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1. INTRODUCTION

Various methods for developing recursive formulae for compound distributions
have been reported recently by PANJER (1980, including discussion), PANJER
(1981), SUNDT and JEWELL (1981) and GERBER (1982) for a class of claim
frequency distributions and arbitrary claim amount distributions. The recursions
are particularly useful for computational purposes since the number of calcula-
tions required to obtain the distribution function of total claims and related
values such as net stop-loss premiums may be greatly reduced when compared
with the usual method based on convolutions.

In this paper a broader class of claims frequency distributions is considered
and methods for developing recursions for the corresponding compound distribu-
tions are examined. The methods make use of the Laplace transform of the
density of the compound distribution.

2. THE CLAIM FREQUENCY DISTRIBUTION

Consider the class of claim frequency distributions which has the property
that successive probabilities may be written as the ratio of two polynomials. For
convenience we write the polynomials in terms of descending factorial powers.
For obvious reasons, only distributions on the non-negative integers are con-
sidered. Hence, successive probabilities of claim frequencies are written as

(o l 2 + - • -)pn = (0o + Pi(n - 1)

+ /S2(n- l ) ( 2 ) + ---)p»-i, n = 1,2,3,...,

where

Note that the coefficients are only specified up to a multiplication constant.
The class of probability distribution satisfying (1) is very broad and includes

the following distributions:

1. Binomial:
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2. Poisson:

3. Negative Binomial:
(a +n - 1

ao = 0, oi = l, Po=pa, 0 i=p .

4. Hypergeometric:
/AA/Af-AA
\n /V m—n )

ao = 0, «i = A/ —AT —m+ 1, a 2 = l ,

Po = Nm, 0i = -(A/ + m - l ) , /32=l.

5. Hyper-Poisson:

P n ~ C ( A + n - l ) ( " )

ao = A - l , a i = l, /3o = (9, |8i = 0.

6. Logarithmic:

7. Waring:

(A -a)(q +w-l) ( " )

P

8. Polya-Eggenberger (Negative Hypergeometric):

- a w -6
n )\N-nj

\ N 1

ao = 0, ai
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9. Generalized Waring Distribution:

__Y(a+n) Y(b+a) Y(a +b)Y(a +n)
Pn~ n\Y(a) Y(b)Y(a) Y(a+b+a+n)

ao = O, cti = a+b +a, a2=l

The binomial, Poisson and negative binomial distributions have a natural
appeal for actuaries in connection with contagion models (cf. BUHLMANN 1970).
It is well known that the negative binomial also arises as a mixed Poisson
distribution with a gamma mixing function.

The Polya-Eggenberger (Negative Hypergeometric) arises as a mixed binomial
with the parameter p mixed in accordance with a beta mixing function. This can
be seen from the following (cf. SKELLAM (1948)):

P q Y(a)Y(b)P q P

(a+n-l\/b+N-n-l/a+n-l\/b+N-n-l\ (-a\( -b \
\ n A N-n )_\n)\N-n)

/a+b+N-l\ ~ /-a-b
\ N ) \ N

The generalized Waring distribution can arise as a mixed Poisson (cf. IRWIN,
1965, 1968, SEAL, 1978 or GOOVAERTS and VAN WOUWE 1981) or more
simply as a mixed negative binomial with a beta mixing function. This can be
seen from the following:

T(a+b)
q

T(a+n) T(b+a) r(a+b)T(a+n)
~ n\r(a) T(b)T(a) r(a+b+a+n) '

It is easy to construct other members of this family by appropriately choosing
the coefficients in the polynomials in (1). Such claim frequency distributions may
have finite range or infinite range. One obtains a finite range when inter alia
the polynomial on the right-hand side of (1) has its smallest positive root at an
integer. Many references about the listed distributions can be found in JOHNSON
and KOTZ (1969).

3. TRANSFORM RELATIONSHIPS

It is assumed that claim sizes are positive so that the claim size distribution
F(x) has support only on the non-negative real axis. It is further assumed that
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claim frequencies and amounts are mutually independent. Under these assump-
tions the distribution function of aggregate claims is given by

(2) G(x)=i PnF*n(x), x^O.

Let f(t) and g{t) denote the Laplace (or Laplace-Stieltjes) transforms

(3)

and

(4) g(t)=Ea[e-x]=^e~'xdG(x).

Further let P(s) denote the probability generating function of claim frequencies

(5) P{s) = Ep[sN]= I Pns
n.

n=0

Then it is easily shown that

(6) g{t)=P{f{t)).

Successive differentiation of (5) results in

(7) P'(s) = Znsn-1pn

where the square subscript brackets indicate derivatives. If the polynomials in
(1) are of order k, then

r k ,-<\ r k r,~\
I a{n

M \pn = I 0,(n - 1 ) ( I ) \Pn-u n = 1, 2 , . . . .
Lj=o J L;=o J

(8)

Multiplying the n th equation of (8) by s " and summing all equation results in

••+aks
kPik\s)

(9)
[ 3 P ( ) i " ( ) 8 2 P " ( ) • -+!3ks

kP[k\s)l

Successive differentiation of (6) results in

(10) g(t)=P(f(t))

g"(t)=f"(t)P'(f(t)) + [f'(t)]2P"(f(t))

https://doi.org/10.1017/S0515036100006899 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006899


RECURSIONS

+e[f"U)If'(t)fP'"(f(t)) + [/»(')] V4](r).

Solving the successive equations for P, P', P", P'" and F[4] respectively yields
(dropping the argument t)

(ID m-p\f)=g'

iff • P'"(f) = §'"'3h21g"-[h31 -3h2
21]g'

[f'T • PW(f) = gW-6h21g'"-[4h31 - 15h2
21]g"-[h41 - 10/T21/T3

where

To obtain the desired relationship of the various transforms, the equations (11)
are substituted into (9) with s =/(f)- This results in (for k =4):

(12) a0(g

+a3P01{g'" ~ 3h21g" - [h31 - 3/ilxlg'} + a4h
4
01{gW - 6h2ig"

-[4h31 - 15h2
21]g"-[h41 - 102lh3i + I5h3

2l]g'}

+terms similar to the above in /33, ^ 4 } .

Equation (12) will be used to develop recursions in the next section. The
corresponding results for k = 1, 2 or 3 are obtained by setting the appropriate
coefficients a, and /3, to zero.

4. DEVELOPING RECURSIONS

It is assumed that the claim size distribution F(x), with support on (0, oo), is
of either the continuous type or the discrete type with jumps on the positive
integers. In order to distinguish the two cases, the measure /u will refer to
Lebesgue or counting measure on (0, oo) as is done by SUNDT and JEWELL
(1981). To set up a recursion, equation (12) (or similar equation for k <4) is
used. One of g, g', g", g'" or g[4] from the left-hand side of (12) is isolated and_
the resulting equation is inverted. Note that these exists one higher power of /
on the right-hand side. Upon inversion, the result may involve an auxiliary
function h(x) whose transform h{t) is a function of the transforms h(t) is a
function of the transforms htj(t). The success of any of the resultant recursions
depends on the ability to identify these auxiliary functions. Different possible
values of k are now considered separately. Special attention is paid to special
cases when certain of the coefficients at are zero.
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Case I: k = 1
Equation (12) reduces to

(13) ao(g-po) + ai£oig'=/{0og+0i

Special Case I(a): a0 = 0
Isolating g' from the left-hand side of (13) results in

(14) g = {/

= {jSoPo/' + /So/'[g ~Po] + j8 i/g'}/a i

Upon inversion and division by —x, one obtains the recursion

I f y
/3oPo/(*) + /3o -/(y)g(x-y)<fyi(y)

J(O,x) X

i f
J(O

x-y
J(O,x) X

which reduces to

PoPo ,
(16)

f
J(o,x)

This is the recursion obtained by PANJER (1981) and applies to the Poisson,
binomial, negative binomial and geometric claim frequency distributions.

Special Case I(b): a t = 0
In this case, the claim frequencies satisfy

(17) aoPB={|8o + i8i(n-l)}pB-i.

If there exists a positive integer N such that /30 + |8iiV = 0, then the claim
frequency distribution has finite range. In this case, (17) leads to

If there exists no such N, the condition that £p n = 1 implies that |/30+/3i«l < kol
for sufficiently large n; and so j8i = 0 and the geometric distribution follows. The
geometric distribution was considered in Special Case I(a) above. In order to
develop a recursion for the distribution (18), equation (12) reduces to

(19)

Upon division by ao and inversion one obtains

gOc) = ~ / ( * ) + - [ f(y)g(x-y)dn(y)
«0 «0 J(O,x)

• — ( x -
«0 J(O,x)
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where h(y) has transform h=[f]2/f. The problem of obtaining the auxiliary
function h{y) is considered in the next section of this paper.

Special Case I(c): a0# 0, ax 5* 0

The hyper-Poisson, Waring and logarithmic distributions are examples of this
special case. It appears that the most convenient way to obtain a recursion from
equation (12) is to solve for g' on the left-hand side. This results in

(20) g' = {poPof + /8o/'[g -Po] + /8 x/g' - oc0h 10[g - po]}/«,.

Observe that h\o=f If = h' where h(t) = logf(t). Making this substitution into
(20) and inverting the resultant equation yields

(21) g{x) = f(x)+\ —•
<*1 J(0,x)

« 0

where the auxiliary function h(y) has transform

(22) £(r) = log/(r).

Because of possible difficulties in obtaining h(x) defined by (22), it may be more
convenient to replace the last term inside the curly brackets of (20) by the quantity

(23) -[Xio-h 10(0)][g - po] - h 10(0)[g - po]

and the last term in (21) by the quantity

f
(o,oo)

Upon making this substitution and solving for g(x), the following recursion
emerges:

f
J(0,x)

(24) g{x) = \/3oPof(x)+\
I J(,

+ hw(y)g(x -y)d(i(y)\/{atix -aohlo(0)}.
J(0,x) ' I

Case II: k = 2
The hypergeometric, Polya-Eggenberger (negative hypergeometric) and general-
ized Waring distributions are members of the class k — 2. Note that in each case
a0 = 0. Dropping this* first term in (12) and multiplying by hw yields

(25) axg' + a2tioi[g" - h2lg'] = /30f'g + f3 Jg' + pffioilg" ~ dug'].
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For a2 # 0, solving for the g" which appears in the left-hand side of (25) yields

(26) a2g" = -a1h1og' + a2h21g' + t3of'h1og

Inversion of (26) yields

(27) {a2x
2~(a1h1o(0)-a2h21(0))x}g{x)

=0o f ki(y)g(x-y)dn(y)
J(0,x)

+ (x-y){aihlo(y)-azh2i{y)-Piyf(y)
J(0,x)

f
J(0
f

where fei =f'hw and k2 = fh2i.

It is also possible to solve for the first g' in the lefthand side and develop a
recursion. However, the "divisor" in the recursion which appears in the left-hand
side of (27) would be of order x while the integrations (summations) would
involve convolutions of x2g{x) and some auxiliary function. Division by the
largest possible power of x probably leads to more stable integrations (summa-
tions). However, further investigation is required here.

For higher values of k, the same general approach can be taken. A variety of
recursions can be established. It is not obvious (at least to the authors) which
recursion will give more stable results.

5. OBTAINING THE AUXILIARY FUNCTIONS

When the claim size distribution is of some simple functional form, it may be
possible to obtain the auxiliary functions analytically. For example, for the
gamma claim size distribution,

(28) /

The transforms of the auxiliary functions appearing in the recursions of the
previous section can be expressed in terms of the quantities in (28). The form
of the auxiliary function is obtained by recognizing the form of the resultant
transforms. In the case of the gamma claim size distribution, the auxiliary
functions are exponential or gamma functions.

In the case of discrete claim sizes, such as binomial, Poisson or negative
binomial (each translated so that the origin is at one) a similar approach can be
used. The form of the auxiliary function will be related to the form of the claim
size distribution.
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3"" O" < "i 3 3
an >< s- 3

3*
(I

3 rt-

a o. D>

AC

1
2
3
4
5
6
7
8
9

10

0.50
0.25
0.125
0.0625
0.03125
0.015625
0.0078125
0.0039063
0.0019531
0.00097656

fix)

-0.50
-0.50
-0.375
-0.25
-0.15625
-0.09375
-0.054688
-0.03125
-0.017578
-0.0097656

0.50
1.00
1.125
1.00
0.7815
0.5625
0.38281
0.25
0.1582
0.097656

TABLE

hm(x)

-1.00
0.50
0
0
0
0
0
0
0
0
0

1

hw(x)

1.00
-0.50
-0.25
-0.125
-0.0625
-0.03125
-0.15625
-0.0078125
-0.0039063
-0.0019531
-0.00097656

fc2l(*)

-1.00
-1.00
-0.50
-0.25
-0.125
-0.0625
-0.0312
-0.015625
-0.0078125
-0.0039063
-0.0019531

kdx)

0
0.5
0.75
0.75
0.625
0.46875
0.32813
0.21875
0.14063
0.087891
0.05371

k2(x)

0
-0.5
-0.75
-0.625
-0.4375
-0.28125
-0.17188
-0.10156
-0.058593
-0.0033203
-0.018555
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Of greatest interest in practical applications is the situation in which an arbitrary
discrete claim size distribution, f(x), is specified. Then

f(t)= I f(x)e-x

x = l

= - I xf(x)e-x

x = l

/"(') = I x2f(x)e-'\
x = l

The transforms of auxiliary functions such as h\0, h2i and kx can be expressed
as products and/or quotients of the quantities in (28). The quantities in (29) are
just polynomials in z = e ~'x. It is relatively easy to carry out multiplication or
divisions of polynomials on modern computers with advanced programming
languages such as APL. The coefficients of the powers of z = e~'x in the resultant
polynomial are the values of the auxiliary function at integral values. This
procedure was carried out for the geometric claim size distribution. The results
are displayed in Table 1. The numerical values can be verified analytically for
this particular example.

Note that the auxiliary functions do not depend upon the claim frequency
distribution. If a claim size distribution is to be used for many calculations, the
auxiliary functions need only be calculated once.

6. CONCLUDING REMARKS

The purpose of this paper was to demonstrate the versatility of using transforms
in developing recursions in the situation where ratios of successive claim frequen-
cies can be written as ratios of polynomials. A number of questions remain open.
A large number of different recursions can be developed by rearranging (12).
The questions of which recursion is "best" or "most convenient" or "most
stable" remain unanswered.
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