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Abstract

The parabolicity of Brelot’s harmonic spaces is characterized by the fact that every positive harmonic
function is of minimal growth at the ideal boundary.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 31D05; secondary 30F15.

Take a locally compact Hausdorff space R which is connected and locaily connected,
and a sheaf H of functions on R. We assume that R is not compact and has a
countable base. Consider a Brelot harmonic space (R, H). Let H*(R) be the set of
all non-negative harmonic functions on R. According to the classification of elliptic
equations with respect to the existence of positive solutions ([8, Definition 2.1], cf.
also [7, 9, 10]) we provide the following classification of Brelot’s harmonic spaces:
A Brelot harmonic space (R, H) is called positively degenerate if H*(R) = {0}.
In case H*(R) # {0}, a Brelot harmonic space (R, H) is called parabolic if there
exist no potentials on R and hyperbolic if there exists a potential on R. In the theory
of harmonic spaces the term ‘parabolic’ is sometimes used in an entirely different
meaning (cf. [2]). However we wish to retain the term ‘parabolic’ in the classification
of Brelot’s harmonic spaces since it is traditional terminology of classification theory
(cf. [11]) in classical potential theory. Hereafter we merely refer to Brelot’s harmonic
spaces as harmonic spaces. We will also sometimes loosely call R itself or a subregion
of R the harmonic space if H is well understood. Denote by R the boundary of R
relative to the one point compactification of R. On the complement R\ F of a compact
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region F in R we will define the Dirichlet operator (cf. {11, p. 403]) which assigns
the harmonic function Dg\r¢ on R \ F with ‘boundary values’ ¢ on 3 F and zero at
the ideal boundary §R for each function ¢ in C(3F). Our purpose is to prove the
following result:

A harmonic space (R, H) is parabolic if and only if H*(R) # {0} and Dg\rh = h
holds on R\ F for each h in H*(R) \ {0}.

The condition Dg\rh = h on R\ F is equivalent to the following condition which was
used to characterize the parabolicity of elliptic differential operators in [7, Theorem
1.1] and [10, Corollary 4.3} & is a function with minimal growth at infinity.

The harmonic measure wg\r1 of the ideal boundary § R with respect to R \ F is
the harmonic function on R \ F with ‘boundary values’ 1 at SR and O on 3 F. In the
case where the constant 1 is harmonic the parabolicity of (R, H) was characterized
by wr\r1 = 0 ([5, Theorem 5.8]). But we still see that this characterization is not true
in general and in fact there are cases in which the harmonic measure wg\r1 is equal
to infinity.

The author is grateful to the referee for his valuable comments.

Section 1

Let V be a relatively compact resolutive region in R. A point x, in dV is regular for
V (with respect to H) if limy,_,, DY (x) = ¢ (xo) for any ¢ in C(8V'), where D (x)
is the Dirichlet solution for ¢ in V. A region V is called regular if V is a relatively
compact resolutive region and each boundary point x, of V' is regular for V. Denote
by [J,;/ the harmonic measure of V at x € V. The a lower semi-continuous, lower finite
function s on R is superharmonic if s > fav sdu on V for any regular subregion
V of R. For any subregion V of R a potential p on V is a positive superharmonic
function p on V such that, if p > h holds on V for a harmonic function & on V,
then 2 < O on V. A compact region is the closure of a relatively compact region. A
non-empty compact region K in R is called outer regular ([3, p. 439; 5, p. 184]) if
every component of V' \ K is regular for each regular region V of R with V > K. We
also denote by K the interior of K. We will first prove:

LEMMA 1. Suppose that a harmonic space (R, H) is not positively degenerate. Let
Xo be any point in R and V be any region in R which contains xy. Then there exists
an outer regular compact region Ky with xy € Ky C Ky C V such that R \ Ky is
hyperbolic.

PROOF. By taking V smaller, if necessary, we may assume (cf. [6, Corollary 2.3])
that there exists a potential on V. Hence by [3, Lemma 7.1] there exists an outer
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regular compact region Ky in V with x4 € K v C Ky C V. Choose a function 4 in
H*(R) \ {0}. Let u be the harmonic function on V \ Ky with boundary values 0 on
oKy andhondV. Wesets =uonV\Kyands =hon R\ V. Since h > 0on
R by the minimum principle, the function s is a positive superharmonic on R \ Ky
which is not harmonic there. By the Riesz decomposition theorem (cf. [2, 6]) there
exists a potential on R \ Ky.

LEMMA 2. [3] Suppose that a harmonic space (R, H) is not positively degenerate.
Then for any compact region K and any relatively compact region D in Rwith K C D
there exists a regular region G with K C G C G C D.

PROOF. This lemma was shown by Hervé [3, Proposition 7.1] in the case where R
is hyperbolic. Take a region V in R \ D and a point xo in V. Then in view of Lemma
1 we can take an outer regular compact region Ky with xo € Ky C Ky C V such that
R\ Ky is hyperbolic. Therefore by [3, Proposition 7.1] we obtain a desired region G
in R\ Ky and hence in R.

As a corollary of Lemma 2 we have:

COROLLARY. [5] If (R, H) is not positively degenerate, then there exists a regular
exhaustion {2} of R, that is, an upper directed family {2} of regular regions 2 of R
such that R = | J Q.

Section 2

We assume that (R, H) is not positively degenerate. Let F be a given outer regular
compact region in R. Hereafter we only consider regular exhaustions {2} of R in
which each  contains F. For a function 4 in H*(R) \ {0} we denote by Dg,\rh the
harmonic function on 2 \ F with continuous boundary values 4 on 8 F and 0 on 9€2.
Then by the minimum principle we have Do \rh < Do\rh < hon Q\ F for every Q
and ' in {Q} with © C €. Thus limg_, ¢ Dg,\ rh exists on R \ F which we denote by
Dg\rh. Again by the minimum principle we get either

(1) h = DR\ph or h > DR\Fh

on each connected component of R \ F for any 4 in H*(R).

Let ¢ be a positive continuous function on R. We also consider the harmonic
function wo\r¢ on Q \ F with continuous boundary values ¢ on 92 and 0 on 9F.
If limg_,R Q)Q\F¢ exists, then we set wR\F¢ = limg_ﬂg O)Q\F¢ and we call it the ¢~
harmonic measure of the ideal boundary 5R with respectto R \ F (cf. [4, p. 5]). In
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particular if wg, r 1 exists, it is referred to as the harmonic measure of the ideal boundary
SR with respect to R \ F (cf. [5, p. 186; 11, p. 157]). Take any non-zero function
h in H*(R). Then by the minimum principle we have 0 < wg\rh < wo\rh < h on
Q \ F for every 2 and € in {Q} with Q ¢ . Consequently limg_, ¢ wq\rh exists
on R\ F. Therefore wg\rh exists if h € H*(R). Observe that wo\rh + Do\rh = h
is valid on Q \ F for every Q. As Q@ — R we have

(2) CUR\ph + DR\Fh =h

on R\ F for each h in H*(R) and any outer regular compact region F in R.

Section 3

We next suppose that (R, H) is hyperbolic and take a point y in F. Then there
exists a potential pg , on R which is harmonic on R \ {y} by [3, Théoreme 16.1].
In addition, for each Q in {2} there exists a unique potential pg , on € which is
harmonic on @ \ {y} and the identity po , = pr,, — R, holds on € by [3, Théoréme
16.4] where R is the reduced function of pg,, relative to C<2 on R. Therefore the
inequality Dg\rpr.y = pa.y is valid on Q \ F for any Q and Q' in {2} with QcQ.
As Q' — R and then as & — R we have Dg\rpry = Pr,yon R\ F. Thus we obtain
that

3) Pry = Dr\rPry
on R\ F since pg, > Dg\rpr,yon R\ F. We will show the following:

THEOREM. Assume that (R, H) is not positively degenerate. Then the following
Statements are equivalent:

(@) (R, H) is a parabolic harmonic space;

(b) Dg\rh = h holds on R\ F for some and hence for any pair (F, h) of an outer
regular compact region F in R and a function h in H*(R) \ {0};

(¢) wg\rh = 0 holds on R \ F for some and hence for any pair (F, h) of an outer
regular compact region F in R and a function h in H*(R) \ {0}.

PROOF. We assume (b). Suppose that there exists a potential pr , on R which is
harmonic on R \ {y} with y in F. We set c = maxr {h/pg,,}. Then cDp\rpr.,, >
Dg\rh on Q \ F for any Q in {Q}. As @ — R we have cpp, > hon R\ F by (3).
Also it follows from the minimum principle that cpg,, > & is valid on F. Thus the
inequality cpg,, > h holds on R. Therefore we have 2 < 0 on R. But this contradicts
the assumption. Hence there exist no potentials on R. Thus (b) implies (a).

We next suppose that i # Dg\rh on R \ F for some outer regular compact region
F and some & in H*(R)\ {0}. We denote by W the union of all connected components
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of R\ F on which & — Dg\ph > Oholds. Then h = Dg\rh is validon (R \ F) \ W
by (1). Wesetu = Dgyrhon W and u = hon R\ W. Clearly u is a positive
superharmonic function on R. Let v be a harmonic function on R which is dominated
by u on R. Setting m = max,r(v/h); we have mh > vand Dgy.gh —v > (1 —m)h
on 3F. Hence we have mh > von F and Dg.gh — v > (1 —m)Dgshon R\ F.
These inequalities imply m Dg\rh > von W and mh > v on R \ W. Thus we obtain
mu > v on R. Suppose that m > 0. Then we have mh > mu > v on R. This with
the fact » > u on W implies that mh — v > 0 on W. Thus the minimum principle
yields mh — v > O on R. In particular we have m > (v/h) on dF. But this is a
contradiction. Thus we have m < 0 and a fortiori v < 0 on R. Hence u is a potential
on R. Thus the assertion (b) follows from (a).
In view of (2), (b) and (c) are equivalent.

REMARK. If 1 is harmonic, then wg\r1 exists. In this sense we may regard the
h-harmonic measure wg\rh with h € H*(R) \ {0} as a generalization of the harmonic
measure of the ideal boundary of Riemann surfaces (cf. [11, p. 157]).

Section 4

We will state some remarks concerning conditions in the theorem. Let u be a
positive harmonic function on R \ F. Following [1] (cf. [10, p. 956]) u is said to be
a function with minimal growth at infinity if u satisfies the following condition: For
any outer regular compact region F’ in R and any positive harmonic function v on
R\ F' there exists a constant ¢ > 0 and an outer regular compact region F” in R with
F” > F'U F suchthat u < cvon R\ F”. Then we have:

PROPOSITION 1. Let h be a function in H*(R) \ {0}. Then h is a function with
minimal growth at infinity if and only if Dg\rh = h on R \ F for some and hence for
any outer regular compact region F in R.

PROOF. If Dg\rh = h on R\ F, then # is clearly a function with minimal growth
at infinity. Conversely suppose that # is a function with minimal growth at infinity.
Since Dg\rh is a positive harmonic function on R \ F, there exists a constant ¢ > 1
such that cDg\rh > hon R\ F. For any regular region Q2 in R we have cDg\rh—h >
(c—=1)Dg\rhon Q\ F. As Q — R the inequality Dg,gh > h holds on R\ F. Hence
we have Dgy\gh =hon R\ F.

PROPOSITION 2. [8, 10] Suppose that (R, H) is parabolic and let x, be any fixed
point in R. Then there exists a unique positive harmonic function h on R with
h(xp) = 1.
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PROOF. Suppose that there exist two different functions 4;(j = 1, 2) in H*(R)\ {0}
with 4;(xo) = 1. We set & = min(h,, h,) on R. Then 4 is a positive superharmonic
function on R which is not harmonic. Therefore by the Riesz decomposition theorem
there exists a potential on R. But this contradicts the assumption.

Let & be a function in H*(R) \ {0}. We denote by ™! H such a sheaf of functions
on R that for each region V in R, h~' H(V) is a real linear space given by {u/h : u €
H(V)}. Evidently (R, A~'H) is a harmonic space in which the constant 1 is harmonic
on R (cf. [5, p. 193], [6]). We also denote by A~'H°(R \ F) the family of harmonic
functions on R \ F with respect to A~! H which is continuous on 3 F. We will show:

PROPOSITION 3. Let h be a function in H*(R) \ {0} and F be any outer regular
compact region in R. Then wg\rh = 0 on R\ F if and only if maxsr v = Supg, ;v
for any v in h"YH¢(R \ F) which is bounded from above.

PROOF. Observe that 1 is in #~' H(R) and therefore the harmonic measure Wp\rl
of SR with respect to the sheaf h~'H can be defined. Suppose wgrh = 0 on
R\ F. Then @g\rl vanishes identically on R \ F since @g\rl = A~ 'wgrh on
R\ F. Therefore (R, h"'H) is parabolic by (c) in the Theorem. Let v be any
function in A"'H<(R \ F) which is bounded above. Then for each  we have
(supp\r Vg rl + (Maxsrv)l > von Q\ F. As Q — R max,rv > v holds on
R\ F. Therefore we have maxyr v = supg, r v.

The converse assertion is almost trivial. Since & > wg\rh on R \ F, the func-
tion (wg\rh)/h is in A~ H°(R \ F) which is bounded from above. Thus from the
assumption we have (wg\rh)/h = 0 and a fortiori wg\rh =0o0n R\ F.

Section 5

We will provide examples which indicate that we can not distinguish parabolic
harmonic spaces from hyperbolic harmonic spaces in terms of the harmonic measures
of the ideal boundary. In this section we denote by R the punctured unit open ball in
R":R=1{0 < |x| < 1}, (n = 2),sothat {0} and |x| = 1 give rise to the Alexandroff
point §R. Consider the elliptic differential equation

4) Lu(x) = Au(x) + P(IxDu(x) =0
on R, where A is the Laplacian and

(n—l)(n—3)+ 1 [1 1 }

5 POx) =
O P i U Gesa — by
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on R. Let H be the sheaf of solutions of (4) on R. Then by [3, Théoréme 34.1] (R, H)
is a harmonic space.
Consider the differential equation

d? n—1d
bu(ry= —u(r)+ ———u(r)+ P(ru(r)=0
dr? r dr
in (0, 1), where P(r) is the function given by (5) with |x| = r. We set p(r) =
r=®=D2(1 —r)2(log(1—r) )2 and q(r) = p(r)log,(1~r)~!, where log,(1—r)!
is the iterated logarithm log(log(1 — r)~!). Then we can easily see that p(r) and q(r)
are linearly independent solutions of £u(r) = 01in (0, 1). Evidently p(Jx|) and ¢(|x])
with |x| = r are solutions of (4) on R.

Take constants 7, sg, fp, ¢, s With 0 < n < 5 <y < 1/2 <t <5 < | and we
set Ry = {x : n < x| < 1}. Let Hy be the sheaf of solutions of (4) on Ry. The set
Fy = {ty < |x| <t} is an outer regular compact region in R and R, respectively. We
also denote by F an outer regular compact region in Fy such that R, \ F is connected.
We will see:

EXAMPLE. The harmonic space (R, H) is parabolic and (R, Hy) is hyperbolic. But
both wg\r1 and wg, r1 are identically infinity on R \ F and on Ry \ F respectively.

The harmonic space (R, H) is not positively degenerate because p(|x|) is a positive
solution of (4) on R. We denote by D, , p(ix|) the solution of (4) on 54 < |x| < #o
with boundary values p(jx|) on |x| = % and 0 on |x| = sp, and also by D, p(|x|)
the solution of (4) on ¢t < |x| < s with boundary values p(|x|) on |x| = ¢ and 0 on
|x| = 5. Then we have D, ,, p(Ix|) = {(log,(1 — 50)~" —log,(1 — |x[)™") /(log,(1 —
50)"" —log,(1 — 1)~} } p(Ix]) on 5o < |x| < tpand D, p(|x|) = {(log,(1 - |x])~"' -
log, (1 — 5)7') /(log,(1 — )™ —log,(1 — 5)™")} p(Ix]) on t < |x| < s. Thus the
following identities hold:

lirr;) Dy, ., p(Ix]) = p(Ix}) on 0 < |x| <4, and

lim D, p(lxD) = p(lxl) ~ ont =< |x| < 1.
$—

Therefore Dg\r,p(|x|) = p(lx|) holds on R \ F; and hence (R, H) is a parabolic
harmonic space by the theorem. Then, in view of Lemma 1, (R, Hp) is a hyperbolic
harmonic space. Let w,(x) be the solution of (4) on ¢ < |x| < s with boundary
values O on |x] = ¢ and 1 on |x| = 5. Then w,;(x) = {(log2(1 — 1) —log,(1 —
1xD)71) /(log,(1— 1)~ —log,(1—s5)") H{p(Ix])/p(s)} holdsont < |x| < s. Observe
that wg\r1 > wg\r, 1 and wg,\r1 > wgy\R1 are validon {t < |x| < 1} by the minimum
principle. Hence we have wg\rl = wg,\rl = lim,,, @, ;(x) = coon {t < |x| < 1}.
Thus we conclude wg\rl =00 on R\ F and wgr1l =00 on Ry \ F.
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