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1. Introduction

Let B be a measurable set of real numbers in (0,1) of Lebesgue measure \B\ and
let JCI, . . . , xn be real. Then

Z(B;x , , . . . ,x n )

denotes the number of j ( l S / S n ) for which the fractional part {x,}GB. The
discrepancy of xt, . . . , xn is

D(xx, ...,xn) = « " ' sup | Z(I; * , , . . . , xn) -n\I\\

where the supremum is taken over all intervals / in [0,1].
Let giOt), gi(x),.. be a sequence of differentiable functions on the finite interval

[a, B]. Throughout the paper we assume that g\(x) and g'k(x) - g"j(x) are positive and
monotonic non-decreasing in [a, B] whenever k > j S 1. We also assume that for some
p>0, 0 0,

gi(/3)SCfcp (it SI), (1)

and that there are numbers c > 0 and a , 0 S a < l , such that

giW-g)(x)s c (2)

whenever j g 1 and k^j + Cj". Evidently p g l - a . We write

F(B,n,x) = Z(B;g)(x),...,gn(x))-n\B\

for n g 1, a g x S j8, and

D{m, n, x) = D(gm+l(x),..., gm+n(x))

for mgO, n g l . I n this paper we are interested in the exceptional sets

£, = {;£ [a, /3]: lim sup n"D(0, n, x) > 0}
n-*o

and

E(B) = {x G [a, B]: lim sup n'11 F(B, n, x)\ > 0}.

To make sure that |C(S)| = 0 we consider only open sets B with 'thin tail', that is

B = / , U h U . . . U /„ U .. (3)
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146 R. C. BAKER

where I\, I2,.. are the distinct component intervals of B arranged in order of
decreasing length, and

n f ^ > l .
o lOg HI

The Hausdorff dimension of a real set A is written dim A.

Theorem 1. We have

dim£,S l-(\-a-2q)l(p+2q) (fi<q<{(\-a)).

This improves my previous upper bound (2,4), which was

min {1 - (1 - a - 2q)l(p + 2q+\(\- a)), 1 - (1 - a - 3q)l(p + 2q)}.

Theorem 2. Let f denote the polynomial

f(y) = (by - l)(py +\-a -p)-p(3 - y)(l - y).

For b > 1 let t = max(fc"', 1 - (1 - a)lp). Then, since f(t) < 0, /(I) > 0, and /'(y) > 0
(t •& y S 1), / has a unique zero y in (t, 1). We have

dim E{B) § y whenever b(B) a b.

Theorem 2 improves Theorem 5.1 of (3). Let gj(x) = ape where at, a2,.. is a strictly
increasing sequence of positive integers. Then a = 0 and

Ry) = (by - l)(py + l-p)-p(3-y)(l-y).

In this particular case, it is shown in (3) that

dim E(B) S 5 whenever b(B) g b,

where 5 is the unique zero in (t, 1) of the smaller function

F(y) = (by - l)(py +l-p)-p(5- y)(l - y), so that S > y.

It seems highly unlikely that Theorem 2 is best possible, but Theorem 1 might be.
Some examples in Section 4 yield bounds beyond which the theorems cannot be
improved.

Theorem 3. Let i\> be a function on the positive integers such that

l (it = 1,2...)

for some K>0 and y, 0 < y < 1. Write ty(n) =
Let a i, a2,. .be strictly increasing positive integers with

ak S Ck" (k g 1)

for some C > 0 and p g l . Let at, a2,.. be real numbers. Write N(n, x) for the number
of solutions k^n of

{akx - ak}
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Then
N(n,x)~V(n) as n->°o

except for a set of x in [0,1] of Hausdorff dimension at most

Theorem 3 refines a result of LeVeque (Theorem 3 of (9)) that N(n, x) ~ V(n) for
almost all x. I have little idea how far the upper bound obtained could be sharpened.

2. Some lemmas

In this section we collect together some preliminary results. Lemma 1 is similar to
a result on p. 106 of (7). For a real set A, A(mod 1) denotes the set of fractional parts
{JC} (x e A).

Lemma 1. Let Xi,yi,---, xn, yn be real, then

\D{xu ...,xn)- D(y,, ..., yn)| S 2 max |xf - y,|.

Proof. Write d = max |x,- - y,|. Let / be a subinterval of [0, 1] with endpoints a, b

(a < b) and write / = [a - d, b + d] (mod 1). Then, if K denotes the complement of /
in [0, 1],

Z(J; yu ..., yn) + Z(K; yu . . . , ?„) = n = n{\J\ + \K\),

or
Z(J; y y-)-« |J| = -(Z(K; y, , . . . , y . ) - n\K\).

Either / or K is an interval, so

Z(J; y , , . . . , yn) - n \J] S nD(yu . . . , yn).

Now it is clear that

Z(7; xi,..., xn) - n | / | SZ(/ ;y yn) - n \I\

A similar argument shows that

Z(I; JC,, . . . , xn) - n \I\ S - nD(y l ? . . . , yn) - 2 nd.

Therefore
nD(xu ...,xn)S nD(yu ...,yn) + 2nd.

Reversing the roles of JC'S and y's, the lemma follows.

Lemma 2. Let F be a non-negative function on [a, f}]. Suppose
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148 R. C. BAKER

and

( F2(x) dx g V.
J a

Let
£ = {x£ [a, fi]: F{x) § d > 0}.

There is a covering of E with intervals Jit...,Jh such that for 0 < a § 1,

where C, is a numerical constant.

Proof. This is a slight variant of Lemina 1 of (4).

Lemma 3. Let g be a function on [a, /3] whose derivative is monotonic non-
decreasing with

0<G^g'(x)SH ( agxS/3) . (4)

Let I be an interval in [0,1] and let

Then F comprises intervals J],..., Jm with

for 0 < cr S 1, where C2 depends only on a, fi.

Proof. We have

F = [«,, «,] U [u2,v2] U . . . U [«m, vm]

where m S 0, a g «i S Ui < u2 < v2 < . . . < um S vm g /3,

«(»/)-*(«y) = | / | d < j < m ) , (5)

*(»/)-«(»j-i)=l d < / < m ) , (6)

max(g(»,) - g(«,), g(Um) - g(um)) g |/|. (7)

Suppose for a moment that m > 2. As g is a convex function,

or in view of (5), (6),

w, - u, S (u, - u,_,)|/| ( K j < m ) .
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Thus

using Holder's inequality. But

T (», - »,_,) g 0 - a,

m-2 = g(vm.i)-g(vi) S (/3 - a)//

in view of (4). Thus (even if m S 2)

Moreover,
( r . -M. r + ^ - M ^ r

from (4), (7). This proves the lemma.

Lemma 4. .Lef B be an open set in [0, 1]. Suppose there are measurable sets
Gx, G2,..., such that

(i) B is the union of Gm and m intervals Jml,..., Jmm,

( i i ) c = liminf1O
|
8'G'"'~'>0.

m— log m

Proof. We have, for e > 0,

\Gm\<m~c+'

for sufficiently large m. In the notation of (3), let Im,..., IRm) be the component
intervals containing Jmi,... ,Jmm respectively. Then for large m,

m \I2m | g J ^ \lk | g |B | -1 / / ( 1 ) U . . . U 7/(m)|

so that

Obviously b{B)^c + 1.

Lemma 5. For m § 0, n S 1, we have
rere
I (nD(m, n, x))2 dx S C3n(m + n)a Iog2(« + 1),

Ja
where C$ is independent of m and n.
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150 R. C. BAKER

Proof. This is established on p. 424 of (4).

We introduce the notation

nk = [exp(k112)] (fc^l).

The significant properties of this integer sequence are that nk+xlnk -* 1 as k -* °° and

for every e > 0.

Lemma 6. We have

D(0,nk, x)<nk"

for sufficiently large k, except for a set of x in [a, B] of Hausdorff dimension at most

(0<q<2il-a)).

Proof. It suffices to show that whenever

l>a>l-(\-a-2q)Kp

the set A(n) of x in [a, B] for which

can be covered by intervals J(n, 1), J(n, 2) , . . . with

( n , i T ^ C 4 n - ( n ^ l ) (8)

where e > 0 and C4 are independent of n S 1. For then, given K g l , the set A of x
belonging to infinitely many A{nk) can be covered by the family of intervals

/(«*,/) O'S hkmK).

We have

as K -* oo, yielding dim A S a, and indeed dim < 4 g l - ( l - f l - 2q)l(p + q).
To get these coverings, we apply Lemma 2 with F(x) = n D(0, n, x), d = nl'q, so

that we may take

V = C3n
l+a Iog2(n + 1)

in view of Lemma 5, and

U = 2n max gJ(/3) S 2Cnp+l

in view of Lemma 1. Thus A(n) may be covered by intervals J(n, 1), J(n, 2 ) , . . . with
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2 \J(n, j)f g C5 Iog2(n + i)(n
2+-+p-3<'-<'))'-<'(n'

+'>-2<'-'J))''
m

where C5 is independent of n. We obtain (8) on noting that

p + 3q - (1 - a) < <r(p + q).

This proves Lemma 6.

Lemma 7. Lef h(m, n, x) (m g 0, n § 1) be functions satisfying the following con-
ditions on [a, f}]:

\h(m, n, x) - h(m, n, y)\ g d(m, n)\y - x\,

d(m,n) sup \h(m,n,x)\sC6k"nll-'T (OS m g k, 1 S n g k), (9)

f /i2(m,n,
-/a

n'-p (OS m g fc, 1 g n § fc).

Here C6, C7, cr, /n, f, p are independent of k, n, with fi^a+l, v^p+l. Suppose
further that

nD(m,n,x)^h(m,n,x) ( m g O . n g U S x g p ) .

Then if 0 < A < min(jjii, 3(1̂  + /*)) we have

D(0, «, x) < nA~'

/or sufficiently large n, except for a set of x of Hausdorff dimension at most

Proof. This is a slight variant of Theorem 4 of (4).

Lemma 8. Suppose that

lim sup n"'|F(B, n, x)\ > 0.

Then

lim sup n:' |F(B, nt, x)\ > 0.

Proof. Let n S n1; then n t g n £ nk+l for some He g 1. We clearly have

F(B, nk, x) + nk\B\ g F(B, n, x) + n\B\ S F(JS, nk+u x) + nk+l\B\

so that

, nk, x) - (nk+t - nk)n'k S n~*F(B, n, x) S n^F(B, nk+t, x) + (nk+, - nk)n'k\

If n~ilF(B, nk, x)-*Q as fc-»°° then, in view of nk+Jnk-* 1 as it-»°°, we evidently have
n~'F(B, n, x)-»0 as n -»°°. This proves the lemma.
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152 R. C. BAKER

Lemma 9. Let Q be a Borel set in [a, /3] having Hausdorff dimension greater than
a, then there is a positive measure ft supported on Q such that

n({x,y])^{y-xY(a^x<y^p). (10)

Proof. By Theorems 47 and 48 of (9), Q has a compact subset of positive
measure with respect to the function f. The existence of /i now follows from
Theorem 3 of Chapter II of (6).

3. Proofs of Theorems 1 and 2

The new idea in the proof of Theorem 1 is to use the smoothness of D(m, n, x)
(Lemma 1) rather than smoothness of a trigonometric sum that majorizes D(0, n, x)
(as in (2, 4)).

Proof of Theorem 1. We apply Lemma 7, taking h(m, n, x) = nD(m, n, x). In view of
Lemma 5, we may take

p = a, v= 1 + a + e,

for any e > 0. In view of Lemma 1, we may take

d{m, n) = 2n max g}(/3) ̂  2n{m + n)p,
+ l S / S +

and thus (9) holds with

Write A = 1 - q, where 0 < q < (̂1 - a). The condition

A < min&i, fa + v)) = min(|(2 + p), J(3 + p + a + e))

is satisfied because p § 1 - a. Thus

D(0, n,x)<n"

for sufficiently large n, except for a set of Hausdorff dimension at most

ft - 2A ~ p + 2q

Theorem 1 follows immediately.
In Theorem 2, the improvement of the result of (3) is obtained by the device of

splitting E(B) into two subsets, so that integrals

\ n2D(m,n,Jc)2d/u.(x)
Ja

are no longer needed.

Proof of Theorem 2. Suppose that

17 = dim E(B) > y.
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Then /(17) > 0, and we can find a positive d that satisfies

p, + l - f l - P > r f >^L z3)_
3 — 17 017 — I

We write, in the notation of (3),

S(n)= U/,, T(n)= U/y.

Thus
F(B, n, x) = F(S(n), n, x) + F(T(n), n, x). (12)

Now in view of Lemma 8,

E(B) = {x G [a, /3]:lim sup n'k'\F(B, nk, x)\ > 0}.

It follows from (12) that

E(B)CPUQ (13)

where

P = {x £ [a, j8]: lim sup nIl\F(S(nk), nk, x)\ > 0}

and

[a, 0 ] : Hmsup nl x\F(T{nk), nk, x)\ > 0}.

We can readily estimate dim P. We have

F(S(n), n, x) = Y (Z(/;; g , (x) , . . . , gn(x)) - «|/;|)

so that
«"'F(5(«), n, x) g «rfD(0, «, JC).

It now follows from Lemma 6 that

dim P g 1 - (1 - a - 2d)l(p + d).

But, from (11),

dim E(B) = 7 j > l - ( l - a - 2d)l(p + d)^ dim P. (14)

Combining (13) and (14), it is clear that

dimQgTj. (15)

Now select a number c, TJ~' < c < b, and a number cr, c~' < a < 17, such that

Ccr — 1

Since Q is a Borel set having dimension greater than <r, there is a positive measure ft
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satisfying (10) supported on Q. We have

j n" ' |F(r(n), n, x)|d/u.(x)g I n"'Z(T(n);g,(A:),..., gn(x))d^{x) + I |T(n)|d/i(x).
Ja Ja Ja

(17)

Now for large n,

\T(n)\='2\Il\<2j-e<n-' (18)

for some e > 0. We need a similar estimate for

f n-'ZiTin); g,(x),..., gn(x))d»(x).
Ja

Write E(k, j) for the set of x in [a, /3] such that

{gk(x)}Glh

Then

j Z(T(n); gl(x),..., gn(x))dfi(x) = g g , /^(£(^. /))•

We can estimate /j.(E(k,j)) by combining (10) with Lemma 3 and (1). We have

t iY»< Ci\L\a(Ck'>ll~'')+ e',(e*V)

if n is sufficiently large. Thus

f

The last exponent of n is negative because of (16). Combining (17), (18) and (19), we
certainly have

If"
But then the series

converges for almost all x with respect to d/i. Since the series diverges at every point
of Q, the support of fi, we have a contradiction. This proves that

dim E(B) g y.

4. Examples

(i) Let 0 < p S l , a = l - p . By taking gj(x) = L/p]x, we show that the bound
+ 2q) of Theorem 1 cannot be reduced below 2ql(p + q).
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If x is real, write w(x) for the supremum of all TJ for which

liminf q%;c|| = 0.

Here || • || denotes distance from the nearest integer. We write

Then for 77 > 1,

dim X(TJ) = 2/(TJ + 1).

(This was proved by V. Jarnik and A. Besicovitch; (1) is the best reference).
Write a, = [/"]. Let e > 0. The discrepancy of axx, a2x,... ,anx satisfies

D(0, n,x)>n-t-pl" (20)

for infinitely many n, whenever or G X(T)). TO see this, we follow the argument of
Theorem 3.3 of (7), Chapter 2. Suppose e < TJ/2. There are infinitely many positive
integers s and corresponding integers r such that

Write n = [s('-2e)/p]. Then for I g ; ^ n ,

ape = kjls + 6j

where it; is an integer and

|»,|<5-'-.

The interval / = («"'"', s~l - s~'~') thus contains none of the points {a^x},. . . ,{anx},
and therefore

D(0, n, x) g | / | > | 5 - ' > in""'*"-2"

for sufficiently large s.
It follows that

X(€ + plq)dEq (0<q<p)

for any e > 0, and therefore

dim Eq g 2ql(p + q) (0<q<p = l-a).

In case p = 1, we can be more precise. The discrepancy of x, 2x,... , nx satisfies

D(0,n,x) <n'-tlT>

for sufficiently large n, unless x G X(-q). This is Theorem 3.2 of (7), Chapter 2. In
other words,

Eq C X(q~l - €)

f o r 0 < < 7 < l , 0 < e < q~\ We easily deduce that

dim Eq = 2ql(\ + q) (0<q< 1).
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(ii) Let p = 2, a = 0. By taking g,(;c) = j2x, we show that the bound (1 + 4q)l(2 + 2q) of
Theorem 1 cannot be reduced below 2q.

If x is irrational and q}, q2,... are the denominators of the continued fraction of x,
write

Note that lim sup i*.k = w(x) from the elementary theory of continued fractions. Let
k-*x>

Jfc(l), k(2),... be the indices for which qk^ 2(mod 4) and let

6(x) = lim sup

The following result is easily deduced from Satz XIII of (5) using Koksma's inequality
(7, p. 143). If 6(x) = 6 > 1, the discrepancy of l2x, 22x,..., n2x satisfies

D(0, n,x)>n-c-il($+') (21)

for infinitely many n.
Now the techniques of (1) may easily be adapted to show that for TJ > 1, the set

Y(-q) = {x& [0, 1]: 6(x) g TJ} has dimension 2/(TJ + 1). Since (21) implies

for 0 < q < |, e > 0, we have

dim £ , g 2 « (0 < q < |).

(iii) Let b > 1. Let at< a2<.. -be any integers with an+1/an-»l as n-»°°, and let
gi(x) = cijX. We shall show that there is an open set G in (0, 1) with

s?b, dim

With more calculation, our construction works for an = [np] (p >0). Thus the upper
bound y of Theorem 2 could never be reduced below b~\

To construct G we use the Cantor set C(p), where p is defined by

Iog2/logp-' =* - ' ,

so that 0 < p < i
If / is the union of m disjoint closed intervals [a,, /3,], write / " for the union of

[a,, a, + (ft - ai)p], [ft - (A - a,)p, ft] ( l S i g m).

Thus / " is the union of 2m disjoint closed intervals.
Define /(0), / ( I ) , . . . by induction as follows: 7(0) = [0,1], J(m) = J(m - l)p (m >

0). We readily see that J(m) is the union of 2m disjoint closed intervals of length pm. It
is shown in (6), Chapter III that

C{P) = n J(m)
m = \

has Hausdorff dimension Iog2/log p"1. We write C'(p) for the set of irrational numbers
in C(p) that are not endpoints of any interval of J(m) (m g l).
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Our open set G is

G= UKn
r=l

where K, is the interior of the set arJ(a2
r) (mod 1). The number of intervals comprising

K, is at most 2"*+l. Thus the set U Kr comprises hk intervals, where

k

r=\

Let m be a positive integer, m g hx. Then for some k = k(m),

/i* = m g hk+\.

We can express G as the union of m intervals Jm\,... ,Jmm with the set

= UK,
r>k

Moreover, for large m,

Si 2 ar(2p)°2' < ak(2p)°l
r>k

in view of

ai+l(2p)a2>+< < ioy(2p)^ for large /.

Now
log \Gm |~' ^ - at log 2p - log ak

log m = log hk+]

dj(\og p~' - log 2) - log ak

so that

log m log 2

It follows from Lemma 4 that b(G) S ft.
We now observe that if x G C'(p), then {arJc}G Kr for r g 1. Hence {arx}G G for

r g l . Obviously

C'(p)CB(C),

and it follows that dim £ ( G ) a ft"1.

5. Proof of Theorem 3

We use a lemma of a rather different nature from those in Section 2. Let d(m)
denote the number of divisors of a positive integer m and (s, t) the greatest common
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divisor of positive integers s and t. If / is an interval of the real line write Ej for the
union of all intervals I + u (u integer) and X(I, x) for the indicator function of Et.

Lemma 10. For any intervals J\,..., fn of length S 1,

g {X{Jk, akx) - \Jk |)}
2 dx § 2 g \Jk \d(ak).

Proof. It is shown on p. 217 of (8) that

rr
and on p. 219 of the same paper that

= akd(ak).

Lemma 10 follows on combining these two inequalities.
We introduce some further notations. Let p(y, A) denote the distance from the real

number y to the set A. If I is an interval with endpoints a, b (a <b), and 8 >0 , we
write Is for the interval [a - 5|/ | , b + S\I\]. Define

Y(I, S, x) = max{0, 1 - (8\I\ylp(x, E,)}

and

Z(I,8,x)=X(Is,x).

It is clear that for any real x,

X(I, x) g Y(I, S, x) g Z(I, 8, x). (22)

Proof of Theorem 3. The re a re i n t e r v a l s It, I2,..., with |/,| = i/>0) such that

N(n, x) = £ X(Ih ape).
J— 1

Let e > 0. We shall show that

lim sup ¥(n t ) - ' 2 YUi, n?, ape) S 1 (23)

except for a set W of x having dimension at most

2y).

It follows from (22) and (23) that

lim sup V(nkr
lN(nk, x) S 1 (24)

outside W. Taking e arbitrarily close to 1 we find that (24) holds outside a set of
dimension at most 1 - ( 1 — y)l(p +2y) . A similar argument applies to
lim inf ^(n*)~'N(rt*, x). We can now complete the proof by arguing as in Lemma 8.

Thus it suffices to consider (23).
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Write

M(n, x) = max{o, £ (Y(lh n~', ape)- j Z(/;, n~'.

and

P(n, x) = 2 (ZVh n-, ape) - f Z(Ih n~',
i=\ Jo

Then in view of (22), whenever M(n, x) ^ 0 we have

hence

f M(n, xfdx g f P(n, xfdx.
Jo Jo

We now apply Lemma 10, together with upper bounds for d(m) and ak, to get

/•i

I P{n, xfdx g 2*(n)(l + 2n~') max d(a;) < ^(n)«£

Jo ISn

for sufficiently large n. We also observe that for any /, 5 > 0, and real x, y,

Y(/, 5, x) - Y(I, S, y) = g | v ± (5|/|r'df

where V | , . . . , Vr are intervals of total length S|y — x|. Consequently if x, y are real,

|M(n, x) - M(n, y)\ S |

We now apply Lemma 2 with [a, ^] = [0,1], F(x) = M(n, x), U = CK^np+y+x+t, V
e and d = V(n)n~f. For large n we have a covering of

{xG[0, 1]: M(n,x)

by intervals /„,, Jn 2, . . . such that for 0 < a < 1,

m
where C8 is independent of n. Since

for large n, we have

2 I A J I ' < C8n'>+3T-1+7-<r (p+2T).
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If a > (p + 3y + 7e - l)/(p + 2-y), the exponent of « is negative. Arguing as in the proof
of Lemma 6 it follows that

M(nk,x)<V(nk)n-k< (k^ko(x)) (25)

except for a set of x of dimension at most (p + 3y + 7e - l)/(p + 2-y). Since (25) implies
(23), this completes the proof of Theorem 3.
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