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Abstract

A practical method is described for deciding whether or not a finite-dimensional module for a group over
a finite field is reducible or not. In the reducible case, an explicit submodule is found. The method is a
generalisation of the Parker-Norton ‘Meataxe’ algorithm, but it does not depend for its efficiency on the
field being small. The principal tools involved are the calculation of the nullspace and the characteristic
polynomial of a matrix over a finite field, and the factorisation of the latter. Related algorithms to
determine absolute irreducibility and module isomorphism for irreducibles are also described. Details of
an implementation in the GAP system, together with some performance analyses are included.

1991 Mathematics subject classification (Amer. Math. Soc.): 20C40, 20-04.

1. Introduction

The purpose of this paper is to describe a practical method for deciding whether or
not a finite dimensional F G-module M is irreducible, where F = G F(q) is a finite
field and G is a finite group. The module is assumed to be defined by matrices over F
for a set of generators of the group. The method is a generalisation of the ‘Meataxe’
algorithm of Richard Parker, which is described in [8). Unlike Parker’s algorithm,
however, it does not depend on the field F being small. In fact, on the assumption
that the field operations within F are performed using look-up tables, its performance
is virtually independent of the field. We stress that our priority is to achieve practical
speed ahead of theoretical efficiency; in [9] it is proved that the problem of reducing
a d-dimensional module over a finite field G F(g) can be solved in time which is
polynomial in d log(g).

When M is reducible, our procedure nearly always produces a basis for a proper
submodule, together with the matrices for the group generators on the submodule and
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quotient module. Unfortunately, there is one particular configuration, which will be
described later, in which our procedure will not find a basis for a proper submodule
within a reasonable time. This configuration was discovered independently by Peter
Neumann and Cheryl Praeger.

When M is irreducible, the procedure produces certain output, which enables us to
test M for absolute irreducibility and, in the case when M is not absolutely irreducible,
to find generators for the centralising ring of M. In any case, if M is irreducible, then
we can test it for isomorphism with other F G-modules.

Parker’s standard meataxe uses the following test, known as Norton’s irreducibility
test. Let A denote the F-algebra generated by the matrices for the elements of G, and
let MT denote the module defined by the transposes of these matrices. An element &
of A is chosen, and the nullspaces N of &, and N’ of its transpose £ are computed.
Then provided that

(a) N is non-zero,
(b) every non-zero vector v in N generates the whole of M as an FG-module, and
(c) atleastone non-zero vector w of N’ generates the whole of MTas an F G —module,

M is proved irreducible. Otherwise M is reducible, and a proper submodule has been
identified in (b) or (c).

Part (b) of the test is clearly the part which could be time-consuming if § were
not well chosen. In Parker’s standard meataxe, elements are randomly chosen until
& is found with a nontrival nullspace of low dimension, preferably 1-dimensional.
The problem with this is that, if the field has order ¢, then the probability of the
nullspace being non-trivial is about 1/ and so, for large ¢, we might have to make a
large number of choices. Another problem arises when the dimension, e say, of the
centralising field of M is large, because we cannot find a £ with non-trivial nullspace
of dimension smaller than e.

Our strategy is different. Rather than generate £ itself randomly, we select a random
element @ of the F-algebra A, calculate the characteristic polynomial c(x) of 8, and
then factorise it. Then we set £ = p(6), where p(x) is an irreducible factor of c(x).
In this way, & will always have non-trivial nullspace N. In the situation where N is
irreducible as an F (0)-module (which is the case, for example, whenever p(x) is a
non-repeating factor of ¢(x)), it is sufficient to carry out part (b) of the test for a single
non-zero vector v in the nullspace of §. In other cases, examination of a single vector
will not give a conclusive test for irreducibility, but might prove reducibility. If not,
another factor p(x) of c(x), or another element @ is selected.

Note that the only additional calculations compared with Parker’s algorithm are
the calculation and factorisation of the characteristic polynomial. Both of these can
be accomplished in time O(d*), where d is the dimension of M, which is the same
complexity as that of the other parts of the process, such as calculating nullspaces.
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We are grateful to Peter Neumann for a suggestion which gave rise to these ideas.

As one might expect from the above description, this is a Las Vegas algorithm,
which means that there is no certainty that it will ever stop. However, if it does stop,
then it will always return the correct answer. To prove that it is a useful algorithm, we
need to estimate the probability that it will return an answer for a particular random
group algebra element. This we are able to do, except in one particular situation,
namely when M is reducible, all composition factors of M are isomorphic, and
M /Rad(M) is irreducible but not absolutely irreducible. (Here Rad(M) denotes the
radical of M, that is, the intersection of all maximal submodules of M.) In all other
cases we show that the correct answer is returned for at least 0.144 of the elements in
F G, although the actual proportion is really much higher than this most of the time.
In the bad situation described above, it will rapidly become clear that we are almost
certainly in this situation, since the characteristic polynomial will be a proper power
for every element 8 that we find. In examples of this type, a high proportion of the
elements 6 of A result in elements § having a nullspace that is too large to be useful
for finding a proper submodule of M explicitly.

These algorithms have been implemented by the authors in the GAP system (see
[10]), and they have been tested for dimensions up to about 200 with fields up to order
216 (that is, for those fields for which GAP has look-up tables stored). Several of the
basic components of the procedure, such as factorising polynomials and calculating
nullspaces, were already present in the GAP library, and so we were able to use these
as they stood. We have tested it on a large variety of examples and observed that
in many cases only a single element 6 needs to be considered, and we have never
come across an example, other than in the bad situation described above, where more
than about five or six elements 6 were necessary. (The number of different € that
need be considered is partly dependent on the procedure for choosing €, and other
implementation details.)

More recently, the algorithms have been implemented in the new language MAGMA
which is being developed at the University of Sydney as a successor to CAYLEY
(see [2]), and they performed satisfactorily for dimensions as high as 2000.

Although reducing modules is a basic computation in its own right, we consider
the algorithms described here to be part of the more general project of recognising
finite matrix groups computationally, in some appropriate sense. According to a result
of Aschbacher [1], all such groups fall into one of nine categories. The first aim of
this recognition project is to be able to place a given matrix group in at least one
of these categories (they are not quite mutually exclusive). One of the categories
consists of reducible groups, and so we can now recognise them satisfactorily. The
tests for absolute irreducibility and for module isomorphism are crucial parts of the
recognition of some of the other categories, including groups defined over an extension
field, imprimitive groups, and tensor products. Parts of these procedures have already
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been implemented in GAP by the authors, C.R. Leedham-Green and E.A. O’Brien.
Details will be described in forthcoming papers.

The paper is organised as follows. In Section 2, we describe the procedure for
testing for irreducibility more precisely, we prove that any answer that it returns is
correct, and we estimate the probability that it will return an answer for a particular
element 6, other than in the exceptional situation described above. In Sections 3
and 4, we describe the additional algorithms for testing for absolute irreducibility
and module isomorphism. In Section 5, we discuss some implementation issues and
provide some sample timings.

2. The test for irreducibility

2.1. The algorithm As input, we are given d x d matrices x,, x,, ..., X, over the
finite field F of order g, which represent the elements of a generating set of G and so
define the F G-module M. We shall denote the algebra generated by the matrices x;
by A. Then A is isomorphic to a quotient of the group algebra FG. The algorithm
proceeds as follows.

Step 1. Choose a ‘random’ element 6 in A.

Step 2. Calculate the characteristic polynomial c(x) of 6.

Step 3. Extract the irreducible factors of c(x) in order of increasing degree. For
each such factor p(x), do the following.

(i) Calculate & = p(9).
(ii) Calculate the nullspace N of £. If dim(N) = deg(p), then we call p(x) a
good factor of c(x).
(iii) Choose a non-zero vector in N and calculate a basis of the submodule of M

generated by this vector under the action of the matrices x;, x,, ..., x,. If this
is a proper submodule, then return the answer reducible.
(iv)  Calculate the transposed matrices x|, x;, ..., x], if this has not been done

already. Calculate the nullspace N’ of 7.

(v) Choose a non-zero vector in N’ and calculate a basis of the submodule of
MT generated by this vector under the action of the matrices x], x], ..., x7.
If this is a proper submodule, then return the answer reducible.

(vi) If p(x) is a good factor, then return the answer irreducible.

Step 4. Go back to Step 1.

The individual computations involved in this procedure are mostly fairly routine,
and some of them were already present in GAP. The method for choosing random
elements from A is important, since theoretically we require genuinely random ele-
ments, but for reasons of efficiency we cannot afford too many matrix multiplications
for each such choice. Since taking linear sums of matrices is comparatively inexpens-
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ive, the problem is essentially the same as that of choosing random elements from
G. There is a lengthy discussion of this question in an earlier work by the authors
on matrix groups [5]. The method used in our implementation is due to Charles
Leedham-Green, and is justified in [7]. The basic idea is as follows. Initially we have
r generators x,, X», ..., X, of G, but this generating set is enlarged by the addition
of a new generator before the choice of each random element 6 from A. The new
generator is chosen as a random product x;x; of two of the existing generators, where
i # j. So,in general, we have generators x,, X5, ..., x; of G, wheres > r,ands = r
initially. The element 6 is then chosen as a linear sum o1 x; + o x; +. . . + ;. x, Where
the «; are random elements of F.

Of course, to get genuinely random elements we would need to do an enormous
amount of preprocessing, which we cannot afford. Our method seems to perform
reasonably satisfactorily in practice although, particularly when there are few initial
generators and the field is small, the first few elements 8 chosen are sometimes too
atypical to be useful.

The algorithm used to calculate the characteristic polynomial of a matrix is de-
scribed in [5]. It is in fact quite straightforward, and just involves calculating the
orbits of vectors under the matrix. The factorisation and nullspace algorithms were
already implemented in GAP. The factorisation algorithm uses the Cantor-Zassenhaus
method (see [3]). It works by successively extracting the factors of p(x) of degree
e,fore = 1,2,3.... The nullspace calculation essentially involves column-reducing
the matrix to reduced echelon form, and the submodule computation is routine. If
we find a proper submodule L’ of M7 in the transposed case, then we have to find a
corresponding submodule L of M. In fact, in terms of row vectors, L is simply the
orthogonal complement of L’, and so this is also straightforward.

2.2. The correctness of an answer The algorithm only returns the answer reducible
when it has specifically found a submodule, so the correctness of that answer is clear.
So assume that the answer irreducible is returned. The proof below is an adaptation
of the correctness proof of Parker’s original meataxe, but this does not seem to have
ever appeared in print.

Now the answer irreducible can only be returned when p(x) is a good factor of
c(x). So, in order to prove correctness, we need only show that, if M is reducible,
with a proper submodule L, then an application of the test with an element 6, whose
characteristic polynomial has a good factor p(x), will produce a proper submodule,
and hence the correct answer reducible.

So suppose we have a submodule L, an element 6 and a corresponding good factor
p(x). Since 8|y acts with minimal polynomial p(x) on N and dim(N) = deg(p),
0|y must act irreducibly on N. It follows that the subspace L N N, which is fixed
by 8, must either be trivial or equal to the whole of N. In the latter case, the chosen
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non-zero vector in N will lie in L, and so a proper submodule of M (contained in L)
will be found, and the answer reducible returned at Step 3(iii).

Suppose, on the other hand, that L N N = {0}. Let M have F-basis e, e, ..., €4,
where e;, ..., e. is a basis of L, and let fi, f,, ..., f; be the basis orthonormal to
e, e, ..., e, (in terms of the usual scalar product). Then, with respect to the first of
these bases, all matrices ¢ in A have the form

o0
( @ ¢® ) ’
where £ and £® are ¢ x c and (d — ¢) x (d — ¢) matrices, respectively. With respect
to the second basis, the form of £7 is then

C(I)T ;(Z)T
(%o o)
Since L N N = {0} and N is the nullspace of & = p(6), £ must have nullity 0,
and so rank ¢, and so §® has rank d — ¢ — dim(N) and nullity dim(N). It follows
that the nullspace N’ of £7 is wholly contained in the submodule of dimension d — ¢
spanned by f.1, fc+2, - - -, fa- Hence any vector in N’ lies in that submodule, and so

the correct answer reducible will be returned in Step 3(v). This completes the proof
that an answer irreducible is correct.

2.3. The likelihood of a decision being reached We turn now to the question of
how quickly the procedure can be expected to produce an answer. In other words,
we want to see what proportion of the elements 8 will result in a decision. We
shall derive lower bounds for this, although they will not be very accurate ones,
and by working harder, we could obtain considerably better estimates. These would
be of limited value, however, given the inevitable deficiencies in our procedure for
choosing random elements 6. Furthermore, in the one bad situation mentioned in the
introduction, we are not able to compute a general sensible lower bound.

First we shall summarise the representation theory that we need to carry out these
arguments. This material can all be found in [4, Chapter IV], for example. A minor
difference from that treatment is that we are assuming that M is a right rather than a
left F G-module, so we talk of right ideals rather than left.

Recall that A is defined to be the F-algebra of matrices generated by the matrices
of G, which is also known as the enveloping algebra of the module M. Clearly M
is a faithful right A-module. Let A denote A/Rad(A), where the radical Rad(A)
of A is defined as the sum of all nilpotent right ideals (see [4, (24.5)]). Then A is
semisimple and is isomorphic to a direct sum of simple rings €;_, A; ([4, (25.15)]).
Furthermore, any irreducible right A-module is isomorphic as a module to a minimal
right ideal of A, and any such ideal is contained in one of the simple components A;.
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All minimal right ideals contained in a particular A; are isomorphic as A-modules.
Thus any irreducible right A-module is annihilated under right multiplication by all
components A; except one. In fact by [4, (25.24)], if L is any irreducible right A-
module, then LRad(A) = 0 and so L can be regarded as an irreducible ‘A-module,
and the above applies. In particular, this applies to any irreducible constituent of M.

If M itself is irreducible then, since it is a faithful A-module, we must have
Rad(A) = 0 and A is a simple ring. Then by Wedderburn’s Theorem ([4, (26.4)]), A
is isomorphic to the full ring .#, (E) of n x n matrices over thering E = Homy (M, M),
and E is a division ring with F in its centre. In our situation, F and E are finite, so
E must be isomorphic to an extension field G F(¢°) of F for some e. The natural
right .#,(E)-module of row vectors has dimension n over E, and hence dimension
ne over F. As an F module it must be isomorphic to M, so it follows that d = ne.
In the special case e = 1, A is simply equal to the set .#,;(F) of all d x d matrices
over F. When e > 1, the matrices in A (with respect to an appropriate basis) can be
regarded as d/e x d /e matrices over E, where the elements of E correspondtoe x e
submatrices.

We split our examination of the successful termination of the procedure into four
cases.

In the first case the module M is irreducible. Thus the only way in which our
algorithm can reach a decision is by finding an element 6 of A for which the char-
acteristic polynomial has a good factor p(x), with the dimension of the nullspace of
p(0) equal to deg(p). To estimate the likelihood of a decision we need to estimate
how likely we are to find such a 6 and p(x).

In the remaining cases M is reducible. We might prove reducibility without a
good factor. It would be sufficient to find  and a corresponding factor p(x) with the
nullspace of p(8) contained in a submodule.

Case (i): M is irreducible.

Let E = Homg(M, M), as above. Then E is isomorphic to G F(g¢) for some e.
Suppose first that e = 1, and so A = #;(F). If our chosen element 6 from A
has an unrepeated eigenvalue A in F, then c(x) will have an unrepeated linear factor
p(x) = x — X, and the nullspace of p(8) will have dimension 1. Thus p(x) will be a
good factor of c(x) for the element 8, and the correct answer will be returned by the
procedure. In fact it can be shown that for large n and ¢, the proportion of elements
in .#;(F) with this property is about 1 — exp(—1), which is greater than 1/2. We will
be content with a much cruder estimate, however, as follows.

The number of elements of .#,(F) with a specific unrepeated eigenvalue A € F is
the same as the number with 0 as an unrepeated eigenvalue. It is therefore equal to
the product of the number of one-dimensional spaces (v) by the number of elements
which map (v) to zero and act non-singularly on M /(v). Thus for this number, which
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we’ll call ny 4, we have that

g’ -1
Maq =" ¢ '|GL(d - 1, 9)I.

Then we observe that

1 &, . . IGLd, 9l
nd.q_qull:!(q —4)—?-

Now the number of elements of G L(d — 1, q) with a specific unrepeated eigenvalue
u is at most equal to the number of such elements in .#,_, (F); that is, n,_, ,. So the
number of elements of .#,(F) with specific distinct unrepeated eigenvalues A and u
is at most

‘=1, g’—1 , IGLd-1,q) Nagq
q nd—l,q = q = .
g—1 q—1 g—1

Hence, by the inclusion/exclusion principle, at leastgn, , — (g)nd,q [(g—1)=qng,/2
elements have an unrepeated eigenvalue. Now

qnag/2lHy(F) = (1 —qH(1 —q7%)... (1 = g™9)/2.

The smallest values of this expression occur for ¢ = 2 with d large, when it tends
towards the limit 0.2888. Thus, in all cases, at least 0.288 of the possible elements 6
of A will have a linear good factor, and so we expect to find one reasonably quickly.
Of course, there are many other types of good factor.

In the case when e > 1, the same argument holds, except that an (unrepeated) linear
factor over E corresponds to a factor of c¢(x) of degree e over the field F. For this
factor to be irreducible (and hence a good factor), it is necessary that the eigenvalue
A does not lie in any proper subfield of E containing F. But this is the case for at
least half of the elements A in E (and usually a much higher proportion), and so we
still expect to find a suitable element 6 reasonably quickly. In fact, in the worst case
q = 4, our counting argument shows that at least 0.234 of the elements in .#,(E)
have characteristic polynomial with a good quadratic irreducible factor. However,
this case demonstrates that we cannot always rely on being able to use a linear factor

of p(x).

Case (ii): M /Rad(M) has non-isomorphic irreducible direct summands.

We recall that Rad(M) is equal to the intersection of all maximal submodules of
M,and M = M /Rad(M) is isomorphic to a direct sum of irreducible submodules.
Suppose that M has non-isomorphic irreducible direct summands M, and M,. We
aim to estimate the number of 6 in A for which the image in M, has trivial nullspace,
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but the image in M, has non-trivial nullspace. We shall see that, for such elements
8, the algorithm will always return a proper submodule. By the above, we have
A= & A,,whereM A =0fori =1 and2andforall] #i. Let® = 6 +Rad(A).

Then 6 = 6, +0,+ 65 with8, € A,, 0, € A,and 93 € B = (B’_3A Then,

since 6 is a random element of A, 8, and 8, will be random elements of A, and A,,
which are isomorphic to full matrix rings over extension fields of F. Furthermore the
characteristic polynomial ¢ (x) of @ will be divisible by the product of the characteristic
polynomlals ¢1(x) and ¢,(x) of the induced actions of 6 on the constituents M, and
M,. Now, since A, and A, are simple algebras, they each have a single isomorphism
type of non-zero irreducible module. It follows that ¢,(x) and c,(x) are precisely
the characteristic polynomlals of @, and 8, respectively, where, using Wedderburn’s
Theorem, A, and A, are regarded as matrix rings over extension fields of F. Now,

if ¢;(x) has an irreducible F-factor p(x) which is not a factor of c(x), then when
we deal with the factor p(x) of c¢(x) in the procedure, the nullspace N of p(6) will
be non-trivial, but will map onto the zero subspace of M,. Any non-zero vector in
N will therefore lie in a proper submodule of M, and the procedure will return the
correct answer reducible. We claim that, for any choice of ¢;(x) and any particular
irreducible factor p(x) of ¢;(x), the characteristic polynomial ¢;(x) of 8, will have
p(x) as a factor for at most 0.712 of the possible choices of §,. This proves that the
procedure will return an answer for at least .288 of the elements 6 in this case.

To establish the claim, note that 8, is a random element of a full matrix ring .#, (E),
for some extension field E = G F(q°) of F. For simplicity assume that e = 1 (the
lower bound is in fact larger when e > 1). Suppose that p(x) has degree s. Then, if
p(x) divides c,(x), the underlying ¢-dimensional vector space over F has at least one
basis by, b, . . ., b, for which 8, fixes the subspace W generated by by, b,, ..., b,,and
acts on it as the companion matrix of p(x). For a particular 9, with this property, any
of the non-zero vectors in W can be chosen as b, but b,, . .. b, are determined by ;.
Thus the total number of such 6, is equal to at most

(qt _ 1)(qt . q) L (qr _ q(s—l))qt(t—s)/(qs _ 1)’
and this number divided by |.#, (F)| is equal to
1-¢H1A=¢"...(A=¢""/g" -1

This is clearly less than 1/2, except when ¢ = 2 and s = 1. In that case, the precise
proportion is equal to the proportion of singular matrices in .#, (F), which is

1—(1=-2Ha1-=-27...(1 =2,

and this tends to the limit 0.7112 as ¢ approaches infinity.
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Case (iii): M /Rad(M) is reducible and all of its irreducible direct summands are
isomorphic.

Suppose that M = M/Rad(M) = M11 EBMleB .® M,, with t > 1 and each
M 1; isomorphic to the irreducible module M,. Then A /Rad(A) = A, ® B, where
B annihilates M, and A, is a full matrix ring over an extension field E of F. Let
|E : F| =e,and let @ = 8, + 6, with 8, € A, and 8, € B. Now, 0, is a random
element in A, and, as we saw in Case (i), the characteristic polynomial ¢, (x) of 8,
will have an unrepeated linear good factor p(x) over E having degree e over F for
at least 0.234 of the elements ;. In this case, the nullspace N of p(8) maps onto
subspaces N; of M, ; having dimension zero or one over E. Clearly, for any i and
j such that dimg(N,;) = dimz(N;) = 1, there is an EG-isomorphism (and hence an
F G-isomorphism) from M, to M, ; that maps N, to N, and hence, for any non-zero
elements 77; of N, there is an F G-isomorphism from M, to M, ; that maps 7; to
7;. Suppose that the chosen non-zero element n of N maps onto 7; in N,. If all
of the n; are zero, then n will lie in Rad(M). If some of the n; are non-zero, then
n + Rad(M) will lie in an irreducible submodule of M. In either case n will lie in a
proper submodule of M, and the procedure will return the correct answer reducible.

Case (iv): M /Rad(M) is irreducible.
Let M/Rad(M) = M,. Now if Rad(M) has an irreducible component not isomorphic
to M, then by similar arguments to those used in Case (ii), we can show that, for
at least 0.288 of the elements 6 of A, c(x) will have an irreducible factor p(x) such
that the nullspace of p(6) lies in Rad(M), in which case the procedure will return the
correct answer reducible.

Suppose therefore that all composition factors of M are isomorphic to M, and let
L be a submodule of Rad(M) with Rad(M)/L irreducible, and hence isomorphic to
M,. Asusual, let E = Homz(M,, M), regarded as an extension field G F (¢°) of F.

Suppose first that e = 1, and so £ = F. Let A= A/Ann, (L), where Ann, (L)
is the annihilator in A of L. Then A is isomorphic to the algebra generated by the
matrices of G in their induced action on M /L. Relative to an appropriate basis, the
elements  of A have the form

a0
( a® g ) ’

and the subspace of matrices & for which «® = 0 is an ideal A, of A. Furthermore,
A/ A, is isomorphic to the ring .#, (F) of n x n matrices over F, where n = dimg(M ).
Since M /L is not completely reducible, A cannot be simple, and so A; must be non-
zero. Let B = {a® | « € A, ). Then, since A, is an ideal of A, B is closed under
left and right multiplication by elements of .#,(F), and so B must itself be equal
to .#,(F). Let® € A map onto & € A. As we saw in Case (i), 6% will have
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an unrepeated eigenvalue A € F for at least 0.288 of the elements 6 of A. Now,
amongst those matrices with a given value of 8V having the unrepeated eigenvalue
A, the nullspace of p(é) (where p(x) = x — A for some A) will lie in Rad(M) for
(g — 1)/q of the possible matrices 6, and for these values of 6, the procedure will
return the correct answer reducible. Since 6? is a random element of .#,(F), the
correct answer will be returned for at least 0.144 of the elements 6 of A in all cases.

The case in which F C E is the bad situation, which we currently cannot handle
satisfactorily; in this case the proportion of elements 6 for which the characteristic
polynomial has a factor p(x) which is either good or has nullspace completely con-
tained in a submodule can be very low. If the procedure fails to find a useful choice
of 6 and p(x), an exhaustive search through the whole nullspace of some p(9) is
necessary. In this case we do not know of any method of finding a basis for a proper
submodule which has expected running time less than O(]E|), which can of course
be impractically large, even for quite moderate values of ¢ and 4.

To describe a typical situation in which this occurs, choose e, f > 1, and put
d =¢ef. Let F=GF(q),E = GF(g°) and let ¢ : #;(E) —> #,(F) be an
embedding. Let D = «(#;(E)) and H = «(SL(f, q°)). Finally, let y bead x d
matrix of order e normalising H and acting on H as a field automorphism of G F (¢°).
Then our module M is defined by the group of 2d x 2d matrices of the form

(5 o)
By o)’
where @« € H, B € D. We tested the procedure on an example of this type with
d =26,e =13, f =2 and g = 2 and verified that this is indeed a problem.

As we have already mentioned, this example also gives problems with the standard
meataxe, since every element has nullspace with dimension divisible by, and therefore
greater than or equal to, the degree of the extension field.

We should like to thank Klaus Lux for pointing out an error in a version of this
example which appeared in a preprint of this paper.

3. Testing for absolute irreducibility

Let us assume that, using the method described in the preceding section, we have
proved that our F G-module M is irreducible. We assume also that we have stored
the element 6 of A (together with an expression for 6 as a linear function in the
generators), its characteristic polynomial c(x), the good irreducible factor p(x) of
¢(x), and the matrix p(0) having nullspace N with dimension equal to the degree f
of p.

We shall now describe a method for determining the centralising field £ = G F(g®)
of M, together with a d x d matrix ¢ which generates E as a field over F. (In other
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words, ¢ centralises each of the matrices x; and has minimal polynomial over F of
degree ¢ = |E : F|.) In particular, M is absolutely irreducible if and only if E = F
(see, for example, [4, (29.13)]).

The multiplicative group of E is cyclic of order g¢ — 1. Let p be an element of E
of order ¢° — 1. In the method described here, we do not find such a p explicitly, since
we only require an element ¢ that generates E over F as a field. We know, however,
that the element £ that we are seeking will be a power of p.

Since p centralises M, it must centralise 6, and therefore must preserve the nullspace
N of p(9), and so p|y centralises the action |y of & on N. But, as an F(6)-module,
N is irreducible of dimension f = deg(p). So, by Schur’s lemma, the centraliser C
of 8|y in GL(f, F) is isomorphic to the multiplicative group of G F(g”), which is
cyclic of order g/ — 1. Thus p|y generates the unique cyclic subgroup of C of order
q° — 1. Let 0 be an element of C of order dividing ¢° — 1. Then o is equal to a power
(oln)* of p|y.Let& = p*. Then¢|y = o, and, since £ commutes with each generator
x; of G, and the translates of N under the action of G span the whole module, the full
action of & on M can be calculated once o is known. If o has minimal polynomial of
degree e, then so does . Thus, we can find ¢ explicitly by first finding elements of
the appropriate order in C.

Since each centralising matrix can be written with respect to an appropriate basis
as a matrix with identical e x e blocks down the diagonal, it is clear that e must be a
common divisor of d and f. In our algorithm to determine e, we try all such common
divisors €', in decreasing order, and test whether there is an element ¢ with the above
properties. If we find such a ¢, then we know that ¢/ = e, and we stop; since we
are considering the e’ in decreasing order, we know at this stage that e cannot be any
larger than ¢’.

For each such ¢’, we select random matrices T from the centraliser C of 8]y, starting
with 8|y itself. Random elements of C are easy to construct, since a centralising
element is determined by its action on a single vector vy, whose images under (6) span
N. Thus we merely have to choose vy7 to be a random vector v, in N, and then we
can calculate 7 from v;. Next we calculate o = 7@ ~1/@ -1, (Raising matrices to
high powers is reasonably fast, and can be done in time proportional to the log of the
power.) Then o certainly has order dividing ¢¢ — 1. If it has minimal polynomial of
degree ¢’ then we try and extend its action to compute £, as explained above. For at
least half of the elements 7 the degree of the minimal polynomial of o will be equal
to ¢’ (this will be the case, for example, whenever 7 has order g/ — 1), so it should
not be necessary to select many elements t to get an appropriate o. If E does have
degree e’ over F, then every such o will extend to an element of the centraliser of M.
On the other hand, if £ has degree less than e’ over F, then we shall not succeed in
extending the action of o to the full space to give a matrix which centralises every
generator of G. Thus the test is conclusive in either case.
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4. Testing for isomorphism

We turn now to the question of deciding isomorphism between two F G-modules
M and M’, at least one of which (M, say) has been proved irreducible. The method
described here is essentially the same as that given by Parker in [8, Section 6].
We assume that M’ is defined by matrices x|, ..., x, which give the actions on
M’ of the same group elements as the x; do on M. Clearly we may assume that
dim(M) = dim(M’). Before we start, we have to compute the centralising field E for
M as described above. The test depends on the degree of the irreducible polynomial
p(x) being equal to |E : F|. In other words, the nullspace N of p(6) must have
dimension one over E. This is often true already but, if not, then we choose further
random elements 8 from A until we find one for which the characteristic polynomial
c(x) has an irreducible factor p(x) with this property. (Since all of our probabilistic
estimates in Section 2 were based on finding 6 with this property, this search should
not be too time consuming. Furthermore, we only need to consider irreducible factors
of c(x) of degree up to e.)

Assuming now that we have found p(x) as above, we calculate the element 6’ in the
group algebra of M’ that corresponds to 6, by computing the same linear sum in the
generators x; as we did with the x; to compute 8. Then we compute the characteristic
polynomial of 8’ and, if this is not equal to c(x), we return the answer false. Otherwise,
we compute the nullspace N’ of p(0’) and, if this does not have dimension e over F,
we can again return the answer false. Now, any isomorphism from M to M’ must
map N to N’ and, since dimg(N) = 1, if there is such an isomorphism, then, for
any non-zero elements n of N and n’ of N’, there must be an isomorphism that maps
n to n’. But we can test for this easily, by calculating the submodule L spanned by
(n,n’) in the direct sum M & M’. There is an isomorphism if and only if L has
dimension d over F, in which case the isomorphism ¥ is defined explicitly, since
L={(w,y@)|veM}

5. Implementation issues and performance

For the GAP implemention, we introduced a record-type GModule. Any GModule
must have components defining a field F, a dimension d, and a list of matrices
x; (1 < i < r) that represent the images of the generators of a group G. Strictly
speaking, we should also record a homomorphism ¢ from a specific group G with
r generators g;, where ¢(g;) = x; for 1 < i < r, but, for reasons of efficiency and
simplicity of coding, we do not insist that this map be specified explicitly. In fact in
many examples g; = x; and ¢ is the identity map.

After testing for irreducibility, there are two possible outcomes. If M turns out
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to be reducible, then a component is defined which contains a basis for a proper
non-trivial submodule of M. Procedures can then be called, if required, to calculate
the corresponding submodule and quotient module. If M is irreducible, then several
record components are defined for M. Let 8 be the element of the matrix algebra used
in the irreducibility proof. One component contains & itself, and another contains
the formula by means of which 6 is calculated from the original generators x;. (This
means that, since we do not keep the new generators of G, we have to record how
the new generators are derived from the old, as described in Section 2.) We also have
components for the characteristic polynomial c(x) of 8, and the irreducible factor
p(x) of c(x) that is used in the irreducibility proof. Finally, we record the dimension
of the nullspace of p(@) (which is equal to the degree of p(x)), and one vector from
this nullspace.

After the absolute-irreducibility test, we introduce two new components, one con-
taining the degree ¢ = |E : F| of the centralising field E over F, and (when e > 1)
another containing a matrix which centralises each of the x; and generates E as a
field over F. If we wish to test modules for isomorphism, then it is essential that the
nullspace of p(8) should have dimension 1 over E; that is, dimension e over F. If
this is not already the case, then we need to find a new element 6.

For the most part, our meataxe implementation follows the algorithm described
in Section 2 fairly closely. After experimentation, we made two minor adjustments,
to improve the efficiency. Firstly, we do some preprocessing by adjoining a small
number of new generators before we start. Particularly when r is small, this helps to
prevent the first few elements 8 chosen being too atypical to be useful. Secondly, for
the i-th random element 6 chosen, we give up at Step 3 after considering factors p(x)
up to degree 2/, and go on to a new element 6. This is because low degree factors
are preferable for the later tests, and the evaluation of p(#) for a high degree factor
p can be quite time consuming. Of course, we do not know what the value of e is in
advance, and no factor of degree less than e will work, so, if we wish the algorithms
to be effective, we have to start considering higher degree factors eventually. The
degree 2 was chosen heuristically.

Below, we present a table of results, and timings. The times ¢; (in seconds) are
for our GAP implementation, and the times t,, are for the MAGMA implementation
discussed briefly below. They should be viewed as a guideline only, because they
can vary considerably with different runs on the same example. In fact, they are all
averages over three runs but, in the case GL(14, 2), for example, the three times ¢
were 8, 10 and 56 seconds. The GAP timings were on a Sun Sparcstation 10, and the
MAGMA timings on a Solbourne machine (which is about half as fast as the Sun).

The bulk of the time is taken up by the calculations of the characteristic polynomial
of 9, the nullspace of p(@), and the spinning process. These calculations can all be
made to run faster by coding them in ‘C’ (as in the MAGMA implementation) rather
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G q d [ r/i | #0) ] 16 | tw
My, 7 4 i |1 1
My 7 4 i |2 |2
My 7 54 |i |1 2
My, 7 s4 |i |1 2
Cio X Oy 5 72 |r |4 |26
L,(81) 41 82 |i |1 8
He 2 102|i |1 10
He 2 102|i |2 |30
Ly 5 1mt|i |1 22
My, 7 154 |i |1 50 |63
Cis X O 5 180 | r |45 |38 |57
GL(14,2) 2 196 | r |1 24 |07
GU (200, 9) 9 200 i |1 54 |36
GL(200,10007) | 10007 | 200 | i |1 110 | 2.8
C 289 (40 |r |5 |34
22.81.(2,2'%) |2 52 |r |2 ?2 |2

than in the GAP language. On the other hand, some of the times are artificially low,
due to the fact that the given generators of the classical groups consist of very sparse
matrices. The relatively large time ¢ for G L (200, 10007) results from the fact that
the speed of matrix operations in GAP seems to deteriorate considerably when the
characteristic of the field grows large.

The column headed r/i means r for ‘reducible’ and i for ‘irreducible’. The
column headed #(0) gives the number of random elements 6 that were considered (in
the GAP run). This was equal to 1 for most trials on most examples. The examples
Cis x Qg have centralising field of degree 9 over F, and so, because of our policy of
considering only factors p(x) of degree up to 2’ for the i-th element 6, we could not
hope to succeed with fewer than 4 such elements. The first of these has 8 mutually
non-isomorphic irreducible composition factors of degree 9. The second is a direct
sum of 10 isomorphic copies of an irreducible module of degree 18. (This example
arose as a result of considering quotient groups of the Fibonacci group F(2,9).)

The example named C is cyclic of order 17* — 1, and the module is a direct sum
of two irreducibles of dimension 20. The centralising field has dimension 20 over
F = GF(17%). The final example, which did not complete, is an instance of the bad
situation mentioned in Section 2, and the module has two isomorphic composition
factors.

The original meataxe has no hope at all of proving irreducibility for the examples
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Cs x Qg and C, and for G L(200, 10007) it would take a long time.

All of these algorithms have also been implemented in MAGMA by Allan Steel at
the University of Sydney, together with some related procedures such as finding all
minimal submodules of a module for a finite group over a finite field. Except for the
case ¢ = 2, they have been found to run faster than the original meataxe algorithm. In
particular, if many of the irreducible constituents of M are not absolutely irreducible,
then they perform much more reliably in general. This situation occurs frequently in
the analysis of finite soluble groups, where the algorithm can be applied to elementary
abelian sections.

The last example in the table above did eventually complete in MAGMA and produce
a proper submodule; the number of elements 6 considered was about 5000.
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