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In this paper we are concerned with the uniqueness of solutions of
functional equations of the form

(1) g(F(x,y))=H(f(x),f(y);x,y),

(2) f(F(x,y))=H(f(x),f(y);x,y).

Some conditions for (1) or (2) to have at most one real continuous solution
/ which satisfies two given initial conditions are contained in [2], [3], [4]
and [7]. Conditions sufficient for the equation

to determine at most one continuous solution / with values in a Banach
algebra are contained in [5]. It is well known (see [1] ch. 2) that one initial
condition suffices for Cauchy's equation

f(x+y) = f

or two for Jensen's equation

fifr+to) =-i
to uniquely determine a real solution / which is bounded on an interval or
majorized on a set of positive measure by a measurable function. We place
conditions on F and H so that similar statements can be made about
solutions of (1) or (2). The corresponding results for solutions which are
functions of many real variables follow as for Cauchy's and Jensen's
equations (see [1] ch. 5).

In the following (A, d) is a metric space; D C A; C is the complex plane;
R is the real line; Rn is «-dimensional Euclidean space; / is a real interval
or a convex set in Rn. If / : / - > - A is bounded in a neighbourhood of each
point of / we say / is locally bounded in / . If D = R or C we take
d[u,v) = \u—v\,u,veD. We use a square (round) bracket to denote a
closed (open) end of an interval.

THEOREM 1. Let I be an interval. Let F :IxI -»• R be continuous and
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strictly increasing {or decreasing). Let H : DxDxIxI -> A be such that

(Hx) H{u, v; x, y) = H(U, v; x, y) iff u = U,

or
H(u, v; x, y) = H{u, V; x, y) iff v = V;

(H2) corresponding to every bounded set J CI there exists r e [\, 1) and s > 0
such that inDxDxJxJ

(3) d{H(u, v; x, y), H(U, V; x, y)} ^ rs{d(u, U)+d(v, V)},

(4) d{H(u, u; x, x), H(v, v; x, x)} S£ sd(u, v).

Let a,b el and a < b. Then corresponding to any given f(a) and f(b)
there is at most one pair of functions / : / -> D and g : {F(x, y) : x, y e 7} ->• A
such that f is locally bounded in I and (1) holds.

PROOF. Let z = G(x, y) be the unique solution of F(z, z) = F(x, y).
If F(x, x) = x(F is reflexive), then G = F. Let OL^X) = G(a, x) and
x2(x) = G(x, b), x el; then «x and aa are continuous, strictly increasing,
ai(a) = a, ax(6) = a2(a), a2(6) = b. Hence ax and oc2 together map [a, 6]
onto [a, 6].

Let H(u, u; x, x) = h(u; x). If (1) holds in / the substitution of G(x, y)
for both x and y shows that

h{f(G(x, y)); G(x, y)} = H(f(x), f(y); x, y), x,yel.

If f(a) = A and f{b) = B then

(5) *{/(«i(*)); *i(*)} = H(A, f(x); a, x), xel,

(6) *{/(<«.(*)); o,(a;)} = ff(/(x), B; a:, 6), xel.

Let /x and /2 satisfy (5) and (6) and be locally bounded in / . If x0 e [a, b]
and n is a positive integer there exist px,---,pn e {1, 2} and xx,• • •, xn e [a, b]
such that x0 = a^fo), *fc = a.Pk+i(xk+1), k = 1, • • •, n— 1, and hence (5),
(6) and (H2) imply that there exist r e\\,\) and s > 0 such that

which decreases to 0 as n -> oo since /x and /2 are bounded on [a, b]. Hence
/i = fi in La» *]• As in [7] the condition (Hx) ensures that fx = /2 in I.

REMARKS. If / = [a, b] the condition (HJ is unnecessary; and if also
F is reflexive then F need only be non-decreasing (or non-increasing).
On the other hand if (1) is replaced by (2) and a=£ F{a,a) el then the
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condition f{b) = B is redundant (cf. [4], [6]) — this remark also applies
to the next theorem. If H(u, u; x, x) == u then (3) and (4) are equivalent
to (3) with s = 1.

THEOREM 2. Let I be an interval. Let F satisfy the hypotheses of Theorem 1
and corresponding to each bounded set J CI let there exist positive constants
k, K such that in JxJ

(7) k\x-y\ rg \F(x, z)-F(y, z)\ < K\x-y\.

Let D = R or C. Let 77: DxDxIxI -> D be continuous, satisfy {H2)
and

(H3) there exists a continuous function G: DxDxIxl -> D such that

G(u, H(u, v; x, y); x, y) = v.

Let a, b el and a < b. Then corresponding to any given f(a) and f(b)
there is at most one pair of functions f : I~> D and g: {F(x, y) : x, y e 7} -> D
such that |/| has a measurable majorant on a subset of I of positive measure
and (1) holds.

PROOF. Let / and g satisfy the given hypotheses. If 5 C / and t e I let
F(S, t) = {F(x, t) : x e S} and mS denote the Lebesgue measure of S (if
measurable). There exists a closed and bounded set E CI such that mE > 0
and / is bounded on E. Let I1 be a closed interval such that E C 72 C 7.
Then F(E, a) C F(I1, a) and mF(E, a) > 0. Hence there exists a closed
interval Io C 7X such that

(8) m{F(E, a) n 7^(70, a)} ^ %mF{I0, a) > 0.

Let J be a closed interval, 70 u [a, b] CJCI; then there exists K > 0
such that (7) holds. Also there exists SCI such that S D E, S is a finite
union of disjoint closed intervals, and

(9) m(S — E) ^ \K-^mF[E n 70, a).

If x e [a, b] then (7) and (9) imply

mF(S nI0,x)-mF(E nlo,x) ^Km{{S-E) n 70}

nlo,a),
mF(E n 70, x) ^ mF(S nlo, x)—^mF(E n 70, a).

But since 7^(5 n 70, x) is a finite sum of closed intervals, mF(S n 70, x) is
continuous at x = a. Hence there exists d1 e (0, b—a) such that if
x e [a, #-f-(5i] then
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mF(S n Io, x) 2: mF(S n /„, a)—^mF(E n / 0 , a)

(10) mF(E nlo,x) ^ fwF(£ nlo,a).

Similarly there exists d e (0, 6j) such that if x e [a, a+d] then
F(I0, x) n F(I0, a) is not empty and

m{F(I0, x) u F( / o , a)} < ^ « F ( / 0 , a),

(11) m{F{E nlo,x)v F(E n /0 , a)} < ^mF(I0, a).

Let x e [a, fl+d]. If F(E n Io, a) n F(E n / 0 , x) is empty then from (10)
and (8)

m{F(E n 70, a) u F{E n Io, x)} = mF(E n Io, a)+mF{E n Io, x)

, a)

which contradicts (11). Hence the intersection is not empty and there exist
s,teEnIQ such that F(s, a) — F(t,x); (1) and /(a) = A then imply

H(f(s),A;s,a)=H(f(t),f(x);t,z),

f(x) = G{f{t),H(f(s),A;s,a);t,x}.

The continuity of H and G imply that / is bounded on [a, a -\-d]. Also
from (5)

f(x\{x)) = G(A, h{f(4+1(x)); a*+1(x)}; a, «•(*)), xel, k = 0, 1, • • •.

Hence f{x) can be expressed as a continuous function of x and /(a"(a;)),
n = 1, 2, • • •. Since a"(6) ->• a; as « -> oo, there exists an integer w such that
aj([«, i]) C [a, «+(5]. This implies that / is bounded on [a, b] which is
sufficient for the proof of the theorem.

THEOREM 3. Let I be a convex subset of Rn. Let H: DxDxIxI -> A be
such that (Ha) and (H2) hold.

Let a, /? e R, a/? > 0, and y e Rn. Let aQ, • • •, an be the vertices of a
non-degenerate simplex in I. Then corresponding to any given f{a0), • • -, /(«„),
there is at most one pair of functions f : I -*• D and

g : {

such that f is locally bounded in I and

(12) gfa+fy+y) = H{f(x), f(y);x, y).
PROOF. Let / and g satisfy the given hypotheses. Let S be the set of

points in I where / is uniquely determined; then a0, • • •, ane S. Let x, y e S
and xy denote the straight line through x and y:
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xy = {x+s(y—x) : s e R).

Then there exists a real interval J such that

xy n I = {x-\-s(y—x) : s e «/}.

Let ^(s) = f(x+s(y~x)), s e J,

], s.teS.
Then

s), h{t); x+s(y-x),
But fx is locally bounded in f, ^(0) = /(x) and /j(l) = /(«/). By theorem
1 f1 is uniquely determined in J'. Hence xy n I C S and in particular 5 is
convex. Let z el and M be the linear manifold spanned by 5. Then M — Rn

and zeM. Hence (see [6] p. 16, Ex. 1.5.1) some straight line through z
meets S in a non-degenerate segment, hence in at least two points. Hence
z e S and 7 = 5.
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