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Abstract

In this note, we give an example of a domain whose d-balanced squeezing function is nonplurisubhar-
monic.
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1. Introduction

We present an example of a domain in C2 whose d-balanced squeezing function fails
to be plurisubharmonic. Let us first recall some related notions.

For a bounded domain D ⊆ Cn and z ∈ D, Deng et al. [3] introduced the squeezing
function SD on D, defined by

SD(z) := sup
f
{r : Bn(0, r) ⊆ f (D), f ∈ Ou(D,Bn), f (z) = 0},

where Bn(0, r) denotes a ball of radius r centred at the origin and Ou(D,Bn) denotes
the collection of injective holomorphic maps from D to the unit ball Bn.

Rong and Yang [10] extended this idea by replacing the unit ball with a bounded,
balanced, convex domain. Recall that a domainΩ ⊆ Cn is called balanced if λz belongs
toΩ for each z inΩ and λ in the closed unit discD of the complex plane. Its Minkowski
function hΩ on Cn is defined by

hΩ(z) := inf{t > 0 : z/t ∈ Ω}
and Ω(r) = {z ∈ Cn : hΩ(z) < r} for 0 < r ≤ 1.

For a bounded domain D ⊆ Cn, the generalised squeezing function SΩD on D is
defined by

SΩD(z) := sup{r : Ω(r) ⊆ f (D), f ∈ Ou(D,Ω), f (z) = 0}.
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In [5], we introduced the d-balanced squeezing function by replacing a balanced
domain with a d-balanced domain.

Let d = (d1, d2, . . . , dn) ∈ Z+n , n ≥ 2. Then a domain Ω ⊆ Cn is said to be d-balanced
if (λd1 z1, λd2 z2, . . . , λdn zn) ∈ Ω for each z = (z1, z2, . . . , zn) ∈ Ω and λ ∈ D.

For a d-balanced domain Ω, the d-Minkowski function hd,Ω on Cn is defined by

hd,Ω(z) := inf
{
t > 0 :

( z1

td1
,

z2

td2
, . . . ,

zn

tdn

)
∈ Ω
}
.

Let Ωd(r) = {z ∈ Cn : hd
Ω

(z) < r} for 0 < r ≤ 1.

DEFINITION 1.1. For a bounded domain D ⊆ Cn and a bounded, convex, d-balanced
domain Ω, where d = (d1, d2, . . . , dn), the d-balanced squeezing function SΩd,D is

SΩd,D(z) := sup{r : Ωd(r) ⊆ f (D), f ∈ Ou(D,Ω), f (z) = 0}.

We can easily see that ifΩ is balanced, then d = (1, 1, . . . , 1) and SΩd,D reduces to SΩD.
In [4], Fornæss and Scherbina gave an example of a domain whose squeezing

function is nonplurisubharmonic. Recently, Rong and Yang [11] gave examples
of domains with nonplurisubharmonic generalised squeezing functions. Here we
consider the same problem for d-balanced squeezing functions and present an example
(see Theorem 3.5).

2. Background and an estimate for a d-balanced squeezing function

Let us first recall the definitions of the Carathéodory pseudodistance and the
Carathéodory extremal maps. For a domain D ⊆ Cn and z1, z2 ∈ D, a Carathéodory
pseudodistance cD on D is defined by

cD(z1, z2) = sup
f
{p(0, μ) : f ∈ O(D, D), f (z1) = 0, f (z2) = μ},

where p denotes the Poincaré metric on the unit disc D and O(D, D) denotes the set of
holomorphic maps from D to D. A function f ∈ O(D, D) at which this supremum is
attained is called a Carathéodory extremal function.

We now recall results that will be used in this section. Lempert [8, Theorem 1] and
Kosiǹski and Warszawski [7, Theorem 1.3 and Remark 1.6] yield the following result.

RESULT 2.1. For a convex domain Ω ⊆ Cn, cΩ = k̃Ω, where k̃Ω denotes the Lempert
function on Ω.

Combining Result 2.1 with [2, Theorem 1.6], we get the following result.

RESULT 2.2. For a bounded, convex, d=(d1, d2, . . . , dn)-balanced domain Ω ⊆ Cn,

tanh−1 hd,Ω(z)L ≤ cΩ(0, z) = k̃Ω(0, z) ≤ tanh−1 hd,Ω(z),

where L = max1≤i≤n di.
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RESULT 2.3. Let Ω ⊆ Cn be a domain and K ⊆ Ω be compact such that Ω \ K is
connected. Then, each holomorphic function f on Ω \ K extends to a holomorphic
function on Ω.

RESULT 2.4 (see [9, Proposition 1]). Let Ω ⊆ Cn be a balanced domain and let
hd,Ω be its d-Minkowski function. Then Ω is pseudoconvex if and only if hd,Ω is
plurisubharmonic.

RESULT 2.5 (see [6, Remark 2.2.14]). If Ω ⊆ Cn is a d-balanced domain, then:

(1) Ω = {z ∈ Cn : hd,Ω(z) < 1};
(2) hd,Ω(λd1 z1, λd2 z2, . . . , λdn zn) = |λ|hd,Ω(z) for each z = (z1, z2, . . . , zn) ∈ Cn and
λ ∈ C;

(3) hd,Ω is upper semicontinuous.

For a bounded domain Ω ⊆ Cn and a compact subset K of Ω, denote

dK
cΩ(z) = min

w∈K
tanh(cΩ(z, w)).

We begin with the following theorem for d-balanced domains, which is analogous
to Theorem 2.1 in [11].

THEOREM 2.6. Let Ω ⊆ Cn be a bounded, d=(d1, d2, . . . , dn)-balanced, convex, homo-
geneous domain. If K is a compact subset of Ω such that D = Ω \ K is connected, then

Sd(z)L ≤ d∂KcΩ (z) = dK
cΩ(z) ≤ Sd(z), (2.1)

where L = max1≤i≤n di.

PROOF. For z ∈ D, let g ∈ Aut(Ω) be such that g(z) = 0. Using the convexity of Ω, we
have {tv + (1 − t)w : 0 ≤ t ≤ 1, v ∈ D, w ∈ K◦} ∩ ∂K � ∅; therefore, d∂KcΩ (v) = dK

cΩ(v) for
each v ∈ D.

Clearly, h = g|D : D→ Ω is injective and holomorphic with h(z) = 0. For notational
convenience, let us denote dK

cΩ(z) by α. We claim that Ωd(α) ⊆ h(D). Let hd,Ω(v) < α,
which upon using Result 2.2 implies tanh(cΩ(0, v)) < α. Since g is an automor-
phism, we get tanh(cg(Ω)(g(z), g(v′))) < α for v′ ∈ Ω. Therefore, tanh(cΩ(z, v′)) < α =
minw∈K tanh(cΩ(z, w)). Thus, we get v′ � K and therefore, v = g(v′) ∈ g(D). This proves
our claim and hence, we obtain

Sd(z) ≥ α = dK
cΩ(z).

For the other inequality, consider an injective holomorphic map f : D→ Ω such
that f (z) = 0. By Result 2.3, there exists a holomorphic function F : Ω→ Cn such
that F|D = f . Using Result 2.4 and following the argument as in [11, Theorem 2.1],
we obtain F(Ω) ⊆ Ω. Observe that F(∂K) ∩ F(D) � ∅. Let r > 0 be such that Ωd(r) ⊆
F(D). If possible, let tanh(cΩ(0, F(∂K)))1/L < r, then upon using Result 2.2, we get
hd,Ω(F(∂K)) < r. This implies that F(∂K) ∈ Ωd(r) ⊆ F(D), which is a contradiction.
Therefore, r < tanh(cΩ(0, F(∂K)))1/L which, upon using the decreasing property of cΩ,
implies that r < tanh(cΩ(z, ∂K))1/L. Finally, we can conclude that Sd(z)L ≤ dK

cΩ(z). �
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REMARK 2.7. A careful look at the above proof makes it clear that the left-hand side
of inequality (2.1) holds even if Ω is not homogeneous.

3. Nonplurisubharmonic d-balanced squeezing functions

Let G2 ⊆ C2 be the domain defined by

G2 = {(z1 + z2, z1z2) : z1, z2 ∈ D}.

The domain G2 is called the symmetrised bidisc. Its genesis lies with the problem
of ‘robust stabilisation’ in control engineering. Although it is closely related to the
bidisc, its geometry is very different to that of the bidisc. It is polynomially convex,
hyperconvex and starlike about the origin but not convex ((2, 1), (2i,−1) ∈ G2 but
(1 + i, 0) � G2). Another point to note here is that it is not homogeneous (there is
no automorphism of G2, which maps any (a, 0) with 0 < a < 1 to (0, 0)). For many
equivalent characterisations of G2, see [1].

The domain G2 has several interesting properties. For example, Lempert’s theorem
holds for G2 even though it is neither convex nor can it be exhausted by domains
biholomorphic to convex domains.

We will require Carathéodory extremal maps for G2 to prove our result. Agler and
Young [1] proved that for each z1, z2 ∈ G2, there exists λ ∈ C, |λ| = 1 such that φλ is a
Carathéodory extremal function, where φλ is defined by

φλ(z1, z2) =
2λz2 − z1

2 − λz2
.

It is easy to check that G2 is (1, 2)-balanced. Let us denote byΩ the set of all possible
linear combinations of elements of G2, that is, Ω is the convex hull of G2. We begin
with the following lemma.

LEMMA 3.1. Let Ω be the convex hull of G2. Then:

(1) Ω is (1, 2)-balanced;
(2) |z1| < 2 and |z2| < 1 for each point (z1, z2) ∈ Ω.

PROOF. (1) Let
∑k

i=1 αizi ∈ Ω,
∑k

i=1 αi = 1, αi ≥ 0 and zi = (z(1)
i , z(2)

i ) ∈ G2 for each i.
Let |λ| ≤ 1. Each zi ∈ G2 so that (λz(1)

i , λ2z(2)
i ) ∈ G2. Therefore,

∑k
i=1 αi(λz

(1)
i , λ2z(2)

i ) =
(λ
∑k

i=1 αiz
(1)
i , λ2∑k

i=1 αiz
(2)
i ) ∈ Ω and hence, Ω is (1, 2)-balanced.

(2) Follows from the structure of G2. �

Choose r, with 0 < r < 1, such that D2(0, r), the closure of the polydisk
in C2 of radius r centred at the origin, is contained in Ω. Take the point
Q = (0, r) ∈ D2(0, r) ⊆ Ω and let ε > 0 be such that a ball B2(Q, r) of radius
ε < r centred at Q is contained in Ω. Let us take K = ∂D2(0, r) \ B2(Q, ε) and
H = {z ∈ C2 : z2 = 0}. It can be seen that K is compact and D = Ω \ K is connected. We
will show that SΩd,D (denoted by Sd for notational convenience) is not plurisubharmonic.
For this, we will show that h = Sd |Dn(0,r)∩H does not satisfy the maximum principle.
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In particular, such a restriction is not subharmonic; this, in turn, will imply that Sd is
not plurisubharmonic. This is proved via the following steps.

• We begin by showing that Sd(0) ≥ 1
2 .

• We use Theorem 2.6 to show that

Sd(z)2 ≤ r − |z|
2 − r|z|

for z ∈ Dn(0, r) ∩ H, z � 0 (observe Remark 2.7).
• We then show that Sd(z) ≤ Sd(0) for z = (z1, 0) ∈ Dn(0, r) ∩ H for r > |z| > β, where
β = r(4 − r)/(4 − r3) (note that β < r).

• Now we restrict h to A = B(0, β) to obtain a maximum at some a ∈ A.
• We conclude by combining all these points along with the observation that Sd(z)→ 0

as |z| → r.

LEMMA 3.2. Sd(0) ≥ 1
2 .

PROOF. Consider the identity map id : D→ Ω. Clearly, id is injective holomorphic
with id(0) = 0. We claim that Ωd(r/2) ⊆ id(D) = D. To see this, take z such that
hd,Ω(z) < r/2. Upon using Result 2.5, we first get z ∈ Ω and then (2z1/r, 4z2/r2) ∈ Ω.
Now using Lemma 3.1(2), |z1| < r and |z2| < r2/4 < r. Thus, z � ∂D2(0, r) and there-
fore, z � K. This proves our claim and shows that Sd(0) ≥ 1/2. �

We need the following elementary lemma to prove our next proposition.

LEMMA 3.3. For each z = (z1, 0), z1 = a + ib with 0 < |z1| < r and w0 = (sz1, 0), where
s = r/

√
a2 + b2, we have

∣∣∣∣∣
φτ(z) − φτ(w0)
1 − φτ(z)φτ(w0)

∣∣∣∣∣ ≤
r − |z1|
1 − r|z1|

,

where τ ∈ C with |τ| = 1.

PROOF. First note that |w0| = r and |(2 − τz1)(2 − τw0)| ≥ (2 − r)2 > 1. Now consider

∣∣∣∣∣
φτ(z) − φτ(w0)
1 − φτ(z)φτ(w0)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣

z1

2 − τz1
− w0

2 − τw0

1 − z1

2 − τz1

w0

2 − τw0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

2(z1 − w0)
(2 − τz1)(2 − τw0)

1 − z1

2 − τz1

w0

2 − τw0

∣∣∣∣∣∣∣∣∣∣∣
≤ 2|z1 − w0|

1 − |z1||w0|
=

r − |z1|
1 − |z1|r

. �

PROPOSITION 3.4. For each z = (z1, 0) ∈ Dn(0, r) ∩ H, z � 0, we have

Sd(z)2 ≤ r − |z1|
1 − r|z1|

.
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PROOF. Let z1 = a + ib. Take w0 = (sz1, 0), where s = r/
√

a2 + b2 so that w ∈ K
because Q < r. Now, using Theorem 2.6 and Remark 2.7, we obtain

Sd(z)2 ≤ dK
cΩ(z) = min

w∈K
tanh(cΩ(z, w))

≤ tanh(cΩ(z, w0))
≤ tanh(cG2 (z, w0)) (since G2 ⊆ Ω)

=

∣∣∣∣∣
φτ(z) − φτ(w0)

1 − φτ(z)φτ(w0)

∣∣∣∣∣ (for some |τ| ≤ 1)

≤ r − |z1|
1 − r|z1|

(using Lemma 3.3). �

This proposition, in particular, implies Sd(z)→ 0 as |z1| → r. We summarise these
results with the following theorem.

THEOREM 3.5. For D and Ω as considered above, Sd is not plurisubharmonic.

PROOF. It is easy to see that

r − |z1|
1 − r|z1|

<
r2

4

if and only if |z1| > β. Using Proposition 3.4 and Lemma 3.2, we get h(z) = Sd(z) <
r/2 ≤ Sd(0) = h(0) for z = (z1, 0) with |z1| > β. Consider the restriction h|

B(0,β) and let

h(a) be its maximum for some a ∈ B(0, β). Then, we have h(z) ≤ max(h(a), h(0)) on
D

n(0, r) ∩ H proving that Sd |Dn(0,r)∩H does not satisfy the maximum principle and Sd is
not plurisubharmonic. �
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