IT

Spatial Data

In all the previous chapters, we were dealing with the most common
data format in the social sciences: tables. These tables usually contain
numbers and text. We discussed how you can store these tables in files,
read and process them in R, or use relational databases to manipulate
data distributed over several tables. For some applications, however, we
need to go beyond this simple model. There are special types of data for
which the tabular data model is insufficient. In this part of the book, we
take a look at three of them. This chapter introduces spatial data, which
are observations that come with geographic coordinates. In other words,
with spatial data, each observation has a particular location on the globe
assigned to it. In later chapters, we will cover text as data, followed by
the final applied chapter on network data.

II.I WHAT IS SPATIAL DATA?

Spatial data are closely linked to the world of Geographic Information
Systems (GIS), which is the software to collect, process, and analyze data
with spatial coordinates. There are two major types of spatial data: vector
data and raster data. In this chapter, we discuss only the former. You can
think of a vector dataset as a table similar to the ones we have used so far,
but where each row has some geographic information attached to it. Take
a look at the example in Figure 11.1: You can see a standard table on the
right, which contains information about cities. This is the same type of
data model we have used so far.

However, in a vector GIS dataset, this tabular information (called the
“attribute table”) is amended with spatial coordinates. As you can see

147

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

148 11 Spatial Data

Geographic Features Attribute Table
° ID Name Population
° 1 City A 250,000
2 City B 130,000
° 3 City C 372,000

FIGURE 11.1. A table with cities (right), each of which is associated with spatial
coordinates (left).

o City A _
River
[]

City B
[]
City C

FIGURE 11.2. Different types of vector data.

in the example, each city in the table corresponds to a point on a map
(left), which denotes the location of the respective city in the geographic
space. Thus, a vector dataset is closely related to a standard table, with the
only difference being that there is a new type of column with geographic
information. This column contains what we typically call the geometry
of a given entry. In our example above, this geometry is simply a two-
dimensional point, in other words, a pair of (x,y) coordinates. However,
GIS systems also allow more complex geometry types. Figure 11.2 shows
a line geometry, which can be used to represent, for example, a river or a
road. Finally, a polygon geometry is used to represent closed areas, such
as a lake, or the borders of a country. A line is a sequence of (x,y) points,
and a polygon is simply a closed line.

A question we cannot cover in depth is how we get from a three-
dimensional surface (the earth) to a two-dimensional map, so I just convey
some basic intuition here. There are two basic approaches to do this.
The first one is to define a coordinate system for the (roughly spherical)
surface of the earth (see Figure 11.3, left). This is what we do when using
longitude and latitude coordinates: The equator has latitude o, and loca-
tions north (south) of the equator have positive (negative) latitudes, each
measured in radial coordinates. Longitude o is defined as going through

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.1 What Is Spatial Data? 149

90° North

o
°
2
©
=

180° West 180° East

90° South

FIGURE 11.3. Coordinate systems for spatial data: A geographic (unprojected)
coordinate system using radial coordinates on a spherical earth (left), and a
projected coordinate system (right).

Greenwich, and longitudes increase as we move east, again measured in
radial coordinates. Thus, each point on the globe can now be uniquely
identified by its longitude (x) and latitude (y) values, which is called a
geographic coordinate system. Importantly, we need to be careful what we
can and cannot do with this system. Distance calculations, for example,
can be tricky, since the distance on a sphere with radial coordinates cannot
be computed similar to a planar surface.

The second approach to turn a three-dimensional surface of the earth
into a two-dimensional map is to project it (see Figure 11.3, right).
A projection is essentially an instruction for mapping points on the globe
to corresponding ones on a map. There are many different ways for doing
this, some of which are designed for particular purposes (e.g., they allow
you to compute the distances between points correctly, thus avoiding
problems such as the one described for geographic coordinate systems).

While the features of different projections are not important here, you
need to keep in mind that the coordinate system and the projection of a
geographic dataset are a important parameters you need to know when
working with spatial data. Certain operations on spatial data (e.g., mea-
suring the area of a polygon) only produce valid results if they are per-
formed in a suitable projection. If you want to read up on this topic,
I highly recommend the University of Boulder’s Earth Data Analytics
online course, which contains an entire chapter about spatial coordinate
systems (Wasser, 2020).

GIS software is designed to handle spatial data — it allows you to read,
modify, analyze, or visualize it. There are many different GIS systems
available: ArcGIS is one of the most widely used commercial ones. If
you want to try out an open-source GIS, I recommend QGIS, which is
available free of charge at https://www.qgis.org/ for all major operating

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://www.qgis.org/
https://doi.org/10.1017/9781108990424.016

150 11 Spatial Data

systems. In this chapter, we do not rely on specialized GIS software.
Rather, we use extensions to the tools we introduced in the previous
parts of the book: The R statistical software can in fact be turned into a
powerful tool to process and analyze spatial data. Also, PostgreSQL has
a spatial extension called PostGIS, which allows us to carry out spatial
operations in SQL in combination with all the existing benefits of rela-
tional databases. However, before we discuss spatial data management
with R and PostGIS, let me briefly introduce the applied example we use
in this chapter.

II.2 APPLICATION: PATTERNS OF VIOLENCE
IN THE BOSNIAN CIVIL WAR

In the practical exercises for this chapter, we examine a dataset about
violent incidents in the civil war in Bosnia (1992-1995). The break-up of
the Yugoslav Federation went along with an outbreak of violence between
the three major population groups. Much of this violence happened in the
(now independent) republic of Bosnia and Herzegovina, which is what
we focus on in this chapter. Specifically, we will analyze the distribution
of violence in Bosnia over space, to identify where it was most severe.
Although we will not do a full explanatory analysis to study the drivers
of this violence, the approach we present here is usually similar for any
kind of statistical analysis that involves spatial data.

We use data on violent events from the Geo-referenced Event Dataset
(GED), collected and maintained by the Uppsala Conflict Data Program
(Sundberg and Melander, 2013; Hogbladh, 2019). The GED is part of a
family of datasets related to political violence, and the current version of
the data as well as much additional documentation and information can
be found on their website. The GED is an event dataset, which means that
it provides information at the level of individual incidents. In the case of
the GED, each of these incidents is a violent, lethal confrontation between
two of the conflict parties. The dataset records the date of the incident,
the actors involved, the number of casualties, as well as several additional
variables. The following is a (shortened) single entry from the dataset:

id side_a side_b source_article date_start longitude latitude

200416 Gvt.of BH Civilians ~ BBC Monit. 1993-10-26 17.28 44.55

Each incident has an id, and it identifies the participants in the
event (side_a and side_b). In the above example, the dataset records

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 151

an incident of violence against civilians, perpetrated by government
forces. This information was obtained from an article published in BBC
Monitoring (source_article). The incident took place on October 26,
1993, at the location with the given geographic coordinates (longitude
and latitude). As we can see from the latter coordinates, each entry in
the GED corresponds to a point on the map, so we can treat the entire
collection as a GIS vector dataset in our application below.

To examine the spatial pattern of violence, we use Bosnia’s pre-war
administrative divisions. The smallest administrative unit was the munic-
ipality (opstina), and Bosnia had 109 of them (with the capital Sarajevo
divided into five municipalities). Our goal in this exercise is to compute
the level of violence for each of the municipalities over the course of
the war. Using administrative divisions as spatial units of observation
is only one way to conduct a spatial analysis. Although we do not do
this here, you could use this approach to relate an outcome we want to
explain (in our case, violence) to particular socio-demographic variables
measured at the level of administrative divisions, for example the ethno-
national composition of a municipality (Weidmann, 2011). Alternative
approaches for spatial analysis include the use of artificial grid cells as a
unit of observation (Tollefsen et al., 2012), or no fixed spatial unit at all,
as in point process models (Warren, 2015).

Our task in the analysis below is, therefore, to combine the vector
dataset of violent events (points) with a dataset of Bosnia’s municipali-
ties, which are represented by polygons. We do so by identifying those
violent events that took place within a municipality. In other words, we
use the spatial coordinates of events and municipalities to link them to
each other. In the GIS world, this is called an “overlay” operation, but
we can also refer to it as a “spatial” join — the joining of data based on
a spatial relationship (in our case, a point being located in a polygon).
In the next section, we process spatial data using R and some extension
packages, before introducing the PostGIS spatial database as an alterna-
tive workflow.

II.3 READING AND VISUALIZING SPATIAL DATA IN R

While most spatial data are usually processed in specialized GIS systems,
R has grown into a powerful and versatile GIS itself, due to the develop-
ment of new extension libraries. In this section, we use R’s Simple Features
(sf) library, a relatively new generic library for vector data. The term
“feature” is often used in the GIS world to refer to the computational

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

152 11 Spatial Data

representation of real-world objects, such as houses or lakes. The sf is
the latest addition to R’s spatial libraries and will likely supersede older
ones, such as the sp package. As always, to use the functionality of the
package, we have to load it first:

library(sf)

As described above, a vector dataset is essentially a data table with a
new type of column that contains the spatial representation of the respec-
tive entry. This column is referred to as its geometry, and geometries can be
points, lines, or polygons. The sf package follows exactly this approach. It
uses R’s standard data frames, but adds a new column type for geometries.
So in other words, a spatial dataset in sf is just a regular table with a
specific column for spatial information. Let us take a look at how to
create such a table in R. We first load the GED data on violent events.
This dataset comes as a regular CSV file:

events <- read.csv(file.path("chl1l", "ged.csv"))

I removed many columns from the dataset to make the exercises below
easier to follow. Compared to the original version, the reduced dataset
contains only events for Bosnia, and only those events for which the exact
location is known. Also, the dataset has a limited set of columns, namely,
those with the unique ID of each event, the date it occurred, the location of
the event (stored in the longitude and latitude columns), and the number
of casualties (the best estimate provided by the GED):

summary (events)

id date_start latitude longitude
Min. 1199077 Length:1136 Min. 142.71 Min. :15.78
1st Qu.:199690 Class :character 1st Qu.:43.85 1st Qu.:18.10
Median :200136 Mode :character Median :43.85 Median :18.38
Mean 1200106 Mean 144.11 Mean :18.16
3rd Qu.:200503 3rd Qu.:44.54 3rd Qu.:18.38
Max. 1200874 Max. 145.19 Max. :19.54
best
Min. : 0.00
1st Qu.: 1.00
Median : 3.00
Mean o 17.29
3rd Qu.: 6.00
Max. :8106.00

For now, R treats the events table as a regular data frame and does
not know that each entry has spatial point coordinates attached to it.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 153

Therefore, we need to “spatially enable” the dataset, which we can simply
do by converting it to a spatial object of type sf. The st_as_sf() function
takes a regular data frame, and requires you to specify the names of
the columns where the spatial coordinates are stored. In addition to the
names of coordinate columns, we need to specify what spatial reference
system is used for the dataset.” Longitude/latitude coordinates indicate a
geographic coordinate system (see Figure 11.3), which has the ID 4326.
If your data uses a different reference system or if it is projected, it is
important to correctly specify the coordinate system here:

events <- st_as_sf(events, coords = c("longitude", "latitude"), crs = 4326)

Now you will see that events is no longer just a data frame, but much
more:

print(events, n=2)

Simple feature collection with 1136 features and 3 fields
Geometry type: POINT
Dimension: XY
Bounding box: =xmin: 15.78194 ymin: 42.71194 xmax: 19.53556 ymax: 45.18944
Geodetic CRS: WGS 84
First 2 features:
id date_start best geometry
1 199885 1993-02-01 6 POINT (18.80833 44.87278)
2 199767 1994-03-03 1 POINT (15.91861 44.84444)

What do we see in this output? Our dataset contains a total of 1,136
features, each of which is a conflict event. The data uses points as geome-
tries, in a two-dimensional space (hence the dimension XY). We also see the
overall spatial extent of the dataset, referred to as its “bounding box” —
this is the rectangle defined by the minimum and maximum coordinates
along the x and y axes.

sf provides plotting functions specifically designed for spatial data.
The easiest approach is to plot only the events as points. This is done by
extracting the geometry from the dataset using the st_geometry() func-
tion, and by sticking it into the plot function as follows:

plot(st_geometry(events))

You can see the result in Figure 11.4. However, often we may want
to color/style the plotted features according to some quantity associated

I Spatial reference systems were defined by the European Petroleum Survey Group (EPSG);
online catalogues can be accessed, for example, at https:/spatialreference.org or https://
epsg.io.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://spatialreference.org
https://epsg.io
https://epsg.io
https://doi.org/10.1017/9781108990424.016

154 11 Spatial Data

o o
OgbéOOo o 8 o)
é?@b (]
ébo o (] 6@000 o
[o)
oo & o >0 @§%£
o o 0% o
® 9 © -
o)
o oo ° &
°© © 0000«80 o ©
o o OQ@% o
C>ooo o e
> °F 8o
0o o
o o
Q]
OOO
[e)

FIGURE 11.4. A simple plot of the conflict events from the GED.

with them. For example, we could color the dots according to the sever-
ity of the event, or according to the year in which they took place. In
sf, this can be done by subsetting the data to the variable you want to
use for coloring, and using again the plot() function, as for example
in plot(events["best"]). There are many other options for tuning the
plotting of spatial features, and you should consult the sf manual if you
are interested in learning more.

We have now imported the events data from a CSV file, and converted
it to a spatial dataset with point geometries. The second dataset we need
contains the municipalities for our spatial analysis. The borders of each
municipality are stored as a polygon, which is why we cannot simply
store their coordinates in two columns of a CSV table. Instead, the dataset
of municipal borders is provided in the shapefile format, an old legacy
format for GIS vector datasets. As you can see in the data repository, a
shapefile actually consists of at least three files with the same name, but
different endings (.shp, .shx, and .dbf). Due to the fact that this format
is still widely used, all GIS tools including sf are able to import it. When
we do this, we have to manually set the coordinate reference system to
the standard longitude/latitude system using the crs parameter, as above:

municipalities <- st_read(file.path("ch1l", "bosnia.shp"), crs = 4326)

Reading layer “bosnia' from data source
* /Users/nilsw/Books/DataManagement/dmbook/ch1l1l/bosnia.shp'
using driver ESRI Shapefile'

Simple feature collection with 109 features and 2 fields

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 155

FIGURE 11.5. Municipality boundaries and conflict events.

Geometry type: POLYGON

Dimension: Xy

Bounding box: xmin: 15.74059 ymin: 42.56583 xmax: 19.61979 ymax: 45.26595
Geodetic CRS: WGS 84

With both the events and the administrative borders imported in R, let
us take a quick look at a combined plot. For the map in Figure 11.5, we
first plot the underlying municipalities, and then place the events on top
of them with the add=T parameter:

plot(st_geometry(municipalities), col = "lightgrey")
plot(st_geometry(events), pch = 16, add = T)

We see that there are some areas with lots of events, while others expe-
rienced no violence. Still, this is difficult to tell exactly: Events occurring
at the same location have the same coordinates and are therefore plotted
on top of each other, which makes it impossible for us to keep them apart.
Therefore, we proceed with our exercise and count the number of events
per municipality, which helps us gauge the spatial distribution of violence
over the entire country.

11.3.1 Overlaying Different Spatial Datasets in sf

Rather than just plotting our two datasets — the municipalities and the
events — on top of each other, we now need to link events to their respective

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

156 11 Spatial Data

municipalities, such that we can count them. Before we do so, a short
comment on terminology is in order. In the GIS world, a spatial dataset
used in a project is typically called a layer. In our example, therefore,
we have two layers — a layer of municipality boundaries, and a layer of
events. Linking the events to the municipalities based on their location
is an example of what is called an overlay operation in GIS terminol-
ogy. However, from a relational database perspective, we can also think
of these layers as tables with spatial coordinates. This way, an overlay
operation is equivalent to joining tables based on location: Rather than
linking records based on a common attribute (which is what a regular join
does), we link them by location. In our example, we want to combine each
event with the municipality it occurred in. In other words, an overlay
of this kind is simply a spatial join, and I now demonstrate how this
is done in R and sf.

The st_join() function is used to carry out a spatial join, so let us take
a look at what it does:

joined <- st_join(events, municipalities)
print(joined, n = 2)

Simple feature collection with 1136 features and 5 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 15.78194 ymin: 42.71194 xmax: 19.53556 ymax: 45.18944
Geodetic CRS: WGS 84
First 2 features:
id.x date_start best id.y name geometry
1 199885 1993-02-01 6 115 Breko POINT (18.80833 44.87278)
2 199767 1994-03-03 1 26 Bihac POINT (15.91861 44.84444)

A spatial join is very similar to a regular, non-spatial join: It links the
records of one table to the corresponding records from another table. So
for each conflict event, the function appends the attributes of the corre-
sponding municipality the event is located in. In the above example, the
event with ID 199767 occurred on March 3, 1994 in municipality 26,
which is Biha¢. The joined dataset is again a spatial one, as you can see
from the geometry column, since it retains the spatial coordinates of the
first dataset (the events).

Using the st_join() function in this way hides much of the power and
complexity of spatial joins. Without an additional specification, layers are
joined based on intersecting geometries; that is, an event is linked with

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.3 Reading and Visualizing Spatial Data in R 157

a municipality if its geometry intersects with the municipalities geome-
try (the polygon). This does exactly what we want. However, things can
become more complicated with different types of geometries or different
relationships between them. For example, we can spatially join tables
if geometries touch (but not intersect) each other, or if they are located
within a certain distance to each other. To illustrate the basic idea of a
spatial join, however, we do not go into more detail here.

We have now joined the two layers, such that each event is linked to the
corresponding municipality. To create a map of the intensity of violence
across Bosnia, there are two steps left to do: First, we need to aggregate the
joined datasets by municipality and count the number of events for each
of them, and, second, we need to append this information to our original
dataset of municipalities, so that we can plot it as a map. Let us start
with the first step. For convenience, we use the tidyverse approach for
aggregation and merging (see Chapter 7), but it is of course also possible
to do this in base R:

library(tidyverse)
eventcounts <- joined %>%
as.data.frame() %>%
group_by(id.y) %>%
count (name = "num_events")
print(eventcounts, n = 3)

A tibble: 79 x 2
Groups: id.y [79]
id.y num_events

<int> <int>
1 1 1
2 2 7
3 4 1
. with 76 more rows

The above code first converts the joined spatial dataset to a regular,
non-spatial data frame with as.data. frame(), since we no longer need the
geometries of the municipalities. Using the standard tidyverse approach,
it then groups the data using the id.y variable (which is the municipality
identifier), and counts the records for each of them. This way, we get a
list of municipality IDs (id.y) with the number of events that occurred
in these municipalities. It is important to notice that the municipalities
that do not contain any events do not show up in this list. eventcounts
only contains event counts for 79 municipalities, which means that

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

158 11 Spatial Data

30 out of 109 municipalities did not experience any conflict events
according to the GED.

What is left for us to do is to merge this information with the existing
municipalities dataset. Here, we need to be careful, since the data frame
with the event counts is much shorter than the complete list of munic-
ipalities. Therefore, we use a left join, which preserves the entire list of
municipalities:

municipalities_sf <- municipalities %>%
left_join(eventcounts, by=c("id" = "id.y"))

At the end of the chapter, we will use this new dataset to plot the
distribution of violence across the different municipalities in Bosnia.

II.4 SPATIAL DATA IN A RELATIONAL DATABASE

In the first part of this chapter, we relied on spatial data stored in files,
which we then imported in R for processing. This file-based approach is
only one way to work with spatial data. Similar to relational databases for
non-spatial data, we can also use these databases to store and process data
with spatial coordinates. There are several advantages of the latter, for
example, a more efficient processing of large datasets, but also concurrent
access to the data by multiple users.

In this chapter, we rely again on the PostgreSQL relational database
system. As you know, PostgreSQL is a great tool to work with tabular
data - this is something we discussed at length in the previous chap-
ters. As it turns out, however, PostgreSQL can also process spatial data,
once we enable the PostGIS spatial extension. The combination of Post-
greSQL/PostGIS (which from now on, we simply refer to as PostGIS)
then becomes a powerful spatial database that is an ideal tool for more
complex spatial data operations. You interact with PostGIS in the same
way as we did with PostgreSQL alone. This means that you need to have
the database server running and set up a new database (which we call
spatialdata) for this chapter, as described in Chapter 2. We then connect
to our database exactly as we did in the previous chapters:

library(RPostgres)

db <- dbConnect(Postgres(),
dbname = "spatialdata",
user = "postgres",
password = "pgpasswd")

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.4 Spatial Data in a Relational Database 159

We now have a blank PostgreSQL relational database that keeps data
in tables. For us to be able to work with spatially referenced data, however,
we need to spatially enable our database by switching on the PostGIS
extension:

dbExecute(db, "CREATE EXTENSION postgis")

Let us check if PostGIS is working correctly. The following code should
output a single line similar to what you see below, which indicates the
PostGIS version installed on your system:

dbGetQuery(db,
"SELECT name, installed_version
FROM pg_available_extensions
WHERE name = 'postgis'™)

name installed_version
1 postgis 3.1.5

We are now ready to import the spatial datasets into PostGIS. Again,
we use the conflict events and the municipalities data for Bosnia that you
are familiar with from the exercises above. Let us start with the events.
We first read the CSV file and write it as a simple table in the database:

events <- read.csv(file.path("ch11l", "ged.csv"))
dbWriteTable(db, "events", events)

This step is exactly the same as for a non-spatial table. So far, our
table is not yet “spatially enabled,” which means that PostGIS does not
know yet that each event is actually associated with a point with x and y
(or rather, longitude and latitude) coordinates. This is why, similar to
the R-based workflow above, we need to explicitly create a column in
the events table for the spatial location associated with each row. As
with the sf package for R, this column is called a geometry column, and
we create it using an ALTER TABLE statement. Recall that we have used
different column types in PostgreSQL before, such as integer for numbers
or varchar for text (see Chapter 8). With PostGIS enabled, we can now
define columns of type geometry. For a geometry column, you need to
specify the type of the geometry (a point, a 1line or a polygon), as well as
the coordinate reference system (the EPSG ID we used above):

dbExecute(db,
"ALTER TABLE events ADD COLUMN geom geometry(point, 4326)")

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

160 11 Spatial Data

We can now use the data in the longitude and latitude fields of our
table to update the geometry column with newly created point geometries.
Here, the st_point() function creates the point, and the st_setSRID()
function defines the spatial coordinate system (which you already know
from the previous section):

dbExecute(db,
"UPDATE events
SET geom = st_setSRID(st_point(longitude, latitude), 4326)")

Done! Our events table now has the spatial coordinates of all events
stored in a new column, which we can later use for spatial computations.
Next, we need to import the municipalities to our database. Here, we
follow a slightly different approach. We first import the shapefile using
the st_read() function from the sf package (see above), rename the geom-
etry column to geom for consistency, and then send the (spatial) table
to PostGIS. The latter is done using the st_write() function from sf,
which is essentially the spatial equivalent to the dbWriteTable() we used
in previous chapters. The function requires you to specify the database
connection (this is the db object), as well as a name for the layer you
would like to create in the database.

municipalities <- st_read(file.path("chl1l", "bosnia.shp"), crs = 4326) %>%
rename (geom = geometry)
st_write(municipalities, dsn = db, layer = "municipalities")

Let us count the records in our two spatial tables to make sure that the
import was successful:

dbGetQuery(db, "SELECT count(*) FROM municipalities")

count
1 109

dbGetQuery(db, "SELECT count(*) FROM events")

count
1 1136

11.4.1 A Spatial Join with PostGIS

The two tables were correctly imported: We have 109 municipalities and
1,136 events in our database. We can now proceed to spatially join them,
using the geometry columns from the two tables. Let us recall first what a
join of two tables does: It links the records of one table to those of another,
based on a defined relationship between attributes of the two tables. In
a conventional join, we usually require that an attribute from one table

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.4 Spatial Data in a Relational Database 161

be equal to the attribute from another table. For example, in the previous
chapter, we joined parties to elections based on the party ID attribute.
In a spatial join, we no longer match records based on common
attributes, but based on their spatial coordinates. Specifically, we want
to join an event with a municipality if the former is contained in a given
unit. Hence, we simply replace the join condition in a conventional join
(which usually requires two given attributes to be equal) with a spatial
condition (namely, that one geometry is contained in another). Let us
take a look at how this is done in the context of a SELECT statement:

dbGetQuery(db,
"SELECT municipalities.id, events.id
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)
LIMIT 3")
id id..2
1 115 199885
2 26 199767
3 70 200575

This query demonstrates how we join the two tables based on their
geometries. The basic structure of this query should be familiar: We spec-
ify what fields we want to see (in our case, the IDs of the municipalities
and the corresponding events), and which tables we want to select from.
Here, the J0IN keyword is used to link municipalities and events. The
part that is new is the join condition. Here, we use the PostGIS func-
tion st_contains(), to require that we only want to retain those pairs of
records where the municipality geometry (which is a polygon) contains
the event geometry (which is a point).

So each entry we see in the output above is a pair of municipality ID
and event ID that satisfies the join condition, that is, where the munici-
pality contains the event. Since the municipalities are non-overlapping,
each point can be linked with at most one municipality, so the max-
imum number of records this table can have is 1,136 (the number of
events). Joining municipalities and events is only the first step. Again, as
in the R-based example above, we need to aggregate this table such that it
counts the number of events per municipality. You should be familiar with
SQLs aggregation — all we need to do is specify the aggregation function
(count (*)) as well as the grouping level (GROUP BY):

dbGetQuery(db,
"SELECT municipalities.id, count(*) as num_events
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

162 11 Spatial Data

GROUP BY municipalities.id

LIMIT 3")

id num_events
11 1
2 2 7
3 4 1

We now have the information that we want — for each municipality,
we have the number of conflict events that occurred there. The final step
is to add this information to our municipalities table, such that we can
access it along with the existing data we have on municipalities. For this,
we first add a new column to this table, which we later use to store the
event counts:

dbExecute(db, "ALTER TABLE municipalities ADD COLUMN num_events integer")

Recall that in our above example, we first stored the event counts in
a separate table, which we later merged with the main municipalities
data frame. In SQL, we can do something similar. However, rather than
creating a new table for the event counts that we later have to delete again,
we use a “temporary” table within our statement. This table is created
on the fly as we run the query, but exists solely for the purpose of this
query and is later deleted. You can define such a temporary table using
the WITH keyword. In the statement below, we define a temporary table
called eventcounts using exactly the same SQL code as in the previous
example. We then use this table in an UPDATE statement, where we link it
to the main municipalities table using the municipality ID:

dbExecute(db,
"WITH eventcounts AS (
SELECT municipalities.id, count(*) as num_events
FROM municipalities JOIN events
ON st_contains(municipalities.geom, events.geom)
GROUP BY municipalities.id)
UPDATE municipalities
SET num_events = eventcounts.num_events FROM eventcounts
WHERE municipalities.id = eventcounts.id")

Only 78 municipalities are updated, since the others do not contain any
events. Finally, we export the municipalities table as a spatial dataset to R,
such that we later draw a map of the violence in Bosnia. The st_read()
function can not just read data from files (as above), but also from a
database connection. Once we have done that, we can close the database
connection.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.5 Results: Patterns of Violence in the Bosnian Civil War 163

municipalities_pg <- st_read(dsn = db, layer = "municipalities™)
dbDisconnect (db)

II.5 RESULTS: PATTERNS OF VIOLENCE
IN THE BOSNIAN CIVIL WAR

We computed event counts per municipality in two ways: First, using the
sf package for R and, second, using the PostGIS spatial database. This
gives us two spatial datasets: municipalities_sf is the result of the former
approach, while municipalities_pg is the result of the latter. Both have
the same structure: Each entry corresponds to a municipality, and the
num_events column contains the event count for the respective municipal-
ity, with NA values for those municipalities without events. We can now
use either of these datasets to draw a map of the distribution of violence
in the Bosnian war as in Figure 11.6.

This maps shows us the municipalities that were hit hardest by violence
in the civil war, as measured by the number of events. Part of the city of
Sarajevo (displayed in black) experienced most of the attacks, but there
are other areas in the north and the northwest of the country for which
the GED recorded many conflict events. Of course, we can debate whether

Number of events

D None recorded

E] Up to 10 events
E] Up to 100 events
. More than 100 events

FIGURE 11.6. Civil war violence in Bosnia, as measured by the number of conflict
events in the GED.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

164 11 Spatial Data

counting the number of events is a valid approach to approximate the
patterns of violence. Alternative ones are possible, for example, by using
the GED’s casualty statistics.

II.6 SUMMARY AND OUTLOOK

Spatial data are empirical observations tagged with geographic coordi-
nates, such that they can be assigned to particular places on Earth. In
this chapter, we have focused on vector data, which can be of different
types: points to represent single locations, lines for rivers or roads, and
polygons for political units. A GIS vector dataset usually consists of a
set of geographic features, each of which is linked to additional data
contained in an attribute table. When working with vector data in R or
GIS, we use an amended version of the standard tabular data structure
with special column types, namely, those that store the corresponding
spatial features.

We discussed how to create these spatially enabled tables both in R
(using the sf package), but also in PostgreSQL’s PostGIS extension. For
the exercises, we used two spatial datasets: a point dataset of violent
events in the civil war in Bosnia, and a polygon dataset of municipal-
ity boundaries. With these two datasets, we performed a spatial overlay
operation, where the points are superimposed on the boundaries to find
out which events occurred in each municipality. In database terminology,
this is a spatial join, where we link entries from two tables based on a
spatial relationship they have (in our case, whether a point is located
within a polygon).

In this and the following chapters, we use both file-based and database-
driven workflows to process our data. You are now experienced enough
to decide whether one or the other is more suitable for your project:
Using R and its extension packages to process data stored in files is easier
as regards the technical infrastructure you need, but may not be ideal
for projects involving several collaborators and/or large datasets. Spatial
operations can be time-consuming, which is why it is often useful to per-
form them in a spatial database such as PostGIS. In particular, while not
necessary in our above example, you can use indexing as described in the
previous chapter also for spatial columns, which, in many cases, will give
you significant performance improvements. Beyond the topics we covered
in the chapter, here are some suggestions that can be helpful to you:

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.016

11.6 Summary and Outlook 165

o Explore the world of spatial data further: If this chapter sparked your
interest in spatial data, there is much more to explore. In our exam-
ples, we only used a limited set of operations with one type of spatial
data - vector data. In particular in combination with raster data, there
are many other useful applications for spatial analysis in the social
sciences, and other, more focused introductions can help you make
progress (see, for example, Lovelace et al., 2019).

o Visualize your spatial data whenever possible: When working with
spatial data, it is often useful to plot your data. Looking at a map helps
you understand your data better and lets you identify errors or artifacts
that would otherwise be difficult to spot. This is why I recommend
that you visually explore your data, using R’s plotting features or an
interactive GIS program such as QGIS (see next point).

o Use QGIS to easily browse GIS datasets: Oftentimes, it is useful to
take a look at a spatial dataset to explore its structure or browse its
contents. For this purpose, a graphical GIS can be useful. QGIS is a
powerful, open-source GIS tool, which is available free of charge for
all major operating systems from https://www.qgis.org/. With QGIS,
you can even connect to a PostGIS spatial database and explore the
different spatial tables visually.

e Do not despair, GIS data formats can be confusing: For GIS, there is
a wealth of different file formats. Many of them are legacy formats
(such as shapefiles), which continue to be used in the field. Also, the
mix of two very different approaches (vector and raster data) adds
to the complexity. As you make progress in spatial analysis, you will
encounter many more file formats, and it is useful to consult the various
online references for more information about their specifications.

https://doi.org/10.1017/9781108990424.016 Published online by Cambridge University Press

https://www.qgis.org/
https://doi.org/10.1017/9781108990424.016

