BOOLEAN NEAR-RINGS
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In this paper we introduce the concept of Boolean near-rings.
Using any Boolean ring with identity, we construct a class of Boolean
near-rings, called special, and determine left ideals, ideals, factor
near-rings which are Boolean rings, isomorphism classes, and ideals
which are near-ring direct summands for these special Boolean near-
rings.

Blackett [6] discusses the near-ring of affine transformations on
a vector space where the near-ring has a unique maximal ideal.
Gonshor [10] defines abstract affine near-rings and completely
determines the lattice of ideals for these near-rings. The near-ring
of differentiable transformations is seen to be simple in [7]. For
near-rings with geometric interpretations, see [1] or [2].

1. Preliminaries. A near-ring is a triple (N,+,-) where (N,+)
is a group, (N,-) a semi-group, and a-(b+ c) = (a-b) + (a-c), for all
a,b,c € N. A normal subgroup (I,+) of (N,+) is a left ideal if NI C I
and is an ideal if (I,+,-) is the kernel of a near-ring homomorphism
[5]. For notation and terminology with respect to Boolean rings one
might see [11].

It is not clear exactly what a Boolean near-ring should be. The
following definition might serve as a first approximation.

Definition 1.1. A near-ring (B,+,-) is Boolean if there exists a
Boolean ring (B,+, A ,1) with identity such that - is defined in terms
of +,A, and 41 and, for any b € B, b-b = b.

A near-ring (N,+,:) is said to be idempotent if x2 = x for all
x € N. If (R,+,:) is an idempotent ring, then for all a,b € R,
a+a =0 and a*b =b-a. The following example shows that this is
not the case for all idempotent near-rings and emphasizes the role of
the distributive laws for ring theory:

Example 1.2. Given a non-trivial group (N,+), define
multiplication by
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a.b =b, for all a,be N .

Then, (N,+,-) is an idempotent near-ring for which . is not
commutative and for which (N,+) need not be of characteristic two.

For other examples of idempotent near-rings that need not be Boolean,
see [8].

The following theorem gives examples of Boolean near-rings that
are not Boolean rings. First recall that in a Boolean ring (B,+, A ,1)
one can define complementation, ', by a' =a+ 1, and sup,Vv , by
aVb =(a'ADb")'.

THEOREM 1. 3. Let (B,+, A ,1) be a Boolean ring with identity.
Fix x € B and define a multiplication on B by a-b =(aVx)Ab.
Ibe_n (B,+,:) is a Boolean near-ring which is a Boolean ring if and
only if x = 0.

Proof. For a,b,c ¢ B we have a.(b-c) = (aVx)A[(bV x)A c]
and (a-b)-c = {[{avx)ab]vx}Aarc =[(avx)a(byx)]Arc, sothat

a‘(b:-c) =(a:b)rc. Also, a+:(b+c)=(avx)A(b+c)=(avx)Ab+ (avx)Arc
(a:b)+(a-c). If x =0, (B,+,:) =(B,+, A,1). Now, (x+x).-x =0-x
(Ovx)Ax =x and (x-x)+ (x-x) =0, sothat (B,+,:) is not a ring if

x # 0. Also, b:b =(bVx)Ab =b, for all b € B, sothat (B,+,-) is

a Boolean near-ring.

Note that any e such that e A x' = x' 1is a left identity for (B,+,-)
but (B,+,:) has no right identity unless x = 0.

Boolean near-rings of the type defined in the above theorem will be
called special and the remainder of this paper will be devoted to discussing

topics for special Boolean near-rings as listed in the introduction.

2. Left ideals of special Boolean near-rings.

Definition 2.1. For a special Boolean near-ring (B,+,:) and t € B
define P(t) = {a e¢BlaAat =a}. If SCB and t ¢B, define
S(t) = {sA t|s €S}. (Note that S(t) C P(t).)

Recall from [3] that the additive group (N,+) of a near-ring can
be written as a group direct sum of the additive group of its maximal
sub-Z-ring, NZ ={be N]a~b = b, for all a € N}, and the additive

group of its maximal sub-C-ring, NC ={beN|0-b =0}.

PROPOSITION 2.2. Iet (B,+,:-) be a special Boolean near-ring.
The maximal sub-Z-ring of B is BZ = {b|bAx =b} = P(x) and the

maximal sub-C-ring of B is B_ = {b|bax = 0} = P(x').

C
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Proof. The proof is direct so will be omitted.

PROPOSITION 2.3. Let (B,+,-) be a special Boolean near-ring
and let L, be a left ideal of B. Then L = L(x) @ L(x'), a direct sum
of left ideals, where, if a1,b1 € I(x) and a.z,b2 € I(x'), then
-bZ). Conversely, if M C P(x) and

(a1+b1)'(a2+b2) = (a1-a )+ (b

2 1

N C P(x') are left ideals of B, then their direct sum, M @® N, is a
left ideal of B.

Proof. First we show that I(x) C L and L(x') C L. Now
xAa =x-a€l for ael, sothat L(x) C L. Also
x'Aa=(1+x)Aa = a+xaracel, if ae L, sothat L(x') C L.

Now we wish to show that IL(x) and L(x') are left ideals of B.
L(x) C P(x) = B, = {beBla-b =b, for all a € B}, so that

BL(x) C L{x). Let s Ax, tAx e I(x). Then, sAx+tarx = (s+t)a x € L(x).
Thus L(x) is a left ideal of B. ILet sA x' € I,(x') and b € B. Then,
be(sAx') =[bA (sA x")]V[xA(sax')] = (bas)ax' e L(x'). Thus, L(x')
is a left ideal of B.

Certainly L = L(x) + L(x') and IL(x) M) L(x') ={0}.

Let 3,1,b1 € I(x) and a,

a Aa! =a ,a' Aa a.,b. Ab! =b , and b'i/\b2=b2, we have:

17 % 173 N8 TN D 1
(a, +a,) (b, +by) =[(a,Aab) v(al nay)]-[(b, A bY) v(b} AD,)]

,b2 € I(x'). Then, noting that

1

= [a1vazvx]/\[b1vb2] = (a,A b )vix b )v(a,Ab,)
= (aiAbi)vb1v(a2Ab2) = b1v(a2/\b2)
= b1v(a2Ab2) V(x/\bz) = biv[(azv x) Abz]

{byalayax)voillv {b)alla, v x) Ab,]
=b, + [(32 vx)ab,] = [(aiv x)ab, ]+ [(a,v x)Ab,]
= (a1-b1) + (az-bz).

The proof of the converse follows by the left distributive law.

Proposition 2.3 reduces the problem of finding the left ideals of
(B,+,:) to finding the left ideals M c P(x) and the left ideals N c P(x').

PROPOSITION 2.4. The left ideals of (B,+,-) in P(x) are just
the subgroups of the group (P(x),+).

Proof. If L is a left ideal of B and L C P(x), then certainly
(L,+) is a subgroup of (P(x),+). Conversely, suppose (L,+) is a sub-
group of (P(x),+) and suppose a € L. Then, for b€ B, b-a =a, by
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Proposition 2.2. Hence BL C L sothat L is a left ideal of B.

LEMMA 2.5. If L is a left ideal of (B,+,:) with L C P(x')
then, for any a ¢ L, P(a) C L.

Proof. We have b.a € 1., for all b € B. Hence
b-a =(bvx)aa =bAacel, forall beB, sothat P(a) C L.

COROLLARY 2.6. If a € P(x'), then P(a) is a left ideal of B.

Proof. If t € P(a), then b:t = bat € P(a), for any b € B.

PROPOSITION 2.7. If {L}. ¢ is a family of left ideals of
- i'i

I
(B,+,-), then LL = » L, is also a left ideal of B.
iel
n n
Proof. Let b € B and aieLi. Then b. = ai = = b»a.iEL,
i=1 i=1

since each b.a, € L. .
i i

Definition 2.8. By a filter F in (B,+,-) we mean a filter in
(B,+, A ,1). The dual of a filter F is F' = {a'|a ¢ F}.

PROPOSITION 2.9. _I_f F is a filter in (B,+,-) and if F!' - P(x'),

then F' is a left ideal of (B,+,:). Conversely, if L. C P(x') is a left
ideal of (B,+,:), then L' = {a'|a ¢ L} is a filter in (B,+,").

Proof. This follows immediately from the observation that a € P(x')
implies b-a = b Aa for all b € B and the fact that duals of filters in
(B,+, A ,1) are equivalent to ideals in (B,+, A , 1).

To summarize Propositions 2.3, 2.4, and 2.9, we have the
following theorem.

THEOREM 2.10. Let (B,+,-) be a special Boolean near-ring with
multiplication determined by x. Then, L is a left ideal of (B,+,-) if
and only if there is a subgroup M C P(x) and a set N C P(x') such that
N' is a filter in (B,+,-) and L =M @ N.

3. Ideals of special Boolean near-rings. Again, in this section,

(B,+, ) will denote a special Boolean near-ring with mualtiplication
determined by x. The ideals of a near-ring (N,+,-) are just kernels
of near-ring homomorphisms. We state here, without proof, a theorem
due to Blackett [5] that characterizes all the ideals of a near-ring.

THEOREM 3.1. The ideals of a near-ring (N,+,-) are just the
normal subgroups (T,+) of (N,+) such that
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() NTC T (i.e. T is a left ideal), and
(b) (n+thm -nm e T if n,m ¢ N and t ¢ T.
LEMMA 3.2. If k € P(x) and a,b ¢B, then (a+k)-b+a-b = 0.

Proof. Suppose k € P(x). Then x' ¢ P(k') so that k'v x = 1.
Now (a+ k) =(aank')v(a'A k) sothat (a+ k)vx =(aAak')v(a'A k)vx
=[lavx)a(k'vx)]v[@'vx)a(kvx)] = (avx)v[(a'A x)vx] = (avx).
Thus, (a+k)-b+a-b =a-b+a-b = 0.

COROLLARY 3.3. The ideals I C P(x) of (B,+,-) are exactly
the left ideals I C P(x) of (B,+,-).

LEMMA 3.4. If ke P(x') and a,b e€B, then (a+k)'b+a-b =kAb.

Proof. Using kAx'=k, k'A x =x, and kA x =0, we have:
(a+k-b+a-b={[(arnk')v(a'Aa k)Jvx + (avx)} A D
=[{[xvaak)vikaa)]a(a'Ax")}v {x'A (aA k')A
(kana'")'A{avx)}]Aadb
=[(kAa'Ax') v{[(x'Aa')V(x'A K]A[(k' Ax)val]} ]ADb
=[(kna')v{[(xva)'v k]Aa(xva)} ]ab =[(kaa') v(kAa)]Aab
=k ADb,.

COROLLARY 3.5. The ideals I C P(x') of (B,+,-) are exactly
the left ideals I C P(x') of (B,+,-).

THEOREM 3. 6. The ideals of (B,+,-) are exactly the left ideals
of (B,+,-).

Proof. That the sum of two ideals is an ideal follows from
(n+a+b) m-nm = (n+a+b) m-(n+a)m+(n+a)-m-n-m.
Now the proof is an immediate consequence of Corollaries 3.3 and 3.5
and Proposition 2. 3.

4. Ideals I such that B/I is a Boolean ring. If I is a proper
ideal of the near-ring N of affine transformations of a vector space, then
N/1 is isomorphic to a ring of linear transformations of that vector space
[13]. In this section we determine which ideals I of a special Boolean
near-ring (B,+,:) have the property that B/I is a Boolean ring. The
following lemma is crucial.

LEMMA 4.4. If a,b,c €B, then (a+b)-cta-c+b-c = xAc.

Proof. (a+b)-c+a-c+b.c = {[(a+Db)vx]+(avx)+(bVvx)}a c.
Now (a+b)yx+ (avx)+ (bvx)

269

https://doi.org/10.4153/CMB-1969-033-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-033-7

(a+b)vx+ {[(avx)ab'A x']V[a'A x' A (b Vvx)]}

(a+b)Vx+ {[(aADb')V(a'ADb)]Ax'} =(a+Db)Vvx + (a+Db)Ax'
{[la+b)vx]afa+b)ax']"}v{[(a+b)vx]'A[(a+Db)Ax']}
{[a+b)A(a+b)]vx}V{(a+Db)'Ax'A(a+Db)} =(0Vx)V(0Ax')
X.

1

Hence, (a+b):c+a-c +b-c = xAcC.

THEOREM 4.2. Let I be an ideal of (B,+,-). Then B/I is a
Boolean ring if and only if P(x) C I.

Proof. Suppose B/I is a Boolean ring. Then the right
distributive law holds so that

() [(a+D) + b+DHc+1I) =(a+I)Nc+1I)+ (b+TI)c+I).

Thus, (a+b)'c+I1I=(a-c+b-c)+ 1. Hence, (a+b):c + a-c +
=xAc €I, by Lemma 4.1. Since c is arbitrary, we have P(x) C
Conversely, if P(x) C I, then equation (%*) is valid if and only if
(a+b)-c+a-c+b-c—61. But (a+b):c + a-c + b.c €I, by
Lemma 4.1.

b-c
I

5. Isomorphism of special Boolean near-rings. Using Theorem
1.3 we can construct, from an arbitrary Boolean ring, £ Boolean

near-rings where ( is the cardinality of the underlying set. Which of
these Boolean near-rings are isomorphic? We answer this question in
the following theorem.

THEOREM 5.1 Let (B,+, A ,1) be a Boolean ring with identity.
Let x, y € B define special Boolean near-rings (B,+,+ ) and (B,+, )
= i 2ne y

as in Theorem 1.3, respectively. Then the following are equivalent:

(a) (B,+,~X) is isomorphic to (B,+,- );
y

(b) P(x') is isomorphic to P(y') as subrings of (B,+, A ,1);

(c) P(x) 1is isomorphic to P(y) as subrings of (B,+, A ,1);

(d) there exists an automorphism o« of (B,+, A ,1) such that

a(x) =

Proof. (a) - (b). First note, using Proposition 2.2, that P(x)
P(x') are, respectively, the maximal sub-Z-ring and maximal sub-C-ring
of (B,+, -x). A similar statement holds for P(y), P(y') of (B,+, .y)‘

Since (B, +, -x) has an ideal decomposition P(x) @ P(x') and (B,+,: )
Yy

has an ideal decomposition P(y) @ P(y') (Proposition 2.3 and Theorem
3.6), any isomorphism of (B,+, -X) onto (B, +, 'y) can be restricted to

an isomorphism of (P(x'),+, -X) onto (P(y'),+,: ), since isomorphisms
y

of near-rings take maximal sub-C-rings onto maximal sub-C-rings.
(This last statement follows from [12, Proposition 1].) If a,b € P(x'),
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then a-xb = (aVx)Ab = (aAb)V(xADb) = aA b, so multiplication
in P(x') is identical to that in (B,+, A ,1). Similarly, multiplication -

in P(y') is identical to thatin (B,+,A ,1). Hence P(x') is isomorphic
to P(y') as subrings of (B,+, A ,1).

(b) = (c). Now P(x), P(x'), P(y), P(y') are all ideals in the ring
(B,+, A,1) and we have B = P(x') @ P(x) = P(y') @ P(y), hence
P(y') @ P(x) = P(x') @ P(x) = P(y') @ P(y). Consequently P(x) 2 P(y).

(c) = (d). Now x and y act as identities in the subrings P(x) and
P(y), respectively. A proof analogous to that of (b) - (c) shows that
(c) = (b). So we have the existence of isomorphisms a,: P(x) - P(y) and

a,: P(x') - P(y'). Now ai(x) = y since x and y are identities.

Define a: B =B by a(b) = « (b1) + az(bz) where b = b, + b, with

1 1 2

b1 € P(x) and b2 € P(x'). It is direct to see that a is our required

automorphism.

(d) > (a). afb-_c) = of(bVx)Ac] = [alb) VY]A alc) = a(b)-ya(c).

This completes the proof of the theorem.

6. Ideals that are direct summands of (B,+,:). Let (B,+,-) be
the special Boolean near-ring determined by x € B. We have seen in
Proposition 2.2 that B = P(x) @ P(x') and we have seen from
Propositions 2.4 and 2.9 and Theorem 3. 6 that P(x) and P(x') are
near-ring ideals. In this section we classify those ideals that are direct

summands. We will make use of the following:

LEMMA 6.1. Let (B,+, A ,1) be a Boolean ring with identity 1, and
let A be an ideal of B. Then A is a direct summand if and only if
A = P(x) for some x € B.

Proof. For x ¢B, B = P(x) ® P(x'). Conversely, suppose
B =A@ C where A and C are ideals. Now 1 = x+ x', x € A and
x' € C. Let a €A, Then a = aAl = (aAx)+(aAx') and aAx' =0,
since x' € C. Hence a = aAx which implies that a € P(x).
Consequently A C P(x). But P(x) C A since x ¢ A. Hence A = P(x).

Let A be an ideal of (B,+,-). As seen from Theorem 2.3 and

Theorem 3.6, A = A(x) @ A(x') where A(x) = {aAx|a ¢ A} and

A(x') ={aAx'|a € A}. Suppose B = A @ C where C is alsoan

ideal. Then B = A(x) @ C(x) @ A(x') @ C(x') and P(x) = A(x) & C(x)
and P(x') = A(x') @ C(x'). So the problem of determining which ideals
are direct summands has been reduced to finding the ideals that are
direct summands of P(x) and P(x'), respectively. Since (P(x'),+,.,x'")
is a Boolean ring with identity x', we know from Lemma 6.1 the ideals
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that are direct summands of P(x'). We now have only to find the ideals

I C P(x) that are direct summands of (P(x),+,-). Recall from
Proposition 2.4 and Theorem 3. 6 that the ideals 1 C P(x) of (B,+,-)

are exactly the subgroups. We shall see that they are all direct summands.

Suppose P(x) = M @ N where M and N are ideals of (B,+,.).
Then M and N are subgroups of (B,+) and are direct summands of
(P(x),+). We now will see that the converse is also true. Since each
subgroup M C P(x) is bounded and is a pure subgroup, then a theorem
of Prifer [9, Theorem 24.5] shows that M 1is a direct summand. We
have already seen that each subgroup is also an ideal. In summary we
have the following:

THEOREM 6.2. An ideal I 9__f_ (B,+,-) is a direct summand if
and only if T = P(t) @ M where P(t) C P(x') is an ideal and M C P(x)
is a subgroup, hence an ideal.

Remark. In this paper we have considered only one type of Boolean
near-ring. It would be of interest to classify all Boolean near-rings
according to Definition 1.1.
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