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We show that separable nonlinear least squares (SNLLS) estimation is applicable to all linear structural
equation models (SEMs) that can be specified in RAM notation. SNLLS is an estimation technique that has
successfully been applied to a wide range of models, for example neural networks and dynamic systems,
often leading to improvements in convergence and computation time. It is applicable to models of a special
form, where a subset of parameters enters the objective linearly. Recently, Kreiberg et al. (Struct Equ
Model Multidiscip J 28(5):725–739, 2021. https://doi.org/10.1080/10705511.2020.1835484) have shown
that this is also the case for factor analysis models. We generalize this result to all linear SEMs. To that
end, we show that undirected effects (variances and covariances) and mean parameters enter the objective
linearly, and therefore, in the least squares estimation of structural equation models, only the directed
effects have to be obtained iteratively. For model classes without unknown directed effects, SNLLS can be
used to analytically compute least squares estimates. To provide deeper insight into the nature of this result,
we employ trek rules that link graphical representations of structural equation models to their covariance
parametrization. We further give an efficient expression for the gradient, which is crucial to make a fast
implementation possible. Results from our simulation indicate that SNLLS leads to improved convergence
rates and a reduced number of iterations.
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In the behavioral and social sciences, structural equationmodels (SEMs) have becomewidely
accepted as a multivariate statistical tool for modeling the relation between latent and observed
variables. Apart frommaximum likelihood estimation, least squares (LS) estimation is a common
approach for parameter estimation. In LS, parameters are estimated by minimizing a nonlinear
function of the parameters and data. In practice, this problem is typically solved by applying
generic nonlinear optimization techniques, such as Newton-type gradient descent approaches that
iterativelyminimize the objective function until convergence is reached. However, for somemodel
classes, generic optimization algorithms can be adapted to make better use of the model structure
and thus solve the problem more efficiently. For a particular type of models, the parameters
separate, that is, one set of parameters enters the objective in a nonlinear way, while another set
of parameters enters the objective linearly. For a vector of observations y and predictors x of size
m, the objective is of the form

m∑

i=1

⎡

⎣yi −
n∑

j=1

α jϕ j (β, xi )

⎤

⎦
2

(1)

where α ∈ R
n, β ∈ R

k are parameter vectors and the (nonlinear) functions ϕ j are continuously
differentiable w.r.t. β. Golub and Pereyra (1973) showed that this kind of objective allows for a
reformulation of the optimization problem, such that only the parameters β have to be obtained
iteratively, while the parameters α can be computed after the optimization in a single step. The
procedure has been subsequently called separable nonlinear least squares (SNLLS). It has been
successfully applied in many disciplines, and it has been observed that the reduced dimension of
the parameter space can lead to reduced computation time, a reduced number of iterations and
better convergence properties (Golub & Pereyra, 2003). Inspired by earlier work (Kreiberg et al.,
2016, 2021) that showed that this procedure can also be applied to factor analysis models, we
generalize their result to the entire class of linear structural equation models and give analytical
gradients for the reduced optimization problem, which is central for an efficient implementation.

1. Review of Concepts

In the following, we briefly review the notation for structural equationmodels, the generalized
least squares estimator and the trek rules used to derive the model-implied covariance matrix.

1.1. Linear Structural Equation Models

Linear structural equation models can be defined in RAM notation (reticular action model;
McArdle & McDonald, 1984) as follows (we follow the notation from Drton, 2018): Let x, ε be
random vectors with values in Rm and

x = �x + ε (2)

where � ∈ R
m×m is a matrix of constants or unknown (directed) parameters. Let � ∈ R

m×m be
the covariance matrix of ε and I the identity matrix. If I − � is invertible, Eq. 2 can be solved by
x = (I − �)−1ε with covariance matrix

V[x] = (I − �)−1 � (I − �)−T (3)
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If x is partitioned into a part xobs of mobs observed variables and xlat of mlat latent variables, we

can reorder x such that x = (
xTobs x

T
lat

)T
, and the covariance matrix of the observed variables is

given by

� := V[xobs] = F(I − �)−1�(I − �)−TFT (4)

where F = [
I
∣∣ 0
] ∈ R

mobs×(mobs+mlat) is a rectangular filter matrix. We denote the parameters

by θ = (
θT��T

�

)T ∈ R
q , partitioned into directed parameters from � and undirected parameters

from �. (We call them directed or undirected parameters because they correspond to directed
or undirected paths in the graph of the model.) If we want to stress that � is a function of the
parameters, we write �(θ). If we are also interested in the mean structure, we introduce a vector
of (possibly zero) mean parameters γ ∈ R

m such that x = γ + �x + ε and obtain

μ := E[xobs] = F(I − �)−1γ (5)

1.2. Least Squares Estimation

The least squares objective function for θ is:

FLS = (s − σ)TV(s − σ) (6)

where σ = vech(�) is the half-vectorization of �, that is, the vector of non-duplicated elements
of the model-implied covariance matrix, s = vech(S) is the half-vectorization of the observed
covariancematrix andV is a fixed symmetric positive definite weight matrix. Specific forms of the
weight matrix V lead to commonly used special cases of this estimation technique: Generalized
least squares estimation uses V = 1

2 D
T
(
S−1 ⊗ S−1

)
D (where D denotes the duplication matrix

from Magnus and Neudecker (2019b)), asymptotic distribution-free estimation uses a consistent
estimator of the asymptotic covariance matrix of s, and unweighted least squares estimation uses
the identity matrix (Bollen, 1989; Browne, 1982, 1984).

1.3. Trek Rules

To show that in SEM undirected effects enter the least squares objective linearly, we employ
trek rules (Drton, 2018), which are path tracing rules used to derive the model-implied covariance
between any pair of variables in a SEM (Boker et al., 2002). Various authors have proposed rules
to link the graph to the covariance parametrization of the model. Here, we give the rules as put
forward by Drton (2018), which are based on treks as basic building blocks (for an overview of
alternative formulations see Mulaik, 2009). A trek τ from a node i to j is a path connecting them,
where directed edges can be traveled forwards and backwards, but it is not allowed to walk from
one arrowhead into another (without colliding arrowheads). A top node of a trek is a node which
has only outgoing edges.

To derive an expression for the model-implied covariance between any two variables i and j
based on the postulated SEM, we follow 4 steps:

1. Find all treks from i to j .
2. For each trek, multiply all parameters along it.
3. If a trek does not contain a covariance parameter, factor in the variance of the top node.
4. Add all obtained trek monomials from the different treks together.
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Figure 1.
Graph of a bi-factormodelwith one general factor and two specific factors. Circles represent latent variables, and rectangles
represent observed variables. Variances are omitted in this representation.

Note that a trek is ordered in the sense that two treks containing exactly the same nodes and
edges are considered different if they are traveled in a different order. In particular, each trek has
a source (i) and a target ( j), and a trek from j to i is considered to be a different trek, even if
it contains exactly the same nodes and edges. Also note that variances are not considered to be
edges in the mixed graph corresponding to the model (i.e., it is not allowed to travel variance
edges). Therefore, all graphical representations of SEMs in this article omit variance edges, and
it is required to factor them in according to rule 3 after the treks are collected.

1.3.1. Example To illustrate how the model-implied covariances can be derived using trek
rules, we give an example based on the graph shown in the path diagram in Fig. 1. To find the
model-implied covariance between nodes X2 and X6 in the model shown in Fig. 1, we first find
all treks from X2 to X6

X2
λ2←− ζ1

ωl←→ ζ2
λ6−→ X6 (7)

X2
β2←− G

β6−→ X6 (8)

We now compute the trek monomials for each trek. The second trek does not contain a covariance
parameter, so we need to factor in the variance of the top node. We find the trek’s top node G and
denote the variance parameter of G by ωG . Finally, we add the resulting trek monomials and we
find that the model-implied covariance between X2 and X6 can be expressed as follows:

cov(X2, X6) = λ2ωlλ6 + β2ωGβ6 (9)

As a second example, we derive the model-implied variance of X3. Again, we first find all treks
from X3 to X3:

X3
λ3←− ζ1

λ3−→ X3 (10)
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X3
β3←− G

β3−→ X3 (11)

X3 (12)

All treks do not contain a covariance parameter, so we need to factor in the variance of the
respective top nodes ζ1, G and X3. We denote the variance parameters of ζ1 and X3 by ωζ1 and
ω3 and add the resulting trek monomials to obtain

var(X3) = λ23ωζ1 + β2
3ωG + ω3 (13)

1.3.2. Formal Definitions We denote the elements of �, the undirected effects between nodes
i and j , by ωi j and the elements of �, the directed effects, by λi j . Drton (2018) defines a trek
monomial of a trek τ without a covariance parameter as

τ(�,�) = ωi0i0

∏

k→l∈τ

λlk (14)

where i0 is the top node of the trek, and a trek monomial of a trek τ containing an undirected edge
between i0 and j0 as

τ(�,�) = ωi0 j0

∏

k→l∈τ

λlk (15)

(notice the swapped indices of λlk compared to the formula in Drton because our � corresponds
to his �T ). With this, the elements of �(θ) are represented as a summation over treks. He proves
that

�(θ)i j =
∑

τ∈T (i, j)

τ (�,�) (16)

where T (i, j) is the set of all treks from i to j . It follows that the model-implied covariance is a
sum of monomials of parameters. Because covariances between the error terms are not transitive,
exactly one undirected parameter (variance or covariance) is present in eachmonomial. Therefore,
if all the directed parameters were fixed, the model-implied covariance would be a linear function
of the undirected parameters. This is what makes the SNLLS procedure applicable to structural
equation models.

For later use, we also note that Drton gives the following expression:

(I − �)−1
i j =

∑

τ∈P( j,i)

∏

k→l∈τ

λlk (17)

where P( j, i) is the set of directed paths from j to i . This is because we can write (I − �)−1 =∑∞
k=0 �k , where the geometric series converges iff all eigenvalues of � lie in (−1, 1). (Further

explanations about this and an excellent account of the connections between matrix algebra and
graphs can be found in Kepner & Gilbert (2011).)
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2. Separable Nonlinear Least Squares for SEM

We first outline the proofs for the applicability of SNLLS to CFA as given by Golub and
Pereyra (1973) and Kreiberg et al. (2021). Subsequently, we proof that SNLLS is applicable to
linear structural equation models. We further extend the existing proofs to subsume models that
contain a mean structure. Last, we derive analytic gradients that are central for efficient software
implementations.

2.1. Outline of Previous Work

To minimize Eq.1, Golub and Pereyra (1973) define the matrix function

�i j := ϕ j (β, xi ) (18)

such that Eq. 1 can be written as

‖y − �(β)α‖2 (19)

where ‖·‖ denotes the euclidean norm. For a fixed value of β, a solution for α can be obtained as
α = �+(β)y. They further proved that under the assumption that �(β) has constant rank near
the solution, only the nonlinear parameters β have to be obtained iteratively by replacing α and
minimizing the modified objective

∥∥y − �(β)�+(β)y
∥∥2 (20)

where �+ denotes the Moore–Penrose generalized inverse. Afterward, the least squares solu-
tion for the linear parameters α can be obtained as the standard least squares estimator
argminα∈Rn‖�(β̂)α − y‖ = �+(β̂)y.

Kreiberg et al. (2021) showed that this procedure is applicable for CFAmodels (we reproduce
their main results in our notation), as it is possible to rewrite the model-implied covariances σ as
a product of a matrix-valued function G(θ�) (that depends only on the directed parameters) and
the undirected parameters θ�, so the LS objective can be written as

FLS = (s − σ)TV(s − σ) (21)

= (s − G(θ�)θ�)T V (s − G(θ�)θ�) (22)

= ‖s − G(θ�)θ�‖2V (23)

They further stated that if θ� is fixed, we know from standard linear least squares estimation that
the minimizer for the undirected effects can be obtained as

θ̂� =
(
G(θ�)TVG(θ�)

)−1
G(θ�)TVs (24)

Inserting Eq.24 into Eq.22 and simplifying, they obtained a new objective to be minimized:

θ̂� = argmin
θ�

[
sTVs − sTVG(θ�)

(
G(θ�)TVG(θ�)

)−1
G(θ�)TVs

]
(25)

= argmin
θ�

FSNLLS(θ�) (26)
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This objective only depends on the directed parameters θ�. After minimizing it to obtain
a LS estimate θ̂�, Eq. 24 can be used to obtain the LS estimate of θ�. We would like to note
they assume that G has full rank, which is not a necessary assumption and can be relaxed using
alternative formulations of Eqs. 24 and 25. To extend the method to general structural equation
models, we have to derive G(θ�). We do that in the following for all models formulated in the
RAM notation.

2.2. Derivation of G(θ�)

Since F = [
I
∣∣ 0
]
with 0 ∈ R

mobs×mlat , the product FMFT for anyM ∈ R
m×m is equal to just

deleting the last mlat rows and columns of M. We also note that for any matrices M,D ∈ R
n×n

we can write

(
MDMT

)

i j
=

n∑

k=1

n∑

l=1

mil dlk m jk (27)

With this in mind, we can rewrite the model-implied covariance matrix �(θ) as

�(θ)i j =
(
F (I − �)−1 � (I − �)−T FT

)

i j
(28)

=
(

(I − �)−1 � (I − �)−T
)

i j
(29)

=
m∑

k=1

m∑

l=1

(I − �)−1
il ωlk (I − �)−1

jk (30)

=
m∑

k=1

m∑

l=1

( ∑

τ∈P(l,i)

∏

r→s∈τ

λsr

)
ωlk

( ∑

τ∈P(k, j)

∏

r→s∈τ

λsr

)
(31)

with i, j ∈ {1, . . . ,mobs}. We now immediately see that each entry of � is a sum of products of
entries of (I − �)−1 and �. More importantly, exactly one entry of � enters each term of the
sum; if we keep all entries of � fixed, each element in � is a linear function of the entries of �

and is therefore a linear function of the undirected parameters in � (under the assumption that �
is linearly parameterized). As a result, the parameter vector θ is separable in two parts, θ� from
� and θ� from �, and θ� enters the computation of the model-implied covariance linearly. As
stated before, this is the reason why we will be able to apply separable nonlinear least squares
estimation to our problem. Before we proceed, we would like to introduce some notation. If F
and G are tuples of length n andm, and f and g are functions, we define a column vector of length
n as

([
f (i)

]

i∈F

)
=

⎛

⎜⎜⎝

f (F1)

f (F2)

. . .

f (Fn)

⎞

⎟⎟⎠ (32)
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and a matrix of size n × m as

([
g(i, j)

]

i∈F , j∈G

)
=

⎛

⎜⎜⎝

g(F1,G1) g(F1,G2) . . . g(F1,Gm)

g(F2,G1) g(F2,G2) . . . g(F2,Gm)

. . . . . . . . . . . .

g(Fn,G1) . . . . . . g(Fn,Gm)

⎞

⎟⎟⎠ (33)

To make the subsequent steps easier to follow, we assume that there are no equality constraints
between parameters in� and no constant terms in� different from 0. In Appendices A and B, we
show how to lift those assumptions. We now further simplify Eq.30: Since only nonzero entries
of � (the parameters θ�) contribute to the sum, we define C as the lower triangular indices of θ�

in �, i.e., Ci = (l, k) ∈ N × N with (θ�)i = ωlk and l ≥ k. We now rewrite Eq. 30 by omitting
all zero terms:

�(θ)i j =
∑

(l,k)∈C

[
(I − �)−1

il ωlk(I − �)−1
jk + δk 	=l (I − �)−1

ik ωlk(I − �)−1
jl

]
(34)

=
([

(I − �)−1
il (I − �)−1

jk + δk 	=l (I − �)−1
ik (I − �)−1

jl

]

(l,k)∈C

)T

θ� (35)

where δk 	=l is an indicator function that takes the value 1 if k 	= l and 0 otherwise. Since we
are only interested in the non-duplicated elements σ of �, we define another index tuple D that
denotes the indices of the original position of σk in �, i.e., Dk = (i, j) such that σk = �i j . This
allows us to stack the expression we just found for �i j rowwise to get

σ =
([

�i j

]

(i, j)∈D

)
(36)

=
([

(I − �)−1
il (I − �)−1

jk + δk 	=l (I − �)−1
ik (I − �)−1

jl

]

(i, j)∈D, (l,k)∈C

)
θ� (37)

= G(θ�) θ� (38)

where G(θ�) ∈ R
dim(σ )×dim(θ�). (We let dim(·) of a vector denote its number of elements, i.e.,

the dimension of the underlying (finite-dimensional) vector space.)
Even though this expression may appear involved, it is in fact easy to compute. Before the

optimization procedure starts, we store C by looking up the positions of the parameters in � and
also store D. At each step of the optimization procedure, to compute G(θ�), we now compute
(I−�)−1 first and then loop through the entries C andD to compute each entry ofG(θ�) according
to Eq.37. We note that G will typically be sparse; therefore, it is advisable to analyze its sparsity
pattern previous to the optimization, and only loop through nonzero values.

In Appendix D, we present a different way of obtaining G(θ�) and the gradients, which
mimics the approach of Kreiberg et al. (2021). However, the expressions obtained here are com-
putationally more efficient, as the ones in the appendix contain very large Kronecker products.

2.3. Mean Structures

If the model contains mean parameters, we partition the parameter vector θ into three parts:
θ� and θ� as before, and θγ from the mean vector γ . From Eq.5, we directly see that the model-
impliedmean vectorμ(θ) is a linear function of θγ . If we letA denote the indices of the parameters
θγ in γ , i.e., for i = A j we have (θγ ) j = γi , we obtain the formula
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μ =
([

(I − �)−1
i j

]

i∈(1,...,mobs), j∈A

)
θγ (39)

We now make a slight change in notation: For the previously obtained G(θ)-matrix, we write

Gσ instead and define Gμ :=
([

(I − �)−1
i j

]

i∈(1,...,mobs), j∈A

)
. Using a formulation of the least

squares objective that also includes a mean structure, we see that

FLS =
⎡

⎢⎣
(
s
m

)
−

(
σ

μ

)
⎤

⎥⎦

T

V

⎡

⎢⎣
(
s
m

)
−

(
σ

μ

)
⎤

⎥⎦

=
⎡

⎢⎣
(
s
m

)
−
(
Gσ θ�

Gμθγ

)
⎤

⎥⎦

T

V

⎡

⎢⎣
(
s
m

)
−
(
Gσ θ�

Gμθγ

)
⎤

⎥⎦

=
⎡

⎢⎣
(
s
m

)
− G

(
θ�

θγ

)
⎤

⎥⎦

T

V

⎡

⎢⎣
(
s
m

)
− G

(
θ�

θγ

)
⎤

⎥⎦

(40)

with

G :=
[
Gσ 0
0 Gμ

]
(41)

It follows that in addition to the undirected parameters, the mean parameters also do not have to
be optimized iteratively but can instead be computed analytically after the iterative optimization
is completed.

2.4. Gradient of the SNLLS Objective

There are computationally efficient expression to compute the SNLLS objective and its gra-
dient analytically (Kaufman, 1975; O’Leary & Rust, 2013). Because numerical approximations
of the gradient are often slow and may become numerically unstable, we derive an analytical
expression for the part of the gradient that is specific to SEMs. We use the notation and methods
from Magnus and Neudecker (2019a) and denote the differential by d and the Jacobian by D.
The Jacobian of a matrix function M with respect to a vector x is defined as DM = ∂ vecM

∂xT
. In

the approaches by Kaufman (1975) and O’Leary and Rust (2013), the gradient of the SNLSS
objective is expressed in terms of the partial derivatives of the entries of G w.r.t the nonlinear
parameters, i.e., DG. In order to be able to implement such efficient approaches in practice, we
deriveDG here.We also give the full gradient of Eq.25 for completeness in Appendix C, although
in practice, a more efficient expression from the cited literature can be used (which also does not
assume G to have full rank). For reasons of clarity, we here only consider the case without mean
structure, e.g., G = Gσ . This is because the derivative of Gμ is similar to obtain and we do not
want to make the derivation unnecessarily technical.

Let E denote the indices of θ� in �, i.e., Ek = (i, j) such that �i j = (θ�)k . We note that

∂(I − �)−1
kl

∂�i j
= (I − �)−1

ki (I − �)−1
jl (42)
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With this, we derive the partial derivatives of each entry ofG in terms of the matrix (I− �)−1 as

∂Gr,s

∂(θ�)n
= ∂

∂(θ�)n

[
(I − �)−1

il (I − �)−1
jk + δk 	=l (I − �)−1

ik (I − �)−1
jl

]
(43)

=
[

∂

∂(θ�)n
(I − �)−1

il (I − �)−1
jk + (I − �)−1

il
∂

∂(θ�)n
(I − �)−1

jk

]

+ δk 	=l

[
∂

∂(θ�)n
(I − �)−1

ik (I − �)−1
jl + (I − �)−1

ik
∂

∂(θ�)n
(I − �)−1

jl

]
(44)

=
[
(I − �)−1

iu (I − �)−1
vl (I − �)−1

jk + (I − �)−1
il (I − �)−1

ju (I − �)−1
vk

]

+ δk 	=l

[
(I − �)−1

iu (I − �)−1
vk (I − �)−1

jl + (I − �)−1
ik (I − �)−1

ju (I − �)−1
vl

]
(45)

with (i, j) = Dr , (l, k) = Cs , and (u, v) = En . Since G is of dimension dim(σ ) × dim(θ�), with
k = dim(σ ) we have

vec(G)t = Gt−k
(t−1)/k)�, �t/k
 (46)

and we obtain DG ∈ R
dim(σ ) dim(θ�)×dim(θ�) as

DG = ∂ vecG

∂θT�

=
([

∂Gt−k
(t−1)/k)�, �t/k

∂(θ�)n

]

t∈(1,...,dim(σ ) dim(θ�)), n∈(1,...,dim(θ�))

)
(47)

To facilitate software implementation, we give a way to compute DG in pseudocode in
Algorithm 1. In practice,DGwill typically contain many zero values. Therefore, it is advisable to
analyze the sparsity pattern ofDG before the optimization procedure begins and to only compute
the nonzero values of DG at each iteration. Also note that the entries of DG are continuous w.r.t
θ�, since they are sums of products of entries of the inverse (I − �)−1, which is continuous.

Algorithm 1
Compute DG

for s ∈ (1, . . . , dim(θ�)) do
(l, k) ← Cs
for r ∈ (1, . . . , dim(σ )) do

(i, j) ← Dr
t ← (s − 1) dim(σ ) + r
for n ∈ (1, . . . , dim(θ�)) do

(u, v) ← En
DGt,n ← [

(I − �)−1
iu (I − �)−1

vl (I − �)−1
jk + (I − �)−1

il (I − �)−1
ju (I − �)−1

vk

]

+δk 	=l
[
(I − �)−1

iu (I − �)−1
vk (I − �)−1

jl + (I − �)−1
ik (I − �)−1

ju (I − �)−1
vl

]

end for
end for

end for
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3. Discussion

Wehave shown that separable nonlinear least squares is applicable to generalized least squares
estimation of structural equation models formulated in the RAM notation. We have also shown a
connection to path tracing rules in the form of trek rules. Note that when the same weight matrix is
used, the point estimates obtained by SNLLS and LS are identical. Therefore, standard errors and
test statistics are obtained using the same methods available for regular least squares estimation.
In the following, we would like to discuss the two major benefits of using SNLLS for SEM: better
convergence properties and a reduction in the computation time for parameter estimation.

3.1. Convergence

An important issue inSEMis convergenceproblems, especially in small samples (De Jonckere
& Rosseel, 2022). If the optimizer fails to converge, no parameter estimates can be obtained.
Using the SNLLS objective should lead to fewer convergence problems than LS, since only
the directed parameters need to be estimated iteratively. Therefore, only the subset of directed
parameters requires starting values. In many models, most of the directed parameters are factor
loadings, and we can obtain very good starting values for them with the FABIN 3 estimator
(Hägglund, 1982). Also, Ruhe and Wedin (1980) and Golub and Pereyra (2003) give additional
proofs and reasons for why the reduced optimization problem of SNLLS should in principle be
better behaved than the full LS problem. Additionally, for the class of models without unknown
directed parameters, convergence problems should be eliminated altogether, as the estimator of the
mean and (co)variance parameters can be computed analytically. Most prominently, this features
many types of latent growth curve models.

To investigate the convergence properties of SNLLS in SEM, we ran a small simulation.
We used the model in Fig. 2 to draw 1000 random data sets for varying sample sizes (N =
10 to N = 100) under the assumption of multivariate normality with zero expectation and the
model-implied covariance induced by the parameters. The sample size and the factor loadings are
deliberately chosen to be small to achieve a setting where non-convergence often occurs.We fitted
the true model to each sample with generalized least squares (GLS; Bollen, 1989) and SNLLS
estimation. All analyses were done in the programming language R (R Core Team, 2021). For
GLS estimation, we used lavaan (Rosseel, 2012). The plots were created with ggplot2 (Wickham,
2016), and the data were prepared with dplyr (Wickham et al., 2021). In Fig. 3 we report the
number of converged models for each sample size. In Fig. 4, we report the median number of
iterations needed until convergence for each sample size. Using SNLLS effectively halved the
median number of iterations until convergence for most sample sizes and more than halved the
number of non-converged models for most sample sizes. This indicates that SNLLS might be a
useful alternative for applied researchers to consider if they encounter convergence problems.

3.2. Computation Time

The benefits of SNLLS estimation, specifically the reduced dimensionality of the parameter
space, better starting values and fewer iterations to convergence, could lead to reduced computation
times. However, the computation of the SNLLS objective function and gradient is also more
costly, so the cost per iteration can be higher. In sum, the question whether SNLLS estimation
is faster in actual time spent in the optimization hinges upon several aspects, such as the actual
implementation of the gradient, meta-parameters of the optimizer and model complexity.

Kreiberg et al. (2021) stated that estimation by SNLLS will typically be multiple times faster
than LS when the reduced parameter space is much smaller than the original one. They conducted
a simulation study, where they fitted a number of CFA models and concluded that the estimation
time is bigger for LS than for SNLLS as the number of estimated parameters increases. Even
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Figure 2.
The structural equation model used to compare convergence properties of SNLLS and GLS estimation, with two latent
variables, ζ1 and ζ2. Variances are omitted in this representation. The population values are the same as in De Jonckere
and Rosseel (2022): λ1 = λ4 = 1, λ2 = λ5 = 0.8, λ3 = λ6 = 0.6, β = 0.25, and all error variances are set to 1

Figure 3.
Simulation results—number of converged replications out of 1000. GLS, generalized least squares; SNLLS, separable
nonlinear least squares

Figure 4.
Simulation results—median number of iterations by sample size. GLS, generalized least squares; SNLLS, separable
nonlinear least squares
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though their simulation is useful to illustrate the potential benefits of SNLLS, it seems unfit to us
tomake a case for a general reduction in computation timewhen using SNLLS inmodern software.
The gradient computation in the simulation was based on a finite difference approximation in both
the LS and the SNLLS condition. In existing software (Rosseel, 2012; von Oertzen et al., 2015),
analytic gradients are implemented for LS estimation, so the authors compare against a strawman
that would not be used in practice if computational efficiency is important. In addition, centered
finite differences takes 2q calls to the objective function per computation of the gradient, where
q is the number of parameters. Since SNLLS results in a smaller parameter space, their method
of differentiation favors the SNLLS procedure.

It remains to implement a competitive version of SNLLS optimization for SEM using the
analytic gradients derived in this paper to be able to do a realistic simulation to investigate whether
SNLLS outperforms the LS estimator in practice. However, there is a large body of research
concerning the efficient implementation of SNLLS (see, for example, Kaufman, 1975; O’Leary
and Rust, 2013); writing competitive software for SNLLS in SEMs would be a research topic on
its own. Therefore, we only give simulation results concerning the improvement of convergence
rates and the number of iterations in this paper. As noted previously, for the class of models
without unknown directed parameters, the estimator of the mean and (co)variance parameters
can be computed in a single step. As a result, those models should especially benefit from lower
computation times.

3.3. An Outlook on Maximum Likelihood Estimation

If the assumption of multivariate normality is tenable, another method of obtaining parameter
estimates is maximum likelihood estimation. Here, we briefly discuss to what extent our results
may have an impact on maximum likelihood optimization of SEMs. In least squares estimation
with a fixed weight matrix, we saw that the undirected parameters θ� and the mean parameters
θγ enter the objective linearly. For maximum likelihood estimation, we believe it is not possible
to factor out the undirected parameters (for most models used in practice). This is because the
likelihood of the normal distribution

φ(x) = (
(2π)mobs det�

)− 1
2 exp

(
−1

2
(x − μ)T�−1(x − μ)

)
(48)

depends on the inverse of the model-implied covariance matrix. For the simplistic example model
depicted in Fig. 5, we derive the model-implied covariance matrix as

� =
(

ωl + ω1 ωl

ωl ωl + ω2

)
(49)

and the inverse can be computed as

�−1 = (det�)−1 adj� (50)

where adj refers to the adjugate matrix, so in our example,

det� = (ωl + ω1)(ωl + ω2) − ω2
l = ω1ωl + ω2ωl + ω1ω2 (51)

and

�−1 = (ω1ωl + ω2ωl + ω1ω2)
−1
(

ωl + ω2 −ωl

−ωl ωl + ω1

)
(52)
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Figure 5.
Graph of a simplistic example model with one latent variable, measured by two indicators. The model contains no
unknown directed effects and only two observed variables to allow for an easily traceable computation of the inverse of
the model-implied covariance matrix. All variances are treated as unknown parameters

We see that θ� enters the determinant and therefore the inverse of � in a nonlinear way. In
general, the Leibniz Formula for the determinant gives

det� =
∑

π∈Smobs

sgn(π)

mobs∏

i=1

�i,π(i) (53)

where Smobs denotes the symmetric group. Since this formula multiplies entries of �, and we saw
in Eq.30 that the entries of � depend on the undirected parameters, it is very likely that those
form a product and enter the objective in a nonlinear way. However, for the mean parameters,
the picture may be different and we leave this for future work. If the model is saturated (e.g., has
zero degrees of freedom), the least squares estimates are the same as the maximum likelihood
estimates, since S = �(θ̂ML) = �(θ̂LS). Also, Lee and Jennrich (1979) showed that maximum
likelihood estimation can be obtained as a form of iteratively reweighted least squares if V is a
function of the parameters:

V = 1

2
DT

(
�−1 ⊗ �−1

)
D (54)

where D denotes the duplication matrix from Magnus and Neudecker (2019b). Another way of
obtaining ML estimates with SNLLS would therefore be to minimize the SNLLS objective and
use the obtained � to update the weight matrix V as given in Eq.54. SNLLS could then be rerun
with the updated weight matrix, and the weight matrix be updated again, until � converges to
�(θ̂ML). However, we would like to note that this procedure is probably computationally quite
inefficient.

3.4. Conclusion

We generalized separable nonlinear least squares estimation to all linear structural equation
models that can be specified in the RAM notation, particularly those including a mean structure.
We explained this result with the help of trek rules and the non-transitivity of the covariances of
the error terms, providing deeper insight into the algebraic relations between the parameters of
SEMs. We further derived analytic gradients and explained why they are of central importance to
obtain a competitive implementation. Our simulation indicates that SNLLS leads to improvements
in convergence rate and number of iterations. It remains for future research to investigate the com-
putational costs empirically. We also showed why it is unlikely that undirected parameters enter
the maximum likelihood objective linearly. Thus, another line of research could be concerned
with the applicability of SNLLS to the mean parameters in maximum likelihood estimation and
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the relationship of SNLLS to other decomposition methods for maximum likelihood estimation
(Pritikin et al., 2017, 2018). Further research might also examine whether SNLLS is applicable to
multilevel models. SNLLS promises better convergence rates for least squares parameter estima-
tion in SEM and, with an efficient implementation, also reduced computation times. This result
is important in its own right but may as well serve as a first step for generating starting values for
subsequent ML estimation.
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Appendix A: Equality Constraints

Kreiberg et al. (2021) showed how to incorporate equality constraints in CFA models. Because
their proof follows a different approach, we show how to incorporate equality constraints in our
expressions. Since the SNLLS objective only depends on θ�, constraints in θ� and θγ can be
difficult to implement. However, simple equality constraints (e.g., θ j = θi ) are feasible under
SNLLS. Since σ = G θ�,γ , we see that if two (or more) parameters in θ�,γ are equal, we can
delete all but one occurrence from the parameter vector and add the relevant columns inG together,
e.g.,

(
a b c

)
⎛

⎝
d
e
d

⎞

⎠ = ad + be + cd = (a + c)d + be = (
a + c b

) (d
e

)
(A1)

Or, put differently, if we allow the index tuples C and A to have sets of indices as entries, i.e.,
Ci = {(k, l) ∈ N × N | θ�i = ωkl ∧ k ≥ l}, we obtain

Gσ =
⎛

⎝

⎡

⎣
∑

(l,k)∈c
(I − �)−1

il (I − �)−1
jk + δk 	=l (I − �)−1

ik (I − �)−1
jl

⎤

⎦

(i, j)∈D, c∈C

⎞

⎠ (A2)

An expression for Gμ can be obtained in a similar way.
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Appendix B: Constants in �

To handle constants in � different from zero, we introduce c as the vector of constant nonzero
entries in � and E as the lower triangular indices of c in �. Further, define

Gc :=
([

(I − �)−1
il (I − �)−1

jk + δk 	=l (I − �)−1
ik (I − �)−1

jl

]

(i, j)∈D, (l,k)∈E

)
(B1)

with D defined as in Eq.36, i.e., the indices of the original position of σk in �. This allows us to
modify Eq.38 to

σ = G(θ�) θ� + Gc c (B2)

and reformulate the least squares objective as

FLS = (s − σ)TV(s − σ) (B3)

= (s − (G(θ�)θ� + Gcc))
T V (s − (G(θ�)θ� + Gcc)) (B4)

= ((s − Gcc) − G(θ�)θ�)T V ((s − Gcc) − G(θ�)θ�) (B5)

= ∥∥s′ − G(θ�)θ�

∥∥2
V (B6)

with s′ = (s − Gcc). For a fixed value of θ�, we can now again solve for θ�.

Appendix C: Gradient of the SNLLS Objective

Let aT := sTVG
(
GTVG

)−1
. We derive the differential as

d FSNLLS = d
(
sTVs − sTVG

(
GTVG

)−1
GTVs

)

= −d
(
sTVG

(
GTVG

)−1
GTVs

)

= −sTV dG
(
GTVG

)−1
GTVs

− sTVG d
(
GTVG

)−1
GTVs

− sTVG
(
GTVG

)−1
dGTVs

= −2 sTV dG
(
GTVG

)−1
GTVs

+ sTVG
(
GTVG

)−1
d
(
GTVG

) (
GTVG

)−1
GTVs

= −2 sTV dGa

+ sTVG
(
GTVG

)−1 [(
dGTVG

)
+
(
GTV dG

)] (
GTVG

)−1
GTVs

= −2 sTV dGa
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+ aT
[(

dGTVG
)

+
(
GTV dG

)]
a

= −2 sTV dGa

+ 2 aTGTV dGa

= −2
(
aT ⊗ sTV

)
d vecG

+ 2
(
aT ⊗ aTGTV

)
d vecG

= −2 vec
(
VsaT

)T
d vecG

+ 2 vec
(
VGaaT

)T
d vecG

= 2 vec
(
VGaaT − VsaT

)T
d vecG

= 2 vec
(
(VGa − Vs) aT

)T
d vecG

= 2 vec
(
(VGa − Vs) aT

)T
DG

︸ ︷︷ ︸
=D FSNLLS

d θ� (C1)

Appendix D: Alternative Proof

This is the analogous formulation to the one given inKreiberg et al. (2021) for CFAmodels.We see
that the resulting expressions contain very large Kronecker products; for reasons of computational
efficiency, we therefore favor the expressions given in the main text. Let D+ denote the Moore–
Penrose inverse of the duplication matrix Dmobs from Magnus and Neudecker (2019b) such that

σ = D+ vec(�) (D1)

and L be a matrix such that

vec(�) = L θ� (D2)

We can obtain L ∈ R
m2×dim(θ�) as

Li j =
{
1, if i = (k − 1)m + l ∨ i = (l − 1)m + k with (k, l) = C j

0, otherwise
(D3)

and derive G(θ�) as

σ(θ) = D+ vec(�) (D4)

= D+ vec(F(I − �)−1�(I − �)−TFT ) (D5)

= D+ (F (I − �)−1 ⊗ F (I − �)−1
)
vec(�) (D6)

= D+ (F (I − �)−1 ⊗ F (I − �)−1
)
L

︸ ︷︷ ︸
=G(θ�)

θ� (D7)
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We further define P := (
LT ⊗ D+ (F ⊗ F)

)
and Q := (Im ⊗ Km ⊗ Im), where Km is the com-

mutation matrix from Magnus and Neudecker (2019b), and derive DG as

d vecG = d vec
[
D+ (F (I − �)−1 ⊗ F (I − �)−1)L

]

= d vec
[
D+ (F ⊗ F)

(
(I − �)−1 ⊗ (I − �)−1)L

]

=
(
LT ⊗ D+ (F ⊗ F)

)
d vec

(
(I − �)−1 ⊗ (I − �)−1)

= P vec
(
d (I − �)−1 ⊗ (I − �)−1 + (I − �)−1 ⊗ d (I − �)−1)

= P[
vec

(
(I − �)−1 d� (I − �)−1 ⊗ (I − �)−1)

+ vec
(
(I − �)−1 ⊗ (I − �)−1 d� (I − �)−1)

]
= PQ[
vec

(
(I − �)−1 d� (I − �)−1)⊗ vec (I − �)−1

+ vec (I − �)−1 ⊗ vec
(
(I − �)−1 d� (I − �)−1)

]
= PQ[
(
Im2 ⊗ vec (I − �)−1) vec

(
(I − �)−1 d� (I − �)−1)

+ (
vec (I − �)−1 ⊗ Im2

)
vec

(
(I − �)−1 d� (I − �)−1)

]
= PQ

[(
Im2 ⊗ vec (I − �)−1)+ (

vec (I − �)−1 ⊗ Im2
)] (

(I − �)−T ⊗ (I − �)−1
)
D�

︸ ︷︷ ︸
=DG

d θ�

(D8)
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