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Abstract

The parabolicity of Brelot's harmonic spaces is characterized by the fact that every positive harmonic
function is of minimal growth at the ideal boundary.

1991 Mathematics subject classification (Amer. Math. Soc): primary 31DO5; secondary 30F15.

Take a locally compact Hausdorff space R which is connected and locally connected,
and a sheaf H of functions on R. We assume that R is not compact and has a
countable base. Consider a Brelot harmonic space (R, H). Let H+(R) be the set of
all non-negative harmonic functions on ^?. According to the classification of elliptic
equations with respect to the existence of positive solutions ([8, Definition 2.1], cf.
also [7, 9, 10]) we provide the following classification of Brelot's harmonic spaces:
A Brelot harmonic space (/?, H) is called positively degenerate if H+(R) = {0}.
In case H+(R) ^ {0}, a Brelot harmonic space (/?, H) is called parabolic if there
exist no potentials on R and hyperbolic if there exists a potential on R. In the theory
of harmonic spaces the term 'parabolic' is sometimes used in an entirely different
meaning (cf. [2]). However we wish to retain the term 'parabolic' in the classification
of Brelot's harmonic spaces since it is traditional terminology of classification theory
(cf. [11]) in classical potential theory. Hereafter we merely refer to Brelot's harmonic
spaces as harmonic spaces. We will also sometimes loosely call R itself or a subregion
of R the harmonic space if H is well understood. Denote by 8R the boundary of R
relative to the one point compactification of R. On the complement R \ F of a compact
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region F in R we will define the Dirichlet operator (cf. [11, p. 403]) which assigns
the harmonic function DR\F<j> on R \ F with 'boundary values' <f> on dF and zero at
the ideal boundary SR for each function <f> in C(3F). Our purpose is to prove the
following result:

A harmonic space (R, H) is parabolic if and only if H+(R) ^ {0} and DR\Fh = h
holds onR\ F for each h in H+(R) \ {0}.

The condition DR\Fh = h on R \ F is equivalent to the following condition which was
used to characterize the parabolicity of elliptic differential operators in [7, Theorem
1.1] and [10, Corollary 4.3]: h is a function with minimal growth at infinity.

The harmonic measure a>R\F\ of the ideal boundary SR with respect to R \ F is
the harmonic function on R \ F with 'boundary values' 1 at SR and 0 on dF. In the
case where the constant 1 is harmonic the parabolicity of (/?, H) was characterized
by o)R\F 1 = 0 ([5, Theorem 5.8]). But we still see that this characterization is not true
in general and in fact there are cases in which the harmonic measure coR\F 1 is equal
to infinity.

The author is grateful to the referee for his valuable comments.

Section 1

Let V be a relatively compact resolutive region in R. A point x0 in d V is regular for
V (with respect to H) if \in\v^x^,Xo Dy(x) = </>(x0) for any <p in C(dV), where Dy(x)
is the Dirichlet solution for 0 in V. A region V is called regular if V is a relatively
compact resolutive region and each boundary point x0 of V is regular for V. Denote
by \x\ the harmonic measure of V at x e V. The a lower semi-continuous, lower finite
function s on R is superharmonic if s > fgvs d/xx on V for any regular subregion
V of R. For any subregion V of R a potential p on V is a positive superharmonic
function p on V such that, if p > h holds on V for a harmonic function h on V,
then h < 0 on V. A compact region is the closure of a relatively compact region. A
non-empty compact region K in R is called outer regular ([3, p. 439; 5, p. 184]) if
every component of V \ K is regular for each regular region V of R with V D K. We
also denote by K the interior of K. We will first prove:

LEMMA 1. Suppose that a harmonic space (R, H) is not positively degenerate. Let
XQ be any point in R and V be any region in R which contains x0. Then there exists
an outer regular compact region Kv with x0 € Kv c Kv C V such that R\ Kv is
hyperbolic.

PROOF. By taking V smaller, if necessary, we may assume (cf. [6, Corollary 2.3])
that there exists a potential on V. Hence by [3, Lemma 7.1] there exists an outer
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regular compact region Kv in V with x0 G Kv C Kv c V. Choose a function /i in
H+(R) \ {0}. Let M be the harmonic function on V \ Kv with boundary values 0 on
dKv and h on 3 V. We set s = u on V \ Kv and 5 = h on fl \ V. Since /i > 0 on
/? by the minimum principle, the function s is a positive superharmonic on R \ Kv

which is not harmonic there. By the Riesz decomposition theorem (cf. [2, 6]) there
exists a potential on R \ Kv.

LEMMA 2. [3] Suppose that a harmonic space (/?, H) is not positively degenerate.
Then for any compact region K and any relatively compact region D in R with K C D
there exists a regular region G with K C G C G C D.

PROOF. This lemma was shown by Herve [3, Proposition 7.1] in the case where R
is hyperbolic. Take a region V in R \ D and a point x0 in V. Then in view of Lemma
1 we can take an outer regular compact region Kv with x0 e kv c Kv c V such that
R \ Kv is hyperbolic. Therefore by [3, Proposition 7.1] we obtain a desired region G
in R \ Kv and hence in R.

As a corollary of Lemma 2 we have:

COROLLARY. [5] If(R,H) is not positively degenerate, then there exists a regular
exhaustion [Q] of R, that is, an upper directed family {£2} of regular regions Qof R
such that R = \J £2.

Section 2

We assume that (/?, H) is not positively degenerate. Let F be a given outer regular
compact region in R. Hereafter we only consider regular exhaustions {£2} of R in
which each Q. contains F. For a function h in H+(R) \ {0} we denote by Da\Fh the
harmonic function on £2 \ F with continuous boundary values h on dF and 0 on 3Q.
Then by the minimum principle we have Dn\Fh < Dn\Fh < h on £2 \ F for every £2
and £2' in {£2} with £2 c £2'. Thus limn-*R Dn\Fh exists on R \ F which we denote by
DR\Fh. Again by the minimum principle we get either

(1) h = DR\Fh or h > DRXFh

on each connected component of R \ F for any h in H+(R).
Let 0 be a positive continuous function on R. We also consider the harmonic

function COQ\F(/> on £2 \ F with continuous boundary values (f> on 3£2 and 0 on 3F.
If limn_>./{(Wn\F0 exists, then we set coR\F<j> = limn-»R (»a\F(l> and we call it the <\>-
harmonic measure of the ideal boundary SR with respect to R \ F (cf. [4, p. 5]). In
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particular if O>«\F 1 exists, it is referred to as the harmonic measure of the ideal boundary
SR with respect to R \ F (cf. [5, p. 186; 11, p. 157]). Take any non-zero function
h in H+(R). Then by the minimum principle we have 0 < con'\Fh < coa\Fh < h on
Q \ F for every £2 and £2' in {£2} with £2 C £2'. Consequently l imn^R co^\Fh exists
on R\ F. Therefore coR\Fh exists if h e H+(R). Observe that u>a\Fh + Da\Fh = h
is valid on £2 \ F for every £2. As £2 —> R we have

(2)

on R\F for each /j in H+(R) and any outer regular compact region F in # .

Section 3

We next suppose that (R, H) is hyperbolic and take a point y in F. Then there
exists a potential pR_y on /? which is harmonic on R \ {y} by [3, Theoreme 16.1].
In addition, for each £2 in {£2} there exists a unique potential p^y on £2 which is
harmonic on £2 \ {v} and the identity pa,y = PR,y — R^ holds on £2 by [3, Theoreme
16.4] where R%° is the reduced function of pR,y relative to C£2 on R. Therefore the
inequality Dw\FpR<y > pn,y is valid on £2 \ F for any £2 and £2' in {£2} with £2 c £2'.
As £2' —> R and then as £2 —> i? we have DR\FpR,y > p^ ,y on R\F. Thus we obtain
that

(3)

on R\F since pR o, > DR\FpRy on R\F. We will show the following:

THEOREM. Assume that (R, H) is not positively degenerate. Then the following
statements are equivalent:

(a) (R, H) is a parabolic harmonic space;
(b) DR\Fh = h holds on R\ F for some and hence for any pair (F, h) of an outer

regular compact region F in R and a function h in H+(R) \ {0};
(c) coR\Fh = 0 holds on R\ F for some and hence for any pair (F, h) of an outer

regular compact region F in R and a function h in H+{R) \ {0}.

PROOF. We assume (b). Suppose that there exists a potential pRy on R which is
harmonic on R \ {v} with v in F. We set c = max8F {h/pRy}. Then cDR\FpRy >
Da\Fh on Q \ F for any J2 in {Q}. As Q ->• R we have cpRy > h on R \ F by (3).
Also it follows from the minimum principle that cpRy > h is valid on F. Thus the
inequality cpR<y > h holds on R. Therefore we have h < 0 on R. But this contradicts
the assumption. Hence there exist no potentials on R. Thus (b) implies (a).

We next suppose that h ^ DR\Fh on R \ F for some outer regular compact region
F and some h in H+(R) \ {0}. We denote by W the union of all connected components

https://doi.org/10.1017/S1446788700038453 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038453


24 Hideo Imai [5]

of R \ F on which h - DRXFh > 0 holds. Then h = DR\Fh is valid on (R \ F) \ W
by (1). We set u = DR\Fh on W and u = h on R \ W. Clearly u is a positive
superharmonic function on R. Let v be a harmonic function on R which is dominated
by u on R. Setting m = max8f (v/h)i we have mh > v and DR\Fh — v > (1 — m)h
on 3F. Hence we have mh > v on F and DR\Fh — v > (1 — m)DR\Fh on R\ F.
These inequalities imply mDR\Fh >v onW and m/i > u on /? \ W. Thus we obtain
m« > v on R. Suppose that m > 0. Then we have m/i > mu > v on R. This with
the fact h > w on W implies that mh — v > 0 on W. Thus the minimum principle
yields mh — v > 0 on R. In particular we have m > (v/h) on dF. But this is a
contradiction. Thus we have m < 0 and a fortiori u < 0 on R. Hence M is a potential
on R. Thus the assertion (b) follows from (a).

In view of (2), (b) and (c) are equivalent.

REMARK. If 1 is harmonic, then coR\F 1 exists. In this sense we may regard the
/j-harmonic measure coR\Fh with h € H+(R) \ {0} as a generalization of the harmonic
measure of the ideal boundary of Riemann surfaces (cf. [11, p. 157]).

Section 4

We will state some remarks concerning conditions in the theorem. Let u be a
positive harmonic function on R \ F. Following [1] (cf. [10, p. 956]) u is said to be
a function with minimal growth at infinity if u satisfies the following condition: For
any outer regular compact region F' in R and any positive harmonic function v on
R\F' there exists a constant c > 0 and an outer regular compact region F" in R with
F" D f ' U F such that u < cv on R \ F". Then we have:

PROPOSITION 1. Let h be a function in H+(R) \ {0}. Then h is a function with
minimal growth at infinity if and only if DR\Fh = h on R\ F for some and hence for
any outer regular compact region F in R.

PROOF. If DR\Fh = h on R \ F, then h is clearly a function with minimal growth
at infinity. Conversely suppose that A is a function with minimal growth at infinity.
Since DR\Fh is a positive harmonic function on R \ F, there exists a constant c > 1
such that cDR\Fh > h on R \ F. For any regular region £2 in R we have cDR\Fh — h>
(c — \)Dn\Fh on £2 \ F. As Q -*• R the inequality DR\Fh > h holds on R \ F. Hence
we have DR\Fh = h on R \ F.

PROPOSITION 2. [8, 10] Suppose that (R, H) is parabolic and let x0 be any fixed
point in R. Then there exists a unique positive harmonic function h on R with
h(x0) = 1.
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PROOF. Suppose that there exist two different functions hj(j = 1, 2) in//+(/?) \{0}
with hj(x0) = 1. We set h = min(/!i, h2) on R. Then h is a positive superharmonic
function on R which is not harmonic. Therefore by the Riesz decomposition theorem
there exists a potential on R. But this contradicts the assumption.

Let A be a function in H+(R) \ {0}. We denote by h~lH such a sheaf of functions
on R that for each region V in R, h~lH{V) is a real linear space given by {u/ h : u e
H(V)}. Evidently (R, h~lH) is a harmonic space in which the constant 1 is harmonic
on R (cf. [5, p. 193], [6]). We also denote by / r ' / / c ( /? \ F) the family of harmonic
functions on R \ F with respect to h~lH which is continuous on dF. We will show:

PROPOSITION 3. Let h be a function in H+(R) \ {0} and F be any outer regular
compact region in R. Then coR\Fh = 0 on R\ F if and only if ma.x3F v = sups^f v
for any v in h~lHc(R \ F) which is bounded from above.

PROOF. Observe that 1 is in h~lH(R) and therefore the harmonic measure coR\Fl
of SR with respect to the sheaf h~lH can be defined. Suppose (oR\Fh = 0 on
R\ F. Then coR\fl vanishes identically on R \ F since a>R\F\ = h~lcoR\Fh on
R \ F. Therefore (/?, h~xH) is parabolic by (c) in the Theorem. Let v be any
function in h~lHc(R \ F) which is bounded above. Then for each £2 we have
(SUPR\F

 v)&n\Fl + (max8f v)l > v on Q \ F. As Q -> R maxaf v > v holds on
R \ F. Therefore we have max3f v = supRxf v.

The converse assertion is almost trivial. Since h > a>R\Fh on R \ F, the func-
tion (a>R\Fh)/h is in h~lHc(R \ F) which is bounded from above. Thus from the
assumption we have (coR\Fh)/h = 0 and a fortiori a)R\Fh = 0 on R \ F.

Section 5

We will provide examples which indicate that we can not distinguish parabolic
harmonic spaces from hyperbolic harmonic spaces in terms of the harmonic measures
of the ideal boundary, hi this section we denote by R the punctured unit open ball in
R" : R = {0 < \x\ < 1}, (n> 2), so that {0} and |JC| = 1 give rise to the Alexandroff
point 8R. Consider the elliptic differential equation

(4) Lu{x) = Au(x) + P(|JC|)II(JC) = 0

on R, where A is the Laplacian and

(5)
"1)24(1 - \x\y \ T (logd - W)"1)
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on/?. Let / /be the sheaf of solutions of (4) on/?. Then by [3, Theoreme 34.1] (R,H)
is a harmonic space.

Consider the differential equation

lu{r) = ^ r « ( r ) + ^—^~u{r) + P(r)u(r) = 0
dr2 r dr

in (0, 1), where P(r) is the function given by (5) with |JC| = r. We set p(r) —
r-("-i)/2(1 _r)i/2(iOg(l - r ) " 1 ) ' / 2 andq(r) = P(r)log2(l -r)~\ whereIog2(l - r ) " 1

is the iterated logarithm log(log(l — r)"1). Then we can easily see that p(r) and q(r)
are linearly independent solutions of lu{r) = 0 in (0, 1). Evidently p(|jc|) and q(\x\)
with |JC| = r are solutions of (4) on R.

Take constants r), s0, t0, t, s with 0 < v\ < s0 < t0 < 1/2 < t < s < 1 and we
set Ro = {x : t] < \x\ < 1}. Let Ho be the sheaf of solutions of (4) on Ro. The set
^o = {to < \x\ < t] is an outer regular compact region in R and Ro respectively. We
also denote by F an outer regular compact region in Fo such that Ro \ F is connected.
We will see:

EXAMPLE. The harmonic space (R, H) is parabolic and (Ro, Ho) is hyperbolic. But
both (DR\Fl and coRo\Fl are identically infinity on R \ F and on Ro\ F respectively.

The harmonic space (/?,//) is not positively degenerate because /?(|JC|) is a positive
solution of (4) on R. We denote by DSoJop(\x\) the solution of (4) on s0 < |x| < t0

with boundary values p(|x|) on |JC| = t0 and 0 on \x\ = s0, and also by Dtsp(\x\)
the solution of (4) on t < |JC| < s with boundary values p(|x|) on |JC| — t and 0 on
|*| = s. Then we have DSo,top(\x\) = {(log2(l - so)"1 - Iog2(l - |x|)-')/(log2(l -
Jo)"1 -Iog2(l -to)-l)}p{\x\) ons0 < \x\ < toand D,,sp(\x\) = {(log2(l - W)"1 -
Iog2(l - i)-1)/(log2(l - r)"1 - Iog2(l - s)-l)]p(\x\) on / < |JC| < s. Thus the
following identities hold:

lim DSOt,op(\x\) = p(\x\) onO < \x\ < t0, and

UmD,tSp(\x\) = p(\x\) o n f < | x | < l .

Therefore DR\Fop(\x\) = p(\x\) holds on R \ Fo and hence (/?, H) is a parabolic
harmonic space by the theorem. Then, in view of Lemma 1, (Ro, Ho) is a hyperbolic
harmonic space. Let co,<s(x) be the solution of (4) on t < \x\ < s with boundary
values 0 on \x\ = t and 1 on |x| = s. Then coliS(x) = {(log2(l - ?)"' - Iog2(l -
\x\rl)/{log2a-t)-l-\og2{l-s)-1)}{pQx\)/p{s)} holds on? < \x\<s. Observe
tha ta ) R \ F l > coR\F(j\ andcoRo\Fl > WRO\FO1 are valid on {t <\x\< 1} by the minimum

principle. Hence we have (oR\F\ = coRo\Fl > limj_,.i cols(x) = oo on {t < \x\ < 1}.

Thus we conclude coRXF 1 = oo on R \ F and coRo\F 1 = oo on Ro \ F.
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