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HOMOMORPHISMS FROM C(X) INTO C*-ALGEBRAS

HUAXIN LIN

ABsTRACT.  Let A be asimple C*-algebrawith real rank zero, stable rank one and
weakly unperforated Ko(A) of countable rank. We show that a monomorphism ¢:
C($%) — A can be approximated pointwise by homomorphisms from C(S?) into A with
finite dimensional rangeif and only if certainindex vanishes. In particular, we show that
every homomorphism ¢ from C(S) into a UHF-algebracan be approximated pointwise
by homomorphisms from C(S?) into the UHF-algebrawith finite dimensional range. As
an application, we show that if A isasimple C*-algebra of real rank zero and isanin-
ductive limit of matrices over C(S%) then A is an AF-algebra. Similar results for tori

are also obtained. Classification of Hom(C(X), A) for lower dimensional spacesisalso
studied.

0. Introduction. The original purpose of the paper is to show that every homo-
morphism ¢ from C(S) into a UHF-algebra can be approximated pointwise by homo-
morphisms from C(S) into the UHF-algebrawith finite dimensional range, i.e., for any
¢ > 0 and any finitely many fy,f, ..., f, € C(S), there are mutually orthogonal projec-
tionspy, P2, . . ., Pm (in the algebra) and points £1, &5, . . ., €m € S such that

o) - St <e i=12...n
=1

Since AF-algebras are regarded as non-commutative zero dimensional spaces, the above
result is expected. This approximation problem and some closely related problems have
been considered for some time (see [ExL 3] for example). However, it is much more
difficult than one might have first thought given the fact that until very recently it was
not even known that UHF-algebras have the property (FN). (Recall that a C*-algebra A
has the property (FN), if every normal element x € A can be approximated by normal
elements (in A) with finite spectrum ([BI1] and [Ln10]).)

If we replace UHF-algebras by general simple AF-algebras A, monomorphisms ¢:
C(S%) — A may not be approximated by homomorphismsfrom C(S) into A with finite
dimensional range. In fact, it is shown in [EL] that a map ¢: C(S) — A may induce
an injective map on Ky, if Ko(A) has nonzero infinitesimal elements. These maps are
certainly not approximated by homomorphismsfrom C(S?) into Awith finite dimensional
range. Therefore we have to understand why the absence of infinitesimal elements in
Ko(A) should make the approximation possible.
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There are several related problems. For example, what can one concludeif wereplace
2-sphere by 2-torus, or if we replace UHF-algebras by more general simple C*-algebras
with real rank zero? It turns out that the latter question related to C*-algebra extension
theory. We also found that these problems have interesting connection with the classi-
fication theory of C*-algebras of real rank zero. (The results in this paper are also used
to study almost commuting unitaries.) In this paper we will study homomorphismsfrom
C(X) into C*-algebras, where X is a lower dimensional compact metric space. When A
has nonzero real rank, a homomorphism ¢: C(X) — A is certainly not expected to be
approximated by homomorphismsfrom C(X) into A with finite dimensional range even
if ¢ inducesatrivial map on K,. However, some weaker approximation may be possible.

DerINITION 0.1. Let X be a compact metric space and A be a unital C*-algebra.
Suppose that ¢1, ¢o: C(X) — A ® K are two homomorphisms, where K is the C*-
algebra of compact operators on 12. We will write ¢ ~ ¢, if for any € > 0 and finitely
many elementsfy,f,, ..., fn € C(X) there are homomorphisms 11, 12: C(X) — A ® K
with finite dimensional range and a unitary U € (A ® K ) such that

[61(8) @ va(f) — U [@2(f) © valf) U] <,

i=12,...,m

Note that since X is compact, C(X) isunital. Thereforethereisaprojectionp € A@K
suchthatim¢ C p(A@ K )p. Sothereisaunitary U € (A@ K ) suchthat U*¢U: C(X) —
Mn(A) for some integer n.

Note also that if a homomorphism : C(X) — B has finite dimensional range then
therearemutually orthogonal projectionsps, p2, ..., Pk € Bandpointséy, &2, ..., &k € X
such that

k
w(f) = ;f(fi)pi: f e CX).

It is easy to see that “~" is an equivalence relation. If ¢ ~ ¢, we say ¢ and ¢ are
sau-equivalent (stably approximately unitarily equivalent).

DerINITION 0.2. Let Abeaunital C*-algebraand X be a compact metric space. Let
E be the set of those homomorphisms ¢: C(X) — A® K which satisfy the following: for
any ¢ > 0 and finitely many functions fy, fz, ..., f, € C(X), there are homomorphisms
Y1, 12: C(X) — A®@ K with finite dimensional range such that

[o(f) @ va(fi) — V2 )| <e

i=12,...,n.50 ¢ € Eif and only if ¢ is sau-equivalent to a homomorphism with
finite dimensional range.
Denote by Hom (C(X), A) the equivalence classes of homomorphismsfrom C(X) into
A® K modulo E.
Let g1, ¢2: C(X) — A®K betwo homomorphisms. Wedefine ¢1+¢,: C(X) — AoK
by
(¢1+ @2)(f) = 0a(f) ® 92(f), € C(X).
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It is easy to check that Hom(C(X), A) is a semigroup.

We show that Hom(C(X), A) is a group whenever X is a finite CW complex in the
plane, X is homeomorphic to &, or to St x S'. We aso discuss the relation of sau-
equivalence with other equivalences. We show that two homomorphisms being sau-
equivalent implies that two mapsare stably homotopic, if the space X isafinite CW com-
plex in the plane. For higher dimensional space X, it is possible that two sau-equivalent
unital homomorphisms may not be stably homotopic but they are homotopic as asymp-
totic homomorphismes.

DEFINITION 0.3.  Let ¢: C(X) — A be ahomomorphism. Then ¢ induces two maps:
00:Ko(C(X)) — Ko(A) and  ¢{V: Ky (C(X)) — Ka(A).

If xisanormal elementin A, then x givesamonomorphism ¢: C(sp(x)) — A. Wedenote
by 7(x) the map ¢
When X is afinite CW complex in the plane, we will show that

Hom(C(X), A) & hom(Kl(C(X)), Kl(A)).

Inthe case that X = &, or X = S' x S, classification of Hom(C(X), A) will also be
given for some special C*-algebras A. For example, we show that

Hom(C(S), A) = hom(ker d, inf (Ko(A)) )
and

Hom(C(s! x SY) 2 (hom(Kl(C(sl x S), Kl(A)),hom(kerd, inf(Ko(A))))

for some special C*-algebras, where ker d is a subgroup of KO(C(X)) definedin 2.1.

The paper isorganized asfollows. Section 1 studiesHom (C(X), A) for the casethat X
isacompact subset of the plane. Most results are more or less known and are taken from
[LNn10, 3]. Section 2 contains the main result. We show that if Aisasimple C*-algebra
with real rank zero, stable rank one and weakly unperforated Ko(A) of countable rank,
then amonomorphism ¢: C(S?) — A can be approximated pointwise by homomorphisms
from C(S?) into A with finite dimensional range if and only if

O (ker d) = 0.

Section 3 shows that resultsin Section 2 are also valid for the casethat X = S x S'. In
Section 4, we study Hom(C(S?), A) and Hom(C(S" x S'), A). Finally, in Section 5, we
give applications of these resultsto the study of classification of C*-algebras of real rank
zero. For example, we show that if A isasimple C*-algebra of real rank zero which is
an inductive limit of matrix algebras over C(S?) then Aisin fact an AF-algebra.

Before we end this introduction, we would like to review several terminologies:
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(1) A C*-algebrahasreal rank zeroiif the set of selfadjoint elementswith finite spec-
trumisdensein the Ay s, the set of selfadjoint elements of A (see [BP]).

(2) A C*-algebra has stable rank one if the set of invertible elementsis densein A
(see [Rf2]). If A hasrea rank zero, then A has stable rank one, if and only if it
has cancellation (see [BH]).

(3) An ordered group (G, G.) is unperforated if nx > 0 for some integer n im-
pliesthat x > 0. (G, G;) is weakly unperforated if nx > 0 impliesthat x > O
(cf. [EHS)]).

(4) An ordered group with order unit has countable rank if it has only countably
many extreme states (see [Ln10, 4.7]). (All groups that used in this paper are
countable groups.)
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Buffalo in 1993. The author would like to thank Lewis Coburn, Toshikazu Natsume,
Catherine Olsen and Jinbo Xia for their hospitality during the visit. He also would like
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versations. The work is partially supported by a grant from NSF and the Department of
Mathematics, SUNY at Buffalo.

1. Compact subsetsof the plane.

LEMmMA 1.1 (cr. [EGLP, 2.1], [LR, 8(1)]). For any ¢ > 0O, there is an integer k
such that for any selfadjoint element x in a unital C*-algebra A with ||x|| < 1 thereare
selfadjoint elementsy € My(A) and z € My.1(A) with finite spectrumsp(y), sp(2) C sp(x)
such that

Ixey—7| <e.

PROOF. The casethat sp(x) isan interval follows directly from [LR, 8(i)].

There are m mutually digoint open intervals Iy, 1o, ..., I C [0, 1] such that sp(x) C
Uirlll_i and for any ¢ € |j there exists A € sp(x) with dist(¢, \) < e/2. Therefore there
are mutually orthogonal projections p1, pz, - . ., Pm € A such that

pix = xp; and sp(xp;) C | (s an elementin piAp), i=1,2,...,m

By applying[Ph3, 2.4] or [LR, 8(i)], we obtain aninteger k suchthat there are selfadjoint
elementsy, € M(piApi) and z € M(piAp;) with finite spectrum in |; (as an element in
piAp;) such that

Ixpi @ yi — zll <e/2.
So ) )
HX@_Zyi —_ZZaH <e/2.
i=1 i=1
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There are selfadjoint elementsy € My(A) and z € My.1(A) such that
m
-5
i=1

and sp(y), sp(2) C sp(x). We have

< 6/2 Hz—iizi“ < 5/2

Ixey—7| <e. L]
LEMMA 1.2. Let Abeaunital C*-algebra. Suppose that
Z+(Ap —X) € Invp(A)

and z € Invo((1 — p)A(L — p)), wherez € (1 — p)A(1 — p) and x € pAp. Then, for any

E# N
Ap@® 1) —xa& € € Invo((p & DM2(A)(p & 1)).

PrROOF. Let z'1 betheinverseof zin (1 — p)A(L — p). Thenz X + p € Invy(A). So
(1—p)+(Ap—X) € Inv(A). Therefore

a(l—p)+(A\p—Xx) € Invg(A)
for any o # 0. Thisimplies that
Ap—X) & (A =€) € Invo((p & DM2A(A)(p & 1))
forany € # M. ]

THEOREM 1.3 (CF. [LN10, 3.13]). Let A bea (unital) C*-algebraand x € A bea
normal element with Y(x) = 0. For any ¢ > 0, there exist an integer k, normal elements
y € Mk(A) and z € My+1(A) with finite spectra sp(y), sp(z) C sp(x) such that

Ixey—127| <e.

Theorem 1.3 is a consequence of the following which will be used in later sections.

THEOREM 1.4 (CF. [LN10, 3.12]). Let Q be a compact subset of the plane. For any
e > Othereexists§ > 0 satisfying the following: Supposethat B is a unital C*-algebra,
Aisaunital C*-subalgebraof A, x € Bisanormal element, if p € Aisa projection and
if pf (x), f(x)p € Afor any f € C(sp(x)),
lpx — xp|| <&, Ap—pxp € Inv(pAp) and  [Ap — pxp] = O (in Ky1(pAp))

for A & Q. Thenthereisan integer L, normal elementsy € M__(pAp) and z € M_+1(pAp)
with finite spectrumsp(y), sp(z) C Q such that

lxp Dy — 7| <e.

PrROOF. The proof is essentially contained in [Ln10, 3]. We sketch the proof here.
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LEMMA 1.5 (CF. [LN10, 3.4]). Let
X={X:|Re\ <1/2,|Im)\ <1/2}.

For any e > 0, thereexist 6 > 0 and an integer k, for any unital C*-algebra A and an
element x € Awith
|Rex|| <1/2and | Imx| <1/2,

[IXx — || <8,

thereare normal elementy € M(A) and normal element z € My.1(A) with finite spectra

sp(y), sp(z2) € Xand
Ixey—17| <e.

Theproof of 1.5isalmost identical tothat of [Ln10, 3.4]. Instead of using the condition
that the algebra A hasreal rank zero, we apply 1.1.

LEMMA 1.6 (CF. [LN1O, 3.5]). Let X be a compact subset of the plane which is
homeomor phic to the unit disk. For any e > 0O, thereexist 6 > 0 and an integer k, if xis
a normal element with sp(x) C X in a C*-algebra B and A is a C*-subalgebra of B, and
if p € Aisa nonzero projection such that pf (x), f (x)p € Afor all f € C(sp(x)),

lpx —xp|| <6, sp(pxp) C X,

then there are normal elementsy € M(pAp) and z € M.1(pAp) with finite spectra
sp(y), sp(2) C X such that
[x©y—27| <e.

The proof of thislemmaisthe sameasthat of [Ln10, 3.5]. The place where the proof
of [Ln10, 3.5] uses[Ln10, 3.4], we use 1.5 here.

We aso notice that [Ln10, 3.8] does not need to assume that the algebra A has real
rank zero.

LEMMA 1.7 (CF.[LN10,3.9]). Leta > 0.Foranye > 0, thereexistsé > 0 satisfying
thefollowing: Supposethat Bisa C*-algebra, Aisaunital C*-subalgebraof Bandx € B
is a normal element with polar decomposition x = uh, where0 <a<h<1(souisa
unitary in B). If p isa projectionin A such that

lpx— xp|| <&, pxp € Invo(pAp) and pf(x),f(X)p € Aforal f C(sp(x)),

and
sp) cX={re’ :a<r<1,-n<6 <},
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then there are an integer k, normal elementsy € My(pAp) and z € My.1(pAp) with finite
spectrum contained in X such that

lpxp@y—7| <e.

The proof is essentially the same asthat of [Ln10, 3.9]. We notice that here k possibly
dependson A and x. Thisis becausethat A is no longer assumed to have real rank zero.
So the length of the path {v(t)} (in the proof of [Ln10, 3.9]) may depend on the element
x and the algebra A.

The following notation isused in 1.8.

Let

X'={z:0<Re) <1, |Im()| §b}\LkJ{z: 12 —1)/2k—2 <r},
=1

0<r<min(b,1/4k),and X = {z—1/2:ze X'}. So X isasquare with k holes.

LEMMA 1.8 ([LN10, 3.11]). Let Q be a compact subset of the plane which is home-
omor phic to the subset X described above. For any e > 0, there existsé > 0 satisfying
the following: Suppose that B is a unital C*-algebra and x € B is a normal element
with sp(x) C X and A is a unital C*-subalgebra of B. If pisa projection in A such that
pf(x), f(x)p € Afor all f € C(sp(x)),

[[lox — xpl| <9,
Ap—pxp € Inv(pAp) and [Ap — pxp] = 0 (in Ky(pAp))
for A & X, thenthereareaninteger L, normal elementsy € M (pAp) and z € M_+1(pAp)
with finite spectrumsp(y), sp(2) C Y such that

loxp @y —27|| <e.

Again, the proof is essentially the same as that of [Ln10, 3.11]. But 2.3 of [Ln10] can
not be directly applied since A may not have real rank zero. So A\p; — pjX;p; may not be
in Invo(p;Ap;). However, we can apply 1.2. So

AP @ D) = pgpy @ € 1€ Invo((p & IM(A)(p & 1))
for some¢; € ;. Since we are allowed to have alarge integer L, we can choosey; such

that they are mutually orthogonal. Notice that integer L in 1.8 may depend on A and x.
We are now ready to prove Theorem 1.4 asin [Ln10, 3.12]. ]

REMARK 1.9. We notice that in 1.3 the integer k may depend not only on ¢ and
sp(x), but also on A and x, while in [Ln10, 3.13] the integer k depends only on ¢ and
the space sp(x). This happens because if A is not of real rank zero, there is no control
of the exponential length of hereditary C*-subalgebras and the map U(A)/Uo(A) may
not be injective in general. If we assume that the exponential length of hereditary C*-
subalgebras of A is bounded, then the integer k in 1.7 depends only on e. If we further
assume that U(pAp) /Uo(pAp) — Ki(pAp) is injective for each projection p € A (for
example A has stable rank one), then the integer k dependsonly on e in 1.8.
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ProPOSITION 1.10. Let X be a compact metric space and A be a unital C*-algebra.
Suppose that two homomorphisms ¢1, ¢»: C(X) — A® K arein E. Then ¢1 ~ ¢».

ProOF. By 0.2, for any e > Oand f1,f,...,fn € C(X), there are homomorphisms
Y1, 12: C(X) — MnL(A) with finite dimensional range and 3, 14: C(X) — Mnw+1)(A)
with finite dimensional range such that

[ pa(fi) © a(fi) — va(fi)l] <e/2

and

| p2(fi) @ a(fi) — vafi)]| <e/2,
i=1,2,...,N. Thereisaunitary U € Mon(L+1)(A) such that

$1(fi) @ 1) & 6a(fi) @ Vafi) = U*[d2(f)) @ vafi) @ da(f)) @ va(f)) U,

i=12...,N.So
[[#2(6) © va(f) @ valh)] — U [02(f) © valf)) @ a®) U] <,
i=1,2,...,N. n

COROLLARY 1.11. Let X be a compact subset of the plane and A be unital C*-
algebra. Then ¢:C(X) — A ® K isin E if and only if ¢{Y = 0. Furthermore, two
homomorphism¢1, ¢,: C(X) — A® K are sau-equivalent if

(60 = (62 = 0.

Proor. Thisfollowsfrom 1.3 and 1.10. n

LEMMA 1.12. Let Abeaunital C*-algebrawhichis not scattered (see[J]) and X be
a finite CW complex in the plane. Then, for any homomor phism

v: Kl(C(X)) — Ky (A),

thereis a monomor phism
#:CX) — Ao K

suchthat ¢ = 7.

PrOOF. Let f1,fs,...,fr: X — St be continuous functions such that ([f1], [f-], ...,
[fa]) form a system of free generators for the (free) abelian group Kl(C(X)). Suppose
that Y([fi]) = & (in K1(A)). We will produce monomorphisms ¢1, ¢, . . ., ¢n such that

[61(F)] = @ and [¢i(F)| =0 for i #].

Choose gy, Oz, . - ., On: St — X such that f; o g is homotopic to the identity map for i = j
and to the constant mapfori # j. Letvy, Vs, ..., v, € A@K benormal partial isometries
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suchthat [vi] = a in K1(A). SinceAis not scattered, by [AS, p. 61], thereis a selfadjoint
element h € A such that sp(h) = [0, 1]. Suppose that X = U}, X;, where each X; isa
path connected component of X. It is well known (see [N, p. 89]) that, for each k, there
isafunction F € C([0, 1]) such that sp(Fi(h)) = X, k=1,2,...,m. Set

X= kQT}l Fk(h).
It iseasy to seethat sp(x) = X and¥(x) = 0. Define
¢i(f) =f(av) ®x), feCX).

So
[6i(f))] = & and [¢i(f})| = Ofori #j.
Define ]
o(f) = _E_qu5i(f), f e C(X).
Then ¢ is asrequired. .

LEMMA 1.13. Let X be a finite CW complex in the plane and let ¢: C(X) — A be
a homomor phism. Then there is ¢: C(X) — M,(A) for some integer n such that ¢ =
~@)".

ProOOF. If Aisscattered, then Aisan AF-algebra(see[Ln2, 5.1] but it is known long
before that). Therefore Ky (A) = 0. Consequently, ¢ = —¢®.

In the casethat A is not scattered, 1.13 follows immediately from 1.12. ]

THEOREM 1.14. Let A be a unital C*-algebra and X be a finite CW complexin the
plane. Then Hom(C(X), A) is a group.

PROOF. If Aiis scattered, Ky(A) = 0. By 1.11, Hom(C(X),A) = {0}. Now we
assume Ehat A'is not scattered. Let ¢: C(X) — A @ K be a monomorphism. By 1.13,
thereis ¢: C(X) — A® K such that

(@Y = —ol.
It follows from 1.3 that [¢ & ¢] = 0in Hom(C(X),A). .
The proof of thefollowing is much shorter if we assumethat X isafinite CW complex

in the plane.

THEOREM 1.15. Let X bea compact subset of the planeand A beaunital C*-algebra.
Supposethat ¢1, p2: C(X) — Mp(A) for some integer n. Then ¢ is sau-equivalent to ¢,
if and only if (¢1) = (¢2)P.

PrOOF. The“only if” partistrivial.
Now we assumethat (¢1)? = (¢2). By 1.3 and 1.11, we may assumethat A is not
scattered. Let ¢ > 0and fy, fz, ..., fm € C(X) befixed. There existsé > 0 such that

() =il <e/2
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whenever dist(¢,() < 6,1 = 1,2,...,m. Thereis afinite CW complex Y in the plane
suchthat X C Y and for any ¢ € Y thereis £ € X with

dist(¢,¢) < 6.

By the proof of 1.12, thereisamonomorphism ¢o: C(Y) — A® K such that (¢o)? = 0.
Denote by i: X — Y the embedding. We define

®;(f) = ¢i(f o) @ ¢o(f)

f € C(Y) andj = 1,2. So ®; isamonomorphism from C(Y) into A@ K and ()Y =
(@2)?. By 1.12, there is amonomorphism ®: C(Y) — A® K with @Y = —(d)P =
—(P2)P. 1t follows from 1.11 that

[P & ] = [P, & ] in Hom(C(Y), A).

Hence [®1 & ® © ;] = [0, & & d,]. Since (P & ®) = 0, by 1.3,[d @ ;] = 0.
Therefore @1 ~ @,. Letfy,fo, ..., Ty € C(Y) such that fle = fk, k=1,2,...,n There
are homomorphisms Wy, W,: C(Y) — A® K with finite dimensional range and aunitary
U € (A@ K such that

[®1(f) & Wafi) — U7 (@2(fi) & Walf)) U] < /4

k = 1,2,...,n. By 1.3, there are homomorphisms 11, 1»: C(Y) — A ® K with finite
dimensional range such that

[ po(h) @ va(f) — va(f)]| < /4.
Thisimplies that, for aunitary W € (A @ K),
| 61(fi) © vafi) © Walfi) — W (92(fi) @ vafi) © Wa(f))W] < £/2.
Notice that
W) = AP, =12

N
Vo(f) = ;f @a

for f € C(Y), where €9, ¢ € V,j = 1,2, and gfs are mutually orthogonal and p are
mutually orthogonal for eachj. Sincefor each( € Y thereis¢ € Xsuchthat dist(¢,¢) < 6,
we have homomorphisms W7, W,: C(X) — A @ K with finite dimensional range and a
unitary V € (A® K) such that

6200 & Wi — V7 (02 & Walh) V]| <,

k=12...,n n
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THEOREM 1.16. Let A be a unital C*-algebra and X be a finite CW complexin the
plane. Thenthereis a hijection

¥: Hom(C(X), A) — hom(Kl(C(X)), K1(A)>.

PrOOF. If A is scattered, as in 1.12, we know that K;(A) = 0. So, by 1.3,
Hom(C(X),A) = {0} = hom(Kl(C(X)), Kl(A)). Therefore, we may assume that A
is not scattered. The theorem follows from 1.3, 1.12 and 1.15. ]

REMARK 1.17. One may compare 1.16 with [BDF1, 10]. When A is the Calkin a-
gebra, Theorem 1.16 saysthe map

¥: Hom(C(X), A) — hom(K(C(¥)).Z

isbijective. So by certain absorptionlemma and a standard quasidiagonal argument, one
could obtain [BDF1, 10] by applying 1.16 (cf. [Ln7]).

REMARK 1.18. In[Ln10, 4.4], we show that purely infinite simple C*-algebras and
separable simple C*-algebras with real rank zero, stable rank one, weakly unperforated
Ko(A) with countablerank have property weak (FN), i.e., anormal element x with Y(x) =
0 can be approximated by normal elements with finite spectrum. The stable approxima-
tion discussed in this section is much weaker but is the right onefor general C*-algebras.

Now we show that if two homomorphisms¢1, ¢»: C(X) — A® K are sau-equivalent
if and only if they are stably homotopic. Thefollowing isaresult of Terry Loring [Lor2].

LEMMA 1.19 ([LOR2, THEOREM B]). Let X be a finite CW complex in the plane.
Thereexiste > 0andfy, fo, ..., fx € C(X) suchthat whenever ¢, ¢2: C(X) — Aaretwo
homomor phisms, where Ais a unital C*-algebra, such that

pa(f) — o2(f)]| <&, 1=1,2,....k

then ¢1 and ¢, are homotopic.

PROOF. This is an immediate consequence of Theorem B and Proposition 3.1 of
[Lor2]. ]

THEOREM 1.20. Let X be a finite CW complex of the plane and A be a unital C*-
algebra. Supposethat ¢1, ¢»: C(X) — A® K aretwo homomor phisms. Then the follow-
ing are equivalent:

(1) ¢1~ o2,

(2) There are two homotopically trivial homomorphisms v, ¥2:C(X) — A® K

such that
¢1 @ Yo and ¢ B 1

are homotopic,
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3) (60D = (¢2)®.

ProOF. The equivalence of (1) and (2) follows from 1.15. That (2) implies (3) is
trivial. We now show that (1) implies (2).

Given e > 0 and f1,fp,...,fx € C(X). By 1.10, there are homomorphisms 1, ¥,:
C(X) — A® K with finite dimensional range and aunitary U € (A® K) such that

|o2(f) @ va(h) — U*[6alf) @ o) U] <&, i=12,....k

It follows from 1.19that ¢1 @ 11 and U*(¢p2 B 1)U are homotopic. It follows from [M]
that there is a continuous path of unitariesU; : t € [0,1] inM(A® K ) suchthat Ug = U
andU; = 1. SinceU; € M(A® K),

Ui (¢2(f) @ v2(f)) Uy e A0 K, f € C(X).

This implies that U*(¢2 & 1)U and ¢, @ 1, are homotopic. Therefore ¢4 & 11 and
2 @ ¥, are homotopic. Notice that a homomorphism with finite dimensional range is
homotopically trivial. ]

2. The2-sphere .
2.1. Let X be acompact metric space. For any projection p € C(X, M), where M
isthe k x k matrices over C, let dim(p(x)) be the dimension of p(x). So dim(p(x)) isa
functionin C(X). It is easy to seethat the map d: Ko(C(X)) — C(X, Z) defined by dimiis
a surjective homomorphism. So we have the short exact sequence

0— ker(d) — Ko(C(X)) — C(X,Z) — 0
Let ¢: C(X) — A be ahomomorphism, where Aisaunital C*-algebra.

2.2. Regard & as consisting of two copies of D1 and D, of the unit disk D with the
boundariesidentified. So afunctionin C(S?) isapair (f, g) of functionsf, g € C(D) such
that f(2) = g(2),if |7 = 1. Let

_ |2 A1—-[Z3)Y%) (1 0
P0= ([0 pe i )0 o):
It is easy to seethat P(2) isaprojection in C(S?) ® M. Let L be the Hopf line bundle on
S. Then L can be defined by the projection P. Let ¢: C(S?) — A be a homomorphism.

Supposethat 9| ¢ = 0. If Ahasstablerank one, thereisapartial isometry V € M, (A)

such that
10

W:(o 0

) andV*V = P,

whereP = ¢2(P(2)) and ¢ C(F) © M, — My(A) isthe mapinduced by ¢. Let[L] - ¢
be the map from C(S) into PM»(A)P defined by

L] - 6(f) = (¢g) ¢8)) P, feC.
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(Note that P commutes with ( ¢g) ¢8) ) . Noticethat V[L] - ¢V* definesa homomor-
phism 1 from C(S) into A. It is easy to check that

V= (té %) € My(A).

Set
t,=t¢(z2)+ 51¢(((1 —[Z?)2, 0))
LEMMA 2.3.
@ tity = (|22, 1)),
@ tis = o (21 - 2%/2,0)),

(

(3 sis = 6((1—[22,0),
(@) sit = o( (21— 129)%/2,0)),

(5 tt; = ¥((12% 1),

(6) tit: = o((L, 2%)

(7) Gt = o((22),

(8) tut; = v((2 ) and

(9) tat; = v((1,]22),
(10) ;157 = v((@— |22,0)),

(1) to((f,9) = v((F,9)t for all (f,g) € O,
(12) s10((F, 9)) = ¥((f, @))st for all (f,g) € O

PrOOF. Thefirst four equationsfollow immediately from thefact that V*V = P. We

compute
it = [6(2 D)t +o((1 - 122, 0)si]ta
— 6(2 (22 1) + ¢(((1 —1Z4HY241 - |2)V/2, 0))
=¢((z2)
and

tte = [#((2 D)t +o( (@~ 129)2,0))si] [uo(@2)
+s10(((0— 129)72,0))]
= o122 [2P) + o( (1221~ 129, 0)) + ¢( (1222~ 129, 0))
+o((@ - [2720))

= o((112%).
These computations show (7) and (6). For (11), we notice that

titi +sis1 =1

https://doi.org/10.4153/CJM-1997-050-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-050-9

976 HUAXIN LIN

and
o((2.D) © _ ((us(z2 05 +si6((12, 1) 0
V("% ¢((|z|.1))))v =(( 0 o))
So
U((12% 1) = o (2% D)t + s16((122, 1))s
Therefore

(6, 9)t = (o((22 D)t +s10((22 D)si )t

= t6((122. D)o (2% 1) + s19((22 )0 (22 - [294/2,0))
= (utity + siSit)o((F, 9))
= (ut; +s15)tio((F,9)) = tao((F, 9)).

Similarly, we can show (12).

Let py,; be the range projection of tt] in A™. From (11), we have
titits = (|2 D).
Thisimplies that
tit} = tat] P = (|12, 1) pus;-
It follows that pr,;; commuteswith v((|22,1)). Similarly, from (12), we have

s18; = 515 e = (1 — [2%,0))pag

and 1/;((1 — |72, 0)) commutes with ps;s;, Where ps;s; is the range projection of s;s; in
A**, Therefore we have

V(127 0)pug, + (1 = 12,0))pss; = tat; +s18; = 1.
Since
Y((I122 D)@ = pug) + (1 — 2%,0)) (1 — pss) > O,
and
v((12% 1) +y((1—12%.0) = 1,

we conclude that

Y((12% 1) puy; = ¢(12%, 1) and (1 — |2%, O)ps,s; = ¥(1 — |27, 0)).

So we have proved (5) and (10). Others follow similar computation. ]

The proof of Theorem 2.12 is an approximative version of [Ln12, 2.4] (see also
[BDF2, 6.6]). If t; has a polar decomposition t; = ults| in A, then the condition
¢ (ker d) = 0 implies that the unitary u commutes with ¢(C(S?)). So the C*-algebra
generated by u and ¢>(C(SZ)) isisomorphic to C(X) for some compact Hausdorff space
X and in C(X) the sphere breaks down. Here we have to use an approximative form of
this idea carefully. We & so need an absorption method used in [Ln10].
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LEMMA 2.4, For anye > 0, thereexistsé > 0 such that if thereisa unitaryu € A
such that
Julta] —taf| <,

then
[u p(fi, gi)u — o(fi, gl < 4[I(F, 9)lle.
for all (f,g) € C(S).
ProoF. If §(< €) issmall enough,
Julty|u* — (tat))¥?|| < e.
Then, by 2.3 (5),
|ue((2, 1) —v((I2, )u| < 2=.
By 2.3 (11),
|ue((12f, @) — w((12f, @)u| < [us((12f. @) — tis((F. )
+[w((f, 9)ts — ¥((F, 9))ulta]|
+[[w((f, 9)ults] — ¢(12f, @)y
<[, 9lle +[I(F. g)ll + 2/|(F, Q)]
= 4||(f, 9g)lle. =
25. LetZ=(z2andH = (1—2,|z — 1). Then C(S) is generated by Z and H.
LEMMA 2.6. For anye > 0, there existsé > 0 such that if thereisa unitaryu € A
with
Julta] —taf| <,
then
IYE(IY]) — 0@l <eand[[[Y] —1—¢(H)[ <e,
whereY = t;u(2 — |t1]) and

! ifo<t<1
tl2—-1) if1<t<2

ProoF. It followsfrom 2.4 that, if 6 is small enough,
(YY) = 6((2— 12, 12)%) 12 = It hurtatsu(2 — [ta]) — (2 — [tatta(2 — [ta])|
< 8ufty|u” — (tat)) )
We also have f (¢((2— |2, |z|))) = ¢(((2 —|2) Y, 1)) and
¥i(s(2—1212D) ) — 2| = Iulul - ) <o
Thereforeif ¢ issmall enough,
IYE(IY]) = Z|| <eand || Y] —1—H] <e. "

Thefollowing lemmaiscertainly known eventhough the exact form may not befound
in literature.
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LEMMA 2.7. For any element x in a C*-algebra A with ||x]| < r, and an analytic
function f on D;, where

Dr ={¢: | <r},
we have
|Re f(x)|| <|[Reflp, and [[Im f(x)[| <[/Imf]lp,.

PROOF. Wemay assumethat ||x|| < 1. Itisknown (see[S]) that thereisa C*-algebra
B containing A such that there is a projection e € B which satisfies the condition that
ea=ae= aforal ac A andthereisaunitary u € B such that

X" = eu"eand (x*)" = e(u*)"e
for al positive integer n. Then
IRef(X)]| < e(Ref(u))e| < [IRef(w)] < Refllo,
Similarly,
[Im f O] < [[Im f][o,. .

LEMMA 2.8. Foranye > Oandr > 0, thereexist § > 0 and an integer k satisfying

the following: If x is an element in a C*-algebra A with ||x|| < r such that
[IX*X — xx*|| <&

then there are normal elementsy € My(A) and z € My.1(A) with finite spectrum and

lvll, |zl < r such that
Ixey—2z| <e.

PROOF.  Set
S={)\:|Re)| <1/2,|Im)| <1/2}.
For any £ > 0, by the Riemann mapping theorem, there is a conforma mapping f from
Dr+./2 ONto S Thereisn > 0 such that
f(Dr) C{S - [Re(€) <1/2—n, [Im(E)] <1/2—n}.

It follows from 2.7 that

|Re(f(¥)| < IIRe(f)llo,..,
and

[Im(f(9)] < [11m()lo,..,,-
By Lemmal.4, for any o > 0, if § is small enough, there exist an integer k (which does
not depend on A or x but doesdepend on r and ¢), and normal elementsy; € My(A) and
71 € My+1(A) with finite spectrasp(yi), sp(z1) C Ssuch that

Ifx) &y — 2zl <o
If o issmall enough,
Ix@ ) — @) <e/2.

Sincesp(f(y1)) sp(f~*(21)) € Dy.. 2, by changing the spectrumof f *(y;) and f~(z1)
slightly (within € /2), we obtain normal elementsy and z as required. ]
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LEMMA 2.9. In2.6,thereisn > Osuchthat if thereisa projection g € A such that

laY — Yol <,

then there are an integer L, mutually orthogonal projections qi, Qp, - - ., gn in ML (GAQ)
and mutually orthogonal projectionsds, da, .. ., dminM_+1(gAQ) and pointséq, &o, . . ., &n
and (1, G, ..., ¢n € S such that

Hq¢(z)q ® i:ilZ(fi)Qi — ji 2(G)d H <2

and

ooty Hea — 3 HEa| < 2=

PrROOF. By 2.3 (7), we have
Y = 26U — tity = 2tu— ¢((z.2)).

Therefore,
[IY*Y — YY*|| = 4]|tuu't, — u*tatiul|
= 4tsta — U ((L, |2))ul
It follows from 2.3 and 2.4 that if ¢ is small enough,

IY*Y — YY*|| issmall enough.

Thusif i is small enough,
[[(@Ya)“qYa — gva(ava)*||
and
llaf (YD) —f(YDall

are small enough. It follows from 2.8 that for any o > 0, there are complex humbers «;
and gj with |oi], [6i] <2,i=1,2,...,nandj = 1,2,...,mand projections ¢y and d; as
described such that

n m
Hque% _Zlaiqi - ;ﬂjdj H <o.
i= =
If 5 issmall enough, then
IqYf([Y)a — aYaf (laYa)|

issmall. So if 5 is small enough, we have
n m
|t (YDa - aifal)a — Y415 Dd | <o
i= =

Therefore . .
lww@ae > anf(lei)a =3 (155D | <c+o
1= =
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and

lashae S(arl — D~ S-] ~ | < e +o.
j=1 =1

We will again identify S with two copies of D; and D, of the unit disk with the bound-
ariesidentified. We now map
Q={\:|\ <2}

onto $. First, we map {\:|\| < 1} to D;. Thenwemap {\:1 < |\| < 2} onto D; by
the formular
AF(AD) = A2 = [AD/[AL.

It then follows easily that there are &;,§ € i = 1,2,...,nandj = 1,2,...,msuch

that . .
lao@ae > Z(@a - 220 | < 2
i= j=
and - -
|ao(H)a© 3 H(E)G — > @) <2
1= 1=
if o issmall enough. ]

LEMMA 2.10 ([LN10, 4.8] AND [EGLP, 4.4]). Let A be a separable simple unital
C*-algebra of real rank zero, stable rank one and with weakly unperforated Ko(A) of
countable rank. Supposethat ¢: C(X) — A is a monomorphism, where X is a compact
metric space. For any e > 0, any finitely many f1, f,, .. ., f,, € C(X) and any integer K >
0 there are mutually orthogonal projections pz,pz,...,pnin Aand A1, Ao, ..., Ap € X
such that

H¢(fs) - (ys+ é‘lfs(m)pi)” <e s=1,2...,m

whereys = (1 — XL, p)o(fs)(1 — 2Ly pi),

n

[(1-3m)ot — ot (1 - p)| < and[pd > K[1-3:p].
i=1 i=1

i=1

s=12,....mk=12,...,n,andfor any A € X, thereis ); such that

distO\, \j) < e.
211. InLemma210,letX =S andq=1— ", p;. Suppose that

h@=(2%1). f@= (A1 |z|2)1/2 0)
fs(2) = (21— 2%)Y2,0), fa@) = (1—|2%0)
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andm > 4. Wealsoassumethatn=2Land A\ € Dy, i =1,2,...,Land )\j € Dy, i =
L+1,L+2,...,2L. Set

Py = (ZiZI—_lfl()\i)pi ZiZI—_le()‘i)pi)
SA O S P )

For any o > 0, if e is small enough, then

IPoP — Po|| < o and '(P— Po) (g g) —(P—Py)| <o.
Set L 2 2 2y1/2
Vo = [ 2=t AP+ S P S = [N p
0 0 0 :
Then

VoV = (16‘4 8) and V;;\p = Py

Thereisaunitary W € M(A) such that
|1 —W]|| < 20 and W'PoW < P.
Let Vo = VoW and W*PoW = P. Then

Vo — Vol| < 20.

\70:(%) ﬁ)

11— o)t — %1 — )| <20 and [|(1 - 6)s] — s)(1 — Q)| < 20.
Since A has stable rank one, there is partial isometry V1 € M(A) such that

We may assume that

Then

ViVy = P— Poand V4V = (q 0).

00
We may assume that
vo_(t s
=lo o)
! qg O
Since 0 0 V1 = Vi, we may also assume that

oty =t andgs; = s;.

Since
P-P)[9 O —p-py| <o
0 0 q 0 ’

|(P — Po) — (P — Po)|| < 20
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and _
V1(P — Pg) = Vy,
we see that 0
lvl(g q) — V4| < 4o.
Therefore,

[t1(1 — q)|| < 4o and ||s;(1— )| < 4.
Set V' = Vg + Vy. Then

10
00

_ (b s
V=5 )

wheret; = t? +t] ands; = ) +|. From above, we have

VIV = ( ) and V*V' = P.

We also have

lgts — ]| < 60

THEOREM 2.12. Let A be a simple C*-algebra with real rank zero, stable rank one,
weakly unperforated Ko(A) of countablerank. Supposethat ¢: C(S?) — Aisamonomor-
phism. If ¢, (ker(d)) = 0, thenfor any = > 0 and f1,f,,...,f, € C(S) thereis a homo-
mor phism @: C(S?) — A with finite dimensional range such that

o(fi) — ()l <e,
i=12...,n
PrOOF.  Note since C(S) is unital, by considering ¢(1ci) )Ad(1lgsy ), we may as-
sumethat Aisunital. Let Z and H be asin 2.5. Since C(S) isgenerated by Z and H, it is
enough to show the casethat n = 2,f; = Zand f, = H. By applying 2.10, we have for

any e; > 0,01,0,...,0m € C(S) and an integer K > 0 there are mutually orthogonal
projectionspy, P2, ..., PninAand Ay, Az, ..., Ay € S such that

Hd’(gs) - <ys+ égs(ki)pi) } <€, s=12,...,m

whereys = (1 — X1, p)o(gs)(1 — £y pi),

|(1-5p)oted - oi@(1- 3-p)| <

i=1
n/
[Pl >K[1—Zpi],
i=1
s=1,2,...,mj=12...,l andforany A € &, thereis \; such that
dist(\, A < ex.
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Here we assume that

G =2 g=H,g=(2.1), & = (L2,
g5 = @2, g = (1 - |49"/20), g7 = (22, 2)
05 = (A1~ 127)/2,0), g9 = (21~ 127)/2,0), o = (1~ |2,0)

andm>10.Letg=1— %[, pi. By 2.11, wemay assumethat t; = tands, =5 (51,
t; areasin 2.11) so that t; and s; almost commute with ¢. Since A has stable rank one,
there isan invertible element a € A such that ||a — t1| is small. Supposethat a = ula|,
where u isa unitary in A. We may assume that

ulty) —ta]| <6 (5 asin2.6).
Furthermore, since || gty — t1q]| is small, we may also assume that

[lqu — uq

issmall. Let Y = tu(2 — |t;]) be asin 2.6. Since ||qt; — t1q]|, ||gu — ug|| and ||qtz — t2q]|
are small, we may assume that they are small enough (this requires ¢4 is small enough)
such that

laY =Ygl <n (nasin2.9).

Now we can apply 2.9. So there are mutually orthogonal projections g, 0, ...,0n €
ML(0AQ), d1,dy, ..., dv € ML+1(gAq) and points €1, £, ..., N, C1,C2 - - -, Gu € § Such
that

las@)a e i_XN;Z(gi)Qi - é 2()d| < 2=

oot Y- Heeda - 22004 <2

Notice that the number L dependson ¢ alone and K is arbitrary (K does not depend on
€1), we may assume that L < K. Without loss of generality, one may also assume that
N =n"and )\j = &. SinceL <K, thereis apartial isometry

ve(1-g@qd - @ QM) ((1-g&qo - @q)
(there are L copies of q) such that
vigv<p, i=12...,N,

N
Viv=>Yp, andw =q®---®q
i=1

(there are L copiesof p), where p| = v*qjv. Set

u=gaow
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Notice that
N n
u* (ys+ ;gs(f)Qi)U = ;gs(Aa)p{ BYs (=N =¢),

whereys = q¢(gs), s = 1,2 and uu* isthe identity of M_.+1(gAq). Now we have

M L M
Yo+ 3 G — 3 G (P — ) — (3 0s(G)d Ju < e+ 2,
i=1 i=1 j=1
s= 1,2 Therefore
N M
1600 = 2 GO0 —P) @ 2 QUG < 201+ 25
1= =

s=1,2. Noticethat g; = Zand g, = H. n

REMARK 2.13. The condition ¢.(ker d) = 0 isalso necessary in 2.12. In fact, if ¢
can be approximated by homomorphisms with finite dimensional range, then

W@ @) = AP

is small, where ¢: C($?) — A hasfinite dimensional range. Since @ (P) is equivalent

10 . . 10
@
to (0 0) , »9(P) isaso equivalent to (0 O) . Therefore

#O(ker d) = 0.

DEFINITION 2.14.  Anelement sin an ordered group (G, G, u) with order unitissaid
be an infinitesimal element if 7(s) = 0 for all statest on (G, G, u). We denote by inf(G)
the set of infinitesimal elements of G. Clearly, inf(G) is a subgroup. If X is a compact
metric space, then

inf (Ko(C(¥)) ) = ker d.

Let ¢: C(X) — A be ahomomorphism. Supposethat Ko(A) is an ordered group with unit
(thisis alwaysthe caseif Aisunital and stably finite). Thenit is easy to seethat

O (ker d) C inf(Ko(A))-

COROLLARY 2.15. Let A be a simple AF-algebra with countably many extreme
traces. Then a homomorphism ¢: C(S”) — A can be approximated pointwise by ho-
momor phisms from C(S?) into A with finite dimensional range if and only if

#O(ker d) = 0.

ProOOF. If ¢ isnot injective, thenim ¢ = C(F), where F is a compact subset of the
plane. So there is a normal element x € im ¢ generatesim ¢. So ¢@(ker d) = 0. It is
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enough to show that x can be approximated by normal elements (in A) with finite spec-
trum. But thisfollowsfrom [Ln9, Theorem A]. When ¢ isamonomorphism, 2.15 follows
from 2.12 and 2.13.

REMARK 2.16. If Aisamatroid algebra, or A is a UHF-algebra, then inf (KO(A)) =
{0}. Thus every homomorphism from C(S?) into A is approximated by homomorphisms
with finite dimensional range.

REMARK 2.17. Notice that if F is a proper compact subset of &, then F is homeo-
morphic to a compact subset of the plane. It follows from [Ln10, 4.9] that 2.12 holds for
X = F, if we replace the condition ¢ (ker d) = 0 by ¢ = 0.

3. The2-torusS x S

LEMMA 3.1. For anye > 0and a compact subset of the plane X, thereare0 < o <
e,6 > 0andd > 0 satisfying the following. Let A be a simple C*-algebrawith real rank
zero, stable rank one, weakly unperforated Ko(A) of countable rank, and x be a normal
elementin A. If p € Aisa projection,

[[ox — xpl| <,
AP — pxp € Invo(pAp) for A & X

and p, < p < pg, Wwherep, isthe spectral projection in A** correspondingto
X, /2 = {€  dist(¢,X) < o/2}
and pyq is the spectral projection in A** corresponding to
X, jora = 1€ dist(€, X) < o/2++d},
then thereisa normal element y € pAp with finite spectrumsp(y) C X such that

[pxp —y|| <e.

ProOF. Theproof isacombinationof 3.12,4.8and 4.9 of [Ln10]. Let Q = XUsp(X).
By functional calculus, we have a homomorphism ¢: C(Q) — C(sp(x)) — A. We will
use the similar notation used in the proof of 4.8 in [Ln10]. Using the argument of 4.8
of [Ln10], we obtain o > 0 and an one-dimensional CW complex S C X, , such that

(¢ dist(¢,X)=0/4} CS

p-(S = Oforeveryr € Aand X, > \ Sisafinite union of open subsets Oy, O, ..., Oy,
where
diam(Gy) < ¢/4.

Let Bo, be the hereditary C*-subalgebra corresponding to the open subset O; (see the
notationin 4.8 of [Ln10]),i = 1,2,...,N, and let Bg,,, bethe hereditary C*-subalgebra
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corresponding to the open subset sp(x) \ )?U /2-Asin 4.8 of [Ln10], for any given integer
L, there are projections p; € B, such that

) > L+ Dr(1-3p). =12 N+Lrea
n=1

Thereisd > 0 such that
1Y) < (@/L+Dr(p), i=12...,N,

where
Yo = {€:dist(¢,X) <o /2+d}\ X, o

Ifp; <p<pg,P=>p; > pi- S0, by 4.3 of [Ln10],

N N N
pXp — (Z e+ (p=Yp)x(p— > pa))H <e/2,
i=1 i=1 n=1
where \j € O;,i = 1,2,...,N. By 3.12 of [Ln10], there are norma element y €
Mk ((p—iL; p)A(P—3IL, pi)) and normal element 2 € My ((p— L, p)A(P—SL, pi))
with finite spectrum sp(y’), sp(Z') C X, 2+q Such that
N N
[(P—Xp)x(p—xop) Y 2| <e/4
i=1 i=1
provided that 6 is small enough (Note § does not depend on A). Notice that K depends

only X, /2+4 and e. Since

N
(L+1)T<p— Zpi) <), i=12....N;7€A
n=1

and L is any given number, asin 4.8 and 4.9 of [Ln10], an absorption argument shows
that thereis anormal element y € pAp with finite spectrum sp(y) C X such that

[0+ (o~ )= 5p)] o] <o/2

Therefore
Ipxp—yll <e. .

LEMMA 3.2. Let X bealocally compact metric space, G C X be an open subset,
| = {f eCX): f(¥) = OifngG},

and A be any (unital) C*-algebra. Supposethat ¢: Co(X) — A is a monomorphismand
¢/ is approximated by homomorphismsfrom| — Awith finite dimensional range. Then,
foranye > 0,0 > 0andfy,fy, ..., fn € Co(X), there existsa projection p € A such that

O < p < q(r/41 ||p¢(fl) - ¢(fl)p|| <e
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and

HPQS(fi)P - f: fi(&k)pkH <e,
k=1

whered, and g, 4 are spectral projectionsin A™ corresponding to (the homomor phism
¢ and) the subset
Q, = {¢ € G dist(¢, X\ G) > o}

and
Q,/a={¢ € Gudist(¢, X\ G) >0 /4,

respectively, £ € Q, and {px} are mutually orthogonal projectionsin pAp.
ProOF. LetF = X\ G. For any positive number d > 0, denote by Q4 the set
{¢ € G dist(¢, F) > d}

and denote by gq4 be the spectral projection of ¢ in A** corresponding to the subset Q.
We claim that there exists a projection e € A such that

O6s/16 < € < Oy/a-

Letg € Co(X), i = 0,1,2,3,4 suchthat

0<g <1 go(§)=0if{ZQ, .,
01(§) = 0if £ & Q5,160 G2(€) = 0if & & Qg /16,
93(§) = 0if £ £ Q75/16.  9a(§) = 0if £ £ Q, ),
and go(§) = 1if £ € Qsy/16, G1(§) = 1if £ € Qgy/16 %2() = 1if & € Qy, )16,
03(8) = 1if¢ € Q, /2, oa(§) = 1if€ € Q3,/4- Noteg; €1, i=0,1,23. Foranyn > 0,

by our assumption, there are ¢1,¢2,...,&m € G and mutually orthogonal projections
P1, P2, - - -, Pm € A such that

o)~ 20| <n 10123
and .
6(@d) = > ()R] <n 1=12...n k=012

=1

LetPs, /16 = 2¢1€Qq, 16 Pi- We obtain

| #(90)Pss /16 — Pso /16l < 11-

Thus
|#(90)Ps /164(G0) — Pso /161l < 21

L et By be the hereditary C*-subalgebra generated by ¢(go). Then by [Eff, A8], thereisa
projection ey € By such that

€0 — Pso /16l < 4.
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By [Eff, A8], there exists a unitary vo € A such that
Vo — 1| < 4n and VPs, /16V0 = €v.

To savethe notation, without loss of generality, by replacing p; by v§p;jvo, we may assume

that ps, /16 < Gy /4-
Now we will use an argument of L. G. Brown (cf. [Bn]). We have

Hﬁb(gl)psa/le - <Z5(91)H < H(ﬁ(gl)psn/le - égl(ﬁk)pkpsg/mH
¥ Hégl(gk)pkp&/lﬁ - é:lgl(fk)pkH

m
+ sz 91§k — ¢(91)H < 2.
=1
Working now in the unitized algebra By (with 1 denoting the identity in Bo), we set
1/2
x= (1— 6(g0)""*(1 — ps, ). Then
(L = Psy/16) — XX = [|(1 — Psy/16)8(G1)(L — Psy/16) || < 217

So x*x isinvertiblein (1 — p5{,/16)§o(1 — Pss/16)- LELW = x|x| 71, where the inverse is
takenin (1 — Ps, /16)Bo(1 — Ps,/16)- Then

W'W = 1— ps, /16 and Www" = d
are projectionsin By. Moreover, d € (xBox*). Since
(1 - ¢(91))CI60/16 = q60/16(1_ ¢(91)) =0,

we concludethat d < 1—ds, /16. From adirect computation, one seesthat thereisb € By
suchthatw = 1+b. Itfollowsthat e = 1—ww* = 1—disaprojectionin By. Furthermore,

O6o/16 = € = Uy/4-

This provesthe claim.
Let Pro /16 = Xgey, 6 Pj- AS in the proof of the claim, we have

P75 /16 — Pro/16ll < -

As in the proof of the claim, again, we may assume (by considering vip;, 16v1 for a
suitable unitary v, € A) that pr, /16 < € < 0, /4.
Now we consider inequalities

(@)~ 3= a(eamd] < and [oah) — S (@h)eon] <,
k=1 k=1

i =34,j=12....,n Intheseinequalities, we may assume that {x € Qy,/16 and
Pk < Pro/16 < € SetP, 2 = Yyjeq,, bj- We obtain

G0 /4 — Ol30/4P0 /2]l < 217 @d [[G7,/16P5 /2 — Poy2ll < 20
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Note that the claim istrue for any o. By repeating the proof of the claim, we obtain a
projection p’ € A such that

Uar/a < P < G016

We have
PPy 2 — Pl < 21

Thisimplies that
196 /2P'Poj2 — Pl < 4.

By [Eff, A8], thereis aprojection€ € Py /2AP; /2 such that
e =PIl <8n.
By [Eff, A8] again, thereis aunitary v € eAe such that
[v—el <8pande>v'p,v>p > 0.
We also have

1Py /20(9sfi) — ¢(9afi)p, /2|l < 2nand

Po/20()Ps /2 — 2 (gsfi)(ij)ij<77-

§€Q, )2

Since
P52 = Po /2% /16ll < 211 and [[p,/26(fi) — Py 2070 /160 ()l < 2n.

Noticethat a7, /4¢(fi) = O7,/16¢(dsfi)- Then

[Ps/20(f1) — Py j20(Gsfi)|| < 4.

Similarly,
|6(f)Py /2 — D(Qafi)Py 2l < 4.
Therefore
[P /20(f) — (f)P, /2]l <10m, i=1,2,...,N
and
Poj2s()Ps— 3 fi(m| <10
6§€Q,/
Notice that
[V'Po/2V — Py 2l < 16m.
Wetake p = v*p, pvand n < ¢ /64. "

We in fact have proved the following which will be used in Section 4.
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COROLLARY 3.3. Let X bealocally compact metric space, G C X bean open subset,
| ={f eC(X): f(x) = 0ifx ¢ G},

A be any (unital) C*-algebra, ¢ > 0, o be positive numbersand f1,f,,...,f, € Co(X).
Supposethat ¢: Co(X) — Aisamonomor phismsatisfying the following: thereared > 0,
£1,€2,...,&m € G and mutually orthogonal projectionsds, dy, . .., dm € A such that

Jot@) — 3~ atcod <& and [oah) - S(@hieod <e,
k=1 k=1

where g; isthe same asinthe proof of 3.2,i = 0,1,...,4. Thenthere existsa projection
p € A such that

U SP=<0ys, [Po(fi)—o(f)pl <e
and

lpsttp— 3 titcon <=
k=1

whered, and g, 4 are spectral projectionsin A™ corresponding to (the homomor phism
¢ and) the subset
Q, = {¢ € G dist(¢, X\ G) > o}

and
Q,/a={¢ € Gudist(¢, X\ G) >0 /4,
respectively, £ € Q, and {px} are mutually orthogonal projectionsin pAp.
We also need the following computation. Note X is afigure eight curve.

LEMMA 3.4. Let B be a unital C*-algebra, sp(x) = X = {¢ : ¢ —1] = Llor
|€ +1| = 1}, f1,f, € C(X) be nonnegative such that

1+¢, ifRe(§) <O

mO=11 " itres) >0

and £—1 ifRe(t)>0;
f2(€) = [ “1, ifRe) <0,

For any o > 0, thereexists 6 > 0 satisfying the following: if there exists a projection p
in aunital C*-subalgebra A C B such that

A —px—=x(1—p)| <9,
IA=Pfi) —fiA—p)| <6, 1=12
1-pfA-peA

for all f € C(X) and there exist unitaries wy,w, € (1 — p)A(1 — p) with [wi] = 0in
Ki((1— p)A(1 — p)) and

(1= Pfi)L — p) — wi]| <8,
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then for any A & X,
A1-p—A-pxL—p)]|=0
in GLoo((1— P)A(L —p))/ GLoo((1 — PAL — p)),,, Where
Xo = {€ 1 dist(¢,X) < o}.

ProoF. Define a continuous function in C([—, ]) asfollows

0, if —7/6<t<7/6;
T, ift=m;
ho(t) = ¢ —m, ift=—m;

linear, if —7 <t<—n/6;
linear, ifr/6<t<m

Thendefinehy € C(S') by hy(€') = ™0, —r <t < 7. Lethy(¢) = (€ +1)|¢ + 1|~ for
£ # —1.Then
h10f1 = h10h2 on X.

It is enough to show that
+1-p—-(1—-px1—-p]=0
inGLoo((1—P)AL—p))/ GLo((1—P)A(L—p)),. Lety = (1—p)x(1—p). To show that

[(1—p)—(1—p)x(1—p)] = O,itisenoughto show that [,(y)] = 0in Ky ((1—p)A(1—p)).
Let P be apolynomial of zand z* such that

|P—hy|| <é.

Again, we will use the notation P(z,z*) for the corresponding linear combination of
Z(Z)*. Asin the proof of [Ln10, 2.11], for any € > 0, if § is small enough, we obtain
and z* such that

[P(he). ha(y)*) = ha(he) | <& [Pwa, i) — ha(wa) | <,
[P(ha). ha)") — (2 = P)hu () (1 = p)| < =
and
P(a-pRea—p), (- PhE-p)’) - @ -Ph(RE)L-p)| <=
Now we have
[ha(ha(y) — ha(ws)| < [[ha(ha(y)) — P(ha(¥), ha(y)*)
+||P(ho), ha(y)") — (1 — p)he(ha(¥)) (1 — p)|
+[@ = p)he(h2()) (L — p) — (1 — p)ha(f1()) (2 — )
+ (2 = phe(f®) (1 — p)
—P((1-phL - p), (1 - ph()" L —p)|
+[P(@ = PR - p), (1 — PRI (L — p)) — P(wa, w3)|
+ [P, w;) — hy(ws)| < 5e.
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Soif e < 1/6, [h(ha(y))] = [ha(wa)] in K1((1 — p)A(L — p)). But it is easy to see that
(e (o) | = [ha(y)] and [ha(wn)] = [wa] = O.

Therefore [ha(y)] = 0in Ky((1 — p)A(L — p)). Thus[(1 —p) — (1 — px(1 — p)] =
0in GLoo((1 — PA(L — p))/ GLo((1 — PAL — p)),. Similarly, we can show that
[-A-p)—1—px2—-p]=0. .

THEOREM 3.5. Let A be a simple C*-algebra with real rank zero, stable rank one,
weakly unperforated Ko(A) of countable rank, and let F be a compact subset of S' x S'.
Suppose that ¢: C(F) — Aisa monomorphism, ¢{% = 0and ¢%|,& ¢ = 0. Then ¢ can
be approximated pointwise by maps from C(F) into A with finite dimensional range.

Proor. Wewill identity S' x S with
{(¢.é):0<t<2m0<r<2n).

Set uy, Up € C(F) suchthat uy((€',€7)) = €' for 0 <t < 27 and up((€",€")) = €" for
0 <7< 2r,if (€%,€") € F. Then C(F) is generated by u; and u,. It is enough to show
that for any £ > 0 there is a homomorphism : C(F) — A with finite dimensional range
such that

lo) —v)| <& =12
LetX = ({1} x SSUS x {1})NFand
| ={f e C(F): f(¢) = Ofor ¢ € X}.

Note that | = C(G), where G is a compact subset of <. Since ¢ (ker d) = 0 and
M _

Ko(o(1)) Nkerg = 0and Ky (o(1)) = 0.

It follows from 2.12 and Remark 2.20 that the map ¢|; can be approximated by homo-
morphismsfrom | into A with finite dimensional range. By 3.2, forany é > Oando > 0,
there exists a projection p € A such that

G <P <Ga/a  [IPSW) — H(u)pll <6/8
and .
oo — 3 u(epd <4/8
where g, isthe spectral projection in A** corresponding to the subset

Q, = {¢ e F\ X: dist(¢,X) > o},
k€ {€ e FA\ X dist(¢,X) > o},

and {p«} are mutually orthogonal projectionsin pAp.
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There is a continuous map r: F — F such that r|g q_ is aretraction on X. Set v; =
uor,i = 1,2. By choosing asmall ¢ and an appropriate r, we may assume that

[o(ui) — ¢(wi)|| <6/16.

We have that
loi)( — p) — (1 — P)o(w)|| < 35/16.

Let f be ahomeomorphism from X onto a compact subset Y of a figure eight curve on
theplaneand f € C(F) such that

f_IF\Q” =for.
Therearefy, f, € C(Y) such that
(61— &) = s)A—ar), i=12
Thereforea = (1 - p)fi (#()(1 — 6))(L — P) = (L~ P)s(W)(L — ) € A,
12— o) — 6(F)(L - p)ll < 35/16
and
lai = (1= o)L —p)f| <&/16.
For eachi, thereis apolynomial P; of two variables such that
IPi(z2) — i@y <6/32.

Sety=(1-— p)qS(f_)(l — p). Let € be a positive number. If we define Pi(y, y*) to be the
corresponding linear combination of terms yS(y*)' (y* appears after y, see [Ln10, 2.10]),
one computes (see [LNn10, 2.11]) that, if ¢ is small enough,

[Piy.y) — @ —p)Pi(6(F). o)) (1 — p)| < /32
and o
|@—pPi(e(f) o) )1 —p) —a < /32
Therefore
IPi(y,y") —aill <e/16.

Moreover, we have

Ha- + >0 up— ¢(Ui)H <6/4.

§i€Qy)2

Therefore, since ¢V = 0, there are unitariesw € (1 — p)A(L — p) with [wi] = 0in
Kl((l —PAQL— p)), i = 1,2 suchthat w; are closeto &. By 3.4, we conclude that, for
any ¢’ > 0, if § issmall enough,

A1 —p) — (1= p)o()(L - p) € Invo((1 — PAL — p))
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foral A €Y, where
Yo = {A:dist(),Y) <o’}

Notice also
1_qfr/4§1_p§1_q(r

It follows from 3.1 that, for any ¢/ > O, if ¢/ and § are small enough, there are
A1, A2, ..., An € X, mutually orthogonal projections di, dp,...,dy € (1 — p)AL — p)
such that

Hy-j_ﬁlf(xj)dj |<e.
If ¢’ is small enough,

HPi(y, y) _j_ilfi (fOw)d, H <e/16.

Therefore .
la—>h(to)a| < =/26+ /16, 1=1.2
=1
Thus ]
@ poa —p) - S ud | <i/16+2:/6, i=12
Z

Thisimpliesthat, if 6 is small enough,

low— %

§€Q, 2

m@m—iwwm
j=

| <8/16+5/16+=/8< . .

COROLLARY 3.6. Let Abeasimple AF-algebrawith countably many extremetraces.
Then a homomorphism¢: C(St x S') — A can be approxi mated pointwise by homomor -
phismsfrom C(S' x S') into A if and only if

O (ker d) = 0.

4. Hom(C($%),A) and Hom(C(S' x S, A).

LEMMA 4.1 (cF. [G, LEMMA 2]). Foranye > 0,e/2 > 5 > 0, any unital C*-
algebra A and any nonzero element a € A, there existsan invertible element b € M3 (A)
such that

la®dn—b|| <e.

PrOOF. Set

(5
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Then b isinvertible and
la®0—b|| <e/2.

Therefore
lagn—b|| <e.

THEOREM 4.2. Let Abeaunital C*-algebraand ¢: C(S?) — A® K bea monomor-
phism. If
¢0(ker d) = 0,

then, for any ¢ > 0 and fy,fp,...,fn € C(S), there exist homomorphisms 1, 1¥5:
C(S?) — A® K with finite dimensional range such that

lo(fi) @ va(fi) — vaf)l| <e,
i=1,2,...,m. Inother words, ¢ € E.

PROOF. The proof is essentially contained in Section 2. In fact, the proof is easier,
since we are allowed to add any homomorphism from C(S?) — A ® K with finite di-
mensional rangeto ¢ and we do not need to absorb that summand ;. We will sketch the
proof asfollows.

There aretwo placesin Section 2 where we used the condition of stable rank one. One
placeisin 2.2. If A does not have stable rank one, one may not have a partial isometry

V € My(A) such that
10

W:(o 0

) andV*V = P.
However, since these two projections have the same image in Ko(A) (¢£°)(ker d) = 0),
there exist an integer k, a projection e € My(A) and apartial isometry V € My.1(A) such

that
10

00

By adding (1x — €), we may assumethat e = 1y, where 1 isthe identity of My(A).
Pick apoint ¢ in the boundary on D;. We then consider the map

W*:( )@eandV*V:P@e.

o1(f) = o(f) @ f(€) - L, €C(S).

Hence, ¢ (P(2)) = P& 1. Thereforethereisapartial isometry U € Ma(My.1(A)) such

that
Lia O
0O O

The second place is Lemma 2.6. One may not be able to find a unitary u € A such that
|lulta] — t1]| is small if we do not assume that A has stable rank one. However, we can
apply 4.2. For e > 0,

uu* = ( ) andU*U = 6P (P(2)).

lts & —bl| <e,
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for some invertible element b € My(A). Let u = b|b| L. If 5 is small enough, |Ju(|ts| &
) — 1 & (]| issmall, where¢ € D; and |¢| < n. Denoteby g = (||, 1). Then g(¢) = |¢].
We then consider the map

¢2(f) = o1(F) ©f(Q), feC(S).

Sincewe are freely allowed to add a homomorphism (from C(S) into A@ K ) with finite
dimensional rangeto ¢, at these two places, the condition of having stable rank one can
be removed.

The condition of real rank zero can be removed asthe ssmeway asin Section1. =

THEOREM 4.3. Let A be a unital C*-algebra and F be a compact subset of St x St
Supposethat ¢: C(F) — A® K isa homomorphism. If

»O(ker d) = 0and oY = 0,
then ¢ € E.

PrROOF. The proof is a modification of that of 3.5. In fact, it is easier, since we are
allowed to add ahomomorphismwith finite dimensional range. We will keep the notation
in the proof of 3.5.

It isenoughto show that for any ¢ > Othere exist homomorphisms1: C(F) — M, (A)
and v,: C(F) — M;+1(A) with finite dimensional range such that

o) @ vi(ui) — va(w)|| <e, =12

It follows from 4.2 that for any 6 > 0 and ¢ > 0, there are a homomorphism
P C(F \ X) — M(A) (for someinteger) with finite dimensional range and

511621"'16!’1’16':\)(

and mutually orthogonal projectionsps, p2, . . ., Pm € A such that

lo@ - > o] <n. o) - oen| <
j=1 j=1

ch(gui) —j_ilgui(ﬁj)p;} <n, =12

where ®(f) = ¢(f) @ ¥(f) for f € C(G). We aso define ®(f) = ¢(f) @ w(f|g) for
f € C(F). From now on, we replace ¢ by @ in the proof of 3.5.
Asin the proof of 3.5, by applying 3.4, we concludethat, for any ¢’ > 0, if § issmall
enough, B
(M1-p—-(1-peH)1-p)@@—p)]|=0

inKi((1—pA@L—p)) forall A ¢ Y,, where

Y, = {A:dist(y, X) <o’}
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Notice also B
[eL—-a)| =Y.

It follows from 1.3 that, for any ¢’ > 0, if § is small enough, there are A1, Az, ..., An,
A, MG, A € X, mutually orthogonal projections dy, da, .. ., dn € ML (Mys1(A)) and

df, dh,....df € (1—P) & L)Mia(Maa(B) (A - p) @ 1)

such that
<é.

n |
e 2100 - 3 1),
1= i'=

If ¢’ is small enough,

n |
POY)@ () - X 6N ¢| < /16
= j'=

Therefore

n |

e o fi(fO)d — S H(FO)d| <</8 i=12
j=1 =1

Thusthereare (1, &, ..., G, (1, &, - - -, ¢ € Xsuchthat

H(l— DU —p) & 3 u(G)d — i W | < 3</16+5/4+6/16, i=1,2.
=1 =1

Thisimplies that, if § is small enough,

n |
o e Y u@d — 3 uwEm - S u@d| << .
1= i'=

§€Q; 2

THEOREM 4.4. Both
Hom(C(S), A) and Hom(C(S' x SY),A)
are groups.
PROCF. Let ¢* be the map defined in [EGLP, 3.1], then, by [EGLP, 3.4],
(¢ ® ¢")(ker d) = 0

and (inthe caseof S' x S
(@) =0. "

THEOREM 4.5. Let X = &, or X = St x St Then two homomorphisms ¢1, ¢o:
C(X) — A®@ K aresau-equivalent if and only if

(1) lker d = (2)Qker ¢ @d (¢1)D = (02)P.
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PrROOF. The proof is the same as that of 1.14, instead of applying 1.13, here we
apply 4.3. ]

DEFINITION 4.6. Let A be a unital C*-algebra and X be a compact metric space.
Given a homomorphism ¢: C(X) — A, define

M(6) = (6lker 0, 61).

Themap I givesa homomorphism from Hom(C(X), A) into

(hom(ker d, inf (Ko(A)) ) , hom(Kl(C(X)), Kl(A))) .

If X is a compact subset of the plane, X is homeomorphic to &, or X is homeomorphic
to S' x St, from what we have established, I isinjective.

THEOREM 4.7. Let A be a unital AF-algebra which has no finite dimensional quo-
tient. Then
Hom(C(s! x 9, A) & hom(ker d, inf(Ko(A))).

PROCF. It isenough to show that the map
M Hom(C(S! x S, A) — hom(ker d, inf(Ko(A)))

is surjective. Let b bethe Bott element in Ko(C(S' x S')) and x € inf (Ko(A)). Then, by
[EL, 7.3], there is amonomorphism ¢: C(St x St) — A such that

6O (b) = x. .

PROPOSITION 4.8. Let A be a unital C*-algebra with real rank zero and stable rank
one. Supposethat H is a hereditary subgroup of Ko(A). Then the closure of

k
(acAraa<y ap, X >0p] € H)
i=1

isa (closed) ideal of A.

ProoF. Let I be the closure of

k
{aeA:aSZAipi,)\i >0,[p] € H}-
=1

Then . isaclosed coneof A.. It followsfrom [Pd, 1.52] that | isa(closed) left ideal. To
show | isanidedl, it sufficesto show that if a € | then a* € |I. Now supposethat a € |
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and a = u(a*a)'/2 is the polar decomposition of ain A**. Let D; be the hereditary C*-
subalgebra generated by |a|. Then, for any d € Dy, ud € A (see [Ln4, 1.4] for example.
Thisis certainly known before [Ln4]). Furthermore,

®(d) =udu*, deD

givesanisomorphismfrom D onto the hereditary C*-subalgebraD, generated by |a*| (see
[Cul, 1.7]). For any projection p € D, upu* € Aand [upu*] = [p] in Ko(A). Therefore,
upu* € L. Since D, hasreal rank zero (see[BP, 2.6]), D2 isgenerated by its projections.
From the above, we concludethat D, C I. In particular, aa* € |.. Therefore,a* € 1. =

THEOREM 4.9. Let Abeaunital C*-algebrawith nofinite dimensional quotient, with
real rank zero, stable rank one and unperforated Ko(A). Then

Hom(C(s! x S, A) = (hom(ker d, inf(Ko(A))),hom(Kl(C(Sl x S9), Kl(A))).

ProoF. It follows from [Ln4, 2.9] that there is a unital AF-algebra B and a unital
monomorphism ®: B — A such that o isan isomorphism. Furthermore, (by identify-
ing ®(B) with B) for any projection p € Athereisaprojectionq € B and partial isometry
v € Asuchthat viv = pand w* = g. We claim that B has no finite dimensional quotient.

Assume that | is an ideal of B such that B/Iq is of finite dimensional. Let H be the
hereditary subgroup of Ko(B) = Kg(A) corresponding to the ideal 1. Set | be the ideal
generated by H as in 4.7. The definition of B, it isclear that BN | = lo. So B/I =
B/BN1 = B/lg isfinite dimensional. Write B/I = My, @ My, © --- & M. If p € A/I
beaprojection, since A hasreal rank zero, by [Zh2, 3.2], thereisa projection p € A such
that pistheimage of pin the quotient. Therefore, thereisaprojectionq € Band apartial
isometry v € A such that w* = p and v*v = . Denote by g, v theimage of g and image
of v in the quotient, respectively. Then v¥'v = g and w* = p. Thus, every projection
in Aisin the ideal generated by e, e,...,€,, Where each g is a (nonzero) minimal
projection in My. Since A has stable rank one, the above also implies that a (nonzero)
minimal projectionin B must be a(nonzero) minimal projectionin A. In particular, g isa
minimal projectionin A. Since A hasreal rank zero, we must haveegAg = C. Therefore
(X, )AL, &) hasto befinitedimensional. Also, theideal generatedby e, ey, ..., &,
iSA. Thusby [Bn1], "1, e)AC, e) @ K 2 A K. But (X, e)AC",e) @K is
isomorphicto afinite direct sum of K . Thus A which isisomorphic to aunital hereditary
C*-subalgebra of it must be finite dimensional. This contradicts our assumption that A
has no finite dimensional quotient. This proves the claim.

Now let b be the Bott element, u;, u, € C(S' x S such that u; (€7, €¢) = € and
u(e’,€¢) = €, and x € inf(Ko(A)), y, z € K1(A). Asin 4.7, there is amonomorphism
$o: C(S' x S1 — B such that (o) (b) = x. Set ¢1 = ® o ¢o. Then

(61)Q(b) = x and (¢1) =0,
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since Ki(B) = 0. Let vi € My, (A) be a unitary such that [vi] = vy (in Ki(A)) and
V2 € M, (A) be aunitary such that [v;] = z Fix ¢ € St Define maps
jLj2zst—sx g
by j1(€%) = (€%, ¢) and j,(€€) = (¢, €°). Let hj: C(S! x SH) — C(Sh) be the surjective ho-

momorphism induced by ji, i = 1,2, and let v;: C(S') — Mg, (A) be the homomorphism
induced by the unitary v;, i = 1, 2. Now we define

$2: C(S" X ") — Musm,+my (A)

by
$2(f) = oa(f) ® va(ha(f)) ® va(ha(f))

forf € C(S' x Sh). It is easy to check that

(6290) =%, (62D ([ws]) = yand (62D ([ue]) = z .
COROLLARY 4.10. Let Abeaunital AF-algebrawith no finite dimensional quotient.
Then
Hom(C(S), A) = hom(ker d, inf(Ko(A)).
PROOF. Let

I ={f eC(S' xS :f(S" x {1}) =f({1} x ") = 0}.
ThenT 2 C(S?). From the six term exact sequencein K-theory, we obtain
0— Ko(l) — Ko(C(S" x S1)) — Ko(C(S' x S)/1) — 0.

Sothemap from ker d of C(S?) ontoker d of C(S' x S') isanisomorphism. Therefore 4.9
follows immediately from 4.8. ]

COROLLARY 4.11. Let Abeaunital C*-algebrawith no finite dimensional quotient,
with real rank zero, stable rank one and unperforated Ko(A). Then

Hom(C(S), A) = hom(kerd, inf(Ko(A))).

COROLLARY 4.12. Let Abeaunital C*-algebra which hasno infinitesimal elements
in Ko(A). Then
Hom(C(S%),A) = {0}
and
Hom(C(S" x S'),A) = hom(Ky(S' x "), Ka(A)).

ProoF. Thefirst part follows from 4.2. Note that in 4.9, the assumption that A has
no finite dimensional quotient is used only to get an element in Hom(C(S1 X Sl),A) to
induceagivenmap fromker dtoinf (Ko(A)). Sincenow inf (Ko(A)) = 0, thisassumption
is no longer needed. n
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THEOREM 4.13. Let A be a purely infinite simple C*-algebra and X is a compact
subset of & or S' x S'. Supposethat ¢: C(X) — A. If

O (ker d) = 0and ¢V = 0,

then, for any e > 0 and fy, fo, ..., fs € C(X), there exists a homomorphism: C(X) — A
with finite dimensional range such that

[o(f) — v <e,
i=12...,s

PROOF. Since X is compact, without loss of generality, we may assume that A is
unital. By 4.2 or 4.3, for any € > 0, there exist aninteger k, homomorphisms®;: C(X) —
Mk (A) and ®,: C(X) — My+1(A) with finite dimensional range such that

llo(fi) © P1(fi) — P2(fi)]| <e/3,

i=1,2,...,s. Wemay aso assumethat ®; and ®, are unital and
L M
®y(f) =S f)d  and y(f) = > F(amem,
=1 m=1

for f € C(X), where {d,} and {en} are mutually orthogonal projections, and A, om € X.
If follows from [EGLP, 4.1] (see [Ln10, 4.3] also) that there are mutually orthogonal
projectionsps, P2, - .., Pn € Aand points €1, &, . . ., &n € X such that

n
o) = [ @ + A= po)a - p)| <</3
=
i=12,...,s andforany ( € Xthereisj such that
dist(¢, &) < /3,
wherep = YL, pj. Without loss of generality (with an error withine /3), wemay assume

that L = nand \} = . Since Ais purely infinite and simple, there is a partial isometry
V(€ Miw1(A)) such that

n n
Vigediv<p, j=12,...,nandw'=>p &> d.
=1 j=1
Setg=p — V(@ d)vandu=vd (1 —p). Then
n
ISR @ (@ —Poh)L—p) —uWalfu| < 2:/3,
=1

where n
W, (f) = o(f) d Z;f(gj)qj for f € C(X).
i=
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Thisimplies that
[p(fi) — udo(fi)uf| <e.

Notice that u*®,u has finite dimensional range. ]

REMARK 4.14. Itisshownin [EGLP, 4.2] that if Aisapurely infinite ssmple C*-
algebra and X is homeomorphicto S or to St x S, ¢: C(X) — A is a homotopically
trivial monomorphism, then ¢ can be approximated pointwise by homomorphismsfrom
C(X) into A with finite dimensional range. Theorem 4.13 is certainly a stronger result.

COROLLARY 4.15. Let X be homeomorphicto §* or St x S'. Then every monomor-
phism ¢: C(X) — O, can be approximated pointwise by homomor phismsfrom C(X) into
O with finite dimensional range.

PrOOF. Ko(OQ) = Kl(OQ) = {0} n

REMARK 4.16. To study (essential) extensions of C(X) by A, one studies the mono-
morphisms: C(X) — M(A) /A. Inmany cases, M(A) /Aispurely infiniteand simple (see
[Ln1, Ln3]). Resultslike 4.14 are certainly related to C*-algebra extensions. We will not
give adetailed discussion here.

5. Applicationsto classification theory.
5.1. Let Abethe C*-algebraic inductive limit of a sequence:

A2 Ay A A D
We will write A = limp . (An, ¢n). We will also use the notations ¢, m for the composi-
tion ¢m o dm—1 0 - -+ 0 ¢n @Nd ¢, fOr the map ¢n 1 Ay — Afor eachn.
Let A = limp_(An, ¢n) beaC*-algebraof rea rank zero, where

Ar =P C(S) @ M,

with each [n,i] a positive integer. It is shown in [EllI2] that such C*-algebras can be
completely classified by their graded ordered K,-groups. Conversely, for any (graded)
(weakly) unperforated (see [ElI3] for the generalized definition) ordered torsion free
group G with the Riesz decomposition property, there is a C*-algebra A of the above-
mentioned inductive limit form, with real rank zero such that K.(A) = G. It has been
shown [EE] that the irrational rotation C*-algebras are in this class of inductive limits.
In this section we will show that in fact many other inductive limits belong to this class.
We will consider those inductive limits such that

Ay = D C(%ni) @ Mnji
for some lower dimensional spaces X, ;. The problem when such inductive limits have
real rank zero has been studied (cf. [BBEK] and [BDR]). For example, it is shown that
in the casethat A is asimple unital C*-algebra with slow dimension growth, then A has
real rank zero if and only if the projections separate the tracial states.

In what follows, we will identify C(X) ® M,, with C(X, M), the continuous maps from
X into M.
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LEMMA 5.2. Let Abea separableunital simple C*-algebrawith real rank zero, sta-
ble rank zero and weakly unperforated Ko(A) of countable rank, and let X be a compact
subset of the plane. Supposethat x € Aisa normal element with sp(x) C X and

A — X € Invg(A) for A & X.

Then, for any e > 0 and integer k, there are mutually orthogonal projectionspy, p, .. .,
ps € Aand Ag, A2, ..., As € X such that

S
e (k)] <o
i=1
wherexX' = gxqandg=1— %3, p;,
lox —xq| <,
X &y —2| <e/8,

wherey € M (gAg) and z € M 41(gAq) are normal elements with finite spectra
sp(y) sp(2) € X, and

k@CL+2)[q <[p], i=12...,s

PROOF. Thisis an easy consequence of [Ln10, Sections 3 and 4]. This is certainly
contained in the proof of 3.1. But the easiest way to obtain this is to directly apply 3.12
in[Ln10] and 2.10. ]

LEMMA 5.3. Let A beanon-scattered, simple unital C*-algebrawith real rank zero,
and X be a compact subset of the plane. For any e > 0, there exists an integer k, such
that, for any nonzero projection p € A and any normal element x € A with sp(x) C X
there are normal elementsy; € pAp with

() C X = (&2 dist(&, X) < e}

satisfying the following: sp(y;) is homeomor phic to the unit circle and
k
A —x &Py € Invo(Msa(A))
i=1

for any A & X..

PROOF. Since X is compact, there exists a finite CW complex Z in the plane such
that X C Zandfor any ¢ € Zthereis A € X such that

dist(C, ) < /2.

It follows from the proof of 1.12 that there isanormal element z € Asuchthaty(z) = 0
and sp(z2) = Z. Notice that since A is simple, the embedding e: pAp — A induces an
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isomorphism from Ki(pAp) — Ki(A). It is easy to check (see the proof of 1.12) that
there are normal elementsy; € pAp such that sp(y;) C Z, sp(y;) is homeomorphic to the
unit circle and

v(x@ z@%yi) =0.

Therefore, since A hasreal rank zero, by [Ln10, 2.4],
m
v (x Y ep) yi) =0. "
i=1

THEOREM 5.4. Let A = lim_ (A, ¢n) be a simple C*-algebra of real rank zero,
where each A, hasthe form

k .

where Xi, is a compact subset of the plane. Suppose that Kq(A) has countable rank.
Then A is an inductive limit of finite direct sum of matrix algebras over C(S'). Con-
sequently, those algebras are classified (up to isomorphisms) by their graded ordered
group (Ko(A), K1(A)). In particular A isan AF-algebra if and only if Ky (A) = .

ProoF. Itfollowsfrom [DNNP] that A hasstablerank one. By the proof of [GL, 3.3],
Ko(A) isweakly unperforated. For any e > 0 and x, Xg, ..., Xm € A, there are an integer
N and y11y2! DR :Ym S ¢m(AN) SUCh thaI

1 —vill <e/2

It follows from [ElI1] (see also [LR]) that it is sufficient to show that there are a C*-
subalgebra B C A which is isomorphic to a finite direct sum of matrix algebras over
C(SY) and z1, 2, . .., zm € B such that

lyi —zl <e/2.
To save notation, (without loss of generality), we may assume that
Ay = C(X) © Mg(= C(X, Mq)),

where X is a compact subset of the plane. Since ¢..(An) isisomorphic to a C*-algebras
with the form C(Y, My), where Y is a compact subset of X, we may simply assume that
AN = ¢00(AN)

Let {e;} be aset of matrix units for My. Set ¢jj = 1 ® e;. Weview ¢; € A. Notice
that epnAnenr & C(X). Let x beanormal element in e13Ane1r With sp(X) = X such that x
isagenerator for e11Ane11 = C(X). It is easy to seethat it is sufficient to show that for
any n > 0, thereisanormal element z € £11A=11 which isadirect sum of finitely many
normal elements z with each sp(z) being homeomorphic to the unit circle such that

X =2l <.
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By applying 5.2 and 5.3 (and using the notation in 5.2), we have
X @y oy—7||<e/8

wherey € M(gAg) (m depends only on sp(x) and i) and y is a direct sum of m normal
elementsy; with sp(y;) being homeomorphic to the unit circle, andy’ € M (0AQ), Z €
M+1m(0Ad) (L depends only on sp(x) and ) are normal elements with finite spectra

sp(y') sp(Z) € X. /g, Where
X, g = (€ dist(é,X) < </8).

Thereisanorma element § € Mn(gAq) which is adirect sum of m normal elements ¥;
with each sp(¥;) = sp(y;) such that

Yye§y) =0.

It follows from [Ln10, 4.11] that there is a normal elementy’ € Man(A) with finite
spectrum sp(y”) C sp(y) such that

lyey—y'll <e/8.

We have
IXay oy —Zay|<c/4

Now we may assumethat the integer k (asin 5.2) is larger enough such that

(Lm+2m)q] <[p], j=12....s
We then apply the absorption method used in 2.12 to obtain aunitary U € M_+1ym+2m(A)
such that
S
Hx— U*(Z A @ Z @ y)UH <k,
ji=1
wherep/ < pj are some projections. Takez = U*(37_; \jpf © z&* y)U. "

Using the results established in Sections 2 and 3, we can prove the following lemma
in the sameway asin 5.2.

LEMMA 5.5. Let A be a separable unital simple C*-algebra with real rank zero,
stable rank zero and weakly unperforated Ko(A) of countable rank. Let ¢: C(F) — A be
a monomor phism, where F is a compact subset of & or St x S'. Suppose that

#O(ker d) = 0and ¢V = 0

Then, for any e > 0, any finitely many f1,f,, .., f, € C(F) and any integer k, there are
mutually orthogonal projections p1, p2, ..., pPs € Aand Aq, Az, ..., As € F such that

H(ﬁ(ﬂ') — (yj +§;fj(>\i)pi)H <e/8,
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wherey; = qo(fi)a,j = 1,2,...,sandq=1->7, pi,
lae() —o(f)all <e, i=1,2...,5

ly; & v1(f) — vao(f)l| <e/8, j=1,2,...,s

where ¢1: C(F) — M. (gAq) and ¥2: C(F) — M_+1(gAqg) are homomorphismswith finite
dimensional range and

k@CL+2)[q <[p], i=12...,s

THEOREM 5.6. Let A = lim_(An, ¢n) be a simple C*-algebra of real rank zero,
where each A, has the form

k .

where X! is homeomorphicto &, or to St x S'. Supposethat Ko(A) has countable rank.
Then A is an inductive limit of finite direct sum of matrix algebras over C(S'). Conse-
guently, thosealgebrasareclassified (up toisomor phisms) by their graded ordered group
(Ko(A), K1(A)). In particular, Ais an AF-algebraif and only if K1 (A) = 0.

COROLLARY 5.7. Let A = lim_,(An, ¢n) be a simple C*-algebra of real rank zero,
whereeach A, isafinitedirect sumsof matrix algebrasover C(S?). If Ko(A) hascountable
rank, then Aiis an AF-algebra.

PROOF.  Under the assumption, K;1(A) = 0, since K1 (A,) = Ofor al n. ]

COROLLARY 5.8 ([EG]). Let B bea Bunce-Deddensalgebra. ThenB ® Bisanin-
ductive limit of finite direct sums of matrix algebras over C(S") of real rank zero.

ProOF. B® Bissimpleand Ko(B @ B) is of finite rank. Furthermore, B® B is of the
following inductive limit:

C(S" x S') — My(C(S' x §Y) — Myg(C(S' x SY)) — -+ .

Theproof of 5.6 isaduplicateof that of 5.4. But wehaveto use5.5instead of using5.2.
Instead of 5.3, we can use Theorem 11 in [EGLPZ].

While this paper iswriting, George A. Elliott and Guihua Gong [GL 1] have obtained
amore general result than 5.6. We decided not to give all the details.
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