e𝑋 (𝔞𝜆 (𝑣m)) = vol𝑋 (𝑣m). (2.48)
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Since 𝐴𝑋,Δ (𝑣) = lct(𝑋,Δ;𝔞•(𝑣m)) = 𝐴𝑋,Δ (𝑣m), we get

v̂ol𝑋,Δ (𝑣) ≤ v̂ol𝑋,Δ (𝑣m) = v̂ol(𝑥; 𝑋,Δ). (2.49)

By uniqueness of the minimizer, 𝑣 = 𝑐 · 𝑣m for some 𝑐 > 0. In fact, 𝑣 = 𝑣m since 𝑣(𝔞•(𝑣m)) = 1.
(3). This is obtained in the proof of [6, Cor. 1.3], which we briefly recall: We may assume that

lct(𝔞•) = lct(𝔞•(𝑣m)) = 1 by scaling. Let 𝔞•,𝑡 , where 0 ≤ 𝑡 ≤ 1, be the geodesic between 𝔞•,0 = 𝔞• and
𝔞•,1 = 𝔞•(𝑣m) defined in [6, Def. 4.1]. Then

lct(𝑋,Δ;𝔞•,𝑡 ) ≤ (1 − 𝑡) · lct(𝔞•) + 𝑡 · lct(𝔞•(𝑣m)) = 1 (2.50)

by [6, Prop. 5.1], and

e𝑋 (𝔞•,𝑡 )−1/𝑛 ≥ (1 − 𝑡) · e𝑋 (𝔞•)−1/𝑛 + 𝑡 · e𝑋 (𝔞•(𝑣m))−1/𝑛 = v̂ol(𝑥; 𝑋,Δ)−1/𝑛 (2.51)

by [6, Thm. 1.1(2)]. Hence

lct(𝑋,Δ;𝔞•,𝑡 )𝑛 · e𝑋 (𝔞•,𝑡 ) ≤ v̂ol(𝑥; 𝑋,Δ), (2.52)

so all inequalities above are equalities. Then 𝔞• and 𝔞•(𝑣m) have the same saturation, up to scaling, by
[6, Thm. 1.1(3)]. But 𝔞•(𝑣m) is saturated by [6, Lem. 3.20], so we get (3). �

2.4. Families of log Fano cone singularities

A log Fano cone singularity is a klt singularity with a good torus action, which generalizes the usual
affine cone over a Fano variety. The K-stability of log Fano cone singularities is parallel to that of Fano
varieties; see [22], [21], [11], and [24] for an algebraic approach.

Let S be a reduced scheme. Let 𝑀 � Z𝑟 be a free abelian group of finite rank r (i.e., a lattice), and
T𝑆 = Spec𝑆 (𝒪𝑆 [𝑀]) be the corresponding torus over S.

Definition 2.19. A locally stable family of log Fano cone singularities over S (with weight lattice M)
consists of a locally stable family of affine klt singularities 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) and an action
of T𝑆 on (𝑋,Δ) over S such that 𝑥(𝑆) is the fixed locus, called the vertex.

Thus 𝑋 = Spec𝑆 (𝒜) where

𝒜 =
⊕
𝑚∈𝑀

𝒜𝑚 (2.53)

is an M-graded 𝒪𝑆-algebra, such that 𝒜+ =
⊕

𝑚≠0 𝒜𝑚 ⊂ 𝒜 is an ideal, and 𝒜/𝒜+ = 𝒜0 = 𝒪𝑆 . Note
that each 𝒜𝑚 is a flat coherent 𝒪𝑆-module.

A polarization is 𝜉 ∈ 𝑁R � Hom(𝑀,R) such that 〈𝜉, 𝑚〉 > 0 for all 𝑚 ∈ 𝑀 \ {0} with 𝒜𝑚 ≠ 0. Let
wt𝜉 ∈ Val𝑋𝑠 denote the T𝑠-invariant valuation on each fiber 𝑋𝑠 given by

wt𝜉 (𝑎) = min{〈𝜉, 𝑚〉 : 𝑎𝑚 ≠ 0}, (2.54)

for 𝑎 =
∑
𝑚∈𝑀 𝑎𝑚 ∈

⊕
𝑚∈𝑀 𝒜𝑚 ⊗𝒪𝑆 𝜅(𝑠).

The family 𝜋 : (𝑋,Δ) → 𝑆 is called a locally stable family of K-semistable Fano cone singularities
over S if there is a polarization 𝜉 such that (𝑋𝑠 ,Δ𝑠; 𝜉) is a K-semistable polarized log Fano cone
singularity for all 𝑠 ∈ 𝑆. Such a polarization 𝜉 is unique up to scaling if it exists (e.g., by [22, Thm.
3.5]), hence we often omit it.
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The following is a family version of [38, §3.1].

Lemma 2.20. Let 𝜋 : (𝑋 = Spec𝑆 (𝒜),Δ) → 𝑆 be a locally stable family of log Fano cone singularities,
where 𝒜 =

⊕
𝑚∈𝑀 𝒜𝑚, and 𝜉 be a polarization. Assume 𝜉 ∈ 𝑁 , that is, 〈𝜉, 𝑚〉 ∈ Z for all 𝑚 ∈ 𝑀 . Let

𝑋 � Proj𝑆𝒜 [𝑡] (2.55)

where 𝒜 [𝑡] is given the N-grading with deg(𝒜𝑚) = 〈𝜉, 𝑚〉 and deg(𝑡) = 1. Then the following hold:

(1) There is a canonical open immersion 𝑋 ↩→ 𝑋 , and the complement 𝑉 = 𝑋 \ 𝑋 is a Q-Cartier
relatively ample divisor.

(2) Let Δ be the closure of Δ , then 𝜋̄ : (𝑋,Δ +𝑉) → 𝑆 is a locally stable family of plt pairs.
(3) If S is connected, then 𝐾𝑋/𝑆 + Δ + (1 + 𝑎)𝑉 ∼𝑆,Q 0 for some 𝑎 > 0.

Proof. (1). The open subset 𝑋 ⊂ 𝑋 is the locus 𝑡 ≠ 0, so the complement V is the divisor defined by t.
Note that 𝒪𝑋 (𝑉) = 𝒪𝑋 (1), hence V is relatively ample over S.

We have 𝑉 = Proj𝑆𝒜 where 𝒜 is given the N-grading with deg(𝒜𝑚) = 〈𝜉, 𝑚〉, and X (resp., 𝑋) is
the affine cone (resp., projective cone), relatively over S, for 𝒪𝑉 (1) = 𝒪𝑋 (1) |𝑉 . Thus 𝑉 ⊂ 𝑋 is Cartier
on the locus where 𝒪𝑉 (1) is invertible; in particular, 𝑉 ⊂ 𝑋 is Cartier in codimension 2.

(2). First assume S is the spectrum of a DVR, with the closed point 𝑠 ∈ 𝑆. Then (𝑋,Δ + 𝑋𝑠) is plt by
[15, Thm. 4.54], hence (𝑉,Δ𝑉 + 𝑉𝑠) is plt, where Δ𝑉 = Diff𝑉 (Δ) = Δ |𝑉 (see [14, Lem. 3.1]). Then
(𝑋,Δ + 𝑉 + 𝑋𝑠) is dlt. Thus the conclusion holds in this case by [15, Thm. 4.54] again. Note that the
closed fiber Δ𝑠 of Δ is the closure of Δ𝑠 .

In general, the formation of 𝑋 commutes with base change. By the DVR case above, the formation
of Δ commutes with specialization, hence 𝜋̄ : (𝑋,Δ + 𝑉) → 𝑆 is a well-defined family of pairs by [15,
Thm-Def. 4.3]. Then it is a locally stable family of plt pairs since its base change to every DVR is so by
[15, Def-Thm. 4.7].

(3). Let

𝑌 = Spec𝑉
⊕
𝑛≥0

𝒪𝑉 (𝑛), (2.56)

with the canonical morphisms 𝑝 : 𝑌 → 𝑉 and 𝜇 : 𝑌 → 𝑋 , and 𝐸 = 𝜇−1(𝑥(𝑆)) � 𝑉 . Then

𝜇 : (𝑌, 𝐸) → (𝑋,Δ) (2.57)

is a family of birational models, and we can write

𝜇∗(𝐾𝑋/𝑆 + Δ) = 𝐾𝑌 /𝑆 + 𝜇
−1
∗ Δ + 𝐸 ′ (2.58)

for some 𝐸 ′ on Y supported on E. For each fiber we have 𝐸 ′
𝑠 = (1 − 𝐴𝑋𝑠 ,Δ𝑠 (𝐸𝑠))𝐸𝑠, and 𝐸𝑠 is a prime

divisor. Thus the function 𝑠 ↦→ 𝐴𝑋𝑠 ,Δ𝑠 (𝐸𝑠) is locally constant. If S is connected, then it is constant, say
with value a. Note that 𝑎 > 0 since (𝑋𝑠 ,Δ𝑠) is klt for all 𝑠 ∈ 𝑆. Then

𝐾𝑋𝑠
+ Δ𝑠 + (1 + 𝑎)𝑉𝑠 ∼Q 0 (2.59)

for all 𝑠 ∈ 𝑆 by [38, Lem. 3.3]. Hence 𝐾𝑋/𝑆 + Δ + (1 + 𝑎)𝑉 ∼𝑆,Q 0. �

Lemma 2.21. Let 𝜋 : (𝑋 = Spec𝑆 (𝒜),Δ) → 𝑆 be a locally stable family of log Fano cone singularities,
where 𝒜 =

⊕
𝑚∈𝑀 𝒜𝑚, and 𝜉 be a polarization. Then the following hold:

(1) The function 𝑠 ↦→ vol𝑋𝑠 (wt𝜉 ) is locally constant.
(2) The function 𝑠 ↦→ 𝐴𝑋𝑠 ,Δ𝑠 (wt𝜉 ) is locally constant.
(3) The function 𝑠 ↦→ v̂ol𝑋𝑠 ,Δ𝑠 (wt𝜉 ) is locally constant.
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In particular, if 𝜋 : (𝑋,Δ) → 𝑆 is a locally stable family of K-semistable log Fano cone singularities
with the polarization 𝜉, then the function

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (2.60)

is locally constant, where 𝑥 : 𝑆 → 𝑋 is the vertex section.

Proof. Write 𝑛 = dim(𝑋𝑠) for all 𝑠 ∈ 𝑆.
(1). By definition,

vol𝑋𝑠 (wt𝜉 ) = lim
𝜆→∞

𝑛!
𝜆𝑛

∑
〈𝜉 ,𝑚〉<𝜆

dim𝜅 (𝑠) (𝒜𝑚 ⊗𝒪𝑆 𝜅(𝑠)), (2.61)

where the summation ranges over all 𝑚 ∈ 𝑀 with 〈𝜉, 𝑚〉 < 𝜆. Since 𝒜𝑚 is a flat coherent 𝒪𝑆-module,

𝑠 ↦→ dim𝜅 (𝑠) (𝒜𝑚 ⊗𝒪𝑆 𝜅(𝑠)) (2.62)

is locally constant for all 𝑚 ∈ 𝑀 (see [26, 05P2]). Hence 𝑠 ↦→ vol𝑋𝑠 (wt𝜉 ) is locally constant.
(2). Fix 𝑠 ∈ 𝑆, then 𝜉 ↦→ 𝐴𝑋𝑠 ,Δ𝑠 (wt𝜉 ) is a linear map on 𝑁R by [22, Lem. 2.18]. Hence it suffices to

show 𝑠 ↦→ 𝐴𝑋𝑠 ,Δ𝑠 (wt𝜉 ) is locally constant when 𝜉 ∈ 𝑁 . We may assume that S is connected. Let

𝜋̄ : (𝑋,Δ +𝑉) → 𝑆 (2.63)

be the family constructed in Lemma 2.20 using 𝜉. Then

𝐾𝑋/𝑆 + Δ + (1 + 𝑎)𝑉 ∼𝑆,Q 0 (2.64)

for some 𝑎 > 0. Restricting to each fiber, we get 𝑎 = 𝐴𝑋𝑠 ,Δ𝑠 (wt𝜉 ) for all 𝑠 ∈ 𝑆 by [38, Lem. 3.3].
(3). By definition,

v̂ol𝑋𝑠 ,Δ𝑠 (wt𝜉 ) = 𝐴𝑋𝑠 ,Δ𝑠 (wt𝜉 )𝑛 · vol𝑋𝑠 (wt𝜉 ). (2.65)

Hence it is a locally constant function on S by (1) and (2).
If 𝜋 : (𝑋,Δ) → 𝑆 is a family of K-semistable log Fano cone singularities with the polarization 𝜉, then

v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) = v̂ol𝑋𝑠 ,Δ𝑠 (wt𝜉 ) (2.66)

by [22, Thm. 3.5]. Hence 𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) is locally constant by (3). �

3. Special valuations

3.1. Models of qdlt Fano type

Definition 3.1 [33, Def. 3.5, 3.7]. Let (𝑋,Δ) be an affine klt pair. A model

𝑓 : (𝑌, 𝐸 = 𝐸1 + · · · + 𝐸𝑟 ) → (𝑋,Δ) (3.1)

is said to be of qdlt Fano type if there is an effective Q-divisor D on Y such that �𝐷� = 0, 𝐷 ≥ 𝑓 −1
∗ Δ ,

(𝑌, 𝐷 + 𝐸) is qdlt, and −(𝐾𝑌 + 𝐷 + 𝐸) is f -ample.
The model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is called a qdlt anticanonical model if one can take 𝐷 = 𝑓 −1

∗ Δ
above, that is, (𝑌, 𝑓 −1

∗ Δ + 𝐸) is qdlt and −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is f -ample.

Let 𝑥 ∈ (𝑋,Δ) be a klt singularity. A qdlt anticanonical model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is called a Kollár
model at x if all components of E are centered at x.
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Lemma 3.2 [33, Prop. 3.9]. Let (𝑋,Δ) be an affine klt pair, and 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) be a model of qdlt
Fano type. Then there exists a birational contraction 𝜙 : 𝑌 � 𝑌 over X that is a local isomorphism at
generic points of strata of (𝑌, 𝐸), such that 𝑓 : (𝑌, 𝐸 = 𝜙∗𝐸) → (𝑋,Δ) is a qdlt anticanonical model,
and QM(𝑌, 𝐸) = QM(𝑌, 𝐸).

Remark 3.3. Let 𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a model of qdlt Fano type. Then the anticanonical

model 𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸 𝑖) → (𝑋,Δ) is uniquely determined by the divisorial valuations ord𝐸 𝑖

= ord𝐸𝑖 .
In fact, since

−(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) ∼𝑋,Q −

𝑟∑
𝑖=1
𝑎𝑖𝐸 𝑖 , (3.2)

is 𝑓 -ample, where 𝑎𝑖 = 𝐴𝑋,Δ (𝐸 𝑖) = 𝐴𝑋,Δ (ord𝐸𝑖 ), if ℓ ∈ Z>0 such that ℓ𝑎𝑖 ∈ Z for all i, then

𝑌 = Proj𝑋
⊕
𝑚∈N

𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚ℓ𝑎𝑖𝐸 𝑖

)
, (3.3)

and

𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚ℓ𝑎𝑖𝐸 𝑖

)
= 𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚ℓ𝑎𝑖𝐸𝑖

)
=

𝑟⋂
𝑖=1

𝔞𝑚ℓ𝑎𝑖 (ord𝐸𝑖 ) (3.4)

only depends on the valuations ord𝐸𝑖 .

Lemma 3.4. Let (𝑋,Δ) be an affine klt pair, and 𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a model of qdlt Fano

type. Suppose 𝑓 ′ : (𝑌 ′, 𝐸 ′ =
∑𝑟
𝑖=1 𝐸

′
𝑖 ) → (𝑋,Δ) is a model such that 𝐸 ′ contains all 𝑓 ′-exceptional

divisors, ord𝐸′
𝑖
= ord𝐸𝑖 for every i, and −(𝐾𝑌 ′ + 𝑓 ′−1

∗ Δ + 𝐸 ′) is 𝑓 ′-nef. Then 𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) is a
model of qdlt Fano type, and the birational map 𝜙 : 𝑌 � 𝑌 ′ is a local isomorphism at all generic points
of strata of (𝑌, 𝐸) and (𝑌 ′, 𝐸 ′).

Proof. By Lemma 3.2, we may assume that −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is ample. Since Y and 𝑌 ′ have the same

exceptional divisors over X, the birational map 𝜙−1 : 𝑌 ′ � 𝑌 is an isomorphism in codimension 1, so it
is the relative ample model for −(𝐾𝑌 ′ + 𝑓 ′−1

∗ Δ +𝐸 ′). Since −(𝐾𝑌 ′ + 𝑓 ′−1
∗ Δ +𝐸 ′) is 𝑓 ′-nef, 𝜙−1 : 𝑌 ′ → 𝑌

is a morphism. Note that Y is Q-factorial at the generic points of strata of (𝑌, 𝐸), so 𝜙 : 𝑌 � 𝑌 ′ is a
local isomorphism at these points, as otherwise 𝜙−1 would have an exceptional divisor over there. Thus
𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) is a model of qdlt Fano type by [33, Prop. 3.6]. �

Definition 3.5 [33, Def. 3.12]. Let S be a reduced scheme, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a
locally stable family of klt singularities. A family of models 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) at x is called a locally
stable family of Kollár models at x if 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1

∗ Δ + 𝐸) → 𝑆 is a locally stable family with qdlt
fibers, and −(𝐾𝑌 + 𝑓 −1

∗ Δ + 𝐸) is f -ample.
Note that the fiber 𝑓𝑠 : (𝑌𝑠 , 𝐸𝑠) → (𝑋𝑠 ,Δ𝑠) is a Kollár model at 𝑥𝑠 for every 𝑠 ∈ 𝑆.

Remark 3.6. Let S be a regular local scheme of dimension d, with the generic point 𝜂 ∈ 𝑆 and the
closed point 𝑠 ∈ 𝑆. Let 𝐻 =

∑𝑑
𝑗=1 𝐻 𝑗 be an snc divisor on S defined by a regular system of parameters.

Suppose (𝑋,Δ) is a pair, and 𝜋 : 𝑋 → 𝑆 is a dominant morphism. Then 𝜋 : (𝑋,Δ) → 𝑆 is a locally
stable family if and only if (𝑋,Δ + 𝜋∗𝐻) is slc; see [15, Thm. 4.54]. By the inversion of adjunction,
𝜋 : (𝑋,Δ) → 𝑆 has qdlt (resp., klt) fibers if and only if (𝑋,Δ + 𝜋∗𝐻) is qdlt (resp., qdlt with �Δ� = 0).

Suppose 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) is a locally stable family of klt singularities. Then a locally
stable family of Kollár models

𝑓 : (𝑌, 𝐸) → (𝑋,Δ) (3.5)
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is a model for (𝑋,Δ) such that each component of E dominates S, (𝑌, 𝑓 −1
∗ Δ + 𝐸 + 𝑓 ∗𝜋∗𝐻) is qdlt, and

−(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is f -ample. In other words,

𝑓 : (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) → (𝑋,Δ) (3.6)

is a qdlt anticanonical model for (𝑋,Δ).

3.2. Special valuations and complements

Definition 3.7. Let (𝑋,Δ) be a pair. A subset 𝜎 ⊂ Val𝑋 is called a quasi-monomial (simplicial) cone
for (𝑋,Δ) if 𝜎 = QM𝑦 (𝑌, 𝐸), where 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is a model, E contains all f -exceptional
divisors, and 𝑦 ∈ (𝑌, 𝐸) is a generic point of a stratum such that (𝑌, 𝑓 −1

∗ Δ + 𝐸) is simple-toroidal at y.
Note that by taking a log resolution (𝑌 ′, 𝐸 ′) → (𝑌, 𝑓 −1

∗ Δ + 𝐸) that is a local isomorphism over y,
we may assume that (𝑌, 𝐸) is a simple-toroidal model.

If 𝐸1, . . . , 𝐸𝑟 are the components of E that contain y, then there is an isomorphism 𝜎 � R𝑟
≥0. If 𝜏 ⊂ 𝜎

corresponds to a rational simplicial cone in R𝑟
≥0, then 𝜏 ⊂ Val𝑋 is also a quasi-monomial simplicial

cone for (𝑋,Δ). If 𝐾𝑋 + Δ is Q-Cartier, then the log discrepancy function 𝐴𝑋,Δ is linear on 𝜎.

Definition 3.8. Let (𝑋,Δ) be an affine klt pair, and 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) be a simple-toroidal model. A
Q-complement Γ of (𝑋,Δ) is said to be special with respect to 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) if 𝑓 −1

∗ Γ ≥ 𝐺 for
some effective f -ample Q-divisor G on Y whose support does not contain any stratum of (𝑌, 𝐸).

A quasi-monomial simplicial cone 𝜎 ⊂ Val𝑋 for (𝑋,Δ) is said to be special if there is a simple-
toroidal model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ), a special Q-complement Γ of (𝑋,Δ) with respect to 𝑓 : (𝑌, 𝐸) →
(𝑋,Δ), and a generic point y of a stratum of (𝑌, 𝐸), such that 𝜎 ⊂ QM𝑦 (𝑌, 𝐸) ∩ LCP(𝑋,Δ + Γ).

A real valuation 𝑣 ∈ Val𝑋 is said to be special for (𝑋,Δ) if 𝑣 ∈ 𝜎 for some special quasi-monomial
simplicial cone 𝜎 ⊂ Val𝑋 . In particular, v is quasi-monomial.

Lemma 3.9. Let (𝑋,Δ) be an affine klt pair, and 𝜎 ⊂ Val𝑋 be a quasi-monomial cone for (𝑋,Δ). Then
the following are equivalent:

(1) 𝜎 is special.
(2) there exists a model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) of qdlt Fano type such that 𝜎 = QM(𝑌, 𝐸);

Proof. (i) ⇒ (ii). See [33, Thm. 3.14] or [31, Thm. 5.26].
(ii) ⇒ (i). By Lemma 3.2, we may assume (𝑌, 𝑓 −1

∗ Δ + 𝐸) is qdlt and −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is ample.

Choose a general Q-divisor 𝐺 ∈ |−(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) |Q such that (𝑌, 𝑓 −1

∗ Δ + 𝐺 + 𝐸) is qdlt. Note that
𝑓∗(𝐺 + 𝐸) ∼Q −(𝐾𝑋 + Δ), where 𝑓∗𝐸 consists of components of E that are not f -exceptional. Let

𝜇 : (𝑍, 𝐹) → (𝑌, 𝑓 −1
∗ Δ + 𝐺 + 𝐸) (3.7)

be a log resolution such that 𝜇 is a local isomorphism over the simple-toroidal locus of (𝑌, 𝐸), and there
is a 𝜇-ample divisor −𝐴 on Z with 𝐴 ≥ 0 and Supp(𝐴) = Ex(𝜇). Then we have

0 ∼Q 𝜇
∗(𝐾𝑌 + 𝑓 −1

∗ Δ + 𝐺 + 𝐸) = 𝐾𝑍 + 𝜇−1
∗ 𝑓

−1
∗ Δ + (𝜇∗𝐺 − 𝜖 𝐴) + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴. (3.8)

where 𝐹 ′ =
∑
𝑖 (1 − 𝐴𝑌 , 𝑓 −1

∗ Δ+𝐸 (𝐹𝑖)) · 𝐹𝑖 and 𝐹𝑖 ranges over all 𝜇-exceptional divisors. By our choice of
𝜇, we have �𝐹 ′� ≤ 0. Thus �𝐹 ′ + 𝜖 𝐴� ≤ 0, and 𝜇∗𝐺 − 𝜖 𝐴 is ample for 0 < 𝜖 � 1. Now

LCP(𝑍, 𝜇−1
∗ 𝑓

−1
∗ Δ + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴) = QM(𝑍, 𝜇−1
∗ 𝐸) = QM(𝑌, 𝐸). (3.9)

Choose a general 𝐻 ∈ |𝜇∗𝐺 − 𝜖 𝐴|Q, such that (𝑍, 𝜇−1
∗ 𝑓

−1
∗ Δ + 𝐻 + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴) is sub-lc and

LCP(𝑍, 𝜇−1
∗ 𝑓

−1
∗ Δ + 𝐻 + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴) = LCP(𝑍, 𝜇−1
∗ 𝑓

−1
∗ Δ + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴). (3.10)
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Let Γ = 𝑓∗𝜇∗𝐻 + 𝑓∗𝐸 ∼Q 𝑓∗(𝐺 + 𝐸) ∼Q −(𝐾𝑋 + Δ), then 𝜇−1
∗ 𝑓

−1
∗ Γ = 𝐻, and

𝜇∗ 𝑓 ∗(𝐾𝑋 + Δ + Γ) = 𝐾𝑍 + 𝜇−1
∗ 𝑓

−1
∗ Δ + 𝐻 + 𝜇−1

∗ 𝐸 + 𝐹 ′ + 𝜖 𝐴. (3.11)

Hence Γ is a special Q-complement with respect to (𝑍, 𝐹) → (𝑋,Δ), and LCP(𝑋,Δ + Γ) = 𝜎. �

Lemma 3.10. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity. Suppose 𝑣 ∈ Valqm
𝑋,𝑥 , and let 𝔞• = 𝔞•(𝑣) denote the

associated ideal sequence. Then the following are equivalent:
(i) v is special.

(ii) There exists a model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) at x of qdlt Fano type such that 𝑣 ∈ QM(𝑌, 𝐸);
(iii) The associated graded ring

𝑅𝑣 = gr𝑣 (𝒪𝑋 ) =
⊕
𝜆≥0

𝔞𝜆/𝔞>𝜆 (3.12)

is a finitely generated graded 𝜅(𝑥)-algebra, and the pair (𝑋𝑣 = Spec(𝑅𝑣 ),Δ 𝑣 ) is klt, where Δ 𝑣 is
defined by the divisorial part of the initial ideal of Δ .

(iv) There exists 𝛿 > 0 such that if D is an effective Q-Cartier Q-divisor on X with 𝑣(𝐷) < 𝛿, then
(𝑋,Δ + 𝐷) is klt and v is special for (𝑋,Δ + 𝐷).

(v) There exists 𝛿 > 0 such that if D is an effective Q-Cartier Q-divisor on X with 𝑣(𝐷) < 𝛿, then
(𝑋,Δ + 𝐷) is klt and v computes the lc threshold lct(𝑋,Δ + 𝐷;𝔞•).

(vi) For every effective Q-Cartier Q-divisor D on X, there exists a Q-complement Γ of (𝑋,Δ) such that
Γ ≥ 𝜖𝐷 for some 𝜖 > 0, and 𝑣 ∈ LCP(𝑋,Δ + Γ).

Proof. (i), (ii), and (iii) are equivalent by [33, Thm. 4.1].
(i-iii) ⇒ (iv). The valuation v induces a canonical valuation wt𝑣 on 𝑋𝑣 , such that wt𝑣 (𝐷𝑣 ) = 𝑣(𝐷)

for every effective Q-Cartier Q-divisor D on X. By the Izumi type inequality [37, Lem. 3.5],

lct(𝑋𝑣 ,Δ 𝑣 ;𝐷𝑣 ) ≥ 𝑐0
v̂ol(𝑥𝑣 ; 𝑋𝑣 ,Δ 𝑣 )

v̂ol𝑋𝑣 ,Δ𝑣 (wt𝑣 )
·
𝐴𝑋𝑣 ,Δ𝑣 (wt𝑣 )

wt𝑣 (𝐷𝑣 )
, (3.13)

where 𝑥𝑣 ∈ 𝑋𝑣 is the vertex defined by the irrelevant ideal of 𝑅𝑣 , and 𝑐0 is a constant only depending
on dim𝑥 (𝑋) = dim(𝑋𝑣 ). Thus, if

𝑣(𝐷) = wt𝑣 (𝐷𝑣 ) < 𝛿 � 𝑐0
v̂ol(𝑥𝑣 ; 𝑋𝑣 ,Δ 𝑣 )

v̂ol𝑋𝑣 ,Δ𝑣 (wt𝑣 )
𝐴𝑋𝑣 ,Δ𝑣 (wt𝑣 ), (3.14)

then (𝑋𝑣 ,Δ 𝑣 + 𝐷𝑣 ) is klt. Since we know (iii) ⇒ (i), this implies that v is special for (𝑋,Δ + 𝐷).
(iv) ⇒ (v). It suffices to show that if v is special for (𝑋,Δ), then v computes the lc threshold of 𝔞•.

Suppose v is special, then 𝑣 ∈ LCP(𝑋,Δ + Γ) for some Q-complement Γ. Hence we get the conclusion
by [12, Thm. 7.8]4. We also give a proof here: For 𝑤 ∈ Val𝑋,𝑥 , we have

𝐴𝑋,Δ (𝑤) − 𝑤(Γ) = 𝐴𝑋,Δ+Γ (𝑤) ≥ 0 (3.15)

since (𝑋,Δ +Γ) is lc, and 𝑤(𝔞•) ≤ 𝑤(Γ)/𝑣(Γ). Meanwhile, 𝐴𝑋,Δ (𝑣) = 𝑣(Γ) since 𝑣 ∈ LCP(𝑋,Δ +Γ).
Thus

𝐴𝑋,Δ (𝑤)

𝑤(𝔞•)
≥
𝐴𝑋,Δ (𝑤)

𝑤(Γ)
𝑣(Γ) ≥ 𝑣(Γ) = 𝐴𝑋,Δ (𝑣) =

𝐴𝑋,Δ (𝑣)

𝑣(𝔞•)
. (3.16)

Taking infimum over all 𝑤 ∈ Val𝑋,𝑥 , we get lct(𝑋,Δ;𝔞•) = 𝐴𝑋,Δ (𝑣)/𝑣(𝔞•).

4By [12, Thm. 7.8], if a valuation v computes the Arnold multiplicity Arn = 1/lct of an ideal sequence, then v also computes
that of the ideal sequence 𝔞• (𝑣) associated with itself; note that computing Arn is equivalent to computing lct. In our case, v
computes the lct of Γ, which is the same as the lct of {𝒪𝑋 (−�𝜆Γ�) }𝜆≥0. The result there is only stated on regular schemes with
no boundary divisor, but the proof is the same as the one we give below.
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(v) ⇒ (vi). Let 𝜖 < 𝛿/𝑣(𝐷), so (𝑋,Δ + 𝜖𝐷) is klt and v computes the lc threshold lct(𝑋,Δ + 𝜖𝐷;𝔞•)
by (v). Then the conclusion follows from the fact that a quasi-monomial valuation that computes the lc
threshold of an ideal sequence is an lc place of a Q-complement; see [22, Rmk. 4.4]. This fact is also
the special case of Lemma 4.2 when the base S is a point.

(vi) ⇒ (i). The proof is the same as [33, Lem. 3.4]. Let 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) be a simple-toroidal
model, and 𝑦 ∈ (𝑌, 𝐸) be a generic point of a stratum, such that 𝑣 ∈ QM𝑦 (𝑌, 𝐸), and there is an f -ample
divisor −𝐴 with 𝐴 ≥ 0 and Supp(𝐴) = Ex( 𝑓 ). Then −𝐴 is ample since X is affine. Let 𝐻 ∈ |−𝐴|Q be
a general Q-divisor whose support does not contain any stratum of (𝑌, Supp( 𝑓 −1

∗ Δ + 𝐸 + Ex( 𝑓 ))). Let
𝐷 = 𝑓∗𝐻, then there is a Q-complement Γ ≥ 𝜖𝐷 of (𝑋,Δ) such that 𝑣 ∈ LCP(𝑋,Δ + Γ) by (vi). By
construction, 𝑓 −1

∗ Γ ≥ 𝜖𝐻. That is, Γ is a specialQ-complement with respect to 𝑓 : (𝑌, 𝐸) → (𝑋,Δ). �

Remark 3.11. We have 𝐴𝑋𝑣 ,Δ𝑣 (wt𝑣 ) = 𝐴𝑋,Δ (𝑣) and v̂ol𝑋𝑣 ,Δ𝑣 (wt𝑣 ) = v̂ol𝑋,Δ (𝑣) by [22, Lem. 4.10].
Thus we can take

𝛿 = 𝑐0
v̂ol(𝑥𝑣 ; 𝑋𝑣 ,Δ 𝑣 )

v̂ol𝑋,Δ (𝑣)
𝐴𝑋,Δ (𝑣) (3.17)

in (iv) and (v). Moreover, if v is the minimizer of the normalized volume function for 𝑥 ∈ (𝑋,Δ), then
it is proved that one can take 𝛿 = 𝐴𝑋,Δ (𝑣)/(dim 𝑋) in [33, Lem. 3.3] using K-stability of valuations,
hence v is special.

Lemma 3.12. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity. Suppose 𝑣 ∈ Val𝑋,𝑥 is a special valuation for (𝑋,Δ),
and 𝔞• = 𝔞•(𝑣) is the ideal sequence associated to v. Then, up to scaling, v is the unique valuation that
computes the lc threshold lct(𝑋,Δ;𝔞•).

Proof. We know v computes the lc threshold of 𝔞• by Lemma 3.10. Suppose 𝑤 ∈ Val𝑋,𝑥 such that

𝐴𝑋,Δ (𝑣)

𝑣(𝔞•)
= lct(𝑋,Δ;𝔞•) =

𝐴𝑋,Δ (𝑤)

𝑤(𝔞•)
. (3.18)

By rescaling, we may assume that 𝐴𝑋,Δ (𝑣) = 𝐴𝑋,Δ (𝑤) = 1. Hence

inf
𝜆>0

𝑤(𝔞𝜆 (𝑣))
𝜆

= 𝑤(𝔞•) = 𝑣(𝔞•) = 1. (3.19)

Thus 𝑤( 𝑓 ) ≥ 𝑣( 𝑓 ) for every 𝑓 ∈ 𝒪𝑋 . Assume that 𝑤( 𝑓 ) > 𝑣( 𝑓 ) for some f, then 𝑓 ∈ 𝔪𝑥 \ {0}, where
𝔪𝑥 ⊂ 𝒪𝑋 is the maximal ideal of x. Let 𝐷 = div( 𝑓 ). Then, for 𝜖 > 0,

𝐴𝑋,Δ+𝜖 𝐷 (𝑤)

𝑤(𝔞•)
= 1 − 𝜖𝑤( 𝑓 ) < 1 − 𝜖𝑣( 𝑓 ) =

𝐴𝑋,Δ+𝜖 𝐷 (𝑣)

𝑣(𝔞•)
. (3.20)

This contradicts that v computes lct(𝑋,Δ + 𝜖𝐷;𝔞•) for 0 < 𝜖 � 1 by Lemma 3.10. �

Remark 3.13. If 𝑣 = ord𝐸 is divisorial, and 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is the prime blow-up where −𝐸 is
f -ample. Then the lemma follows from that (𝑌, 𝑓 −1

∗ Δ + 𝐸) is plt.

3.3. Models of qdlt Fano type with ample exceptional divisors

Lemma 3.14. Let A be a ring. Suppose M is an A-module, and 𝑀𝑚 ⊂ 𝑀 is a sub-A-module for every
𝑚 = (𝑚1, . . . , 𝑚𝑟 ) ∈ Z

𝑟 , such that 𝑀0 = 𝑀 and 𝑀𝑚′ ⊂ 𝑀𝑚 whenever 𝑚′ ≥ 𝑚, where

𝑚′ = (𝑚′
1, . . . , 𝑚

′
𝑟 ) ≥ (𝑚1, . . . , 𝑚𝑟 ) = 𝑚 (3.21)
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if and only if 𝑚′
𝑖 ≥ 𝑚𝑖 for all 𝑖 = 1, . . . , 𝑟 . Let 𝑅 = 𝐴[𝑡1, . . . , 𝑡𝑟 ], and

𝑁 =
⊕
𝑚∈Z𝑟

𝑀𝑚𝑡
−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 ⊂ 𝑀 [𝑡±1
1 , . . . , 𝑡

±1
𝑟 ] . (3.22)

Assume N is a flat R-module. Then for each 𝜉 = (𝜉1, . . . , 𝜉𝑟 ) ∈ (R>0)
𝑟 and 𝜆 ∈ R, there is a canonical

isomorphism ∑
〈𝜉 ,𝑚〉≥𝜆 𝑀𝑚∑
〈𝜉 ,𝑚〉>𝜆 𝑀𝑚

�
⊕

〈𝜉 ,𝑚〉=𝜆

𝑀𝑚/𝑀>𝑚, (3.23)

where 〈𝜉, 𝑚〉 =
∑𝑟
𝑖=1 𝜉𝑖𝑚𝑖 , and 𝑀>𝑚 =

∑
𝑚′>𝑚 𝑀𝑚′ .

Proof. Let 𝐼𝑎 = 𝑅𝑡𝑎1
1 · · · 𝑡𝑎𝑟𝑟 ⊂ 𝑅 for each 𝑎 = (𝑎1, . . . , 𝑎𝑟 ) ∈ N

𝑟 . Then

𝐼𝑎 ⊗𝑅 𝑁 � 𝐼𝑎𝑁 =
⊕
𝑚∈Z𝑟

𝑀𝑎+𝑚𝑡
−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 ⊂ 𝑁. (3.24)

Note that 𝐼𝑎 ∩ 𝐼𝑏 = 𝐼max(𝑎,𝑏) , where max(𝑎, 𝑏) = (max(𝑎1, 𝑏1), . . . ,max(𝑎𝑟 , 𝑏𝑟 )). Since N is flat over
R, we have 𝐼𝑎𝑁 ∩ 𝐼𝑏𝑁 = 𝐼max(𝑎,𝑏)𝑁 , that is,

𝑀𝑘 ∩ 𝑀ℓ = 𝑀max(𝑘,ℓ) (3.25)

for all 𝑘, ℓ ∈ Z𝑟 . Since 𝑀0 = 𝑀 , we have 𝑀𝑚 = 𝑀max(𝑚,0) for all 𝑚 ∈ Z𝑟 . Hence it suffices to prove∑
〈𝜉 ,𝑎〉≥𝜆 𝑀𝑎∑
〈𝜉 ,𝑎〉>𝜆 𝑀𝑎

�
⊕

〈𝜉 ,𝑎〉=𝜆

𝑀𝑎/𝑀>𝑎, (3.26)

where instead of 𝑚 ∈ Z𝑟 , the summations only range over 𝑎 ∈ N𝑟 .
Note that there is a canonical isomorphism∑

〈𝜉 ,𝑎〉≥𝜆 𝐼𝑎∑
〈𝜉 ,𝑎〉>𝜆 𝐼𝑎

�
⊕

〈𝜉 ,𝑎〉=𝜆

𝐴𝑡𝑎1
1 · · · 𝑡𝑎𝑟𝑟 �

⊕
〈𝜉 ,𝑎〉=𝜆

𝐼𝑎/𝐼>𝑎 . (3.27)

Since N is flat over R, we get ∑
〈𝜉 ,𝑎〉≥𝜆 𝐼𝑎𝑁∑
〈𝜉 ,𝑎〉>𝜆 𝐼𝑎𝑁

�
⊕

〈𝜉 ,𝑎〉=𝜆

𝐼𝑎𝑁/𝐼>𝑎𝑁. (3.28)

Taking the degree 0 component, we get the desired conclusion. �

Lemma 3.15. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity, and let 𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a model of

qdlt Fano type at x. Then there exists an open convex cone𝑊 ⊂ R𝑟>0 satisfying the following condition:
For every 𝑎 = (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝑊 , there exists a birational contraction 𝜙 : 𝑌 � 𝑌 ′ over X that is a local
isomorphism at the generic point of every stratum of (𝑌, 𝐸) such that 𝑓 ′ : (𝑌 ′, 𝐸 ′ = 𝜙∗𝐸) → (𝑋,Δ) is
a model of qdlt Fano type, and −

∑𝑟
𝑖=1 𝑎𝑖𝐸

′
𝑖 is 𝑓 ′-ample.

Proof. By Lemma 3.2, we may assume 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is the Kollár model, that is, (𝑌, 𝑓 −1
∗ Δ + 𝐸)

is qdlt and −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is ample. For each 𝑚 = (𝑚1, . . . , 𝑚𝑟 ) ∈ Z

𝑟 , let

𝐼𝑚 = 𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚𝑖𝐸𝑖

)
⊂ 𝒪𝑋 . (3.29)
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Let 𝑅𝑚 = 𝐼𝑚/𝐼>𝑚 and 𝑅 =
⊕

𝑚∈N𝑟 𝑅𝑚 be the associated graded ring. By [33, §4.2], R is a finitely
generated integral domain over 𝑅0 = 𝜅(𝑥), and Spec(𝑅) is the equivariant degeneration of 𝑥 ∈ (𝑋,Δ)
induced by the Kollár model (𝑌, 𝐸). Let𝑊 ⊂ R𝑟

≥0 be the closed convex cone generated by all 𝑚 ∈ N𝑟

such that 𝑅𝑚 ≠ 0, and let 𝑊 = int(𝑊) be its interior. Note that for all 𝑎 ∈ 𝑊 ∩ Q𝑟 , we have 𝑅𝑘𝑎 ≠ 0
for all sufficiently divisible integers k since R is finitely generated and integral. We claim dim(𝑊) = 𝑟 ,
hence W is a nonempty open subset in R𝑟>0.

For 𝜉 ∈ R𝑟
≥0, let 𝑣 𝜉 ∈ QM(𝑌, 𝐸) ⊂ Val𝑋,𝑥 be the corresponding quasi-monomial valuation. Then

its ideal sequence is

𝔞𝜆 (𝑣 𝜉 ) =
∑

〈𝜉 ,𝑚〉≥𝜆

𝐼𝑚 ⊂ 𝒪𝑋 (3.30)

by [33, Cor. 4.10]. Since the extended Rees algebra
⊕

𝑚∈Z𝑟 𝐼𝑚𝑡
−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 is flat over k[𝑡1, . . . , 𝑡𝑟 ] by
[33, §4.2], where k is the base field, we have

𝔞𝜆 (𝑣 𝜉 )/𝔞>𝜆 (𝑣 𝜉 ) �
⊕

〈𝜉 ,𝑚〉=𝜆

𝑅𝑚 (3.31)

by Lemma 3.14. If we choose 𝜉 such that 𝜉1, . . . , 𝜉𝑟 are linearly independent overQ, then rat.rank(𝑣 𝜉 ) =
𝑟; on the other hand, the value group Γ𝑣𝜉 is generated by all 〈𝜉, 𝑚〉 for 𝑅𝑚 ≠ 0. Hence we conclude that
the linear subspace spanned by all such m has dimension r.

Suppose 𝑎 = (𝑎1, . . . , 𝑎𝑟 ) ∈ 𝑊 . Since Y is of Fano type over X, we can take the relative ample model
𝜙 : 𝑌 � 𝑌 ′ for −

∑𝑟
𝑖=1 𝑎𝑖𝐸𝑖 after a small Q-factorial modification. Then we need to show 𝜙 satisfies all

the desired conditions. For some 𝑎′ ∈ 𝑊 ∩ Q𝑟 near a, the divisor −
∑𝑟
𝑖=1 𝑎

′
𝑖𝐸𝑖 yields the same ample

model. Hence we may assume that 𝑎 ∈ 𝑊 ∩ Q𝑟 .
Note that

−(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) ∼𝑋,Q −

𝑟∑
𝑖=1
𝐴𝑋,Δ (𝐸𝑖) · 𝐸𝑖 (3.32)

is ample. Then we can choose a general Q-divisor 𝐹 ∼Q −
∑𝑟
𝑖=1 𝐴𝑋,Δ (𝐸𝑖) · 𝐸𝑖 that does not contain

any stratum of (𝑌, 𝐸). Since W is open, 𝑎′ = (𝑎𝑖 − 𝛿𝐴𝑋,Δ (𝐸𝑖))𝑖 ∈ 𝑊 for some rational 0 < 𝛿 � 1.
Then 𝑅𝑘𝑎′ ≠ 0 for all sufficiently divisible k since R is an integral domain. Choose 𝑔 ∈ 𝐼𝑘𝑎′ such that its
image in 𝑅𝑘𝑎′ is nonzero. Let Γ = div𝑋 (𝑔), then

0 ∼ 𝑓 ∗Γ = 𝑓 −1
∗ Γ +

𝑟∑
𝑖=1
𝑘𝑎′𝑖𝐸𝑖 . (3.33)

For 𝜉 ∈ R𝑟
≥0, we have 𝑣 𝜉 (𝑔) = 〈𝜉, 𝑘𝑎′〉 since the image of g in 𝑅𝑘𝑎′ is nonzero; but we also have

𝑣 𝜉 (𝑔) = 𝑣 𝜉 ( 𝑓
−1
∗ Γ) +

𝑟∑
𝑖=1
𝑘𝑎′𝑖𝑣 𝜉 (𝐸𝑖) = 𝑣 𝜉 ( 𝑓

−1
∗ Γ) +

𝑟∑
𝑖=1
𝑘𝑎′𝑖𝜉𝑖 . (3.34)

Thus 𝑣 𝜉 ( 𝑓 −1
∗ Γ) = 0. It follows that 𝑓 −1

∗ Γ does not contain any stratum of (𝑌, 𝐸). Let𝐺 = 1
𝑘 𝑓

−1Γ. Then

𝐺 + 𝛿𝐹 ∼𝑋,Q −

𝑟∑
𝑖=1
𝑎𝑖𝐸𝑖 , (3.35)
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and Supp(𝐺 + 𝛿𝐹) does not contain any stratum of (𝑌, 𝐸). By [33, Lem. 2.3], for some 0 < 𝜖 � 1,
there exists an effective Q-divisor H on Y such that (𝑌, 𝑓 −1

∗ Δ + 𝐸 + 𝜖 (𝐺 + 𝛿𝐹) + 𝐻) is qdlt,

� 𝑓 −1
∗ Δ + 𝐸 + 𝜖 (𝐺 + 𝛿𝐹) + 𝐻� = 𝐸 (3.36)

and −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸 + 𝜖 (𝐺 + 𝛿𝐹) + 𝐻) is ample. Add a general ample effective Q-divisor, we may

instead assume that

𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸 + 𝜖 (𝐺 + 𝛿𝐹) + 𝐻 ∼𝑋,Q 0. (3.37)

In other words, let Δ ′ = Δ + 𝑓∗𝐻, then

𝐾𝑌 + 𝑓 −1
∗ Δ ′ + 𝐸 = 𝐾𝑌 + 𝑓 −1

∗ Δ + 𝐸 + 𝐻 ∼𝑋,Q −𝜖 (𝐺 + 𝛿𝐹) ∼𝑋,Q

𝑟∑
𝑖=1
𝜖𝑎𝑖𝐸𝑖 . (3.38)

So (𝑋,Δ ′) is klt since it is crepant to (𝑌, 𝑓 −1
∗ Δ ′ +

∑𝑟
𝑖=1 (1 − 𝜖𝑎𝑖)𝐸𝑖). Moreover,

−(𝐾𝑌 + 𝑓 −1
∗ Δ ′ + 𝐸 + 𝜖𝐺) ∼𝑋,Q 𝜖𝛿𝐹 (3.39)

is ample, and (𝑌, 𝑓 −1
∗ Δ ′ + 𝐸 + 𝜖𝐺) is qdlt. Thus 𝑓 : (𝑌, 𝐸) → (𝑋,Δ ′) is also a model of qdlt Fano type.

Then the ample model (𝑌 ′, 𝐸 ′ = 𝜙∗𝐸) for −
∑𝑟
𝑖=1 𝜖𝑎𝑖𝐸𝑖 is the corresponding Kollár model for (𝑋,Δ ′)

by [33, Prop. 3.9]. Hence (𝑌 ′, 𝐸 ′) is also a model of qdlt Fano type for (𝑋,Δ). �

Remark 3.16. If we choose 𝑎 ∈ 𝑊 such that 𝑎1, . . . , 𝑎𝑟 are linearly independent over Q, then we get a
model 𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) of qdlt Fano type such that each 𝐸𝑖 is Q-Cartier, and there is an ample
Q-divisor −𝐴 on 𝑌 ′ with 𝐴 ≥ 0 and Supp(𝐴) = Ex( 𝑓 ′).

4. Families of Kollár models

4.1. Degeneration of valuations via families of models

In this subsection, let S be a regular local scheme of dimension d, with the closed point 𝑠 ∈ 𝑆 and the
generic point 𝜂 ∈ 𝑆. Let 𝐻 =

∑𝑑
𝑗=1 𝐻 𝑗 be an snc divisor on S defined by a regular system of parameters.

The subscript (−)𝑡 will denote the fiber at a point 𝑡 ∈ 𝑆 for schemes, divisors, and sheaves of modules
over S.

Lemma 4.1. Let 𝜋 : (𝑋,Δ) → 𝑆 be a locally stable family of pairs. Then there exists 𝜖 > 0 such that
if 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is a family of models where E is Q-Cartier and (𝑌, 𝑓 −1

∗ Δ + (1 − 𝜖)𝐸) → 𝑆 is
locally stable, then (𝑌, 𝑓 −1

∗ Δ + 𝐸) → 𝑆 is also locally stable.

Proof. We will apply the ACC of lc thresholds in [10, Thm. 1.1]. Let Coeff (Δ) ⊂ R denote the set of
coefficients of Δ . Let LCT ⊂ R≥0 be the set of all numbers lct(𝑊, 𝐷𝑊 ;𝑀) where (𝑊, 𝐷𝑊 ) is an slc
pair with dim(𝑊) = dim(𝑋), with coefficients of 𝐷𝑊 in Coeff (Δ) ∪ {1}, and M is an effective nonzero
Q-Cartier Z-divisor on W. Then LCT satisfies the ACC by [10, Thm. 1.1]; note that we may allow slc
pairs (𝑊, 𝐷𝑊 ) by [14, Thm. 5.38]. Since LCT ⊂ [0, 1] and 1 ∈ LCT, there exists 𝜖 > 0 such that

LCT ∩ [1 − 𝜖, 1] = {1} (4.1)

by the ACC. In our case, (𝑌, 𝑓 −1
∗ Δ + (1 − 𝜖)𝐸 + 𝑓 ∗𝜋∗𝐻) is slc by [15, Thm. 4.54], that is,

1 − 𝜖 ≤ lct(𝑌, 𝑓 −1
∗ Δ + 𝑓 ∗𝜋∗𝐻; 𝐸) ∈ LCT. (4.2)
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Hence lct(𝑌, 𝑓 −1
∗ Δ + 𝑓 ∗𝜋∗𝐻; 𝐸) = 1, that is, (𝑌, 𝑓 −1

∗ Δ + 𝐸 + 𝑓 ∗𝜋∗𝐻) is slc. So (𝑌, 𝑓 −1
∗ Δ + 𝐸) → 𝑆 is a

locally stable family by [15, Thm. 4.54]. �

Lemma 4.2. Let 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable family of klt singularities, and 𝐼• be
an ideal sequence on X cosupported on 𝑥(𝑆) such that

lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•) < ∞ (4.3)

Suppose 𝑣0 ∈ Valqm
𝑋𝜂 ,𝑥𝜂

computes the lc threshold of 𝐼𝜂,•, and 𝜎 ⊂ Val𝑋𝜂 ,𝑥𝜂 is a quasi-monomial
simplicial cone for (𝑋𝜂 ,Δ 𝜂) such that 𝑣0 ∈ 𝜎. Then there exists a family of models at x over S

𝑓 : (𝑌, 𝐸 = 𝐸1 + · · · + 𝐸𝑟 ) → (𝑋,Δ) (4.4)

such that the following hold:

(1) 𝐸1, . . . , 𝐸𝑟 are all the exceptional divisors of f, and the valuations ord𝐸1 , . . . , ord𝐸𝑟 are centered at
𝑥𝜂 and span a simplicial cone 𝜏 ⊂ 𝜎 such that 𝑣0 ∈ 𝜏;

(2) 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1
∗ Δ + 𝐸) → 𝑆 is a locally stable family;

(3) there exists a relativeQ-CartierQ-divisor Γ on 𝑋/𝑆 such that 𝜋 : (𝑋,Δ +Γ) → 𝑆 is a locally stable
family, 𝐾𝑋 + Δ + Γ ∼𝑆,Q 0, and 𝜏 ⊂ LCP(𝑋𝜂 ,Δ 𝜂 + Γ𝜂).

(4) Y is Q-factorial, and −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is f-semi-ample.

Proof. By rescaling the index of 𝐼•, we may assume that lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•) = 1. The
assumption that 𝑣0 computes the lc threshold means

lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•) =
𝐴𝑋𝜂 ,Δ𝜂 (𝑣0)

𝑣0 (𝐼𝜂,•)
. (4.5)

By rescaling 𝑣0, we may assume 𝐴𝑋𝜂 ,Δ𝜂 (𝑣0) = 1. Hence 𝑣0(𝐼𝜂,•) = 1. Since 𝑋𝜂 ⊂ 𝑋 is the generic
fiber, we identify Val𝑋𝜂 ,𝑥𝜂 = Val𝑋,𝑥 , so that 𝐴𝑋,Δ (𝑣0) = 𝑣0 (𝐼•) = 1. By inversion of adjunction,
(𝑋,Δ + 𝜋∗𝐻) is dlt, and

lct(𝑋,Δ + 𝜋∗𝐻; 𝐼•) = lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = 1. (4.6)

It follows that lct(𝑋,Δ; 𝐼•) = 1, and 𝑣0 computes the lc threshold of 𝐼• on (𝑋,Δ).
Fix an isomorphism 𝜎 � R𝑟

≥0. Note that the function

𝐴𝑋,Δ+𝐼• (𝑣) � 𝐴𝑋,Δ (𝑣) − 𝑣(𝐼•) = 𝐴𝑋,Δ (𝑣) − inf
𝜆>0

𝑣(𝐼𝜆)

𝜆
(4.7)

is non-negative, homogeneous, and convex on 𝜎 � (R≥0)
𝑟 . Choose a norm ‖ · ‖ on R𝑟 , and write d(·, ·)

for the induced metric on 𝜎. Then 𝐴𝑋,Δ+𝐼• is a Lipschitz function on 𝜎.5 Hence there exists 𝐶 > 0 such
that

𝐴𝑋,Δ+𝐼• (𝑣) ≤ 𝐴𝑋,Δ+𝐼• (𝑣0) + 𝐶 · d(𝑣0, 𝑣) = 𝐶 · d(𝑣0, 𝑣). (4.8)

Fix 0 < 𝜖 < 1 as in Lemma 4.1 for 𝜋 : (𝑋,Δ) → 𝑆. By Diophantine approximation (see [22, Lem. 2.7]
or [31, Lem. 4.47]), there exist 𝑣1, . . . , 𝑣𝑟 ∈ 𝜎 and 𝑞1, . . . , 𝑞𝑟 ∈ Z>0 such that:

(1) 𝑣0 is in the convex cone 𝜏 spanned by 𝑣1, . . . , 𝑣𝑟 ;
(2) 𝑞𝑖𝑣𝑖 = 𝑐𝑖ord𝐸𝑖 , where 𝐸𝑖 is a prime divisor over X and 𝑐𝑖 ∈ Z>0, for all 𝑖 = 1, . . . , 𝑟;
(3) d(𝑣0, 𝑣𝑖) <

𝜖
2𝐶𝑞𝑖 for all 𝑖 = 1, . . . , 𝑟 .

5Any finite convex function on a convex subset of R𝑟 is locally Lipschitz. Here 𝐴𝑋,Δ+𝐼• is homogeneous (of degree 1) and 𝜎
is a cone over a compact set, hence 𝐴𝑋,Δ+𝐼• is globally Lipschitz on 𝜎.
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Thus

0 ≤ 𝐴𝑋,Δ+𝐼• (𝐸𝑖) =
𝑞𝑖
𝑐𝑖
𝐴𝑋,Δ+𝐼• (𝑣𝑖) <

𝜖

2
(4.9)

for all 𝑖 = 1, . . . , 𝑟 .
Choose 𝜖 ′ > 0 such that 2𝜖 ′ord𝐸𝑖 (𝐼•) < 𝜖 for all 𝑖 = 1, . . . , 𝑟 . Since

sup
𝜆>0
𝜆 · lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,𝜆) = lim

𝜆→∞
𝜆 · lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,𝜆) = lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = 1, (4.10)

we have

(1 − 𝜖 ′)/𝜆 < lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,𝜆) ≤ 1/𝜆 (4.11)

for 𝜆 � 0. Write 𝑐 = (1 − 𝜖 ′)/𝜆, then lct(𝑋,Δ; 𝐼𝑐𝜆) ≥ lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑐𝑠,𝜆) > 1, and

𝐴𝑋,Δ+𝐼 𝑐𝜆 (𝐸𝑖) ≤ 𝐴𝑋,Δ+𝐼• (𝐸𝑖) + (ord𝐸𝑖 (𝐼•) − 𝑐ord𝐸𝑖 (𝐼𝜆))

<
𝜖

2
+ (1 − 𝜖 ′)

(
ord𝐸𝑖 (𝐼•) −

1
𝜆

ord𝐸𝑖 (𝐼𝜆)

)
+ 𝜖 ′ord𝐸𝑖 (𝐼•)

<
𝜖

2
+ 0 +

𝜖

2
= 𝜖

(4.12)

where we used the general fact that 𝑣(𝐼•) ≤ 𝑣(𝐼𝜆)/𝜆 for every valuation v.
Write 𝑎𝑖 � 𝐴𝑋,Δ+𝐼 𝑐𝜆 (𝐸𝑖) < 𝜖 < 1. By Lemma 2.4, there exists a model

𝑓 : (𝑌, 𝐸) → (𝑋,Δ) (4.13)

such that 𝐸 = 𝐸1 + · · · + 𝐸𝑟 is the sum of all exceptional divisors of f, and Y is Q-factorial. Since

lct(𝑋,Δ + 𝜋∗𝐻; 𝐼𝑐𝜆) = lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑐𝑠,𝜆) > 1, (4.14)

(𝑌, 𝑓 −1
∗ Δ +

∑𝑟
𝑖=1(1 − 𝑎𝑖)𝐸𝑖 + 𝑓

∗𝜋∗𝐻) is lc, that is, 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1
∗ Δ +

∑𝑟
𝑖=1(1 − 𝑎𝑖)𝐸𝑖) → 𝑆 is locally

stable. Thus 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1
∗ Δ + 𝐸) → 𝑆 is locally stable since 𝑎𝑖 < 𝜖 for all i, by Lemma 4.1.

Since Y is of Fano type over X, we can run a −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸)-MMP over X and get a Q-factorial

good minimal model

𝑌 𝑌 ′

𝑋

𝜙

𝑓 𝑓 ′
(4.15)

where −(𝐾𝑌 ′ + 𝑓 ′−1
∗ Δ + 𝜙∗𝐸) is 𝑓 ′-semi-ample. As above, (𝑌 ′, 𝑓 ′−1

∗ Δ +
∑𝑟
𝑖=1(1− 𝑎𝑖)𝜙∗𝐸𝑖 + 𝑓 ′∗𝜋∗𝐻) is

also lc, hence 𝜋 ◦ 𝑓 ′ : (𝑌 ′, 𝑓 ′−1
∗ Δ + 𝜙∗𝐸) → 𝑆 is a locally stable family by Lemma 4.1. Applying [16,

Lem. 3.38] in each step of the −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸)-MMP, we have

𝐴𝑌 , 𝑓 −1
∗ Δ+𝐸+ 𝑓 ∗ 𝜋∗𝐻 (𝐹) ≥ 𝐴𝑌 ′, 𝑓 ′−1

∗ Δ+𝜙∗𝐸+ 𝑓 ′∗ 𝜋∗𝐻 (𝐹) (4.16)

for every prime divisor F, and the equality holds if and only if 𝜙 is a local isomorphism at center𝑌 (𝐹).
Thus 𝜙 is a local isomorphism at every lc center of (𝑌, 𝑓 −1

∗ Δ + 𝐸 + 𝑓 ∗𝜋∗𝐻). In particular, 𝜙 does not
contract any component 𝐸𝑖 of E. Thus 𝑓 ′ : (𝑌 ′, 𝐸 ′ = 𝜙∗𝐸) → (𝑋,Δ) satisfies (1), (2), and (4).

It remains to show (3). Since −(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) is f -semi-ample and X is affine, we can choose a

general Q-divisor

𝐺 ∈ |−(𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐸) |Q (4.17)

https://doi.org/10.1017/fms.2025.10111 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10111


Forum of Mathematics, Sigma 25

such that (𝑌, 𝑓 −1
∗ Δ + 𝐺 + 𝐸 + 𝑓 ∗𝜋∗𝐻) is lc. Let Γ = 𝑓∗𝐺 ∼Q −(𝐾𝑋 + Δ), then

𝑓 ∗(𝐾𝑋 + Δ + Γ + 𝜋∗𝐻) = 𝐾𝑌 + 𝑓 −1
∗ Δ + 𝐺 + 𝐸 + 𝑓 ∗𝜋∗𝐻, (4.18)

so 𝜋 : (𝑋,Δ + Γ) → 𝑆 is locally stable, and each 𝐸𝑖 is an lc place of (𝑋,Δ + Γ). Since the function

𝑣 ↦→ 𝐴𝑋,Δ+Γ (𝑣) = 𝐴𝑋,Δ (𝑣) − 𝑣(Γ) (4.19)

is non-negative, homogeneous, and convex on 𝜏, while vanishing at ord𝐸𝑖 , we get 𝐴𝑋,Δ+Γ (𝑣) = 0 for all
𝑣 ∈ 𝜏, that is, 𝜏 ⊂ LCP(𝑋,Δ + Γ). �

Remark 4.3. Assume 𝑣0 is a special valuation, and 𝜎 is a special quasi-monomial cone. Then 𝜏 is also
special, so 𝑓𝜂 : (𝑌𝜂 , 𝐸𝜂) → (𝑋𝜂 ,Δ 𝜂) is a model of qdlt Fano type by Lemma 3.4, with QM(𝑌𝜂 , 𝐸𝜂) = 𝜏.
In particular, 𝑣0 ∈ QM(𝑌𝜂 , 𝐸𝜂). Since every lc center of (𝑌, 𝑓 −1

∗ Δ + 𝐸) lies over 𝜂 by [15, Cor. 4.56],
(𝑌, 𝑓 −1

∗ Δ + 𝐸) is qdlt.
For 𝑎 = (𝑎1, . . . , 𝑎𝑟 ) ∈ (R≥0)

𝑟 , let 𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) be the relative ample model for
−

∑𝑟
𝑖=1 𝑎𝑖𝐸𝑖 , where 𝐸 ′ is the strict transform of E. By Lemma 3.15, for suitable choices of a, the

generic fiber (𝑌 ′
𝜂 , 𝐸

′
𝜂) is also a model of qdlt Fano type for (𝑋𝜂 ,Δ 𝜂). In particular, we may assume

that 𝑎1, . . . , 𝑎𝑟 are linearly independent over Q, then each 𝐸 ′
𝑖 is Q-Cartier, and there exists an 𝑓 ′-ample

Q-divisor −𝐴′ on 𝑌 ′ such that 𝐴′ ≥ 0 and Supp(𝐴′) = Ex( 𝑓 ′) = 𝐸 ′. Note that 𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ)
satisfies (1), (2), and (3).
4.4. Let 𝜋 : (𝑋,Δ) → 𝑆 be a family of pairs, and 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) be a family of models such that
𝐸 =

∑𝑘
𝑖=1 𝐸𝑖 is the sum of all f -exceptional divisors. Let Z be an irreducible component of

⋂
𝑖∈𝐼 𝐸𝑖 for

some 𝐼 ⊂ {1, . . . , 𝑘}. Let 𝜁 be the generic point of Z, and z be a generic point of 𝑍𝑠 = 𝑍 ∩ 𝑌𝑠 . Assume
that 𝜋 ◦ 𝑓 : (𝑌, 𝑓 −1

∗ Δ + 𝐸) → 𝑆 is locally stable in an open neighborhood of z, and 𝐸𝑖 is Q-Cartier at z
for all 𝑖 ∈ 𝐼.

Then (𝑌, 𝑓 −1
∗ Δ + 𝐸 + 𝑓 ∗𝜋∗𝐻) is lc, and Z is an lc center of (𝑌, 𝑓 −1

∗ Δ + 𝐸), in an open neighborhood
of z. Thus Z dominates S (see [15, Cor. 4.56]), that is, the generic point 𝜁 of Z lies over the generic point
𝜂 of S. Since 𝐸𝑖,𝜂 is Q-Cartier at 𝜁 for all 𝑖 ∈ 𝐼, the pair (𝑌𝜂 , 𝐸𝜂) is simple-toroidal at 𝜁 , and the other
components 𝐸𝑖′,𝜂 does not pass through 𝜂 for 𝑖′ ∉ 𝐼, by Lemma 2.2. Now

𝑧 ∈
⋂
𝑖∈𝐼

𝐸𝑖 ∩
𝑑⋂
𝑗=1
𝑓 ∗𝜋∗𝐻 𝑗 (4.20)

where each 𝐸𝑖 is Q-Cartier, and each 𝑓 ∗𝜋∗𝐻 𝑗 is Cartier. Since z has codimension at most |𝐼 | + 𝑑 in Y,
(𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) is simple-toroidal at z by Lemma 2.2, hence (𝑌𝑠 , 𝐸𝑠) is simple-toroidal at z as well. By
Lemma 2.9, we have a commutative diagram

QM𝜁 (𝑌𝜂 , 𝐸𝜂) QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) QM𝑧 (𝑌𝑠 , 𝐸𝑠)

R𝐼
≥0 R𝐼

≥0 × R
𝑑
≥0 R𝐼

≥0

𝑖

�

𝑝

� �

𝛼 ↦→(𝛼,0) (𝛼,𝛽) ↦→𝛼

(4.21)

giving a canonical isomorphism

QM𝜁 (𝑌𝜂 , 𝐸𝜂) � QM𝑧 (𝑌𝑠 , 𝐸𝑠) (4.22)

which maps 𝐸𝑖,𝜂 to the unique irreducible component 𝐸 ′
𝑖,𝑠 of 𝐸𝑖,𝑠 containing z.

Definition 4.5. Keep the notations in 4.4. For a quasi-monomial valuation 𝑣𝛼𝜂 ∈ QM𝜁 (𝑌𝜂 , 𝐸𝜂) ⊂ Valqm
𝑋𝜂

,
we say its image 𝑣𝛼𝑠 ∈ QM𝑧 (𝑌𝑠 , 𝐸𝑠) ⊂ Valqm

𝑋𝑠
is a quasi-monomial degeneration of 𝑣𝛼𝜂 , or 𝑣𝛼𝜂 degenerates

to 𝑣𝛼𝑠 , via the family of models 𝑓 : (𝑌, 𝐸) → (𝑋,Δ).
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Lemma 4.6. Let 𝜋 : (𝑋,Δ) → 𝑆 be a family of pairs. Suppose 𝑣𝜂 ∈ Valqm
𝑋𝜂

degenerates to 𝑣𝑠 ∈ Valqm
𝑋𝑠

via a family of models 𝑓 : (𝑌, 𝐸 =
∑𝑘
𝑖=1 𝐸𝑖) → (𝑋,Δ) over S. Then the following hold:

(1) 𝑣𝜂 (𝔞𝜂) ≤ 𝑣𝑠 (𝔞𝑠) for every coherent ideal 𝔞 ⊂ 𝒪𝑋 ;
(2) if 𝐾𝑋 + Δ is Q-Cartier, then 𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠);
(3) if Γ is a relative Q-Cartier Q-divisor on 𝑋/𝑆 such that 𝜋 : (𝑋,Δ + Γ) → 𝑆 is locally stable and

𝑣𝜂 ∈ LCP(𝑋𝜂 ,Δ 𝜂 + Γ𝜂), then 𝑣𝑠 ∈ LCP(𝑋𝑠 ,Δ𝑠 + Γ𝑠) and 𝑣𝜂 (Γ𝜂) = 𝑣𝑠 (Γ𝑠).

Proof. Suppose Z is an irreducible component
⋂
𝑖∈𝐼 𝐸𝑖 as in Definition 4.4, such that 𝑣𝜂 maps to 𝑣𝑠 in

QM𝜁 (𝑌𝜂 , 𝐸𝜂) � R
𝑟
≥0 � QM𝑧 (𝑌𝑠 , 𝐸𝑠), (4.23)

where 𝜁 is the generic point of 𝑍𝜂 , and z is a generic point of 𝑍𝑠 , and they are given by 𝛼 = (𝛼𝑖) ∈ R
𝐼
≥0

in coordinates. Then (1) follows from Lemma 2.9.
(2). Write

𝑓 ∗(𝐾𝑋 + Δ + 𝜋∗𝐻) = 𝐾𝑌 + 𝑓 −1
∗ Δ +

𝑘∑
𝑖=1

(1 − 𝐴𝑋,Δ (𝐸𝑖)) · 𝐸𝑖 + 𝑓
∗𝜋∗𝐻. (4.24)

Restricting to 𝑓𝜂 : (𝑌𝜂 ,Δ 𝜂) → (𝑋𝜂 ,Δ 𝜂) and 𝑓𝑠 : (𝑌𝑠 ,Δ𝑠) → (𝑋𝑠 ,Δ𝑠), respectively, by adjunction we
get

𝐴𝑋𝜂 ,Δ𝜂 (𝐸𝑖,𝜂) = 𝐴𝑋,Δ (𝐸𝑖) = 𝐴𝑋𝑠 ,Δ𝑠 (𝐸
′
𝑖,𝑠) (4.25)

for every component 𝐸 ′
𝑖,𝑠 of 𝐸𝑖,𝑠 . Hence 𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) =

∑
𝑖∈𝐼 𝛼𝑖𝐴𝑋,Δ (𝐸𝑖) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠).

(3). By (1) and (2) we have

𝐴𝑋𝑠 ,Δ𝑠+Γ𝑠 (𝑣𝑠) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠) − 𝑣𝑠 (Γ𝑠) ≤ 𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) − 𝑣𝜂 (Γ𝜂) = 𝐴𝑋𝜂 ,Δ𝜂+Γ𝜂 (𝑣𝜂) = 0, (4.26)

while 𝐴𝑋𝑠 ,Δ𝑠+Γ𝑠 (𝑣𝑠) ≥ 0 since (𝑋𝑠 ,Δ𝑠 + Γ𝑠) is slc. Thus all the inequalities above must be equalities,
that is, 𝐴𝑋𝑠 ,Δ𝑠+Γ𝑠 (𝑣𝑠) = 0 and 𝑣𝑠 (Γ𝑠) = 𝑣𝜂 (Γ𝜂). �

Lemma 4.7. Let 𝜋(𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable family of klt singularities, and 𝐼• be
an ideal sequence on X cosupported on 𝑥(𝑆) such that

lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•) < ∞. (4.27)

Suppose 𝑣𝑠 ∈ Valqm
𝑋𝑠 ,𝑥𝑠

and 𝑣𝜂 ∈ Valqm
𝑋𝜂 ,𝑥𝜂

are special valuations with

𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠) = 𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) = 1, (4.28)

satisfying the following: for every relative effectiveQ-Cartier divisor D on 𝑋/𝑆 with 𝑣𝑠 (𝐷𝑠) = 𝑣𝜂 (𝐷𝜂),
there exists 𝜖 > 0 such that 𝜋 : (𝑋,Δ + 𝜖𝐷) → 𝑆 has klt fibers, and 𝑣𝑠 and 𝑣𝜂 are, up to scaling, unique
quasi-monomial valuations computing lc thresholds lct(𝑋𝑠 ,Δ𝑠+𝜖𝐷𝑠; 𝐼𝑠,•) and lct(𝑋𝜂 ,Δ 𝜂 +𝜖𝐷𝜂 ; 𝐼𝜂,•),
respectively. Then there exists a locally stable family of Kollár models at x

𝑓 : (𝑌, 𝐸) → (𝑋,Δ) (4.29)

such that 𝑣𝑠 ∈ QM(𝑌 𝑠 , 𝐸 𝑠), 𝑣𝜂 ∈ QM(𝑌 𝜂 , 𝐸 𝜂), and 𝑣𝜂 degenerates to 𝑣𝑠 .

Proof. First note that for 𝐷 = 0 we have

𝑣𝑠 (𝐼𝑠,•) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠) · lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•) = 𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) · lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•) = 𝑣𝜂 (𝐼𝜂,•). (4.30)
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Assume D is a relative effective Q-Cartier divisor on 𝑋/𝑆 with 𝑣𝑠 (𝐷𝑠) = 𝑣𝜂 (𝐷𝜂), then

lct(𝑋𝑠 ,Δ𝑠 + 𝜖𝐷𝑠; 𝐼𝑠,•) =
𝐴𝑋𝑠 ,Δ𝑠 (𝑣𝑠) − 𝜖𝑣𝑠 (𝐷𝑠)

𝑣𝑠 (𝐼𝑠,•)

=
𝐴𝑋𝜂 ,Δ𝜂 (𝑣𝜂) − 𝜖𝑣𝜂 (𝐷𝜂)

𝑣𝜂 (𝐼𝜂,•)
= lct(𝑋𝜂 ,Δ 𝜂 + 𝜖𝐷𝜂 ; 𝐼𝜂,•).

(4.31)

Thus we can apply Lemma 4.2 to the family 𝜋 : (𝑋,Δ + 𝜖𝐷) → 𝑆, the ideal sequence 𝐼•, and 𝑣𝜂 , so we
get a family of models 𝑓 𝐷 : (𝑌𝐷 , 𝐸𝐷) → (𝑋,Δ + 𝜖𝐷), via which 𝑣𝜂 degenerates to some 𝑣𝐷𝑠 ∈ Valqm

𝑋𝑠 ,𝑥𝑠

as in 4.4 (note that 𝑣𝜂 ∈ QM(𝑌𝐷𝜂 , 𝐸
𝐷
𝜂 ) by Remark 4.3). Then

lct(𝑋𝜂 ,Δ 𝜂 + 𝜖𝐷𝜂 ; 𝐼𝜂,•) =
𝐴𝑋𝜂 ,Δ𝜂+𝜖 𝐷𝜂 (𝑣𝜂)

𝑣𝜂 (𝐼𝜂,•)
≥
𝐴𝑋𝑠 ,Δ𝑠+𝜖 𝐷𝑠 (𝑣

𝐷
𝑠 )

𝑣𝐷𝑠 (𝐼𝑠,•)
(4.32)

by Lemma 4.6. This implies that 𝑣𝐷𝑠 computes lct(𝑋𝑠 ,Δ𝑠 + 𝜖𝐷𝑠; 𝐼𝑠,•). By the uniqueness assumption,
we conclude that 𝑣𝐷𝑠 = 𝑣𝑠 since 𝐴𝑋𝑠 ,Δ𝑠+𝜖 𝐷𝑠 (𝑣

𝐷
𝑠 ) = 𝐴𝑋𝜂 ,Δ𝜂+𝜖 𝐷𝜂 (𝑣𝜂) = 𝐴𝑋𝑠 ,Δ𝑠+𝜖 𝐷𝑠 (𝑣𝑠). Moreover,

Lemma 4.2 gives a relative effectiveQ-CartierQ-divisor Γ ≥ 𝜖𝐷 on 𝑋/𝑆 such that 𝜋 : (𝑋,Δ+Γ) → 𝑆 is
locally stable, 𝐾𝑋 +Δ +Γ ∼𝑆,Q 0, and 𝑣𝜂 ∈ LCP(𝑋𝜂 ,Δ 𝜂 +Γ𝜂). By Lemma 4.6, 𝑣𝑠 ∈ LCP(𝑋𝑠 ,Δ𝑠 +Γ𝑠).

By Remark 4.3, since 𝑣𝜂 is special, we can choose a family of models 𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ)

such that generic fiber is of qdlt Fano type, each 𝐸𝑖 is Q-Cartier, and there exists an f -ample divisor
supported on E. Thus 𝑍 =

⋂𝑟
𝑖=1 𝐸𝑖 is irreducible, with the generic point 𝜁 such that 𝑣𝜂 ∈ QM𝜁 (𝑌𝜂 , 𝐸𝜂).

Let z be a generic point of 𝑍𝑠 , then (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) is simple-toroidal at z, and as in the last paragraph,
we have 𝑣𝑠 ∈ QM𝑧 (𝑌𝑠 , 𝐸𝑠) corresponding to 𝑣𝜂 and 𝛼 = (𝛼𝑖) ∈ R

𝑟
≥0 under

QM𝜁 (𝑌𝜂 , 𝐸𝜂) � R
𝑟
≥0 � QM𝑧 (𝑌𝑠 , 𝐸𝑠). (4.33)

In fact, by the uniqueness assumption, z is the unique generic point of 𝑍𝑠 . Let

𝜇 : (𝑊, 𝐹) → (𝑌, 𝑓 −1
∗ Δ + 𝐸 + 𝑓 ∗𝜋∗𝐻) (4.34)

be a log resolution that is a local isomorphism over z and the generic point of 𝑌𝑠 , such that there is a
𝜇-ample divisor supported on Ex(𝜇). Hence there is a g-ample divisor −𝐴 with Supp(𝐴) = Ex(𝑔) and
𝐴 ≥ 0, where 𝑔 = 𝑓 ◦ 𝜇. Since X is affine, −𝐴 is ample. Let 𝐺 ∈ |−𝐴|Q be a general Q-divisor whose
support does not contain any stratum of (𝑊, 𝐹), and let 𝐷 = 𝑔∗𝐺 = 𝑔∗(𝐺 + 𝐴). Then D is Q-Cartier,
and Supp(𝐷) does not contain 𝑋𝑠 . Thus D is flat over S. Write

𝑓 ∗𝐷 = 𝑓 −1
∗ 𝐷 +

𝑟∑
𝑖=1

ord𝐸𝑖 (𝐷)𝐸𝑖 (4.35)

where the support of 𝑓 −1
∗ 𝐷 = 𝜇∗𝐺 does not contain z. Hence 𝑣𝑠 (𝐷𝑠) =

∑𝑟
𝑖=1 𝛼𝑖ord𝐸𝑖 (𝐷) = 𝑣𝜂 (𝐷𝜂).

By last paragraph, there exists a relative effective Q-Cartier Q-divisor Γ ≥ 𝜖𝐷 on 𝑋/𝑆, for some 𝜖 > 0,
such that 𝜋 : (𝑋,Δ + Γ) → 𝑆 is locally stable, 𝐾𝑋 + Δ + Γ ∼𝑆,Q 0, and 𝑣𝜂 ∈ LCP(𝑋𝜂 ,Δ 𝜂 + Γ𝜂).

Consider the diagram

QM𝜁 (𝑌𝜂 , 𝐸𝜂) QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) QM𝑧 (𝑌𝑠 , 𝐸𝑠)

R𝑟
≥0 R𝑟

≥0 × R
𝑑
≥0 R𝑟

≥0

𝑖

�

𝑝

� �

𝛼 ↦→(𝛼,0) (𝛼,𝛽) ↦→𝛼

(4.36)
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Suppose 𝛼 = (𝛼𝑖) ∈ R
𝑟
≥0 corresponds to 𝑣𝛼𝜂 ∈ QM𝜁 (𝑌𝜂 , 𝐸𝜂) ∩ LCP(𝑋𝜂 ,Δ 𝜂 + Γ𝜂), then

𝑣𝛼𝑠 ∈ QM𝑧 (𝑌𝑠 , 𝐸𝑠) ∩ LCP(𝑋𝑠 ,Δ𝑠 + Γ𝑠) (4.37)

and 𝑣𝛼𝑠 (Γ𝑠) = 𝑣𝛼𝜂 (Γ𝜂) by Lemma 4.6. For every 𝛽 = (𝛽 𝑗 ) ∈ R
𝑑
≥0 and 𝑣𝛼,𝛽 ∈ QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻),

𝐴𝑋,Δ+𝜋∗𝐻 (𝑣𝛼,𝛽) =
𝑟∑
𝑖=1
𝛼𝑖𝐴𝑋,Δ+𝜋∗𝐻 (𝐸𝑖) +

𝑑∑
𝑗=1
𝛽 𝑗𝐴𝑋,Δ+𝜋∗𝐻 ( 𝑓 ∗𝜋∗𝐻 𝑗 ) =

𝑟∑
𝑖=1
𝛼𝑖𝐴𝑋,Δ+𝜋∗𝐻 (𝐸𝑖) (4.38)

since 𝐴𝑋,Δ+𝜋∗𝐻 ( 𝑓 ∗𝜋∗𝐻 𝑗 ) = 0. Thus 𝐴𝑋𝜂 ,Δ𝜂 (𝑣
𝛼
𝜂 ) = 𝐴𝑋,Δ+𝜋∗𝐻 (𝑣𝛼,𝛽) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣

𝛼
𝑠 ). Also,

𝑣𝛼𝜂 (Γ𝜂) ≤ 𝑣
𝛼,𝛽 (Γ) ≤ 𝑣𝛼𝑠 (Γ𝑠) (4.39)

by Lemma 2.9, so all the equality holds. Then we get

𝐴𝑋𝜂 ,Δ𝜂+Γ𝜂 (𝑣
𝛼
𝜂 ) = 𝐴𝑋,Δ+Γ+𝜋∗𝐻 (𝑣𝛼,𝛽) = 𝐴𝑋𝑠 ,Δ𝑠+Γ𝑠 (𝑣

𝛼
𝑠 ) = 0. (4.40)

Let 𝜎𝜂 ⊂ QM𝜁 (𝑌𝜂 , 𝐸𝜂) ∩ LCP(𝑋𝜂 ,Δ 𝜂 + Γ𝜂) be a simplicial cone containing 𝑣𝜂 , and let 𝜎 ⊂ R𝑟
≥0

be the corresponding cone under the canonical isomorphism QM𝜁 (𝑌𝜂 , 𝐸𝜂) � R𝑟
≥0. Then 𝜎 × R𝑑

≥0
corresponds to a cone Σ ⊂ QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) under QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) � R𝑟

≥0 × R
𝑑
≥0 such that

Σ ⊂ QM𝑧 (𝑌, 𝐸 + 𝑓 ∗𝜋∗𝐻) ∩ LCP(𝑋,Δ + Γ + 𝜋∗𝐻). (4.41)

Now Γ+𝜋∗𝐻 is a specialQ-complement with respect to 𝑔 : (𝑊, 𝐹) → (𝑋,Δ), since 𝑔−1
∗ (Γ+𝜋∗𝐻) ≥ 𝜖𝐺.

Thus, by Lemma 3.9 and Lemma 3.2, we get a qdlt anticanonical model

𝑓 : (𝑌, 𝐸 + 𝐻) → (𝑋,Δ) (4.42)

with QM(𝑌, 𝐸 + 𝐻) = Σ. Thus all components of 𝐸 are centered at x, and 𝐻 = 𝑓 −1
∗ 𝜋

∗𝐻 = 𝑓 ∗𝜋∗𝐻. So
𝑓 : (𝑌, 𝐸) → (𝑋,Δ) is a locally stable family of Kollár models (see the remark after Definition 3.5). It
is clear that 𝑣𝜂 ∈ QM(𝑌 𝜂 , 𝐸 𝜂) degenerates to 𝑣𝑠 ∈ QM(𝑌 𝑠 , 𝐸 𝑠). �

Remark 4.8. In Lemma 4.7, if we fix a special quasi-monomial simplicial cone 𝜏 ⊂ Valqm
𝑋𝜂 ,𝑥𝜂

such
that 𝑣𝜂 ∈ 𝜏, then we can get a model 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) with QM(𝑌 𝜂 , 𝐸 𝜂) ⊂ 𝜏. Moreover, when
we choose 𝜎 in the last step, using Diophantine approximation as in the proof of Lemma 4.2, we may
assume that

𝐴𝑋,Δ+𝐼 𝑐𝜆 (𝐸 𝑖) < 1 (4.43)

for every component 𝐸 𝑖 of 𝐸 , for some 𝑐 > 0 and 𝜆 > 0 with lct(𝑋,Δ; 𝐼𝑐𝜆) > 1.

4.2. Multiple equivariant degenerations

Definition 4.9. Let 𝑥 ∈ (𝑋,Δ) be a klt singularity of finite type over a field k, with 𝑥 ∈ 𝑋 (𝑘). Suppose

𝑓 : (𝑌, 𝐸 = 𝐸1 + · · · + 𝐸𝑟 ) → (𝑋,Δ) (4.44)

is a model of qdlt Fano type at x. Suppose 𝑋 = Spec(𝑅), and let R be the extended Rees algebra

R �
⊕

(𝑎1 ,...,𝑎𝑟 ) ∈Z𝑟

𝐻0(𝑌,𝒪𝑌 (𝑎1𝐸1 + · · · + 𝑎𝑟𝐸𝑟 ))𝑡
𝑎1
1 · · · 𝑡𝑎𝑟𝑟 ⊂ 𝑅[𝑡±1

1 , . . . , 𝑡
±1
𝑟 ] . (4.45)
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Then R is a finitely generated k-algebra, and we have X = Spec(R) → A𝑟𝑘 with an isomorphism

X ×A𝑟
𝑘
(Gm,𝑘 )

𝑟 � 𝑋 ×𝑘 (Gm,𝑘 )
𝑟 . (4.46)

LetΔX be the closure ofΔ×𝑘 (Gm,𝑘 )
𝑟 . The morphism (X ,ΔX ) → A𝑟𝑘 is called the multiple degeneration

of (𝑋,Δ) induced by 𝑓 : (𝑌, 𝐸) → (𝑋,Δ). Moreover, there is an action of (Gm,𝑘 )
𝑟 on (X ,ΔX ) such

that the multiple degeneration is equivariant, and the point 𝑥 ∈ 𝑋 (𝑘) induces a section 𝑥 ∈ X (A𝑟𝑘 ).
By [33, §4], 𝑥 ∈ (X ,ΔX ) → A𝑟𝑘 is a locally stable family of klt singularities, and

R/(𝑡1, . . . , 𝑡𝑟 ) � gr𝑣 (𝑅) (4.47)

for every 𝑣 ∈ QM◦(𝑌, 𝐸), which induces (𝑋𝑣 ,Δ 𝑣 ) � (X ,ΔX ) ×A𝑟
𝑘
{0}.

Lemma 4.10. Let S be a regular connected scheme. Let 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally
stable family of klt singularities, and 𝑓 : (𝑌, 𝐸 =

∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a locally stable family of

Kollár models at x. For each 1 ≤ 𝑖 ≤ 𝑟 , let (X (𝑖) ,Δ (𝑖) ) → A𝑖𝑆 be the multiple degeneration induced by
𝐸1 + · · · + 𝐸𝑖 , that is,

R(𝑖) �
⊕

(𝑎1 ,...,𝑎𝑖 ) ∈Z𝑖

𝜋∗ 𝑓∗𝒪𝑌 (𝑎1𝐸1 + · · · + 𝑎𝑖𝐸𝑖)𝑡
𝑎1
1 · · · 𝑡𝑎𝑖𝑖 ⊂ 𝜋∗𝒪𝑋 [𝑡

±1
1 , . . . , 𝑡

±1
𝑖 ], (4.48)

and X (𝑖) = Spec𝑆R(𝑖) → A𝑖𝑆 . Then the following hold:

(1) (X (𝑖) ,Δ (𝑖) ) → A𝑖𝑆 is a locally stable family of klt pairs.
(2) There exists a locally stable family of Kollár models 𝑓 (𝑖) : (Y (𝑖) , E (𝑖) ) → (X (𝑖) ,Δ (𝑖) ) overA𝑖𝑆 with

(Y (𝑖) , E (𝑖) ) ×A𝑖
𝑆
(Gm,𝑆)

𝑖 � (𝑌, 𝐸) ×𝑆 (Gm,𝑆)
𝑖 (4.49)

as families of models for (𝑋,Δ) ×𝑆 (Gm,𝑆)
𝑖 .

(3) (X (𝑖+1) ,Δ (𝑖+1) ) → A𝑖+1
𝑆 is the degeneration of (X (𝑖) ,Δ (𝑖) ) → A𝑖𝑆 induced by the component E (𝑖)

𝑖+1
corresponding to 𝐸𝑖+1.

(4) For every 𝑠 ∈ 𝑆, the base change (X (𝑖)
𝑠 ,Δ

(𝑖)
𝑠 ) → A𝑖𝑠 is the multiple degeneration of 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠)

induced by 𝑓𝑠 : (𝑌𝑠 , 𝐸1,𝑠 + · · · + 𝐸𝑖,𝑠) → (𝑋𝑠 ,Δ𝑠).

Proof. The case when S is a point is proved in [33, §4.2]. In general, we may assume that S is affine.
If we have (1) and (2), then (3) holds by [30, Prop. 3.6]. We prove (1) and (2) by induction on i. By
(3), it suffices to prove the case 𝑖 = 1. By shrinking S, we may assume that there is a relative effective
Q-Cartier Q-divisor Γ for 𝑋/𝑆 such that 𝜋 : (𝑋,Δ + Γ) → 𝑆 is locally stable, 𝐾𝑋 + Δ + Γ ∼𝑆,Q 0, and

LCP(𝑋𝑠 ,Δ𝑠 + Γ𝑠) = QM(𝑌𝑠 , 𝐸𝑠) (4.50)

for every 𝑠 ∈ 𝑆. Now

X (1) = Spec𝑆

(⊕
𝑚∈Z

𝜋∗ 𝑓∗𝒪𝑌 (𝑚𝐸1)𝑡
𝑚

)
→ A1

𝑆 = Spec𝑆 (𝒪𝑆 [𝑡]). (4.51)

By [33, Lem. 3.13(4)], 𝐸1 gives a locally stable family of Kollár components for (𝑋,Δ + (1 − 𝜖)Γ) at x
for all 0 < 𝜖 ≤ 1, and the fiber X (1)

𝑠 → A1
𝑠 is the degeneration of 𝑋𝑠 induced by 𝐸1,𝑠 for every 𝑠 ∈ 𝑆.

Hence by [30, Lem. 3.3] and the case over a point, (X (1) ,Δ (1) + (1 − 𝜖)Γ (1) ) → A1
𝑆 is a locally stable

family with klt fibers. It follows that (X (1) ,Δ (1) + Γ (1) ) → A1
𝑆 is a locally stable family, and (4) holds.
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It remains to prove (2) when 𝑖 = 1. Since (X (1) ,Δ (1) + Γ (1) ) ×A1
𝑆
Gm,𝑆 � (𝑋,Δ + Γ) ×𝑆 Gm,𝑆 , we

can extract the divisors 𝐸𝑖 ×𝑆 Gm,𝑆 to get a model

𝑓 (1) : (Y (1) , E (1) ) → (X (1) ,Δ (1) ) (4.52)

by Lemma 2.4. Passing to the ample model over X (1) , we may assume −(𝐾Y (1) + ( 𝑓 (1) )−1
∗ Δ (1) + E (1) )

is ample, and there is an isomorphism

(Y (1) , E (1) ) ×A1
𝑆
Gm,𝑆 � (𝑌, 𝐸) ×𝑆 Gm,𝑆 . (4.53)

Hence E (1) is the closure of 𝐸 ×𝑆 Gm,𝑆 , and

𝐾Y (1) + ( 𝑓 (1) )−1
∗ (Δ (1) + Γ (1) ) + E (1) = ( 𝑓 (1) )∗ (𝐾X (1) + Δ (1) + Γ (1) ). (4.54)

Suppose 𝑡0, . . . , 𝑡𝑑 is a regular system of parameters at a closed point of A1
𝑆 , and

𝐻 = div(𝑡0) + · · · + div(𝑡𝑑) ⊂ X (1) . (4.55)

Then (X (1) ,Δ (1) + Γ (1) + 𝐻) is lc. Hence (Y (1) , E (1) + ( 𝑓 (1) )−1
∗ (Δ (1) + Γ (1) ) + ( 𝑓 (1) )∗𝐻) is lc, that is,

(Y (1) , E (1) + ( 𝑓 (1) )−1
∗ (Δ (1) + Γ (1) )) → A1

𝑆 (4.56)

is locally stable. Hence, for every 𝑠 ∈ 𝑆, the fiber 𝑓 (1)𝑠 : (Y (1)
𝑠 , E (1)

𝑠 ) → (X (1)
𝑠 ,Δ (1)

𝑠 ) is a family of models
which extends (𝑌𝑠 , 𝐸𝑠) ×𝜅 (𝑠) Gm,𝜅 (𝑠) → (𝑋𝑠 ,Δ𝑠) ×𝜅 (𝑠) Gm,𝜅 (𝑠) such that −(𝐾Y (1)

𝑠
+ ( 𝑓 (1)𝑠 )−1

∗ Δ (1)
𝑠 +E (1)

𝑠 )

is ample. By the case over a point, (𝑌𝑠 , 𝐸𝑠) ×𝜅 (𝑠) Gm,𝜅 (𝑠) → (𝑋𝑠 ,Δ𝑠) ×𝜅 (𝑠) Gm,𝜅 (𝑠) can also be extended
to a locally stable family of Kollár models, which must coincide with 𝑓 (1)𝑠 : (Y (1)

𝑠 , E (1)
𝑠 ) → (X (1)

𝑠 ,Δ (1)
𝑠 ).

So every fiber of (Y (1) , E (1) + ( 𝑓 (1) )−1
∗ Δ (1) ) → A1

𝑆 is qdlt, that is,

𝑓 (1) : (Y (1) , E (1) ) → (X (1) ,Δ (1) ) (4.57)

is a locally stable family of Kollár models. �

Lemma 4.11. Let S be a regular connected scheme. Let 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally
stable family of klt singularities, and 𝑓 : (𝑌, 𝐸 =

∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) be a locally stable family of Kollár

models at x. Suppose 𝛼 = (𝛼𝑖) ∈ R𝑟>0, and 𝑣𝛼𝑠 ∈ QM◦(𝑌𝑠 , 𝐸𝑠) is the corresponding quasi-monomial
valuation on 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠) for every 𝑠 ∈ 𝑆. For each 𝜆 ≥ 0, let

𝔞𝜆 �
∑

〈𝛼,𝑚〉≥𝜆

𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚𝑖𝐸𝑖

)
⊂ 𝒪𝑋 , (4.58)

where the sum ranges over all 𝑚 = (𝑚𝑖) ∈ N
𝑟 such that

∑𝑟
𝑖=1 𝛼𝑖𝑚𝑖 ≥ 𝜆. Then the following hold:

(1) 𝔞• = {𝔞𝜆}𝜆 is an ideal sequence on X centered at x, and 𝔞𝜆/𝔞>𝜆 is flat over S for all 𝜆 ≥ 0.
(2) Let 𝑋𝛼 = Spec𝑆 (𝜋∗gr𝔞 (𝒪𝑋 )), where

gr𝔞 (𝒪𝑋 ) �
⊕
𝜆≥0

𝔞𝜆/𝔞>𝜆, (4.59)

then the canonical morphism 𝜋𝛼 : 𝑋𝛼 → 𝑆 is flat, of finite type, with normal and geometrically
integral fibers. There is a canonical action of T = (Gm,𝑆)

𝑟 on 𝑋0 preserving the grading, whose
fixed locus is the image of a section 𝑥𝛼 : 𝑆 → 𝑋𝛼.

(3) For every 𝑠 ∈ 𝑆, the restriction 𝔞𝑠,• = {𝔞𝜆𝒪𝑋𝑠 }𝜆 is the ideal sequence associated with 𝑣𝛼𝑠 .
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(4) There exists a T-invariant effective Q-divisor Δ𝛼 on 𝑋𝛼 such that 𝜋𝛼 : (𝑋𝛼,Δ𝛼) → 𝑆 is a locally
stable family of klt pairs, and (𝑋𝛼,𝑠 ,Δ𝛼,𝑠) is the degeneration of 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠) induced by 𝑣𝛼𝑠 for
every 𝑠 ∈ 𝑆.

Proof. (1). It is clear that 𝔞• = {𝔞𝜆}𝜆 is an ideal sequence on X. Write

𝐼𝑚 = 𝑓∗𝒪𝑌

(
−

𝑟∑
𝑖=1
𝑚𝑖𝐸𝑖

)
⊂ 𝒪𝑋 (4.60)

for 𝑚 ∈ Z𝑟 , and 𝐼>𝑚 �
∑
𝑚′>𝑚 𝐼𝑚′ , where 𝑚′ = (𝑚′

𝑖) > (𝑚𝑖) = 𝑚 if and only if 𝑚′
𝑖 ≥ 𝑚𝑖 for all i and

𝑚′ ≠ 𝑚. By Lemma 4.10,

R �
⊕
𝑚∈Z𝑟

𝐼𝑚𝑡
−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 (4.61)

is flat over A𝑟𝑆 = Spec𝑆 (𝒪𝑆 [𝑡1, . . . , 𝑡𝑟 ]). Hence

R/(𝑡1, . . . , 𝑡𝑟 ) �
⊕
𝑚∈Z𝑟

𝐼𝑚/𝐼>𝑚 (4.62)

is flat over S. By Lemma 3.14, we have

𝔞𝜆/𝔞>𝜆 �
⊕

〈𝛼,𝑚〉=𝜆

𝐼𝑚/𝐼>𝑚, (4.63)

so 𝔞𝜆/𝔞>𝜆 is also flat over S.
(2). By the computation above, 𝑋𝛼 is isomorphic to X ×A𝑟

𝑆
0𝑆 over S, where 0𝑆 ⊂ A𝑟𝑆 is the zero

section, and (X ,ΔX ) → A𝑟𝑆 is the multiple degeneration induced by 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) in Lemma
4.10. Hence 𝜋𝛼 : 𝑋𝛼 → 𝑆 is flat, of finite type, with normal and geometrically integral fibers. Since
X → A𝑟𝑆 is T-equivariant, we get an action of T on 𝑋𝛼, and

𝜋𝛼∗𝒪𝑋𝛼 �
⊕
𝑚∈Z𝑟

𝜋∗(𝐼𝑚/𝐼>𝑚) (4.64)

is the eigenspace decomposition. In particular, the T-action preserves each 𝔞𝜆/𝔞>𝜆. Since

𝜋∗(𝐼0/𝐼>0) = 𝜋∗(𝒪𝑋/𝐼>0) � 𝒪𝑆 , (4.65)

the fixed locus is given by a section 𝑥𝛼 : 𝑆 → 𝑋𝛼.
(3) For 𝑠 ∈ 𝑆, we construct 𝐼𝑠,𝑚 ⊂ 𝒪𝑋𝑠 and R𝑠 �

⊕
𝑚∈Z𝑟 𝐼𝑠,𝑚𝑡

−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 as above from the Kollár
model 𝑓𝑠 : (𝑌𝑠 , 𝐸𝑠) → (𝑋𝑠 ,Δ𝑠). Then R𝑠 = R ⊗𝒪𝑆 𝜅(𝑠) as subrings of 𝒪𝑋𝑠 [𝑡

±1
1 , . . . , 𝑡

±1
𝑟 ], by Lemma

4.10. So 𝐼𝑠,𝑚 = 𝐼𝑚𝒪𝑋𝑠 = 𝐼𝑚 ⊗𝒪𝑆 𝜅(𝑠) for all 𝑚 ∈ Z𝑟 . By [33, Cor. 4.10], we have

𝔞𝜆 (𝑣
𝛼
𝑠 ) =

∑
〈𝛼,𝑚〉≥𝜆

𝐼𝑠,𝑚. (4.66)

Thus 𝔞𝜆 (𝑣𝛼𝑠 ) = 𝔞𝜆𝒪𝑋𝑠 , and 𝔞𝜆 (𝑣𝛼𝑠 )/𝔞>𝜆(𝑣
𝛼
𝑠 ) � (𝔞𝜆/𝔞>𝜆) ⊗𝒪𝑆 𝜅(𝑠). So we get (3).

(4). Recall that 𝑋𝛼 � X ×A𝑟
𝑆

0𝑆 over S. Let Δ𝛼 be the base change of ΔX , then 𝜋𝛼 : (𝑋𝛼,Δ𝛼) → 𝑆
is a locally stable family of klt pairs. As in (3), the fiber (𝑋𝛼,𝑠 ,Δ𝛼,𝑠) is the central fiber of the multiple
degeneration (X𝑠 ,Δ𝑠) → A

𝑟
𝑠 , so it is the degeneration of 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠) induced by 𝑣𝛼𝑠 . �

Remark 4.12. Keep the notations in Lemma 4.11 and the proof. We claim that Δ𝛼 is defined by the
divisorial part of the initial ideal of Δ .
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More precisely, write Δ =
∑
𝑐𝐷𝐷, and let 𝔟 ⊂ 𝒪𝑋 be the ideal of the closed subscheme 𝐷 ⊂ 𝑋 for

each component D of Δ . The initial ideal of 𝔟 (with respect to 𝔞•) is the ideal

in𝔞 (𝔟) �
⊕
𝜆≥0

(𝔟 ∩ 𝔞𝜆)/(𝔟 ∩ 𝔞>𝜆) ⊂ gr𝔞 (𝒪𝑋 ). (4.67)

Then in𝔞 (𝔟) defines a closed subscheme of 𝑋𝛼 = Spec𝑆 (𝜋∗gr𝔞 (𝒪𝑋 )). Let 𝐷𝛼 ⊂ 𝑋𝛼 be its divisorial
part (see [15, 4.16]). We will show that Δ𝛼 �

∑
𝑗 𝑐𝐷𝐷𝛼 is the divisor given by Lemma 4.11.

Recall that 𝑋𝛼 = X ×A𝑟
𝑆

0𝑆 . Let Δ0 be the pullback of ΔX to 𝑋𝛼, then we need to show Δ0 = Δ𝛼.
There is an isomorphism

(X ,ΔX ) ×A𝑟
𝑆
(Gm,𝑆)

𝑟 � (𝑋,Δ) ×𝑆 (Gm,𝑆)
𝑟 , (4.68)

such that ΔX is the closure of Δ ×𝑆 (Gm,𝑆)
𝑟 . Thus, we have ΔX =

∑
𝑐𝐷D, where D ⊂ X is defined by

the ideal

R ∩ 𝔟[𝑡±1
1 , . . . , 𝑡

±1
𝑟 ] =

⊕
𝑚∈Z𝑟

(𝐼𝑚 ∩ 𝔟)𝑡−𝑚1
1 · · · 𝑡−𝑚𝑟

𝑟 ⊂ R. (4.69)

Hence the pullback 𝐷0 of D is the divisorial part of the closed subscheme defined by the ideal

in𝐼 (𝔟) =
⊕
𝑚∈Z𝑟

(𝐼𝑚 ∩ 𝔟)/(𝐼>𝑚 ∩ 𝔟) ⊂
⊕
𝑚∈Z𝑟

𝐼𝑚/𝐼>𝑚. (4.70)

If 𝛼1, . . . 𝛼𝑟 are linearly independent over Q, then we have in𝐼 (𝔟) = in𝔞 (𝔟) since 𝔞𝜆/𝔞>𝜆 = 𝐼𝑚/𝐼>𝑚 for
the unique 𝑚 ∈ N𝑟 with 〈𝛼, 𝑚〉 = 𝜆. Hence 𝐷0 = 𝐷𝛼, so Δ0 = Δ𝛼.

In general, suppose the subspace generated by 𝛼1, . . . , 𝛼𝑟 has dimension 𝑞 < 𝑟 over Q, and let
𝜎 ⊂ R𝑟

≥0 be a rational simplicial cone of dimension q with 𝛼 ∈ 𝜎, spanned by 𝜇1, . . . , 𝜇𝑞 ∈ N𝑟 . Then
𝜎 induces a morphism A𝑞𝑆 → A𝑟𝑆 given by

𝒪𝑆 [𝑡1, . . . , 𝑡𝑟 ] → 𝒪𝑆 [𝑢1, . . . , 𝑢𝑞], 𝑡𝑖 ↦→ 𝑢
𝜇1,𝑖
1 · · · 𝑢

𝜇𝑞,𝑖
𝑞 . (4.71)

Let (X ′,ΔX ′ ) = (X ,ΔX ) ×A𝑟
𝑆
A
𝑞
𝑆 , so that 𝑋𝛼 = X ′ ×A𝑞

𝑆
0𝑆 . More explicitly,

X ′ = Spec𝑆
⊕
𝑛∈Z𝑞

𝐽𝑛𝑢
−𝑛1
1 · · · 𝑢

−𝑛𝑞
𝑞 , where 𝐽𝑛 =

∑
〈𝜇 𝑗 ,𝑚〉≥𝑛 𝑗

𝐼𝑚. (4.72)

Note that if we write 𝛼 =
∑𝑞

𝑗=1 𝛽 𝑗𝜇 𝑗 and 𝛽 = (𝛽 𝑗 ) ∈ R
𝑞
≥0, then

𝔞𝜆 =
∑

〈𝛼,𝑚〉≥𝜆

𝐼𝑚 =
∑

〈𝛽,𝑛〉≥𝜆

𝐽𝑛. (4.73)

Then (X ′,ΔX ′ ) → A
𝑞
𝑆 is a locally stable family, in particular every component of ΔX ′ dominates A𝑞𝑆 .

So ΔX ′ is closure of Δ ×𝑆 (Gm,𝑆)
𝑞 under

(X ′,ΔX ′ ) ×A𝑞
𝑆
(Gm,𝑆)

𝑞 � (𝑋,Δ) ×𝑆 (Gm,𝑆)
𝑞 . (4.74)

By our choices, 𝛽1, . . . , 𝛽𝑞 are linearly independent over Q, hence the pullback Δ ′
0 of ΔX ′ to 𝑋𝛼

coincides with the divisor Δ𝛼 defined by the initial ideals, as in the paragraphs above. Finally, Δ ′
0 = Δ0

since ΔX has well-defined pullbacks (see [15, Thm-Def. 4.3]).
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5. Families with constant local volume

5.1. Degeneration of the minimizer over a DVR

In this subsection, let 𝑆 = Spec(𝐴), where A is a DVR, with the generic point 𝜂 ∈ 𝑆 and the closed point
𝑠 ∈ 𝑆.
Theorem 5.1. Let 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable family of klt singularities with

v̂ol(𝑥𝜂 ; 𝑋𝜂 ,Δ 𝜂) = v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠). (5.1)

Suppose 𝑣m
𝜂 ∈ Val𝑋𝜂 ,𝑥𝜂 and 𝑣m

𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 are minimizers of the normalized volume for 𝑥𝜂 ∈ (𝑋𝜂 ,Δ 𝜂)

and 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠), respectively, scaled such that 𝐴𝑋𝜂 ,Δ𝜂 (𝑣
m
𝜂 ) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣

m
𝑠 ). Then there exists a locally

stable family of Kollár models 𝑓 : (𝑌, 𝐸) → (𝑋,Δ) at x over S such that

𝑣m
𝜂 ∈ QM(𝑌𝜂 , 𝐸𝜂) and 𝑣m

𝑠 ∈ QM(𝑌𝑠 , 𝐸𝑠), (5.2)

and they are identified under the canonical isomorphism QM(𝑌𝜂 , 𝐸𝜂) � QM(𝑌𝑠 , 𝐸𝑠) in Definition 4.4.
Proof. Let 𝔞•(𝑣m

𝜂 ) ⊂ 𝒪𝑋𝜂 and 𝔞•(𝑣m
𝑠 ) ⊂ 𝒪𝑋𝑠 be the ideal sequences associated with 𝑣m

𝜂 and 𝑣m
𝑠 ,

respectively. We may assume that 𝐴𝑋𝜂 ,Δ𝜂 (𝑣
m
𝜂 ) = 𝐴𝑋𝑠 ,Δ𝑠 (𝑣

m
𝑠 ) = 1, so that

lct(𝑋𝜂 ,Δ 𝜂 ;𝔞•(𝑣m
𝜂 )) = lct(𝑋𝑠 ,Δ𝑠;𝔞•(𝑣m

𝑠 )) = 1, (5.3)

since they are computed by 𝑣m
𝜂 and 𝑣m

𝑠 , respectively, by Lemma 2.18. Thus

e𝑋𝜂 (𝔞•(𝑣
m
𝜂 )) = v̂ol(𝑥𝜂 ; 𝑋𝜂 ,Δ 𝜂) = v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) = e𝑋𝑠 (𝔞•(𝑣

m
𝑠 )). (5.4)

Let 𝐼• = 𝑗∗𝔞•(𝑣m
𝜂 ) ∩𝒪𝑋 , where 𝑗 : 𝑋𝜂 → 𝑋 is the inclusion, and 𝒪𝑋 → 𝑗∗𝒪𝑋𝜂 is injective since 𝑋𝑠 is

a Cartier divisor. It is clear that 𝒪𝑋/𝐼𝜆 is supported on the section {𝑥} and torsion-free over S for all
𝜆 > 0. Since S is the spectrum of a DVR, we conclude that 𝒪𝑋/𝐼𝜆 is flat over S. Hence

e𝑋𝜂 (𝐼𝜂,•) = e𝑋𝑠 (𝐼𝑠,•), (5.5)

where 𝐼𝜂,• = 𝐼•𝒪𝑋𝜂 = 𝔞•(𝑣m
𝜂 ), and 𝐼𝑠,• = 𝐼•𝒪𝑋𝑠 . Since lct is lower semi-continuous in a family, we have

v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) ≤ lct(𝑋𝑠 ,Δ𝑠; 𝐼𝑠,•)𝑛 · e𝑋𝑠 (𝐼𝑠,•)

≤ lct(𝑋𝜂 ,Δ 𝜂 ; 𝐼𝜂,•)𝑛 · e𝑋𝜂 (𝐼𝜂,•) = v̂ol(𝑥𝜂 ; 𝑋𝜂 ,Δ 𝜂),
(5.6)

where 𝑛 = dim𝑥𝜂 (𝑋𝜂) = dim𝑥𝑠 (𝑋𝑠). But v̂ol(𝑥𝜂 ; 𝑋𝜂 ,Δ 𝜂) = v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠), so all the inequalities
above must be equalities. Thus by the uniqueness up to saturation in Lemma 2.18, we have

𝐼𝑠,• ⊂ 𝐼̃𝑠,• = 𝔞𝑐•(𝑣
m
𝑠 ) (5.7)

for some 𝑐 > 0. In fact, 𝑐 = 1 since e𝑋𝑠 ( 𝐼̃𝑠,•) = e𝑋𝑠 (𝐼𝑠,•) = e𝑋𝑠 (𝔞•(𝑣
m
𝑠 )).

Next, we will verify conditions of Lemma 4.7. Assume D is a relative effective Q-Cartier Q-divisor
on 𝑋/𝑆, such that

𝑣m
𝜂 (𝐷𝜂) = 𝑣

m
𝑠 (𝐷𝑠). (5.8)

By Lemma 3.10, there exists 𝛿 > 0 such that if 𝜖 < 𝛿/𝑣m
𝜂 (𝐷𝜂) = 𝛿/𝑣m

𝑠 (𝐷𝑠), then 𝑣m
𝜂 and 𝑣m

𝑠 are special
valuations for 𝑥𝜂 ∈ (𝑋𝜂 ,Δ 𝜂 + 𝜖𝐷𝜂) and 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠 + 𝜖𝐷𝑠), respectively. In fact, we can take 𝛿 = 1/𝑛;
see Remark 3.11.

By Lemma 3.12, 𝑣m
𝜂 and 𝑣m

𝑠 are the unique, up to scaling, real valuations that compute lc thresholds
lct(𝑋𝜂 ,Δ 𝜂 + 𝜖𝐷𝜂 ;𝔞•(𝑣m

𝜂 )) and lct(𝑋𝑠 ,Δ𝑠 + 𝜖𝐷𝑠;𝔞•(𝑣m
𝑠 )), respectively. Then by Lemma 2.16, 𝑣m

𝑠 is
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also the unique, up to scaling, real valuation that computes lct(𝑋𝑠 ,Δ𝑠 + 𝜖𝐷𝑠; 𝐼𝑠,•). Now the theorem
follows from Lemma 4.7. �

5.2. General base schemes

Corollary 5.2. Let S be a semi-normal scheme, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable
family of klt singularities, such that

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (5.9)

is a locally constant function on S. Suppose 𝑣m
𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 is a minimizer of the normalized volume for

𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠), scaled such that 𝐴𝑋𝑠 ,Δ𝑠 (𝑣
m
𝑠 ) = 1 for all 𝑠 ∈ 𝑆. Then there is an ideal sequence 𝔞• ⊂ 𝒪𝑋

cosupported at 𝑥(𝑆) ⊂ 𝑋 such that the following hold:

(1) 𝔞𝜆/𝔞>𝜆 is flat over S for all 𝜆 ≥ 0.
(2) For every 𝑠 ∈ 𝑆, 𝔞𝑠,• � {𝔞𝜆𝒪𝑋𝑠 }𝜆 is the ideal sequence on 𝑋𝑠 associated with 𝑣m

𝑠 .

Proof. First assume that 𝑆 = Spec(𝐴), where A is a DVR. By Theorem 5.1 and Lemma 4.11, we have
an ideal sequence 𝔞• ⊂ 𝒪𝑋 such that 𝔞𝜆/𝔞>𝜆 is flat over S for every 𝜆 ≥ 0, (𝑋0,Δ0) → 𝑆 is a locally
stable family of klt singularities, and 𝔞𝑠,• is the ideal sequence associated with 𝑣m

𝑠 for each 𝑠 ∈ 𝑆. Since
𝑣m
𝑠 is a minimizer of the normalized volume function, 𝑥0,𝑠 ∈ (𝑋0,𝑠 ,Δ0,𝑠) is a K-semistable log Fano

cone singularity by [22, Thm. 1.1].
In general, we may assume that S is connected. Let 𝔞•(𝑣m

𝑠 ) ⊂ 𝒪𝑋𝑠 be the ideal sequence associated
with 𝑣m

𝑠 . Note that if 𝜅(𝑠) ⊂ 𝐾 is field extension, then 𝔞•(𝑣m
𝑠 ) ⊗𝜅 (𝑠) 𝐾 is the ideal sequence associated

with the minimizer of the normalized volume function for 𝑥𝐾 ∈ (𝑋𝐾 ,Δ𝐾 ). Suppose A is a DVR, and
𝑔 : 𝑇 = Spec(𝐴) → 𝑆 is a morphism, then the base change (𝑋𝑇 ,Δ𝑇 ) → 𝑇 with 𝑥𝑇 ∈ 𝑋𝑇 (𝑇) is a locally
stable family of klt singularities, so that we have an ideal sequence 𝔞𝑇 ,• ⊂ 𝒪𝑋𝑇 , whose fibers are the
base changes of the corresponding 𝔞•(𝑣m

𝑠 ). Therefore, the function

ℓ𝜆 : 𝑠 ↦→ length𝒪𝑋𝑠

(
𝒪𝑋𝑠/𝔞𝜆 (𝑣

m
𝑠 )

)
(5.10)

is constant under specialization, hence constant, for all 𝜆 ≥ 0. Consider the Hilbert scheme

ℎ𝜆 : Hilbℓ𝜆
𝑋/𝑆

→ 𝑆 (5.11)

parameterizing closed subschemes of X that are finite flat over S with length ℓ𝜆. Then ℎ𝜆 is separated
and of finite type. For each 𝑠 ∈ 𝑆, we have a 𝜅(𝑠)-point 𝜎𝜆 (𝑠) = [𝒪𝑋𝑠/𝔞𝜆 (𝑣

m
𝑠 )] ∈ ℎ

−1
𝜆 (𝑠). If A is a DVR,

and 𝑔 : 𝑇 = Spec(𝐴) → 𝑆 is a morphism, then by the argument above, there is a lifting 𝑓 : 𝑇 → Hilbℓ𝜆
𝑋/𝑆

of g such that 𝑓 (𝑡) = 𝜎𝜆(𝑔(𝑡)) for every 𝑡 ∈ 𝑇 . Thus, by Lemma A.1, the set map 𝑠 ↦→ 𝜎𝜆(𝑠) underlies
a morphism of schemes 𝜎𝜆 : 𝑆 → Hilbℓ𝜆

𝑋/𝑆
, which is a section of ℎ𝜆. Hence we get an ideal sequence 𝔞•

on X such that 𝔞𝑠,𝜆 = 𝔞𝜆 (𝑣m
𝑠 ) for all 𝑠 ∈ 𝑆. Each 𝔞𝜆/𝔞>𝜆 is a finitely generated 𝒪𝑆-module with constant

rank, hence flat over S. �

Corollary 5.3. Let S be a regular connected scheme, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally
stable family of klt singularities such that the function

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (5.12)

is constant on S. Suppose 𝑣m
𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 is a minimizer of the normalized volume for 𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠),

scaled such that 𝐴𝑋𝑠 ,Δ𝑠 (𝑣
m
𝑠 ) = 1 for all 𝑠 ∈ 𝑆. Then there exists a locally stable family of Kollár models
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𝑓 : (𝑌, 𝐸 =
∑𝑟
𝑖=1 𝐸𝑖) → (𝑋,Δ) at x over S such that 𝑣m

𝑠 ∈ QM(𝑌𝑠 , 𝐸𝑠), and the coordinate

𝑠 ↦→ (𝑣m
𝑠 (𝐸𝑖,𝑠))𝑖 ∈ R

𝑟
≥0 (5.13)

is a constant function on S.

Proof. By Corollary 5.2, there is an ideal sequence 𝔞• on X cosupported on 𝑥(𝑆) such that 𝔞𝜆/𝔞>𝜆 is
flat over S for all 𝜆 ≥ 0 and 𝔞𝑠,• = 𝔞•(𝑣m

𝑠 ) for all 𝑠 ∈ 𝑆. If S is local, then we can apply Lemma 4.7 as in
the proof of Theorem 5.1.

In general, consider the collection C of open subsets𝑈 ⊂ 𝑆 such that there exists such a locally stable
family of Kollár models over U. We will prove by Noetherian induction that 𝑆 ∈ C.

Assume that𝑈 ∈ C is a maximal element, and 𝑓𝑈 : (𝑌𝑈 , 𝐸𝑈 ) → (𝑋𝑈 ,Δ𝑈 ) is a locally stable family
of Kollár models satisfying the desired conditions. Suppose 𝑈 ≠ 𝑆, and 𝑡 ∈ 𝑆 \𝑈. Let 𝑇 = Spec(𝒪𝑆,𝑡 ),
so that T is regular local, with the closed point t and the generic point 𝜂. Then there is a locally stable
family of Kollár models

𝑓 ′𝑇 : (𝑌 ′
𝑇 , 𝐸

′
𝑇 ) → (𝑋𝑇 ,Δ𝑇 ), (5.14)

satisfying the desired conditions, QM(𝑌 ′
𝜂 , 𝐸

′
𝜂) ⊂ QM(𝑌𝜂 , 𝐸𝜂) if U is nonempty, and

𝐴𝑋,Δ+𝔞𝑐𝜆 (𝑣
′
𝑖) < 1 (5.15)

for all the divisorial valuations 𝑣′𝑖 on X given by the components 𝐸 ′
𝜂,𝑖 of 𝐸 ′

𝜂 , and lct(𝑋,Δ;𝔞𝑐𝜆) > 1; see
Remark 4.8. Now by Lemma 2.4, we have a model

𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) (5.16)

such that 𝐸 ′ =
∑
𝑖 𝐸

′
𝑖 with 𝑣′𝑖 = ord𝐸′

𝑖
, and −(𝐾𝑌 ′ + 𝑓 ′−1

∗ Δ + 𝐸 ′) is 𝑓 ′-ample. Then its base change to T
coincide with the model 𝑓 ′𝑇 : (𝑌 ′

𝑇 , 𝐸
′
𝑇 ) → (𝑋𝑇 ,Δ𝑇 ).

We claim that the base change 𝑓 ′𝑈 : (𝑌 ′
𝑈 , 𝐸

′
𝑈 ) → (𝑋𝑈 ,Δ𝑈 ) is a locally stable family of Kollár models.

It suffices to check this at the localization𝑊 = Spec(𝒪𝑆,𝑢) for all 𝑢 ∈ 𝑈. Let 𝐻𝑊 ⊂ 𝑋𝑊 be the pullback
of an snc divisor on W defined by a regular system of parameters. Then

QM(𝑌𝑊 , 𝐸𝑊 + 𝑓 ∗𝑊𝐻𝑊 ) � QM(𝑌𝜂 , 𝐸𝜂) × R
𝑑
≥0, (5.17)

where 𝑑 = dim(𝑊), is a special cone on (𝑋𝑊 ,Δ𝑊 ), since 𝑓𝑊 : (𝑌𝑊 , 𝐸𝑊 ) → (𝑋𝑊 ,Δ𝑊 ) is a locally
stable family of Kollár models; see Remark 3.6. Then the subcone QM(𝑌 ′

𝜂 , 𝐸
′
𝜂) × R

𝑑
≥0 is also special,

giving a model

𝑓 ′𝑊 : (𝑌 ′
𝑊 , 𝐸

′
𝑊 + 𝑓 ′∗𝑊𝐻𝑊 ) → (𝑋𝑊 ,Δ𝑊 ) (5.18)

such that (𝑌 ′
𝑊 , 𝑓

′−1
𝑊 Δ𝑊 +𝐸 ′

𝑊 + 𝑓 ′∗𝑊𝐻𝑊 ) is qdlt and −(𝐾𝑌 ′
𝑊
+ 𝑓 ′−1

𝑊 Δ𝑊 +𝐸 ′
𝑊 + 𝑓 ′∗𝑊𝐻𝑊 ) is 𝑓 ′𝑊 -ample. So

(𝑌 ′
𝑊 , 𝐸

′
𝑊 ) is a locally stable family of Kollár models, and coincides with the base change of (𝑌 ′, 𝐸 ′).

Thus, we have a model 𝑓 ′ : (𝑌 ′, 𝐸 ′) → (𝑋,Δ) whose base changes to T and U are locally stable
family of Kollár models. Then there is an open subset 𝑉 ⊂ 𝑆 with 𝑇 ⊂ 𝑉 and 𝑈 ⊂ 𝑉 such that the base
change

(𝑌 ′
𝑉 , 𝐸

′
𝑉 ) → (𝑋𝑉 ,Δ𝑉 ) → 𝑉 (5.19)

is a locally stable family with qdlt fibers by [15, Thm. 4.42]. Since −(𝐾𝑌 ′ + 𝑓 ′−1
∗ Δ + 𝐸 ′) is 𝑓 ′-ample, it

is a locally stable family of Kollár models. By construction, 𝑣m
𝜂 ∈ QM(𝑌 ′

𝜂 , 𝐸
′
𝜂), then 𝑣m

𝑠 ∈ QM(𝑌 ′
𝑠 , 𝐸

′
𝑠)

for all 𝑠 ∈ 𝑉 , with the same coordinates as 𝑣m
𝜂 , by Lemma 4.6. Since 𝑡 ∈ 𝑉 \𝑈, this is a contradiction

to the maximality of U. Hence there is a locally stable family of Kollár models over S as desired. �
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Theorem 5.4. Let S be a semi-normal scheme, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable
family of klt singularities, such that

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (5.20)

is a locally constant function on S. Suppose 𝑣m
𝑠 ∈ Val𝑋𝑠 ,𝑥𝑠 is a minimizer of the normalized volume for

𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠), scaled such that 𝐴𝑋𝑠 ,Δ𝑠 (𝑣
m
𝑠 ) = 1 for all 𝑠 ∈ 𝑆. Then there is an ideal sequence 𝔞• ⊂ 𝒪𝑋

cosupported at 𝑥(𝑆) ⊂ 𝑋 such that the following hold:

(1) 𝔞𝜆/𝔞>𝜆 is flat over S for all 𝜆 ≥ 0.
(2) For every 𝑠 ∈ 𝑆, 𝔞𝑠,• � {𝔞𝜆𝒪𝑋𝑠 }𝜆 is the ideal sequence on 𝑋𝑠 associated with 𝑣m

𝑠 .
(3) Let 𝑋0 = Spec𝑆 (𝜋∗gr𝔞 (𝒪𝑋 )), where

gr𝔞 (𝒪𝑋 ) �
⊕
𝜆≥0

𝔞𝜆/𝔞>𝜆, (5.21)

then the canonical morphism 𝜋0 : 𝑋0 → 𝑆 is flat, of finite type, with normal and geometrically
integral fibers. The grading induces an action of a torus T � (Gm,𝑆)

𝑟 on 𝑋0, whose fixed locus is
the image of a section 𝑥0 : 𝑆 → 𝑋 .

(4) There exists a T-invariant effective Q-divisor Δ0 on 𝑋0 such that 𝜋0 : (𝑋0,Δ0) → 𝑆 is a locally
stable family of K-semistable log Fano cone singularities, and (𝑋0,𝑠 ,Δ0,𝑠) is the degeneration of
𝑥𝑠 ∈ (𝑋𝑠 ,Δ𝑠) induced by 𝑣m

𝑠 for every 𝑠 ∈ 𝑆.

Proof. (1) and (2) are proved in Corollary 5.2. Thus the morphism 𝜋0 : 𝑋0 → 𝑆 is flat, with normal and
geometrically integral fibers. We still need to prove 𝜋0 is of finite type, and construct the divisor Δ0 on
𝑋0 as in (4). We first consider the base changes to regular schemes.

Suppose 𝑔 : 𝑇 → 𝑆 be a morphism of schemes such that T is regular, and

𝜋𝑇 : (𝑋𝑇 ,Δ𝑇 ) = (𝑋,Δ) ×𝑆 𝑇 → 𝑇 (5.22)

with 𝑥𝑇 ∈ 𝑋𝑇 (𝑇) is the base change. Then there is a locally stable family of Kollár models

𝑓 : (𝑌, 𝐸) → (𝑋𝑇 ,Δ𝑇 ) (5.23)

over T by Corollary 5.3 such that 𝑣m
𝑡 ∈ QM(𝑌𝑡 , 𝐸𝑡 ) for all 𝑡 ∈ 𝑇 , with the same coordinates. The ideal

sequences on 𝑋𝑇 given by Lemma 4.11, by Corollary 5.2, and by the base change of 𝔞• are all the same,
since they coincide on every fiber; denote it by 𝔞𝑇 ,•, and let

𝜋0,𝑇 : 𝑋0,𝑇 = Spec𝑇
(
(𝜋𝑇 )∗gr𝔞𝑇 (𝒪𝑋𝑇 )

)
→ 𝑇, (5.24)

so that 𝑋0,𝑇 � 𝑋0 ×𝑆 𝑇 . Then 𝑋0,𝑇 → 𝑇 is of finite type by Lemma 4.11, and there is a divisor Δ0,𝑇 on
𝑋0,𝑇 induced by Δ𝑇 such that 𝜋𝑇 : (𝑋0,𝑇 ,Δ0,𝑇 ) is a locally stable family of log Fano cone singularities,
and the fiber (𝑋0,𝑡 ,Δ0,𝑡 ) is K-semistable for all 𝑡 ∈ 𝑇 since it is the degeneration induced by 𝑣m

𝑡 .
Now we prove (3): Take 𝑔 : 𝑇 → 𝑆 to be a resolution of singularities, so that g is surjective. Assume

gr𝔞𝑇 (𝒪𝑋𝑇 ) is generated in degrees 𝜆1, . . . , 𝜆𝑁 ; in other words, the canonical map

Sym
𝑁⊕
𝑗=1

𝔞𝑇 ,𝜆 𝑗/𝔞𝑇 ,>𝜆 𝑗 → gr𝔞𝑇 (𝒪𝑋𝑇 ) (5.25)

is surjective. If 𝑡 ∈ 𝑇 and 𝑠 = 𝑔(𝑡) ∈ 𝑆, then

gr𝔞𝑡 (𝒪𝑋𝑡 ) = gr𝔞𝑇 (𝒪𝑋𝑇 ) ⊗𝒪𝑇 𝜅(𝑡) = gr𝔞 (𝒪𝑋 ) ⊗𝒪𝑆 𝜅(𝑡) = gr𝔞𝑠 (𝒪𝑋𝑠 ) ⊗𝜅 (𝑠) 𝜅(𝑡) (5.26)
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is generated in degrees 𝜆 𝑗 , hence gr𝔞𝑠 (𝒪𝑋𝑠 ) is also generated in degrees 𝜆 𝑗 . This holds for all 𝑠 ∈ 𝑆 since
𝑔 : 𝑇 → 𝑆 is surjective, hence gr𝔞 (𝒪𝑋 ) is generated in degrees 𝜆 𝑗 by Nakayama’s lemma, as each graded
piece 𝔞𝜆/𝔞>𝜆 is a coherent 𝒪𝑆-module. That is, 𝜋0 : 𝑋0 = Spec𝑆 (𝜋∗gr𝔞 (𝒪𝑋 )) → 𝑆 is of finite type.

Let 𝑀 ⊂ R be the subgroup generated by all 𝜆 with 𝔞𝜆/𝔞>𝜆 ≠ 0; it is the value group of 𝑣m
𝑠 for any

𝑠 ∈ 𝑆. Then M is a free abelian group of finite rank r, and the torus T = Spec𝑆𝒪𝑆 [𝑀] � (Gm,𝑆)
𝑟 acts

on 𝑋0 over S. The fixed locus is given by

𝜋∗gr𝔞 (𝒪𝑋 ) → 𝜋∗(𝔞0/𝔞>0) � 𝒪𝑆 , (5.27)

so it is a section 𝑥0 : 𝑆 → 𝑋0. Since gr𝔞 (𝒪𝑋 ) is finitely generated, the elements 𝜆 ∈ 𝑀 with 𝔞𝜆/𝔞>𝜆 ≠ 0
span a rational polyhedral cone 𝜔 ⊂ 𝑀R. Let 𝜉0 ∈ 𝑁R = HomZ (𝑀,R) be the inclusion 𝑀 ↩→ R, then
𝜉0 is positive on 𝜔 \ {0}, so there exists 𝜉 ∈ 𝑁 = HomZ(𝑀,Z) that is positive on 𝜔 \ {0}.

To prove (4), we consider 𝑇 = Spec(𝐴) where A is a DVR, and will descend the divisors Δ0,𝑇 to 𝑋0
as in Corollary 5.2, using Lemma A.1 and the representability of relative Mumford divisors (see [15,
Thm. 4.76]). We need a projective family to have the representability. Choose 𝜉 ∈ 𝑁 as above, and let

𝑋0 � Proj𝑆𝜋∗gr𝔞 (𝒪𝑋 ) [𝑢] (5.28)

where 𝜋∗gr𝔞 (𝒪𝑋 ) [𝑢] isN-graded with u in degree 1 and 𝜋∗(𝔞𝜆/𝔞>𝜆) in degree 〈𝜉, 𝜆〉. Then the formation
of 𝑋0 commutes with base change. Thus, by Lemma 2.20,

𝜋̄0,𝑇 : (𝑋0,𝑇 = 𝑋0 ×𝑆 𝑇,Δ0,𝑇 +𝑉𝑇 ) → 𝑇 (5.29)

is a locally stable family of projective plt pairs, where 𝑋0,𝑇 ⊂ 𝑋0,𝑇 is an open subscheme, 𝑉𝑇 is the
complement, and Δ0,𝑇 is the closure of Δ0,𝑇 . If we write Δ =

∑
𝑐𝐷𝐷, then Δ0,𝑇 =

∑
𝑐𝐷𝐷0,𝑇 , where

𝐷0,𝑇 ⊂ 𝑋0,𝑇 is the closure of the divisorial part 𝐷0,𝑇 ⊂ 𝑋0,𝑇 of the closed subscheme defined by initial
ideal of 𝐷𝑇 ⊂ 𝑋𝑇 ; see Remark 4.12. Then each 𝐷0,𝑇 is a relative Mumford divisor on 𝑋0,𝑇 /𝑇 , giving
a morphism

𝑔̃𝐷 : 𝑇 → MDiv (5.30)

that lifts 𝑔 : 𝑇 → 𝑆, where MDiv is the S-scheme representing relative Mumford divisors on 𝑋0/𝑆 of
a suitable degree in [15, Thm. 4.76]. On the underlying sets, the map 𝑔̃𝐷 lifts 𝑠 ∈ 𝑆 to the point that
represents 𝐷0,𝑠 ⊂ 𝑋0,𝑠 . Thus by Lemma A.1, there is a relative Mumford divisor 𝐷0 on 𝑋0/𝑆 whose
base change is 𝐷𝑇 ,0 for any 𝑔 : 𝑇 → 𝑆 as above. Let Δ0 =

∑
𝑐𝐷𝐷0, and Δ0 = Δ0 |𝑋0 . Then

𝜋0 : (𝑋0,Δ0) → 𝑆 (5.31)

is a locally stable family of log Fano cone singularities since its base change to any DVR is so, by [15,
Def-Thm. 4.7]. The fiber (𝑋0,𝑠 ,Δ0,𝑠) is K-semistable (with the polarization 𝜉0 : 𝑀 ↩→ R) since it is the
degeneration of (𝑋,Δ) induced by 𝑣m

𝑠 . �

Corollary 5.5. Let S be a reduced scheme, and 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) be a locally stable family
of klt singularities. Then there exists a locally closed stratification

⊔
𝑖 𝑆𝑖 → 𝑆 satisfying the following:

if 𝑔 : 𝑇 → 𝑆 is a morphism where T is a semi-normal scheme, then the base change (𝑋𝑇 ,Δ𝑇 ) → 𝑇 with
𝑥𝑇 ∈ 𝑋𝑇 (𝑇) admits a degeneration to a locally stable family of K-semistable log Fano cone singularities
if and only if g factors through some 𝑆sn

𝑖 → 𝑆, where 𝑆sn
𝑖 is the semi-normalization of 𝑆𝑖 .

Here we say a locally stable family of klt singularities admits a degeneration to a locally stable family
of K-semistable log Fano cone singularities if the conclusions of Corollary 5.4 hold.
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Proof. Suppose 𝜋 : (𝑋,Δ) → 𝑆 with 𝑥 ∈ 𝑋 (𝑆) degenerates to a locally stable family (𝑋0,Δ0) → 𝑆 of
K-semistable log Fano cone singularities, then

v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) = v̂ol(𝑥0,𝑠; 𝑋0,𝑠 ,Δ0,𝑠) (5.32)

for all 𝑠 ∈ 𝑆 by [22, Lem. 4.10], where 𝑥0 ∈ 𝑋0 (𝑆) is the vertex. Hence 𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) is locally
constant on S by Lemma 2.21. The converse holds when S is semi-normal by Corollary 5.4.

In general, the function

𝑠 ↦→ v̂ol(𝑥𝑠; 𝑋𝑠 ,Δ𝑠) (5.33)

is constructible on S by [29, Thm. 1.3], and lower semi-continuous on S by [5, Thm. 1.1], and its
formation commutes with arbitrary base change since the local volume is preserved by field extensions.
Then it suffices to take each 𝑆𝑖 ⊂ 𝑆 to be a level set of this function, which is a locally closed subscheme
with the reduced scheme structure. �

5.3. Example: Unibranch plane curves

Let k be an algebraically closed field of characteristic zero. Let 𝐶 ⊂ A2 = Speck[𝑥, 𝑦] be a reduced
plane curve, that is, a reduced closed subscheme of pure dimension one. Assume C is unibranch at the
origin 0 ∈ A2 (in particular, 0 ∈ 𝐶). We are interested in the local volume

v̂ol(0;A2, 𝜆𝐶) (5.34)

for coefficients 0 ≤ 𝜆 < lct0(A2;𝐶).
By [22, Thm. 1.1], we need to find a quasi-monomial valuation 𝑣 ∈ Valqm

A2 ,0 inducing a degeneration
of 0 ∈ (A2, 𝜆𝐶) to a K-semistable log Fano cone singularity. We first consider the problem for analytic
germs of curves.

Example 5.6. Let 𝐶 ⊂ Â2 = Speck[[𝑥, 𝑦]] be an integral closed subscheme of dimension 1. As in [36],
we may assume that 𝐶 is given by a parametrization

𝑥 = 𝑡𝑎, 𝑦 = 𝜑(𝑡) = 𝑡𝑏 +
∑
𝑖>𝑏

𝑐𝑖𝑡
𝑖 ∈ k[[𝑡]] (5.35)

such that 𝑏 > 𝑎 > 1 and 𝑎 � 𝑏. More precisely, 𝐶 is defined by the kernel of the map

k[[𝑥, 𝑦]] → k[[𝑡]], (𝑥, 𝑦) ↦→ (𝑡𝑎, 𝜑(𝑡)). (5.36)

We claim that

lct(𝐶) � lct(Â2;𝐶) =
1
𝑎
+

1
𝑏
. (5.37)

The function 𝑓 ∈ k[[𝑥, 𝑦]] defining𝐶 can be written as 𝑓 =
∏𝑎−1

𝑗=0 (𝑦−𝜑(𝜁
𝑗𝑥1/𝑎)), where 𝜁 is a primitive

a-th root of unity. Then from the Newton polygon of f we get lct(𝐶) ≤ 1
𝑎 + 1

𝑏 , by [17, Thm. 6.40]. In
the following, we will show that f degenerates to 𝑓0 = (𝑦𝑎/𝑑 − 𝑥𝑏/𝑑)𝑑 , where 𝑑 = gcd(𝑎, 𝑏). Hence, if
𝐶0 is defined by 𝑦𝑎/𝑑 − 𝑥𝑏/𝑑 , then

lct(𝐶) ≥ lct(𝑑𝐶0) =
1
𝑑

(
1
𝑎/𝑑

+
1
𝑏/𝑑

)
=

1
𝑎
+

1
𝑏

(5.38)

by the lower semi-continuity of lct and [17, Prop. 6.39].
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Let 𝑣 𝜉 ∈ Val
Â2 denote the monomial valuation given by weight 𝜉 = (𝜇, 𝜈) ∈ R2

>0. Then

gr𝑣𝛼 (k[[𝑥, 𝑦]]) = k[𝑋,𝑌 ], (5.39)

where we denote the initial terms of 𝑥, 𝑦 ∈ k[[𝑥, 𝑦]] by 𝑋,𝑌 ∈ k[𝑋,𝑌 ], respectively, and the ring k[𝑋,𝑌 ]
is graded with deg(𝑋) = 𝜇 and deg(𝑌 ) = 𝜈. We will show that 𝑣 𝜉 induce K-semistable degenerations
of (Â2, 𝜆𝐶), for an appropriate weight 𝜉 depending on the coefficient 𝜆. There are two cases:

(1). Let 𝑑 = gcd(𝑎, 𝑏), 𝑎0 = 𝑎/𝑑, 𝑏0 = 𝑏/𝑑, and 𝜉 = (𝑎0, 𝑏0). Then the initial term of f is

𝑓0 =
𝑎−1∏
𝑗=0

(𝑌 − 𝜁𝑏 𝑗𝑋𝑏/𝑎) = (𝑌 𝑎0 − 𝑋𝑏0 )𝑑 (5.40)

where 𝜁 ∈ k is a primitive a-th root of unity. Let 𝐶0 ⊂ A2 be the curve defined by 𝑌 𝑎0 − 𝑋𝑏0 . Then 𝑣 𝜉
induces a Gm-equivariant degeneration of (Â2, 𝜆𝐶) to (A2, 𝜆𝑑𝐶0), where Gm acts on A2 with weight 𝜉,
such that 𝐶0 ⊂ A2 is invariant. In this case, the polarized log Fano cone singularity (A2, 𝜆𝑑𝐶0; 𝜉) is an
(orbifold) affine cone over the log Fano pair

(𝐸,Δ𝐸 ) =

(
P1,

(
1 −

1
𝑎0

)
{0} +

(
1 −

1
𝑏0

)
{∞} + 𝜆𝑑{1}

)
(5.41)

see [19, Ex. 1.7]. By Fujita–Li’s valuative criterion for K-stability (see [31, Thm. 4.13]), it is easy to
see that (𝐸,Δ𝐸 ) is K-semistable if and only if 𝜆𝑑 ≥ 1

𝑎0
− 1

𝑏0
, that is,

𝜆 ≥
1
𝑎
−

1
𝑏
. (5.42)

Thus (A2, 𝜆𝑑𝐶0; 𝜉) is K-semistable if and only if 𝜆 ≥ 1
𝑎 − 1

𝑏 . We can also compute

v̂ol
Â2 ,𝜆𝐶

(𝑣 𝜉 ) = 𝑎𝑏

(
1
𝑎
+

1
𝑏
− 𝜆

)2
. (5.43)

(2). Suppose 0 ≤ 𝜆 < 1
𝑎 − 1

𝑏 . Let 𝜉 = (𝜇, 1) where

𝜇 = 1 − 𝜆𝑎 > 𝑎/𝑏 (5.44)

Then 𝑣 𝜉 induces a degeneration of (Â2, 𝜆𝐶) to (A2, 𝜆𝑎𝐿; 𝜉), where 𝐿 ⊂ A2 is the line 𝑌 = 0. The pair
(A2, 𝜆𝑎𝐿) is toric, and it is easy to see the toric valuation of weight 𝜉 = (𝜇, 1) minimizes the normalized
volume among all toric valuations. Hence (A2, 𝜆𝑎𝐿; 𝜉) is K-semistable by [22, Thm. 3.5, Prop. 4.21].
In this case, we have

v̂ol
Â2 ,𝜆𝐶

(𝑣 𝜉 ) = 4(1 − 𝜆𝑎). (5.45)

Note that the above results only depend on the pair of integers (𝑎, 𝑏). They are the first two terms of
the Puiseux characteristic of the germ 𝐶 ⊂ Â2 (see [36, Def. II.3.2]), and are independent of the choice
of analytic local coordinates.

Lemma 5.7. Let 𝐶 ⊂ A2 be a reduced plane curve through the origin 0 ∈ A2. Suppose C is unibranch
and singular at 0, with the Puiseux characteristic (𝑎, 𝑏, . . .). Then lct0(A2;𝐶) = 1

𝑎 +
1
𝑏 , and the following

hold:
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(1) If 1
𝑎 − 1

𝑏 ≤ 𝜆 < 1
𝑎 + 1

𝑏 , then

v̂ol(0;A2, 𝜆𝐶) = 𝑎𝑏

(
1
𝑎
+

1
𝑏
− 𝜆

)2
(5.46)

and the K-semistable degeneration of 0 ∈ (A2, 𝜆𝐶) is (A2, 𝜆𝑑𝐶0; 𝜉), where 𝑑 = gcd(𝑎, 𝑏) and 𝐶0
is the curve 𝑌 𝑎/𝑑 − 𝑋𝑏/𝑑 = 0, with the polarization 𝜉 = (𝑎/𝑑, 𝑏/𝑑);

(2) if 0 ≤ 𝜆 < 1
𝑎 − 1

𝑏 , then

v̂ol(0;A2, 𝜆𝐶) = 4(1 − 𝜆𝑎) (5.47)

and the K-semistable degeneration of 0 ∈ (A2, 𝜆𝐶) is (A2, 𝜆𝑎𝐿; 𝜉), where L is the line 𝑌 = 0, with
the polarization 𝜉 = (1 − 𝜆𝑎, 1)

If C is smooth at 0, then (2) holds for all 0 ≤ 𝜆 < 1 with 𝑎 = 1.

Proof. Let 𝐶 ⊂ Â2 = Speck[[𝑥, 𝑦]] denote the completion at 0. By Example 5.6, we have

lct0(A2, 𝐶) = lct(Â2, 𝐶) =
1
𝑎
+

1
𝑏
, (5.48)

since a pair is klt at a point if and only if its completion at that point is klt (see [14, §2.16]). There is a quasi-
monomial valuation 𝑣̂ ∈ Val

Â2 ,0 inducing a degeneration of 0 ∈ (Â2, 𝜆𝐶) to a K-semistable log Fano
cone singularity (A2,Δ0; 𝜉) as in Example 5.6. Let v denote the restriction of 𝑣̂ on k[𝑥, 𝑦] ⊂ k[[𝑥, 𝑦]].
Then v is a quasi-monomial valuation centered at 0 ∈ A2 by [12, Lem. 3.10], and the degeneration of
0 ∈ (A2, 𝜆𝐶) induced by v is also (A2,Δ0; 𝜉).

Hence v is the minimizer of the normalized volume of 0 ∈ (A2, 𝜆𝐶) by [22, Thm. 1.3]. That is,

v̂ol(0;A2, 𝜆𝐶) = v̂olA2 ,𝜆𝐶 (𝑣) = v̂ol
Â2 ,𝜆𝐶

(𝑣̂) =

{
𝑎𝑏

(
1
𝑎 + 1

𝑏 − 𝜆
)2

if 1
𝑎 − 1

𝑏 ≤ 𝜆 < 1
𝑎 + 1

𝑏

4(1 − 𝜆𝑎) if 0 ≤ 𝜆 < 1
𝑎 − 1

𝑏

(5.49)

where the two cases 1
𝑎 − 1

𝑏 ≤ 𝜆 < 1
𝑎 + 1

𝑏 and 0 ≤ 𝜆 < 1
𝑎 − 1

𝑏 correspond to the two cases in Example
5.6, and the explicit form of the K-semistable degeneration (A2,Δ0; 𝜉) is given there.

If C is smooth at 0, then we can choose analytic local coordinates such that 𝐶 is the line 𝑦 = 0. Thus
the second case gives the K-semistable degeneration for all 0 ≤ 𝜆 < 1 with 𝑎 = 1. �

We say two plane curves 𝐶,𝐶 ′ ⊂ A2 that are unibranch at 0 ∈ A2 are equisingular at 0 if they
have the same Puiseux characteristics. See [34] and [35] for other equivalent definitions. In particular,
if k = C, then C and 𝐶 ′ are equisingular at 0 if and only if they have the same topological type (see
[36, Def. I.1.2]).

Corollary 5.8. Let S be a reduced connected scheme of finite type over an algebraically closed field k
of characteristic 0. Let 𝐶 ⊂ A2

𝑆 be a closed subscheme that is flat of pure relative dimension 1 over S.
Let 0𝑆 ⊂ A2

𝑆 denote the origin. Suppose 𝐶𝑠 ⊂ A2
k

is a reduced plane curve that is unibranch at 0 for all
𝑠 ∈ 𝑆(k), and 𝐶𝑠 , 𝐶𝑠′ are equisingular at 0 for all 𝑠, 𝑠′ ∈ 𝑆(k). Then the following hold:

(1) The function 𝑠 ↦→ lct0𝑠 (A2
𝑠;𝐶𝑠) is constant on S.

(2) Suppose 0 ≤ 𝜆 < lct0𝑠 (A2
𝑠;𝐶𝑠) for all 𝑠 ∈ 𝑆. Then (A2

𝑆 , 𝜆𝐶) → 𝑆 is a locally stable family of klt
singularities at 0𝑆 , and the function

𝑠 ↦→ v̂ol(0𝑠;A2
𝑠 , 𝜆𝐶𝑠) (5.50)

is constant on S.
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(3) Assume S is semi-normal. Then (A2
𝑆 , 𝜆𝐶) → 𝑆 admits a degeneration to a locally stable family of

K-semistable log Fano cone singularities (𝑋0,Δ0) → 𝑆. Moreover, all fibers of (𝑋0,Δ0) → 𝑆 over
k-points of S are isomorphic.

Proof. (1). Since all 𝐶𝑠 are equisingular at 0 for 𝑠 ∈ 𝑆(k), they have the same Puiseux characteristics
(𝑎, 𝑏, . . .). By Lemma 5.7, the function 𝑠 ↦→ lct0𝑠 (A2

𝑠;𝐶𝑠) is constant for 𝑠 ∈ 𝑆(k), of value 1
𝑎 + 1

𝑏 .
Since S is of finite type over k, the set of k-points 𝑆(k) is dense in S, and every nonempty closed subset
of S contains a k-point. Thus, by the lower semi-continuity of lct, 𝑠 ↦→ lct0𝑠 (A2

𝑠;𝐶𝑠) is constant on S.
(2). Let 0 ≤ 𝜆 < 1

𝑎 + 1
𝑏 . Note that A2

𝑆 → 𝑆 is a smooth family, and 𝐶 ⊂ A2
𝑆 is a relative Cartier

divisor over S. Thus (A2
𝑆 , 𝜆𝐶) → 𝑆 is a locally stable family of klt singularities at 0𝑆 since every fiber

(A2
𝑠 , 𝜆𝐶𝑠) is klt at 0𝑠 by (1), and 𝐾A2

𝑆
/𝑆 + 𝜆𝐶 is R-Cartier (see [15, Def. 4.7]). The function

𝑠 ↦→ v̂ol(0𝑠;A2
𝑠 , 𝜆𝐶𝑠) (5.51)

is lower semi-continuous by [5, Thm. 1.1], and is constant on 𝑆(k) with the value given by Lemma 5.7.
Hence it is a constant function on S.

(3). The existence of the K-semistable degeneration (𝑋0,Δ0) → 𝑆 follows from Corollary 5.4, since
the family (A2

𝑆 , 𝜆𝐶) → 𝑆 has constant local volume at 0𝑆 . Moreover, the fiber (𝑋0,𝑠 ,Δ0,𝑠) at 𝑠 ∈ 𝑆(k)
is the K-semistable degeneration of 0 ∈ (A2

k
, 𝜆𝐶𝑠). They are all isomorphic by Lemma 5.7. �

A. A valuative criterion for sections

Lemma A.1. Let S be a locally Noetherian semi-normal scheme, and 𝜋 : 𝑍 → 𝑆 be a morphism that is
separated and of finite type. Suppose |𝜎 | : |𝑆 | → |𝑍 | is a map between underlying sets that is a section
of the map |𝜋 | : |𝑍 | → |𝑆 |, such that for every morphism 𝑔 : 𝑇 = Spec(𝐴) → 𝑆, where A is a DVR, there
exists a morphism 𝑓 : 𝑇 → 𝑍 such that 𝜋 ◦ 𝑓 = 𝑔 and | 𝑓 | = |𝜎 | ◦ |𝑔 |. Then there is a section 𝜎 : 𝑆 → 𝑍
of 𝜋 whose underlying map between sets is |𝜎 |.

Moreover, if S is locally essentially of finite type over a field k, then it suffices to consider A that are
also essentially of finite type over k.

Proof. We may assume S is affine. If T is the spectrum of a DVR, we write 𝜁 ∈ 𝑇 for the generic point,
and 𝑡 ∈ 𝑇 for the closed point. For 𝑠 ∈ 𝑆 with residue field 𝜅 = 𝜅(𝑠), let A be a DVR with residue field
𝜅, say, 𝐴 = 𝜅 [𝜛](𝜛) , and consider the map

𝑇 = Spec(𝐴) → Spec(𝜅) 𝑠
−→ 𝑆. (A.1)

Then we conclude that |𝜎 | (𝑠) ∈ |𝑍𝑠 | is a 𝜅-point of 𝑍𝑠 . In particular, it is a closed point of |𝑍𝑠 |.
Let |𝑆′ | = |𝜎 | ( |𝑆 |) ⊂ |𝑍 | be the image of |𝜎 |. Note that |𝜎 | : |𝑆 | → |𝑆′ | is a bijection, and the

restriction of |𝜋 | is the inverse. Suppose 𝑥 ′ ∈ |𝑆′ | specializes to 𝑦′ ∈ |𝑍 |, and 𝑦′ ≠ 𝑥 ′. Let 𝑥 = 𝜋(𝑥 ′) and
𝑦 = 𝜋(𝑦′). Since 𝑥 ′ = |𝜎 | (𝑥) is a closed point in 𝑍𝑥 , we have 𝑦 ≠ 𝑥. Then there exists a DVR A with
fraction field 𝐾 = 𝜅(𝑥) and a morphism 𝑓 ′ : 𝑇 = Spec(𝐴) → 𝑍 such that 𝑓 ′(𝜁) = 𝑥 ′, and 𝑓 ′(𝑡) = 𝑦′ (see
[26, Tag 00PH]), and we may assume that A is essentially of finite type over k if S is so. By assumption,
there exists a morphism 𝑓 : 𝑇 → 𝑍 such that 𝜋 ◦ 𝑓 = 𝜋 ◦ 𝑓 ′, 𝑓 (𝜁) = |𝜎 | (𝑥) = 𝑥 ′, and 𝑓 (𝑡) = |𝜎 | (𝑦).
Since T has function field 𝐾 = 𝜅(𝑥), we must have 𝑓 |Spec(𝐾 ) = 𝑓 ′|Spec(𝐾 ) . Since 𝜋 is separated, we
conclude that 𝑓 = 𝑓 ′ by the valuative criterion. Thus 𝑦′ = 𝑓 (𝑡) = |𝜎 | (𝑦) ∈ |𝑆′ |. So |𝑆′ | is stable under
specialization.

Let 𝜂1, . . . , 𝜂𝑛 ∈ 𝑆 be the generic points, and 𝜂′𝑖 = |𝜎 | (𝜂𝑖) ∈ |𝑆′ |. Then
⋃𝑛
𝑖=1 {𝜂

′
𝑖} ⊂ |𝑆′ |. Conversely,

if 𝑥 ′ ∈ |𝑆′ |, then 𝑥 = 𝜋(𝑥 ′) ∈ 𝑆 generalizes to some 𝜂𝑖 . Let A be a DVR and 𝑔 : 𝑇 = Spec(𝐴) → 𝑆 be a
morphism such that 𝑔(𝜁) = 𝜂𝑖 and 𝑔(𝑡) = 𝑥. By assumption, there is a lifting 𝑓 : 𝑇 → 𝑍 of g such that
𝑓 (𝜁) = |𝜎 | (𝜂𝑖) = 𝜂′𝑖 and 𝑓 (𝑡) = |𝜎 | (𝑥) = 𝑥 ′. Hence 𝑥 ′ ∈ {𝜂′𝑖}. Thus we conclude that

⋃𝑛
𝑖=1 {𝜂

′
𝑖} = |𝑆′ |.

Hence |𝑆′ | ⊂ |𝑍 | is closed. Let 𝑆′ ⊂ 𝑍 be the corresponding reduced closed subscheme.
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By the valuative criterion, 𝜋 |𝑆′ : 𝑆′ → 𝑆 is proper. Moreover, it is bijective and induces isomorphisms
on residue fields. Since S is semi-normal, we conclude that 𝜋 |𝑆′ : 𝑆′ → 𝑆 is an isomorphism. Therefore
we get a section 𝜎 : 𝑆 � 𝑆′ ↩→ 𝑍 . �
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