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ON THE STABLE CLASSIFICATION
OF CERTAIN 4-MANIFOLDS

ALBERTO CAVICCHIOLI, FRIEDRICH HEGENBARTH AND DUSAN REPOVS

We study the s-cobordism type of closed orientable (smooth or PL) 4-manifolds
with free or surface fundamental groups. We prove stable classification theorems
for these classes of manifolds by using surgery theory.

1. INTRODUCTION

In this paper we shall study closed connected (smooth or PL) 4-manifolds with
special fundamental groups as free products or surface groups. For convenience, all
manifolds considered will be assumed to be orientable although our results work also
in the general case, provided the first Stiefel-Whitney classes coincide. The starting
point for classifying manifolds is the determination of their homotopy type. For 4-
manifolds having finite fundamental groups with periodic homology of period four, this
was done in [12] (see also [1] and [2]). The case of a cyclic fundamental group of
prime order was first treated in [23]. The homotopy type of 4-manifolds with free or
surface fundamental groups was completely classified in [6] and [7] respectively. In
particular, closed 4-manifolds M with a free fundamental group II; (M) = %,Z (free
product of p factors Z) are classified, up to homotopy, by the isomorphism class of
their intersection pairings Apr : Ho(M;A) x H(M;A) — A over the integral group
ring A = Z[II,(M)]. For I, (M) = Z, we observe that the arguments developed in [11]
classify these 4-manifolds, up to TOP homeomorphism, in terms of their intersection
forms over Z.

Furthermore, it was proved in (7] that a spin connected closed 4-manifold M with
I,(M) 2 II;(F), F a closed aspherical surface, is homotopy equivalent to a connected
sum of F' x 8? with a simply-connected 4-manifold.

In this paper we shall consider the problem of when the homotopy type determines
a classification of manifolds up to s-cobordism or up to a stable homeomorphism. We
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recall that two closed 4-manifolds M and N are said to be stably homeomorphic if
M#k(S? x S?) is TOP homeomorphic to N#£(S? x S?) for some integers k,£ > 0.
It is well-known that TOP s-cobordant 4-manifolds are stably homeomorphic (see for
example [11, Chapters 7 and 9}).

For either II; = *,Z, p > 2, or II; = II,(F), F a closed (orientable) surface
of genus at least two, the results of [11] are not applicable since the 4-dimensional
disc theorem has only been established over elementary amenable groups, the class of
groups generated by the class of finite groups and Z by the operations of extension and
increasing union (see [10]). However, the above groups are sufficient to get classifications
up to TOP s-cobordism by using surgery theory (see [3, 11, 16, 18, 23]) and recent
results proved in [8] which correct some mistakes of the previous papers.

Our results can be stated as follows.

THEOREM 1. Let M and N be closed connected orientable (smooth) 4-manifolds
with a free fundamental group II; = %,Z, p > 1. Then M is simple homotopy
equivalent to N if and only if M is TOP s-cobordant to N .

In particular, if H,(M;Q) =0 then M is TOP s-cobordant to the connected sum
#p (St x §%).
Theorem 1 generalises a well-known result of Wall to a nonsimply-connected case

[22] and improves Theorem 2.1 of [3] for this class of manifolds. Furthermore, the case
Hy(M;Q) = 0 recovers Theorem 2 of [14] as a simple corollary.

COROLLARY 2. (Hillman [14]).

Let M be a closed connected orientable 4-manifold with the fundamental group
I, (M) = %,Z, p > 1, and Euler characteristic x(M) = 2(1 —p). Then M is TOP
s-cobordant to #p (S! x §%).

Another partial result can be obtained as follows. Suppose that M is a spin
(smooth or PL) 4-manifold, that is, wy(M) = 0, where wy(.) denotes the second
Stiefel-Whitney class.

Then one can also define the self-intersection pairing

A

 Hy(M;A) » —2
pa : Ho(MiA) = =50

where ~— : A — A is the canonical anti-involution on A = Z[II;] (see for example [11]).

Then the triple (H2(M;A), Ap, par) determines an element of the 4th Wall group
L4(*pZ) = Z (see [4]). Under this isomorphism the class of (Ha(M;A),An,pm)
corresponds to (1/8)sign{(M) € Z. Let us denote by M' the simply-connected
smooth 4-manifold obtained from M by killing the fundamental group. The inter-
section forms over Z of M and M’ are the same, as shown in [5]. Since sign(M) =
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sign (M'), the definition of L4(II;) yields that the (self-)intersection pairings of M and
M'#p(S* x §%) are stably isomorphic over A. Thus the manifolds M#k (S? x §?) and
M'#p(S* x §%) #£(S? x 8?) are homotopy equivalent for some k,£ > 0 (see 6, The-
orem 1]). Now Theorem 1 above implies that they are TOP s-cobordant and hence
stably homeomorphic.

In summary, we have proved the following stable classification result.

THEOREM 3. Let M be a closed connected orientable (smooth or PL) 4-manifold
with wa(M) = 0 and I, (M) = %,Z, p > 1. Let M' be the simply-connected
manifold obtained from M by killing I;(M). Then M is stably homeomorphic to
M'#p(S* x §%).

In a special case below, one can apply the Donaldson Theorem (see [9]) to obtain
the following consequence.

COROLLARY 4. Let M be a closed connected orientable (smooth) spin 4-
manifold with a definite intersection form over Z. If II;(M) = #,Z, p > 1, then
M is TOP s-cobordant to #p(S1 X Ss) .

PRrOOF: Let M' be as above. Then the intersection form Appr (22 Apr) is definite.
The hypothesis wa(M) = 0 and [9] imply that Ha(M;Z) = H,(M';Z) = 0, hence
Hp(M;A) =0 as Hy(M;A)®4Z = Hy(M;Z). Therefore we have Aps =0 over A and
so M is simple homotopy equivalent to #p(S* x Ss) by Theorem 1 of [6]. The result

now follows from Theorem 1 above. a
For manifolds with surface fundamental groups, we shall prove the following result.

THEOREM 5. Let M and N be closed connected orientable (smooth) 4-manifolds
with II;(M) = I, (N) = I;(F), where F is a closed aspherical (orientable) surface.
Then M is simple homotopy equivalent to N if and only if M is TOP s-cobordant to
N.

Theorem 5 together with the results proved in [7] imply the following consequence.

COROLLARY 6. Let M be as above. Suppose further that M is a spin manifold.
Then M is TOP s-cobordant to the connected sum of the product F xS? with a simply-
connected 4-manifold.

2. RESULTS FROM SURGERY THEORY

The proofs of our results use surgery theory (see for example [3, 11, 16, 18, 23]) as
corrected in [8]. To make the reading easier, we recall some definitions and results listed
in the quoted papers. Note that the Whitehead group Wh (II;) vanishes for II; = %,Z
or II; = I;(F), F an aspherical surface, hence in our case “s-cobordant” is equivalent
to “h-cobordant” (see [17]).
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Let M™ be any closed connected orientable (H=TOP or PL) n-manifold with the
fundamental group II; = II; (M) and let ¢* be alinear bundle over M. Then QF (M, ¢)
denotes the set of bordism classes of normal maps (X, f,b), where X is a (H=TOP or
PL) n-manifold, f : X — M a map of degree one, b: v% — ¢* a linear bundle map
covering f and v% is the stable normal bundle of X™ — S§™** for k sufficiently large
with respect to n.

Let N (M) be the union of all QH(M,¢) over all k-plane bundles ¢* over M,
modulo the additional equivalence relation that (Xo, fo,b50) € Q¥ (M, &) is equivalent
to (X1, f1,51) € QH(M,¢,) if and only if (Xo, fo,b) is normally (H=TOP or PL)
cobordant to (X, f1,b1), for some linear bundle automorphism £; — &;. The elements
of NH(M) are called the (H=TOP or PL) normal invariants of M. In the relative case,
we include the condition that the normal map (X, f,b) € NH(M,8M), represented by
f:(X,8X) - (M,dM j, induces a simple homotopy equivalence when restricted to
axX.

Let SH(M) be the set of (H=TOP or PL) s-cobordism classes of orientation
preserving simple homotopy equivalences h: X — M, where X is a compact (H) n-
manifold.

Let us denote by L,(II;) the n-th Wall group of surgery obstructions for the
problem of obtaining simple homotopy equivalences for orientable n-manifolds with the
fundamental group II; .

Recall that if h: X — M represents an element of SH(M), then there exists an
obvious forgetful map nf: SH(M) — NH(M) which associates to (X,h) the class
of (X,h,h*) in NE(M), where h* is the obvious map on the stable normal bundles,
induced by h.

Furthermore, there is a map of: N¥(M) — L,(II;) which associates to any
normal invariant (X, f,b) the surgery obstruction (for details see [16] and [23]).

Finally, denote by wH: L,;,(II;) » SH(M) the map induced by the action of
L.1(0;1) on SH(M) (see for example [16]).

The following result is well-known (see [11, p.200]).

THEOREM 7. (The surgery sequence).
Let M™ be a closed connected orientable (H=TOP or PL} n-manifold with the
fundamental group Il . Then the surgery sequence

H

wh 14 o
Lopi(lh) —— SH(M) —=s NE(M) —" L.(1L)

isexact if n > 5. If n = 4, it is also exact provided II; is an elementary amenable
group.

For our classes of 4-manifolds we obtain a further result.
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THEOREM 8. Let M be a closed connected orientable (H=TOP or PL) 4-
manifold. Suppose that I, (M) is isomorphic to either *p,Z, p > 1, or I, (F,), where
F, is the closed orientable surface of genus g > 1. Then the surgery sequence

TOP wTOP nTOP
NFOR(M) —— Ls(l,) —— SFOF(M) —— NOP(M)
is exact.

PRrOOF: Let k denote either of the integers p or 2g. We shall prove that every
element of Ls(II;) is realisable by an element in QT°F(M x I, M x 8I), I = [0,1].
Thus the result follows from Theorem 6.3 of [16] (second part of the statement which
is correct; compare also with [8]).

Since II;(M) & %4Z or = II;(F,), we have that Ls(II;) = @3Z by Theorem 16
of [4]. Because M is orientable, any embedded 1-sphere f:S! > M has a trivial
normal bundle, that is, f extends to an embedding f: S! x D® —» M. Let fi, f2,...,
fi: S' x D* —» M x I be disjoint embeddings such that

f1=f1|81x0a f2=f2|§1x0’ ) fk=fk|S1x0

represent a set of generators of II; (M x I) = II;(M). This is always possible by the
general position theorem. Let N;, ¢ =1,2,...,k, be the TOP 5-manifold obtained by
deleting f; (Sl X D4) from M x I and substituting (S x ||Ea||)\(S1 X D“) by an

obvious identification of their boundaries. Here ||Eg|| represents the simply connected
TOP 4-manifold realising the form FEg as constructed in [10].

Using an appropriate normal map
' x || Bs|| — S* x 8%,

we obtain a normal map of degree one
&: Ni > M xI=(MxI\f; (sl x D‘*) Ust w53 S* x S%\S! x D*,

hence (N;,&;,¢€}) € QTP (M x I, M x 81,¢;). Furthermore, the surgery obstruction
o5(N;, &;,€F) is exactly the i-th generator of Ls(Il;) = @3Z. This completes the
proof. 1

We can now apply Lemma 8 of {13] to obtain the following consequence.

COROLLARY 9. Let M be as in Theorem 8. Then the map

7ROF : STOP (M) — NFOF (M)
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is injective.

PROOF: It was proved in [13] that the surgery obstruction map
o2 OF : NTOFP(M x I, M x 8I) — Ls(I)

is surjective, This guarantees the exactness of the sequence shown in Theorem 8. But

’51‘0P "TOP

if o is onto, then the map 7, must be injective as claimed. 0

Now let M* be a closed connected orientable (smooth or PL) 4-manifold. Following
[8], let us denote by HEjq (M) the set of homotopy classes of (simple) self-homotopy

equivalences of M which induce the identities on II; and on H,. Recall that any
(simple) homotopy equivalence defines a normal invariant. This gives rise to a map

n: HEw (M) - NJU(M).
The following result is based upon an argument of Wall (see (23, Theorem 16.6] and
[16, Theorem 6.3]: first part of the statement) as corrected by Cochran-Habegger [8].
THEOREM 10. Let M* be a closed connected orientable (smooth or PL) 4-
manifold. Suppose that Hy(I:(M);Z3) = 0. Then the sequence

aPL
HEw (M) —— NFY(M) —— Ly(IL(M))
is exact.

PROOF: We first calculate the set of normal maps N (M) by the method of
Sullivan (see [15] and [20]). There is a bijection between N (M), H=TOP or PL,
and the group [M,G/H] of the homotopy classes of maps M — G/H (see for example
[16, Theorem 5.4]). Since II;(G/ TOP) = Z,, II3(G/ TOP) = I5(G/ TOP) = 0 and
II,(G/ TOP) = Z with vanishing k-invariant in H®(K(Z,,2)), the Postnikov resolution
of G/ TOP givesa map G/ TOP — K(Z,,2)x K(Z,4) which is a 5-equivalence, that is,
we can assume that the 5-skeleton of G/ TOP is the same as that of K(Z2,2)x K(Z,4).
Thus we have

NIOP(M) = [M,G/ TOP] = (M, K(Z,2) x K(Z,4)] = H?*(M;Z,) ® H*(M).

The injection NFY(M) — NFOP(M) yields the isomorphisms (use the Wu formula)

S: NFPY(M) = [M,G/PL) = {(a,b) € H*(M;Z,;) ® H*(M): a® = b mod 2}
= wo (M) @ H(M) = Kerwy(M) ® H*(M) = Hom (Ker wy(M),2,) & H*(M),

where wz(M)'L ={a € H*(M;Z5): a* = 0 mod 2}.
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The map Nf(M) — H*(M) — L4(1) = Z C L4(II,) is given by the surgery
obstruction (see [23, p.237]). Thus we obtain Kerol®F C H?(M;Z,) and Kerai™ C
Hom (Kerwz(M),Z;). Now by [21] we can represent a basis of Kerw;(M) by charac-
teristic 2-submanifolds V2 of M. From our hypothesis, that H,(Il;;Z,) = 0, we are
going to prove that any assignment of elements of Z; to the classes [V}?] € Kerwy(M)
is induced by a self-homotopy equivalence in HEj (M). In particular, we have
Kerotl = wy(M)' = Hom(Kerwy(M),Z;). Suppose [V] € Kerwy(M) is one of

the previous characteristic submanifolds. The exact sequence
Hz(M) - Hz(M;Zz) — Hz(nl(M),Zz) >0

implies that there exists a map z: S2 — M which is sent to [V] under the surjection
(M) — H,(M;Z;). Choose an embedding D* C M. If D* is shrunk to a point,
then the result is homeomorphic to M. Shrink instead 8D* to a point to give a map
c: M — MVS* Nowlet : S* —» S? be the Hopf map, Tn: S* — S3 its suspension
and n?: S* - S? the composition 72 = 5o Xn. Let f: M — M be the composite map

2 x
M— Mvst 27, Mvst 22, M.

It is easy to see that f induces the identities on II; and on H,, hence f is a homotopy
equivalence by Theorem 5.5 of [16]. To compute the splitting invariant of the map f
along V, we assume V disjoint from D*. Then f~1(V) =V UW with W framed in
D* and the splitting invariant is the Arf invariant of W. We may always assume that
z: 8% » M is an immersion which is transverse to V in M, that is, z(S?) meets V
transversely in ny points. Then W is the union of ny preimages (tori) in S* (top
cell) of oriented points in S§? under the map 7%: S* — S%. The associated quadratic
form defined on Ker (f,,: H, (f_l(V)) — HI(V)) is the direct sum of its restrictions
to H,(T) for each component torus T so that it suffices to compute the appropriate
Arf invariant for a single torus T'. Since T maps to a point in V, it follows by [8]
that the quadratic form on Hy(T') has Arf invariant 1+ wa([z]) = 1 + wo([V]) = 1
as [V] € Kerw,(M). Hence each of the preimages in W has Arf invariant one. Thus
the required f € HE (M) can be constructed if [z] € II;(M) is dual to a mod
2 cohomology class which assignes to each V? the given corresponding element of
Z,. Because II;(M) — Ho(M;Z5) is surjective such an z exists. This proves the
statement. 0

ProoF OoF THEOREM 1:

Let h: N - M be a simple homotopy equivalence. Since Hp(H,(M);Z;) =
Hy(*pZ;Zy) = 0, there exists a simple self-homotopy equivalence f € HEyy (M) such
that n(f) = n(h) € NF¥(M) by Theorem 10. Hence it follows that nI°F(f) =
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n3 OF (k) € NFOF(M). By Corollary 9 f is TOP s-cobordant to h in STOP(M), that
is, M is TOP s-cobordant to N. The second part of the statement follows in the same
way by using Theorem 1 of [6]. 0

We conclude the section with a related computation.

PROPOSITION 11. Let M* be a closed connected orientable (TOP or PL) 4-
manifold with fundamental group II; = %,Z, p > 1. Then there is a bijection between
STOP(M x I, M x 8I) and H'(M;Z,), hence the number of distinct topological 5-
manifolds homotopy equivalent to (M x I,M x 8I) is at most 27.

PROOF: Since the surgery obstruction map o3 °F is onto (see (13, Lemma 8]), the

sequence

TOP TOP

STOP(M x I, M x 8I) —— NTIOP(M x I, M x 8I) —— Ls(Il;) — 0

is exact (see [16 Theorem 5.11]). We are going to prove that 73 OF is injective. Since

Lg(*pZ) = Z3 (see [4, Theorem 1.6]), the map Lg¢(l) = Z; — Lg¢(*pZ) = Z, is
an isomorphjsm, hence one can represent the nontrivial element of Lg by a degree
one normal map (S°x §% f,b) with f:S$® x S8 — S® (see [16] and [23]). Then
the action of Lg(*pZ) = Zy on SgOP(M x I, M x I) is defined by taking an ele-
ment h: (K,80K) — (M x I,M x 8I) in STOP(M x I, M x 8I) and forming the con-
nected sum in the interior (A x 1)#f: K x I#S3 x 8% - M x I? = M x I?#88.
Using the additivity of surgery obstructions and the fact og(h x 1) = 0, we have that
os(h x 1#f) = o6(f) so the action of Lg(*pZ) on STOP(M x I,M x 8I) is trivial.
Thus 77°F is injective as claimed. By Sullivan [20], there is a bijection between
NIOP(M x I, M x 8I) and the group [(M x I, M x 8I),(G/ TOP,«)].

Hence we have

NIOP(M x I, M x 8I) = [M x I/M x 81,K(Z,,2) x K(Z,4)|
> H*(ZM;Z,) ® H*(SM) = H(M;Z;) @ H*(M) = ©,Z, ® ®,Z,

where ¥ M denotes the suspension of M. Putting all these facts together we have the

exact sequence

TOP O

0 — STOP(M x I, M x 8I) *— @,Z3 ® ®,Z *— Ls(I) = ®,Z — 0.
Thus we obtain that
KerogOF = Im7]°F = @,%, = H (M;Z,) = STOF (M x I, M x 8I)

as required. 0
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3. FREE GROUPS

In this section we shall present a simple alternative proof of Theorem 1 which is
essentially based upon some recent results due to Cochran and Habegger (see [8]).

Let M* be a closed connected orientable (smooth or PL) 4-manifold with fun-
damental group II;(M) = %,Z, p > 1. Choose embeddings ¢; : $! x D* - M,
1=1,2,...,p, such that

‘Pllsl ><o";02|Sl MULRER :‘Pplsl x0

represent a set of generators of II, (M).

Let
p o
Mo = M\ | p:i (sl % D3)
=1

1=
and

P
M =Mul|J(D* xS§?.

=1

The manifold M' is a simply-connected closed 4-manifold obtained by surgeries killing
the fundamental group I, (M).

Moreover, the canonical inclusions My —» M and My — M’ induce isomorphisms

Hz(M) — Hz(Mo) - H2(M')’

which respect the integral intersection forms (see for example [5]).
By Sullivan’ s results (see [20]) there are natural isomorphisms
S : NFY (M) = {(a,b) € H*(M;Z;) x H*(M;Z): a* = b mod 2},
S': NPL(M') = {(a’,b') € HA(M';Z,) x HY(M";Z): (d')* = ¥ mod 2} :
So : N & (Mo, 8My) = {(ao,bo) € H*(My,0Mo;Z2) x H*(Mo,0Mo;Z): al = by mod 2} .

Recall that any homotopy equivalence of a manifold defines a normal invariant. This

gives rise to maps

n: HE(M) — NFL (M),
n': HE(M') - NFY(M"),
g HE]d(Mo,aMo) - NfL(Mo,aMo),

where HEId(Mo,BMo) = {f € HEId(Mo) : leMo = Id}.
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Furthermore, there are well-known maps
Iy(M) ® I, (8%) o1, (M) 5 HEW(M),
T,(M') @ T, (S?) 2Ty (M")-Zo H Era (M),
N T
(M) ® 4 (S?) =>4 (Mo)—> H Era (Mo, 8M,)
defined as follows. For any [z] € I;(M), z:S% - M, let
N([z]®1) =[z ono Zq],
where 7 : S3 — §? is the Hopf map and 75 :S* — S3 is its suspension. The map 7 is
obtained by “pinching off” a 4-sphere from a 4-cell B which we choose in Int M, that
is, if [y] € Ma(M), y:S* —» M, then
(y])) : M— MV stV m
(see [8] or [18]).
Let us denote by
g N4PL(M) i L.;(H](M)),
o' NFE(M') — Ly(1),
00 : Ny (Mo, 8M,) — Ly(Iy(Mo))
the surgery obstruction maps. By [4] we have
La(II3(M)) = La(1) = Ly(I11 (M) = Z.

The isomorphisms are induced by either 1 — %,Z or *,Z — 1. Since 0,0’ and oy
detect the “top-splitting invariant”, one obtains

Kero = {a € H*(M;Z,): d* = 0} = wy (M),
Kero' = {a' € H}(M';Zy) : (a')? = 0} = wy(M')",
Keroy = {ao € Hz(Mo,aMo;Zz) : (ao)2 = 0} = 1D2(M0)L,

as shown in the proof of Theorem 10.
Let us consider the following diagram

T’ON' 4 ’

S'on
Hy(M';Z;) =T,(M')®4(S?) ——  HEW(M') ——— Kero'

. P

5y T0°No Soeno
Hz(Mo;Zz) C Hz(Mo) ® H4(S ) a— HEId(Mo,aMo) _— KeI'O'o
) 70

N Son
Hz(M; Zz) C Hz(M) ® H4 (Sz) —— HEId(M) —— Kero
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where a : ker ¢ — Keray and o' : Kero' — Keroyp are the isomorphisms induced by
H*(Mo, 8My; Z3) — H*(Mo; Z2)

and

H*(M;Z;) — H*(Mo; Z,) «— H*(M'; Zy)

as wz(.) is natural. It can be easily seen that the above diagram commutes. One of the
main result of [8] is that the maps S’ on' and 7' o N' are bijective (see Theorem 5.2,
Section 5).

PROOF OF THEOREM 1:

Let h: N -+ M be a simple homotopy equivalence, hence n(h) € Kero. By the
above diagram and [8] there exists a homotopy equivalence f : M — M such that
n(f) = n(h).

Let

(W5, N, M) -5 (M x I, M x 8I)
be a normal TOP cobordism between f and h (I = [0,1]). The proof now follows from

the following lemma.

LEMMA 12. Ifz € Ls(I0,(M x I)) = @,Z (see [4]), then there exists a normal
TOP cobordism
n:(V3,8V=MUM) - (MxI,M x8I)
such that n|sv = fU f and o(n) ==.

If we take y = —z = —o(7), then the surgery obstruction of the composed normal
map
EUn: (WUV,NUM) — (M x [0,2], M x 8{0,2])

is zero, hence by surgery one obtains an s-cobordism between f and h in SI°F(M).
Thus the manifolds N and M are TOP s-cobordant as claimed.

PROOF OF LEMMA 12:
The proof proceeds in the usual way (see also Theorem 8). We start with the
homotopy equivalence

FxId: (M xI,M x9I)— (M xI,M x oI).

Since f € HEw(M), we can assume that f is the identity on each ;(S! x D*),
1=1,2,...,p, which represent the generators of II;(M).
Let N;, i = 1,2,...,p, be the topological 5-manifold obtained by deleting

Pi (Sl X 54) from M x I and substituting (S x ||E¢;|{)\(S1 X 54) by an obvi-

ous identification of their boundaries (compare also with the proof of Theorem 8).
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Because f is the identity on each <p.~(S1 X D4), using an appropriate normal map
S! x ||Es]| — S! x S*, we obtain a normal TOP cobordism

£,‘:N;—)MXI:(MXI)\(p;(SIXIO)‘i) U (Sle“\S‘xlo)“).
Sl x§3

such that {|sn; = fU f and the surgery obstruction o(¢;) is exactly the i-th generator
of Ls(II;) = ®pZ. This proves the lemma. 0

EXAMPLE. Suppose p = 1, that is, II;(M) = Z, X is an intersection form on
a finitely generated free Z[Z]-module, k € Z, and if A is even, then we assume
k = (signature))/8 (mod 2). Then there is an oriented closed manifold M) with
I, = Z, intersection form A and Kirby-Siebenmann invariant k (see (15, p.113]).

Hence the connected sum
M =My #.. . #M #M

(where M' is a simply connected manifold} has II; ~ %,Z and intersection form
AM =A@ DA @ App

on the A-module (M, A), A = Z[+,Z].

4. SURFACE GROUPS

In this section we shall prove Theorem 5. The statement follows in the same way
as in section 2 together with the following result.

THEOREM 13. Let M be a closed connected orientable (smooth) 4-manifold with
O, (M) = I, (F), where F is a closed aspherical (orientable) surface. Then the sequence

¢7PL
HE1q (M) T N7 (M) =5 Ly(0L(M)) 2 Z, 0 Z

is exact.

PROOF: As proved in {13, p.279)], we have

M2(M) = Hy(M; A) = Ext3 (Ho(M; A),A) ® Ext} (H2(M;A),A)
~H?(F) @ Ext} (Ha(M; A), A),

where Q = Ext3 (Ha(M;A),A) is stably A-free. Using the universal coefficient spectral
sequence
Tory (Hy(M; A),Z) = Hpyo(M;Z),
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we obtain

Hy(M;Z) = Torh (H2(M;A),Z) ® Tory (Ho(M; A),Z)
=H)(M;A) @A Z D Hy(I1;Z2) = (M) Qr Z & Ha(F; Z),

hence
Hz(M;Zz) &= Hz(M) R Za D Hz(F; Zz) = Hz(M) QrZoy D Zs.

It follows that
NZTOP (M) = [M,G/ TOP| = (M) @4 Z2 B Z> & Z.

Since the surgery obstruction map o; °F: NTOP(M) — Ly(I;) = Z, © Z (see [4])
is onto (see [13, Lemma 8]), we have that KeroyOF 2 II;(M) ®a Z2, that is, any

element of Ker 0f°F can be realised by a map §2 — M. Let j denote the injection

NFL(M) —» NTOP(M). Since ot = 07°F 0 j, we have that
j (Ker O’EL) C Ker UEOP,

hence j(Kera'fL) C (M) ®a Z;. Now the proof can be completed as shown in
Theorem 10 since any element of Kerob” can be realised by spherical maps. Indeed,
the exact sequence

Hz(M) — Hz(M, Zz) =~ Hz(M) QA Zz [45) Hz(F,Zz) — Hz(Hl; Zz) = Hz(F, Zz) -0
shows that II;(M) covers II3(M) @4 Z2, as requested. C
REFERENCES

(1] S. Bauer, The Homotopy type of a 4-manifold with finite fundamental group, Lecture
Notes in Mathematics 1361 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).

(2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexzes (Walter de Gruyter,
Berlin, New York, 1991).

[(3] S.E. Cappell and J. L. Shaneson, ‘On four-dimensional surgery and applications’, Com-
ment. Math. Helv. 46 (1971), 500-528.

[4] S.E. Cappell, ‘Mayer-Vietoris sequences in Hermitian K-theory’, in Proc. Conf. Battelle
Memorial Inst., Seaitle, Wash., 1972, (Springer-Verlag, Berlin, Heidelberg, New York,
1973), pp. 478-512.

[5] A. Cavicchioli and F. Hegenbarth, ‘On the intersection forms of closed 4-manifolds’, Publ.
Mat. 36 (1992), 73-83.

[6] A. Cavicchioli and F. Hegenbarth, ‘On 4-manifolds with free fundamental group’, Forum
Math. 6 (1994), 415-429.

https://doi.org/10.1017/5000497270001488X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001488X

398 A. Cavicchioli, F. Hegenbarth and D. Repovs [14]

[7] A. Cavicchioli, F. Hegenbarth and D. Repovs, ‘Four-manifolds with surface fundamental
groups’ (to appear).

[8] T.D. Cochran and N. Habegger, ‘On the homotopy theory of simply-connected four man-
ifolds’, Topology 29 (1990), 419-440.

[9] S.K. Donaldson, ‘The orientation of Yang-Mills moduli spaces and 4-manifold topology’,
J. Differential Geom. 26 (1987), 397-428.

[10] M.H. Freedman, ‘The topology of 4-manifolds’, J. Differential Geom. 17 (1982), 357-453.

[11] M.H.Freedman and F. Quinn, Topology of 4-manifolds (Princeton Univ. Press, Princeton,
New Jersey, 1990).

[12] I. Hambleton and M. Kreck, ‘On the classification of topological 4-manifolds with finite
fundamental group’, Math. Ann. 280 (1988), 85-104.

[13] J.A. Hillman, ‘On 4-manifolds homotopy equivalent to surface bundles over surfaces’,
Topology Appl. 40 (1991), 275-286.

[14] J.A. Hillman, ‘Free products and 4-dimensional connected sums’ (to appear).

[15] R.C. Kirby and L.C. Siebenmann, Foundational essays on topological manifolds, smooth-
ings and triangulations, Ann. of Math. Studies 88 (Princeton Univ. Press, Princeton, New
Jersey, 1977).

[16] R. Mandelbaum, ‘Four-dimensional topology: an introduction’, Bull. Amer. Math. Soc.
2 (1980), 1-159.

[17] J. Milnor, ‘Whitehead torsion’, Bull. Amer. Math. Soc. T2 (1966), 358-426.

{18]) * J.L. Shaneson, ‘Non-simply connected surgery and some results in low dimension topol-
ogy’, Comment. Math. Helv. 45 (1970), 333-352.

[19] J.L. Shaneson, ‘On non-simply connected manifolds’, in Proc. Sympos. Pure Math. 22
(Amer. Math. Soc., Providence, R.I., 1970), pp. 221-229.

[20]) D. Sullivan, ‘Triangulating and smoothing homotopy equivalences and homeomorphisms’,
in Geometric Topology Sem. Notes (Princeton Univ. Press, Princeton, New Jersey, 1967).

[21] R. Thom, ‘Quelques propriétés globales des variétés’, Comment. Math. Helv. 28 (1954),
17-86.

[22] C.T.C. Wall, ‘On simply connected 4-manifolds’, J. London Math. Soc. 39 (1964),
141-149.

[23] C.T.C. Wall, Surgery on Compact Manifolds (Academic Press, London, New York, 1970).

Dipartimento di Matematica Dipartimento di Matematica
Universitad di Modena Universita di Milano

41100 Modena 20133 Milano

Italy Italy

e-mail: Dipmat@imoax1l.unimo.it e-mail: Dipmat®imiucca.csi.unimi.it

Institute of Mathematics

Physics and Mechanics

University of Ljubljana
Ljubljana 61111

Slovenia

e-mail: Dusan.Repovs@unilj.si

https://doi.org/10.1017/5000497270001488X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001488X

