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Abstract

The relative projection constant A(Y,X) of normed spaces Y Cc X is A(Y, X) = inf{||P|| : P € P(X, Y)},
where P(X, Y) denotes the set of all continuous projections from X onto Y. By the well-known result
of Bohnenblust, for every n-dimensional normed space X and a subspace Y ¢ X of codimension one,
A(Y, X) <2 —2/n. The main goal of the paper is to study the equality case in the theorem of Bohnenblust.
We establish an equivalent condition for the equality A(Y, X) =2 — 2/n and present several applications.
We prove that every three-dimensional space has a subspace with the projection constant less than
% —0.0007. This gives a nontrivial upper bound in the problem posed by Bosznay and Garay. In
the general case, we give an upper bound for the number of (n — 1)-dimensional subspaces with the
maximal relative projection constant in terms of the facets of the unit ball of X. As a consequence, every
n-dimensional normed space X has an (n — 1)-dimensional subspace Y with A(Y,X) <2 —2/n. This
contrasts with the separable case in which it is possible that every hyperplane has a maximal possible
projection constant.
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1. Introduction

Let X be a real Banach space and Y its closed subspace. A linear bounded operator
P: X — Y is called a projection if Ply =1dy. By P(X,Y) we denote the set of all
projections from X onto Y. The relative projection constant of Y is defined as

A(Y,X) = inf{||P|| : P € P(X, )}

Moreover, if a projection P : X — Y satisfies ||P|| = A(Y, X) then P is called a minimal
projection.

Minimal projections have gained considerable attention in the past years. Many
authors have studied their properties in the context of functional analysis and
approximation theory (see, for example, [1, 4-8, 13, 14, 16]). Some of the results
obtained are concerned with studying minimal projections in certain classical Banach
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spaces and some of them are of a more general nature. Results provided in this paper
belong to the second class. Our goal is to investigate some general properties of
minimal projections in the setting of finite-dimensional real normed spaces.

The problem of giving the upper bound for the relative projection constant in
the case of an arbitrary subspace has already been studied quite intensively. One
of the most fundamental results in this category is an old theorem of Bohnenblust
on projections onto subspaces of codimension one of finite-dimensional real normed
spaces.

TueoreM 1.1 [2]. Let X be a real n-dimensional Banach space and let Y C X be an
(n — 1)-dimensional subspace. Then A(Y,X) <2 —-2/n.

One can easily see that this estimation is optimal: if X = £ or X = £, and Y = ker f,
where f(x) = x| + x2 + -+ - + x,,, then A(Y, X) =2 — 2/n (see Theorem 2.2).
In the context of an arbitrary subspace we have the Kadec—Snobar theorem:

Tueorem 1.2 [12]. Let X be a real n-dimensional Banach space and let Y C X be a
k-dimensional subspace. Then A(Y, X) < min{\/%, Vn—k+1}.

This estimation was further improved by several authors; see, for example, [17].

Much less research has been done on the problem of finding a subspace with small
projection constant in an arbitrary normed space. There is an old and still unanswered
question of Bosznay and Garay.

ProeLEm 1.3 [3]. For an integer n > 3 determine the value of supy infycx A(Y, X), where
X is a real n-dimensional normed space and Y C X is a subspace of dimension at least
2 and at most n — 1.

To our knowledge, the best known estimates for Problem 1.3 are these which hold
for an arbitrary subspace Y. Even in the three-dimensional setting there seems to be a
lack of any better bounds. The aim of the paper is to give some results in this direction.

We shall consider the case of projections onto hyperplanes. To shed some light on
the question of Bosznay and Garay (and similar ones) we study the equality case in
the theorem of Bohnenblust. We provide the following characterisation.

TueoreM 1.4. Let X be an n-dimensional normed space and let Y = ker f, where
f € Sxx, be an (n — 1)-dimensional subspace of X. Then A(Y,X) =2 — 2/n if and only
if there exist extreme points Xy, Xa, . .., X, of the unit ball of X such that the following
conditions are satisfied:

F) = flx) == flx);
the vectors xi, xa, . . . , X, are linearly independent;
if an arbitrary vector x = },;_, wix; € X is written in the basis of x;, then

mzax {lwi +wa+ - +wi g —wi +wigg + -+ wyl} < Al

i=1,2,..n
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The third condition is equivalent to the fact that for every i (1 < i < n) the set
{XI, X2y ooy Ximly = Xiy Xitly o v« ,x}’l}
is contained in a facet of the unit ball.

A proof of this theorem is provided in Section 2. This equivalent condition has
several consequences. Those of them which hold in an arbitrary dimension are
discussed further in Section 2. For instance, we can easily obtain an upper bound
for the number of hyperplanes with the maximal relative projection constant in terms
of the number of facets of the unit ball (see Theorem 2.7). As a consequence, every
n-dimensional space X has an (n — 1)-dimensional subspace Y with A(Y, X) <2 —2/n.
This is a finite-dimensional phenomenon as in the separable case the situation can be
different. We also provide a purely geometric characterisation of the equality A(Y, X) =
2 —2/n (see Corollary 2.5). As another application of Theorem 1.4 we observe that
every n-dimensional normed space X which has an (n — 1)-dimensional subspace with
the maximal possible relative projection constant also has a two-dimensional subspace
with minimal possible relative projection constant (equal to one) (see Corollary 2.6).

In Section 3 we take a closer look at the three-dimensional case. In this setting, the
condition A(Y, X) = % seems to be much more restrictive on the unit ball of X than in
the general case. This allows us to strengthen some results obtained in the preceding
section. In particular, we prove that the maximal possible number of subspaces Y
for which the equality A(Y, X) = % holds is equal to four (see Theorem 3.2). From
Corollary 2.6, it follows that every three-dimensional normed space X which possess
a subspace Y with A(Y, X) = % possesses also a subspace Z satisfying A(Y,Z) = 1.
In Theorem 3.5 we provide a stability version of this result, which gives some
improvement in the three-dimensional case of Problem 1.3 (see Corollary 3.6). We
note that the improvement is very small, but still, to our knowledge, it is the first
nontrivial estimate in this direction. We suspect that the actual constant is much
smaller than given in our corollary. While we are not aware of any results concerning
Problem 1.3, we should mention the related papers of Franchetti [9, 10]. Among
other things, Franchetti studied the connection between the relative projection constant
A(Y, X) (where Y is a hyperplane in not necessarily finite-dimensional Banach space X)
and the behaviour of the norm in the hyperplanes parallel to Y. This behaviour plays a
major role in the proof of our main Theorem 1.4. Nevertheless, there does not seem to
be any overlap between our results and the results of Franchetti.

In the last section of the paper we propose some naturally arising questions which
are suitable for further research.

2. The general case

Throughout the paper we shall always consider only real n-dimensional normed
spaces X with n > 3. The unit ball and the unit sphere of such a normed space X will
be denoted by By and Sy, respectively. Let us also recall that a face of a convex body
C c R”" is the intersection of the body with some supporting hyperplane. A face is
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called a facet if it is (n — 1)-dimensional, or in other words, it is not contained in an
affine subspace of dimension n — 2. The vectors from the canonical unit basis of R”
will be denoted by ey, es,...,e,. By ] and £, we denote the space R" equipped with
the norm ||x||; = |x1| + |x2] + - - - + |x,| and ||x||cc = MaX;<;<, |X;], respectively. We shall
often use the simple fact that if X is a normed space and Y = ker f € X (where f € S xx)
is a subspace of codimension one then every projection P : X — Y can be written in
the form P(x) = x — f(x)r for some r € X satisfying f(r) = 1.

We begin with a lemma used already in Bohnenblust’s original paper. The result
is well known and often used in the study of minimal projections, but we provide its
short proof.

Lemva 2.1. Let X be an n-dimensional normed space and let Y C X be an
(n — 1)-dimensional subspace. Suppose that for every choice of extreme points
X1, X2, ..., X, Of the unit ball of X, there exists a projection P : X — Y such that
[|P(x)Il £ m for everyi=1,2,...,n and some positive real number m > 0. Then there
exists a projection P : X — Y such that ||P|| < m.

Prookr. For an arbitrary extreme point xy ¢ Y of the unit ball of X, let us denote by P,
the set of all projections P : X — Y such that ||P(xg)|| < m. It is not hard to verify that
the set of all projections P(X, Y) forms an (n — 1)-dimensional space and the set P, is a
compact and convex set of this space. According to our assumption, the intersection of
any n of the sets $,, is nonempty. From Helly’s theorem it follows that the intersection
all sets of the form #,, is nonempty. Therefore, there exists a projection P: X —» Y
such that ||P(xp)|| < m for an arbitrary extreme point x, of the unit ball. But the unit ball
of X is the convex hull of its extreme points and therefore ||P(xp)|| < m for an arbitrary
Xo € By. This concludes the proof. O

In the proof of Theorem 1.1, Bohnenblust has managed to reduce the case of the
general normed space to the case of the space . One can therefore expect that it may
be possible to use some more advanced results concerning £} in studying the relative
projection constant of the hyperplane. The result we refer to is the explicit formula for
the relative projection constant of the hyperplane in £7. It is quite complicated in the
general case, but we need only some simpler consequences of it, given in Lemmas 2.4
and 3.3.

Tueorem 2.2. Let Y = ker f be an (n — 1)-dimensional subspace of the space ] where
n > 3. Suppose that a functional f is given by the vector (fi, fa, ..., fn) where
l=fizfpz--2f,20. Let 1 <k <n be the largest integer such that f; > 0. Let
a; = ;zlfj, b = s-zlfj‘lfor 1<i<kandp;=0b;/(i-2)for 3<i<k Letlwith
3 <1< kbe the largest integer such that both of the numbers fib;_\ and a;_, are greater
than | — 3. Then A(Y, {}) = 1 + x, where

0 ifk<2,
x=32Bi - Y- +aff =D ifk>2anda; <1-2,
2(a)B; — D! ifk>2anda; >1-2.
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Proor. See [15, Theorem 2.2.13, page 57]. ]

Lemma 2.3. Let Y = ker f be an (n — 1)-dimensional subspace of the space | where
n > 3. Suppose that the functional f # 0 is given by the vector (fi, f2, ..., f»). Then
AY, £7) =2 =2/nif and only if | il = |fol = -~ = |ful

Proor. Without loss of generality, we may assume that 1 = f; > o >--- > f, > 0.
Suppose that Y = ker f is an (n — 1)-dimensional subspace of £} satisfying A(Y, ) =
2 —2/n. We shall use Theorem 2.2 and we adopt its notation. Obviously k > 2. If
a; > [ — 2 then by the formula for the minimal projection,

2

2= AV = 1+2aB - D)

n

and thus
2n

n—

aipr =
However, from the Cauchy—Schwarz inequality and / < n,
Cu A D B
= - - ! > = [ >
i -2 T2 12" T2
In consequence, [=n and 1 = f; = f, = --- = f, as equality holds in the Cauchy—

Schwarz inequality.
Inthe case a; <1 —2,

+ 1.
2

+ 1.

2n

G- fi =D+ af = ==+l

Since
G- FHA=-D+af 2B - [ Da+af =pa,

we can apply the Cauchy—Schwarz inequality as before and obtain 1 = fj = o =---
f»» which contradicts the assumption a; < [ — 2.

To finish the proof of the lemma, it is enough to observe thatfor 1 = fi = o =--- =
f» the norm of a minimal projection is equal to 2 — 2/n by the previous theorem. O

The next lemma follows the original idea Bohnenblust used in the proof of his
theorem.

Lemma 2.4. Let X be an n-dimensional normed space and let Y = ker f, where f € S xx,
be an (n — 1)-dimensional subspace. Suppose that xy,x3, ..., X, are unit vectors
such that A({7,Z) < R, where Z =Kker g, the functional g is given by the vector
(f(x1), f(x2), ..., f(x,)) and R > 1. Then there exists a projection P : X — Y such
that ||P(x;)|| < R for everyi=1,2,...,n.

Proor. Let Q : €] — Z be a projection of norm at most R and suppose that Q(x) =
x — g(x)r for some r € £ satisfying g(r) = 1. In particular,

QeI = 11 = f(xril + Z lf(xrjl <R,

J#i
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for 1 <i<n. Consider a linear mapping P of the form P(x) = x — f(x)7, where
F=rix; +rx;+- -+ r,x, Itis a projection from X onto Y since f(F) = g(r) = 1.
Moreover,

IPCepIl = H(l = fOxprdxi — Z rifex;ll < 11 = fxpril + Z |f(xi)rjl < R.

J#i J#I

This shows that P is a projection with the desired properties. O

With the preceding lemmas we are ready to give the proof of Theorem 1.4.

Proor or THEOREM 1.4. Let us suppose first that the equality A(Y, X) =2 — 2/n holds.
By Lemma 2.1 there are extreme points Xy, xa, . . ., X, of the unit ball of X such that

2
max{[|[P(x)ll, [[PCe)I -, 1Pl =2 = pt

for every projection P : X — Y. We shall prove that x, x», . . ., x,, satisfy the conditions
of the theorem.

Since [|P(v)|| = ||P(—V)|| for every projection P: X — Y and every v € X, we can
suppose that f(x;) > 0 for 1 <i < n. By combining Lemmas 2.3 and 2.4 we conclude
that f(x;) = f(xp) = -+ = f(x,). This shows that the x; satisfy the first condition of the
theorem.

For the second, let us suppose that the dimension of the subspace V spanned by
{x1, x2,...,x,} is at most n — 1. Then the dimension of the subspace Y N V is at least
dim V — 1 and, from Theorem 1.1, there exists a projection from V onto (¥ N V) of
norm not greater than 2 — 2/dim V < 2 — 2/n. This contradicts the choice of x;.

In order to establish the last condition, we shall consider the barycentre g =
(x; + x2 + - -+ + x,,)/n. By the triangle inequality,

2n—-2 2
n _2_ 2
n

1
”g_xi”:;I|x1+x2+"'+xi—l_(n_l)xi+xi+"'+xn||S

for 1 <i < n. We claim that the equality ||g — x;/| = 2 — 2/n holds for every i.
Indeed, for the sake of contradiction, let us assume that ||g — x,|| < 2 — 2/n. Denote
A=2-2/nand B =g — x,||/A < 1. Then we have 0 <2 — A < 2 — AB. Consider
Xl + X4+ X
-1
for A satisfying (2 -A)/(2-AB) <A< 1. We claim that ||s — x;|]| <A for 1 <i<n.
Indeed,

s=Ag+(1 -2

n—1
1 1 1 1 1
R 5t
s = 26t H(n—l P S R AL P T ;an

1 A 1 A Pl
S(l_n—l +n(n—1))+(n_2)(n—1 _n(n—l))+;
_2(n2—2n+/1)< (n—17 _
 onn-1 nn—-1)
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Similarly, ||s — x;]| < A fori=2,3,...,n— 1. Finally,

o
s =l = [lAcg = x0) + (1 = D, - =

ol
<SAAB+(1-A2=AAB-2)+2<(A-2)+2=A.

This proves our second claim.
Now let us consider the projection P: X — Y in the direction of s, i.e. P(v) =
v—(f(v)/f(s))s. Since s € conv{xy, xp, ..., X,}, we have f(s) = f(x;) for every i. Hence

2
PGl = [lxi = slf <2 = -,

for 1 < i < n. This contradicts the choice of xi, x5, ..., x,, and our first claim follows.
We have thus proved that the point g is equidistant from every x; with the distance
equal to 2 — 2/n. This means that for every i the point

2n_2(x1+x2+"'+XH—(ﬂ—l)xi+xi+1+"'+xn),

belonging to the convex hull of
{215 X250 Xicty =Xy Xit 1, -+ o5 Xnhs

lies on the unit sphere of X. It clearly implies that the set above is contained in a face
of the unit ball. But this face must be a facet as x; are linearly independent vectors. The
third condition now follows from the fact that in the basis of x; the facet containing
X1s X2y« s Xim1, —Xis Xit+1, - - - » X 18 determined by the vector (1,1,...,1,-1,1,...,1).
This completes the proof of the first implication.

Let us now suppose that a subspace Y and extreme points xy, xp, ..., X, of the unit
ball satisfy all of the conditions. By applying an appropriate linear transformation,
without loss of generality we can assume that x; = ¢; is the ith unit vector from the
canonical basis of R”. Then Y = ker f, where f(v) =v; +v, +---+v,. For the
sake of contradiction let us further suppose that there exists a projection P: X — Y
such that ||P(e;)|| < 2 —2/n. As the hyperplane containing the e; is parallel to Y the
projection P acts on them as a translation. In other words, there exists some vector
w = (Wi, Wy, ...,w,) such that P(e;) = e; —w for every i and }/_, w; = 1. Then

2
2——>||P(ei)||Z|W1+W2+"'+W,'_1—Wi+W,'+1+"'+Wn+1|,
n

for 1 <i < n. Summing all these inequalities yields

n
2n—-2> Wi+wr+--+wig—wit+wi +--+w, + 1]
i=1
n
>|(n=2) ) wi+n|=2n-2.
i=1
We have obtained a contradiction that finishes the proof of the theorem. O
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The characterisation above can be stated in purely geometric form.

CoroLLARY 2.5. Let X = (R™,|| - ||) be an n-dimensional normed space. Then the
following conditions are equivalent:

there exists a subspace Y of X such thatdimY =n—1and A(Y,X)=2-2/n;
there exists a linear operator T : R" — R" such that C C T(Bx) C P, where By is
the unit ball of X, C is the cross-polytope {x : |xi| + |x2| + - -+ + |x,| < 1} and P is
the parallelotope bounded by the hyperplanes

xixt+x0+--+xg—xi+xiq+--+x,==x1} (=1,2,...,n).

Proor. It is enough to take T to be the linear operator such that 7'(x;) = e; for
i=1,2,...,n. O

Another corollary of Theorem 1.4 follows.

COROLLARY 2.6. Let X be an n-dimensional normed space which possess an (n — 1)-
dimensional subspace Y with A(Y,X) =2 —2/n. Then X also possesses a two-
dimensional subspace Z such that A(Z,X) = 1.

Proor. Let x1, x3, ..., x, be as in Theorem 1.4. From the third condition it follows that
for i # j the segments connecting pairs (x;, x;), (x;, —x;), (—=x;, X;), (—x;, —x;) all lie on
the unit sphere of X. Thus the intersection lin{x;, x;} N By is a parallelogram. It is well
known that €7} subspaces are always 1-complemented (see also Lemma 3.4) and the
result follows. O

As yet another application of the characterisation given in Theorem 1.4 we provide
an upper bound for the number of subspaces with maximal relative projection constant
in terms of the number of facets of the unit ball.

THEOREM 2.7. Let X be an n-dimensional normed space and let 2N > 0 be the number
of facets of the unit ball of X. Then, the number of (n — 1)-dimensional subspaces
Y € X such that A(Y, X) =2 — 2/n is not greater than 2"~ (IZ)

Proor. Consider the family # consisting of n-element subsets of the set of all facets
of By, which do not contain any symmetric pair. It is easy to see that the cardinality of
F is equal to 2”(’: )

If subspace Y satisfies A(Y, X) =2 — 2/n then by Theorem 1.4 there exist different
unit vectors xp, X, . . ., X, lying in the hyperplane parallel to Y, such that for 1 <i<n
the set

{X],Xz, s Xicls = Xis Xitls e v o ,Xn}

is contained in a different facet of Bx. As n > 3 it is clear that no two of these facets are
symmetric to each other. Thus, to every such Y there corresponds a set F(Y) € . We
will show that F is an injection and that there does not exist a subspace Z for which
F(Z) consists of the facets symmetric to these in F(Y).
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For this purpose, let us suppose that n facets in F(Y) are determined by
the functionals fi, f>,..., f, € Sx» and let xj, xs,...,x, be as before. If f =
(fi+ fo+---+ fu)/(n="2), then for every i with 1 < i < n we have

n-1-1
n-2

This shows that Y = ker f is uniquely determined by F(Y) and the injectivity follows.
Observe also that if the functionals f, f,..., f, were replaced by —f1,—f2,...,—fu
then the reasoning above yields the same hyperplane as Y = ker f = ker(—f). Thus,
the number of subspaces with the maximal projection constant is at most half of the
cardinality of ¥ and the proof is finished. O

fxi) = =1

As an immediate consequence we have the following corollary.

CoroLLARY 2.8. An arbitrary n-dimensional normed space X possesses a subspace Y
such that A(Y,X) <2 -2/n.

We should remark that in the separable case it is possible that every hyperplane has
a maximal possible projection constant. It is well known that if X is a separable Banach
space then A(Y, X) < 2 for every hyperplane Y. And yet, we have A(Y, L;[0, 1]) = 2 for
every hyperplane Y C L;[0, 1] (see, for example, [11]).

3. Three-dimensional case

In the three-dimensional setting it is possible to establish some stronger results with
similar methods. As we have seen in Corollary 2.5, if a three-dimensional space X
possesses a two-dimensional subspace Y satisfying A(Y, X) = ‘3—‘, then we can suppose
that C C By C P, where C is the octahedron {x : |xi| + |x2| + |x3] < 1} and P is the
parallelotope with set of vertices {(+1,0,0), (0, +1,0), (0,0, +1),(1,1,1),(-1,-1,-1)}.
In terms of the norm, we have the following inequalities for an arbitrary vector
x = (x1,x,x3) € R3:

max{lx; + xo — x3/, |xp — x2 + x3], | = x1 + x2 + x3[} < ||x| < fxal + [x2f + [xs).
Note, however, that if x| x, x3 are not of the same sign then
max{|x; + xa — x3l, [x1 — x2 + x3], [ = x1 + x2 + x50} = [ + 2l + [

Therefore ||x]| = |x;| + |x2| + |x3] in such a case. This makes the condition much more
restrictive on X than in the case of a general dimension. In particular, we are able
to determine the maximal possible number of two-dimensional subspaces with the
relative projection constant equal to %. We omit the straightforward proof of the
following auxiliary lemma.

Lemmva 3.1. For arbitrary real numbers —1 < x,y <1, the inequality |x| + |y| +
|x +y— 1| <3 is true. Moreover, if the equality holds then x = -1 ory—lorx=y=1.
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TueOREM 3.2. Let X be a three-dimensional normed space. Then the maximal possible
number of two-dimensional subspaces Y C X such that A(Y, X) = ;—‘ is equal to four.

Proor. If we take X = f;:’o and Y = {x e R : ¢1x; + c2x2 + x3 = 0}, where ¢, ¢, €
{—1,1}, then A(Y, X) = %. It is therefore enough to prove the upper bound.

Let us start by looking more closely at the case of X = £3,. Theorem 1.4 implies
that every two-dimensional subspace ¥ C £3 with the maximal projection constant is
parallel to a plane determined by three of the vertices of the unit cube (not containing
any symmetric pair). However, every three vertices lying on one face determine the
subspace with the projection constant equal to one. Moreover, it is easy to see that
every other plane is determined by exactly four three-element sets of vertices. This
gives exactly four different planes with the maximal projection constant. In this case
the statement of the theorem is therefore evident.

Now suppose that X is an arbitrary three-dimensional normed space not linearly
isometric to £3, and Y X is a subspace with A(Y, X) = %. Without loss of generality we
may assume that ¥ = {x € R® : x; + x, + x3 = 0} and the vectors given by Theorem 1.4
are the vectors ey, €3, e3 from the canonical unit basis of R3. Let Z be some other
subspace of X satisfying A(Z, X) = % and denote by 71, 22, z3 the extreme points of the
unit ball given by Theorem 1.4, which are associated with the subspace Z. It is enough
to show that {z1, 22, z3} = {€1€1, &2¢2, £3e3} for some &1, &,&5 € {—1,1}.

Let P={xeR3: x;,x,x3 >0} and =P ={x € R3: x;, x5, x3 <0}. Note that
21,22,23 € (P U —P). Indeed, the z; are extreme points of the unit ball and from the
remark opening this section it follows that in every part of the coordinate system
different from P and —P the unit sphere of X is a triangle with vertices of the form
+ey, +ey, tes, so these are the only possible extreme points. But these points clearly
belong to P U (—P).

Without loss of generality we can assume that 71,z € P. Let z; = (a1, a»,a3) and
22 = (b1, by, b3), where a;, b; > 0 fori = 1,2, 3. Due to the symmetry of the situation we
have to consider only two cases: a; > b; fori =1,2,3 or a; > by, a; > b, and a3 < bs.
Let us start with the first one.

In this case

2 =llzi — z2ll £ lay = byl + |az — by| + laz — b3| = (a1 + ax + a3) — (b1 + by + b3).

However,
1 =|lzoll € by + by + b3.

Hence by adding the inequalities
lay +ay—a3| <1, lag—arx+a3|<1, |—a+a+a3]<1

and using the triangle inequality we obtain a; + a; + a3 < 3. Thus a; + a; + a3 = 3,
by + by + b3 = 1 and the equality holds in all of the estimations. From the equalities

lai +ay —az|=lai —ax +az|=|-ar+ar +a3| =1
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it easily follows that a; = a, = a3 = 1. Therefore, the point (1, 1, 1) belongs to
the unit sphere of X. This shows that the unit ball of X is the parallelotope with
the vertices {(+1,0,0), (0, +1,0),(0,0,+1),(1,1, 1), (=1,—-1,=1)}. In particular, X is
linearly isometric to £, which contradicts our assumption from the beginning of the
proof.

Now suppose that a; > by, ay > by, a3 < by. Then

2=llz1 = z22ll < lar = b1l + laz — bo| + laz — b3| = (a1 + a2 — a3) — (b1 + by — b3).
However, both of the numbers |a; + a; — asl, |b; + by — b3| are bounded by 1. This
means that a; + a, —a3 =1 and by + b, — b3 = —1. Adding the inequalities |-b; +
by + bs| <1 and |b; — by + b3| < 1 gives us by < 1. Therefore b; = b, =0 and b3 = 1.
Note that in fact the absolute value of any coordinate of the z; is bounded by one by
the same argument.

Now we shall incorporate the third point z3 into our reasoning. Let us write

z3 = (c1, €2, ¢3) and suppose that z3 € P, or in other words that ¢; > 0 for i = 1, 2, 3.
Then we have

2=|lzz -zl <leil +leal + 11 —c3l=c1 + 2 —c3 + 1,

so that ¢; + ¢, — c¢3 = 1. Note that Theorem 1.4 applied to the plane determined by
71,22, 23 implies the equality 3 = ||z; — 2o — z3||. But on the other hand, we can estimate
the norm of this vector using the canonical unit basis of R?, obtaining the inequality
3=llz1 —z2 — zll

Slay —cil+laz —cal +las — ez = 1|

=lay —cil +lax — 2| + (a1 —¢1) — (@2 — c2) — 1.
As 0 <aj,az,c1,c0 <1 we can apply Lemma 3.1 to x=a; —c; and y = a; — ¢,
obtaining x =y =1or x = -1 or y = —1. In the first case, a; — ¢; = a» — ¢, = 1 which
implies that a; = a, = 1 and hence also a3 = 1. We have thus once again arrived at the
case of £3, discussed before.

Without loss of generality let us therefore suppose that a; — ¢, = —1. Then a, =0

and ¢, = 1. Thus a; — a3 = 1 which implies that a; = 1 and a3 = 0. Moreover, c3 = ¢;.
In other words, we have proved that z; = e¢; and z3 = (cy, 1, ¢1). Consequently,

3=llm+z-all<l-al+1+[1-al=3-2¢,

which proves that ¢; = 0. This proves our claim in the case z3 € P.
Suppose now that ¢; < 0 for i = 1,2, 3. This time we have

2=lzz +zsll L lerl +leal + 1 + 3]l =1 = (1 + ¢z = ¢3),
so that ¢; + ¢, — ¢3 = —1. Furthermore,

3=llz1—z22+zll
< |611 +01|+|a2+c2|+|a3+C3— 1|
=la) +cil +lax + co| + |(ar + c1) + (a2 + ¢2) = 1].
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According to our assumptions, 0 < |a; + ¢|, |a; + ¢3| < 1 and we can apply Lemma 3.1
tox=a;+ciandy=ay+c;. Thusa; +ci=ay+c;=1loray+cy=—loray +cy =
—1. In the first case it follows that a; = a; = 1 and in consequence az = 1. As before,
this means that X is linearly isometric to £3,, which contradicts our assumption.
Therefore, without loss of generality, let us assume that a, + ¢; = —1. It follows that
a =0and ¢c; =-1. Hencea; = 1,a3 =0and ¢ = c3.

To finish the proof, consider the vector z; + z —z3 = (1 —¢1,—1,1 — ¢1). On the
one hand, its norm is equal to 3 (computing with respect to the basis of z;). On the
other hand, its coordinates are not of the same sign and therefore, computing the norm
with respect to the canonical basis, we obtain 3=(1 -c;) + 1+ (1 —c;) =3 - 2¢y,
which again gives us ¢; = 0. This completes the proof. O

The rest of this section is devoted to developing the stability version of
Corollary 2.6. We need the following two lemmas. The first is a more precise version
of Lemma 2.4,

Lemma 3.3. Let Y =ker f be a two-dimensional subspace of the space 5% and let
0<A< % be a real number. Suppose the functional f + 0 is given by the vector

(f1, f>, f3) which satisfies
1:f12f22f320, f3Sr,

where

Then A(Y, 53) < -

Proor. Note that » > 2 and in consequence r < 1 If 5 = 0 then there is nothing to
prove as by Theorem 2.2 we have A(Y, 53) =1 < — A. Let us therefore suppose that
Jf3 > 0. According to Theorem 2.2 we have

AV =1+2((1+ o+ A+ + D=3
N L I 1 )71.

_1+2(f +J72+f2+f3+]72+]7

Our thesis is therefore equivalent to the inequality

f+é+f2+f3 1+l2 6

ho A A 1-3A°

under the given conditions.
Consider the function g(u, v) defined as

u v 1 1
guv)y=—+—-—+u+v+-—+ -,
1% u u 1%

for (u,v) € R? satisfying0 <v<u<landv<r.
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By straightforward calculus we easily obtain that under our assumptions, the
function g is minimised for g(1, r) or for g(+/r, ). However,

1 12 1 1 1
g(l,r)=2(r+ —)+2=(\/7+ —) +(r+—)22(\/?+—)+(r+ —)=g(\/;,r).
r \r r \r r
It is therefore enough to prove that

s =2 )+ )z

If we substitute # = +/r + 1/+/r then the inequality can be rewritten as

2
rF+2t-2>

" =1-34A
or (t+ 1)> > 6/(1 — 3A) + 3. This is equivalent to r > V6/(1 —3A) + 3 — 1 = b since ¢
is positive. After substituting r = (b — Vb2 — 4)/2)> we can easily check that in fact
we have an equality. This finishes the proof of the lemma. O

Lemma 3.4. Let X be an n-dimensional normed space and suppose that x,y € X are
linearly independent unit vectors satisfying ||x + y||,||x — y|| > 2 — A for some 0 < A < 1.
Then A(Y,X) < 1/(1 — A) for Y = lin{x, y}.

Proor. Without loss of generality we may suppose that Y = {(v{,1,,0,...,0) : vi, v €
R} and x = e + €3,y = e; —e;. Then |le; + el = |le; — ezl = 1 and |leq]l, Jlea]] = 1 —
(A/2). We claim that

< (o] S 2
vIF < [Vl 1 _AIIVII
for any v € Y (where || - || denotes the usual supremum norm). In fact, suppose that
v=,v,0,...,0) forv; > v, >0. Then

A
Ml = [vier + vaeall = 01 + vader + valer — en)ll > (vy + m(l - 5) — .

For a fixed v; the expression above is a linear function of v,. For v, = 0 it is equal to
vi(1 —A/2) and for v, = vy itis equal to vi(1 — A). Thus |[v]| > v{(1 = A) = (1 — A)||V]|c.
Furthermore,

VIl = 31(vi = va)(er — e2) + (i + v2)er + eIl < 3((vi = v2) + (v +v2)) = Vi = [V]|eo.

In the remaining cases the reasoning is analogous. This establishes our claim.

Consider linear functionals py, p; : Y — R defined as p;(v) = v; fori = 1,2. From the
previous part it follows that the norms of these functionals are bounded by 1/(1 — A).
Thus, the Hahn—Banach theorem gives us extensions py, p; : X — R with the norm not
exceeding 1/(1 — A). Then P(v) = (p1(v), p>(v),0,...,0) is a desired projection from
X onto Y with ||P|| < 1/(1 — A). Indeed,

1

1-A
This concludes the proof of the lemma. O

PO < IP(W)lleo = max{|p1(v)], [P2(V)]} < [IvIl.
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Now we are ready to give a stability version of Corollary 2.6. We follow similar
reasoning to that used in the proof of Theorem 1.4. Before stating the theorem let us
introduce the function ¢(R) as

4
¢(R) = -1,

()= V- -

The function ¢(R) will serve us for a quantitative description of the stability. We note
that ¢ is continuous and nonnegative on the interval [0, %) and, moreover, ¢(0) = 0.

THEOREM 3.5. Let X be a three-dimensional normed space. Suppose that there exists a
subspace Y of X such that dimY =2 and A(Y, X) = % — R for some R > 0 satisfying
R+ ¢(R) < % Then there exists a two-dimensional subspace Z of X such that
AZ,X) <1+ OOR+ @R))/(4 - 12(R + ¢(R)))).

Proor. Let X and Y be as stated in the theorem and suppose that Y = ker f for some
f € Sx«. As every projection of X onto Y has norm at least ‘31 — R, by Lemma 2.1 we
conclude that there exist unit vectors x, y, z € X such that

max{[|PQOII, 1P IP@)I} = § = R,

for every projection P: X — Y. Consider the barycentre g = (x +y + z)/3 and let
C = (6(R+¢R)/(4—-3(R+¢(R)))). We claim that among the numbers ||g — x||,
llg — yll, llg — zl| there are at least two which are not less than % -C.

Suppose otherwise. We can assume that ||g — x||, |lg — ¥l < % — C. Consider
s=Ag+ (1 —-DzwithA=2/2+C). Then0 <A< 1 and

8
3C+6

4 2
||s—x||=||/l(g—x)+(1—/l)(z—x)||</l(§—C)+(1—/1)2=2—§/l—/lC=

Similarly, ||s — y|| < 8/(3C + 6). Note also that

lg — zll = x+y-22 <£+l+g=f
3 -3 3 3 3
and hence
IIS—ZII=/1IIg—ZIISi1/1= 8 .
3 3C+6

By a small perturbation of A we can guarantee the strict inequality in the estimation
above. In fact, if we replace A by A’ = 1 — ¢ for a sufficiently small & > O then for
s =g+ (1 —A")z we still have ||s" — x|, |ls" — y|| < 8/(3C + 6) but also ||s’ —z|| =
%/l’ < 8/(3C + 6). We have thus proved the existence of s € conv{x,y, z} such that
lls = Il lls = yll, lls — zll < 8/(3C + 6).

Since ||P(v)|| = [|[P(—V)|| for every projection P : X — Y and every v € X, we can
suppose that f(x), f(v), f(z) > 0. Without loss of generality let us further assume that

f(x) = f(y) = f(2). By Lemma 3.3,

fx)
7@ <@R)+1,
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as otherwise, by combining Lemmas 2.3 and 3 , it would be possible to project x, y, z
onto Y with a projection of norm smaller than % 3 — R, contradicting the choice of x,y,z
Lett € {x,y,z}. Since s € conv{x, y, z}, it is clear that

for S AR
and similarly
O f@ L —e®)
f(s) f(x) 1 +¢(R) L+oR)
In particular, |1 — f(¢)/f(s)] < @(R).
Consider the projection P:X — Y in the direction of s, that is, P(v) =v —
(f)/f(s))s, and let f € {x,y, z}. It follows that

> —¢(R).

(= f((?)‘ Ht— 1—%) <~ ||+\1—%\|| N
<o *”(R):W“"(R)

4-3(R+¢(R))

4 4
=5~ (R+(R) +p(R) = 5 - R.

‘We have obtained ||P(r)|| < 5 —Rforte{x,y,z}, Wthh contradicts the choice of x, y, z.

3
Our claim follows.
Now let us assume that ||g — y||, |lg — zl| = % — C. We have
4-3C<|3g-3zl=Ilx+y-2z<|lx+yl|l +2,
and therefore ||x + y|| > 2 — 3C. Moreover,
4-3C <3¢ =3yl = llx—y+ 2z = llx = yll + 2,
and hence ||x —y|| =2 - 3C. From Lemma 3.4 we conclude that there exists a
projection from X onto lin{x, y} with the norm not exceeding

I _4-3R+¢R) _ 18R+ ¢(R))
1-3C 4-21¢(R)  4-21(R+¢R)’
as desired. O

As a corollary we obtain an improvement of the trivial bound in the three-
dimensional case of Problem 1.3.

CoroLLARY 3.6. Every three-dimensional space X possesses a subspace Y such that
A(Y, X) < % - 0.0007.
Proor. By a numerical calculation one can check that for R = 0.0007 we have R +
oR) < 3 and that the inequality
IR+¢R) 4

4-12(R+¢R) 3
holds. Therefore if X has a subspace Y with A(Y, X) > % —0.0007 then by Theorem 3.5
it also has a subspace Z with A(Z, X) < % —0.0007. O
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4. Open problems

In this section we suggest several open questions related to our results.

In Corollary 2.8 we have established that an arbitrary n-dimensional normed space
X has a subspace Y with A(Y, X) <2 — 2/n. From the standard compactness argument
it easily follows that there exists ¢ > 0 such that every n-dimensional normed space X
has a subspace Y with A(Y; X) <2 —2/n — c. It is natural to ask for the best possible
constant ¢. In other words, we propose a variation of Problem 1.3 of Bosznay and
Garay.

ProsLEM 4.1. For an integer n > 3 determine the value of supy infycx A(Y, X), where X
is an n-dimensional normed space and Y C X is a subspace of dimension n — 1.

Any lower bound greater than 1 would be significant. Most of the classical normed
spaces have projections of norm 1, while we need a normed space with every projection
of norm not less than ¢ for some explicit ¢ > 1.

It is also natural to ask for an improvement of Theorem 2.7.

ProBLEM 4.2. For an integer n > 3 determine the maximal possible number of (n — 1)-
dimensional subspaces in an n-dimensional normed space with the relative projection
constant equal to 2 — 2/n. Or at least give some upper bound depending only on » and
not on X.

The last question we raise is concerned with Corollary 2.6.

ProBLEM 4.3. For an integer n > 3 determine the maximal possible integer k such
that every n-dimensional normed space X which possesses an (n — 1)-dimensional
subspace Y such that A(Y, X) =2 — 2/n, also possesses a k-dimensional subspace Z
satisfying A(Z, X) = 1.

We have established that k > 2. It is very reasonable to suspect that k = 2 may be
the right answer for this question. Nevertheless, providing a construction of a normed
space satisfying this condition would be very interesting.
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