BOOLEAN NEAR-RINGS

James R. Clay and Donald A. Lawver

(received August 16, 1968)

In this paper we introduce the concept of Boolean near-rings. Using any Boolean ring with identity, we construct a class of Boolean near-rings, called special, and determine left ideals, ideals, factor near-rings which are Boolean rings, isomorphism classes, and ideals which are near-ring direct summands for these special Boolean near-rings.

Blackett [6] discusses the near-ring of affine transformations on a vector space where the near-ring has a unique maximal ideal. Gonshor [10] defines abstract affine near-rings and completely determines the lattice of ideals for these near-rings. The near-ring of differentiable transformations is seen to be simple in [7]. For near-rings with geometric interpretations, see [1] or [2].

1. Preliminaries. A near-ring is a triple $(N,+,\cdot)$ where (N,+) is a group, (N,\cdot) a semi-group, and $a\cdot(b+c)=(a\cdot b)+(a\cdot c)$, for all $a,b,c\in N$. A normal subgroup (I,+) of (N,+) is a <u>left ideal</u> if $NI\subset I$ and is an <u>ideal</u> if $(I,+,\cdot)$ is the kernel of a near-ring homomorphism [5]. For notation and terminology with respect to Boolean rings one might see [11].

It is not clear exactly what a Boolean near-ring should be. The following definition might serve as a first approximation.

<u>Definition 1.1.</u> A near-ring $(B,+,\cdot)$ is <u>Boolean</u> if there exists a Boolean ring $(B,+,\wedge,1)$ with identity such that \cdot is defined in terms of $+,\wedge$, and 1 and, for any $b \in B$, $b \cdot b = b$.

A near-ring $(N,+,\cdot)$ is said to be <u>idempotent</u> if $x^2 = x$ for all $x \in N$. If $(R,+,\cdot)$ is an idempotent ring, then for all $a,b \in R$, a+a=0 and $a\cdot b=b\cdot a$. The following example shows that this is not the case for all idempotent near-rings and emphasizes the role of the distributive laws for ring theory:

Example 1.2. Given a non-trivial group (N,+), define multiplication by

Canad. Math. Bull. vol. 12, no. 3, 1969

Then, $(N,+,\cdot)$ is an idempotent near-ring for which \cdot is not commutative and for which (N,+) need not be of characteristic two. For other examples of idempotent near-rings that need not be Boolean, see [8].

The following theorem gives examples of Boolean near-rings that are not Boolean rings. First recall that in a Boolean ring $(B,+,\wedge,1)$ one can define complementation, ', by a' = a + 1, and $\sup_{a \in A} (a \land b')$ '.

THEOREM 1.3. Let $(B,+,\wedge,1)$ be a Boolean ring with identity. Fix $x \in B$ and define a multiplication on B by $a \cdot b = (a \lor x) \land b$.

Then $(B,+,\cdot)$ is a Boolean near-ring which is a Boolean ring if and only if x = 0.

<u>Proof.</u> For a,b,c \in B we have $a \cdot (b \cdot c) = (a \lor x) \land [(b \lor x) \land c]$ and $(a \cdot b) \cdot c = \{[(a \lor x) \land b] \lor x\} \land c = [(a \lor x) \land (b \lor x)] \land c$, so that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. Also, $a \cdot (b + c) = (a \lor x) \land (b + c) = (a \lor x) \land b + (a \lor x) \land c = (a \cdot b) + (a \cdot c)$. If x = 0, $(B, +, \cdot) = (B, +, \wedge, 1)$. Now, $(x + x) \cdot x = 0 \cdot x = (0 \lor x) \land x = x$ and $(x \cdot x) + (x \cdot x) = 0$, so that $(B, +, \cdot)$ is not a ring if $x \neq 0$. Also, $b \cdot b = (b \lor x) \land b = b$, for all $b \in B$, so that $(B, +, \cdot)$ is a Boolean near-ring.

Note that any e such that $e \wedge x' = x'$ is a left identity for $(B, +, \cdot)$ but $(B, +, \cdot)$ has no right identity unless x = 0.

Boolean near-rings of the type defined in the above theorem will be called <u>special</u> and the remainder of this paper will be devoted to discussing topics for special Boolean near-rings as listed in the introduction.

2. Left ideals of special Boolean near-rings.

Definition 2.1. For a special Boolean near-ring $(B,+,\cdot)$ and $t \in B$ define $P(t) = \{a \in B \mid a \wedge t = a\}$. If $S \subseteq B$ and $t \in B$, define $S(t) = \{s \wedge t \mid s \in S\}$. (Note that $S(t) \subseteq P(t)$.)

Recall from [3] that the additive group (N,+) of a near-ring can be written as a group direct sum of the additive group of its maximal sub-Z-ring, N_Z = { b \in N | a \cdot b = b, for all a \in N}, and the additive group of its maximal sub-C-ring, N_C = { b \in N | 0 \cdot b = 0}.

PROPOSITION 2.2. Let $(B,+,\cdot)$ be a special Boolean near-ring. The maximal sub-Z-ring of B is $B_Z = \{b | b \land x = b\} = P(x)$ and the maximal sub-C-ring of B is $B_C = \{b | b \land x = 0\} = P(x')$.

Proof. The proof is direct so will be omitted.

PROPOSITION 2.3. Let $(B,+,\cdot)$ be a special Boolean near-ring and let L be a left ideal of B. Then L = L(x) \oplus L(x'), a direct sum of left ideals, where, if $a_1, b_1 \in L(x)$ and $a_2, b_2 \in L(x')$, then $(a_1 + b_1) \cdot (a_2 + b_2) = (a_1 \cdot a_2) + (b_1 \cdot b_2)$. Conversely, if $M \subseteq P(x)$ and $N \subseteq P(x')$ are left ideals of B, then their direct sum, $M \oplus N$, is a left ideal of B.

<u>Proof.</u> First we show that $L(x) \subseteq L$ and $L(x') \subseteq L$. Now $x \wedge a = x \cdot a \in L$ for $a \in L$, so that $L(x) \subseteq L$. Also $x' \wedge a = (1 + x) \wedge a = a + x \wedge a \in L$ if $a \in L$, so that $L(x') \subset L$.

Now we wish to show that L(x) and L(x') are left ideals of B. $L(x) \subseteq P(x) = B_Z = \{b \in B \mid a \cdot b = b, \text{ for all } a \in B\}$, so that $BL(x) \subseteq L(x)$. Let $s \wedge x$, $t \wedge x \in L(x)$. Then, $s \wedge x + t \wedge x = (s+t) \wedge x \in L(x)$. Thus L(x) is a left ideal of B. Let $s \wedge x' \in L(x')$ and $b \in B$. Then, $b \cdot (s \wedge x') = [b \wedge (s \wedge x')] \vee [x \wedge (s \wedge x')] = (b \wedge s) \wedge x' \in L(x')$. Thus, L(x') is a left ideal of B.

Certainly L = L(x) + L(x') and $L(x) \cap L(x') = \{0\}$.

Let $a_1, b_1 \in L(x)$ and $a_2, b_2 \in L(x')$. Then, noting that $a_1 \wedge a_2' = a_1, a_1' \wedge a_2 = a_2, b_1 \wedge b_2' = b_1, \text{ and } b_1' \wedge b_2 = b_2, \text{ we have:}$ $(a_1 + a_2) \cdot (b_1 + b_2) = \left[(a_1 \wedge a_2') \vee (a_1' \wedge a_2) \right] \cdot \left[(b_1 \wedge b_2') \vee (b_1' \wedge b_2) \right]$ $= \left[a_1 \vee a_2 \vee x \right] \wedge \left[b_1 \vee b_2 \right] = (a_1 \wedge b_1) \vee (x \wedge b_1) \vee (a_2 \wedge b_2)$ $= (a_1 \wedge b_1) \vee b_1 \vee (a_2 \wedge b_2) = b_1 \vee (a_2 \wedge b_2)$ $= b_1 \vee (a_2 \wedge b_2) \vee (x \wedge b_2) = b_1 \vee \left[(a_2 \vee x) \wedge b_2 \right]$ $= \left\{ b_1 \wedge \left[(a_2' \wedge x') \vee b_2' \right] \right\} \vee \left\{ b_1' \wedge \left[(a_2 \vee x) \wedge b_2 \right]$ $= b_1 + \left[(a_2 \vee x) \wedge b_2 \right] = \left[(a_1 \vee x) \wedge b_1 \right] + \left[(a_2 \vee x) \wedge b_2 \right]$ $= (a_1 \cdot b_1) + (a_2 \cdot b_2).$

The proof of the converse follows by the left distributive law.

Proposition 2.3 reduces the problem of finding the left ideals of $(B,+,\cdot)$ to finding the left ideals $M\subseteq P(x)$ and the left ideals $N\subseteq P(x')$.

PROPOSITION 2.4. The left ideals of $(B,+,\cdot)$ in P(x) are just the subgroups of the group P(x) P(x) are just

<u>Proof.</u> If L is a left ideal of B and $L \subseteq P(x)$, then certainly (L,+) is a subgroup of (P(x),+). Conversely, suppose (L,+) is a subgroup of (P(x),+) and suppose a \in L. Then, for b \in B, b \cdot a = a, by

Proposition 2.2. Hence BLCL so that L is a left ideal of B.

LEMMA 2.5. If L is a left ideal of $(B,+,\cdot)$ with $L \subseteq P(x')$ then, for any $a \in L$, $P(a) \subset L$.

<u>Proof.</u> We have $b \cdot a \in L$, for all $b \in B$. Hence $b \cdot a = (b \vee x) \wedge a = b \wedge a \in L$, for all $b \in B$, so that $P(a) \subset L$.

COROLLARY 2.6. If $a \in P(x')$, then P(a) is a left ideal of B.

Proof. If $t \in P(a)$, then $b \cdot t = b \wedge t \in P(a)$, for any $b \in B$.

PROPOSITION 2.7. If $\{L_i\}_{i \in I}$ is a family of left ideals of $(B,+,\cdot)$, then $L = \sum_{i \in I} L_i$ is also a left ideal of B.

<u>Proof.</u> Let $b \in B$ and $a_i \in L_i$. Then $b \cdot \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b \cdot a_i \in L$, since each $b \cdot a_i \in L_i$.

Definition 2.8. By a filter F in $(B,+,\cdot)$ we mean a filter in $(B,+,\wedge,1)$. The dual of a filter F is $F' = \{a' \mid a \in F\}$.

PROPOSITION 2.9. If F is a filter in $(B,+,\cdot)$ and if F' \subseteq P(x'), then F' is a left ideal of $(B,+,\cdot)$. Conversely, if $L \subseteq P(x')$ is a left ideal of $(B,+,\cdot)$, then $L' = \{a' \mid a \in L\}$ is a filter in $(B,+,\cdot)$.

<u>Proof.</u> This follows immediately from the observation that $a \in P(x')$ implies $b \cdot a = b \wedge a$ for all $b \in B$ and the fact that duals of filters in $(B, +, \wedge, 1)$ are equivalent to ideals in $(B, +, \wedge, 1)$.

To summarize Propositions 2.3, 2.4, and 2.9, we have the following theorem.

THEOREM 2.10. Let $(B,+,\cdot)$ be a special Boolean near-ring with multiplication determined by x. Then, L is a left ideal of $(B,+,\cdot)$ if and only if there is a subgroup $M \subseteq P(x)$ and a set $N \subseteq P(x')$ such that N' is a filter in $(B,+,\cdot)$ and $L = M \oplus N$.

3. Ideals of special Boolean near-rings. Again, in this section, (B,+,·) will denote a special Boolean near-ring with multiplication determined by x. The ideals of a near-ring (N,+,·) are just kernels of near-ring homomorphisms. We state here, without proof, a theorem due to Blackett [5] that characterizes all the ideals of a near-ring.

THEOREM 3.1. The ideals of a near-ring $(N,+,\cdot)$ are just the normal subgroups (T,+) of (N,+) such that

- (a) $NT \subset T$ (i.e. T is a left ideal), and
- (b) $(n+t)m nm \in T$ if $n, m \in N$ and $t \in T$.

LEMMA 3.2. If $k \in P(x)$ and $a,b \in B$, then $(a + k) \cdot b + a \cdot b = 0$.

 $\begin{array}{lll} & \underline{Proof}. & Suppose & k \in P(x). & Then & x' \in P(k') & so that & k' \vee x = 1. \\ Now & (a+k) & = (a \wedge k') \vee (a' \wedge k) & so that & (a+k) \vee x = (a \wedge k') \vee (a' \wedge k) \vee x \\ & = \left[(a \vee x) \wedge (k' \vee x) \right] \vee \left[(a' \vee x) \wedge (k \vee x) \right] & = (a \vee x) \vee \left[(a' \wedge x) \vee x \right] & = (a \vee x). \\ Thus, & (a+k) \cdot b + a \cdot b & = a \cdot b + a \cdot b & = 0. \end{array}$

COROLLARY 3.3. The ideals $I \subseteq P(x)$ of $(B,+,\cdot)$ are exactly the left ideals $I \subset P(x)$ of $(B,+,\cdot)$.

LEMMA 3.4. If $k \in P(x')$ and $a,b \in B$, then $(a + k) \cdot b + a \cdot b = k \wedge b$.

 $\begin{array}{ll} \underline{Proof.} & Using \ k \wedge x' = k, \ k' \wedge x = x, \ and \ k \wedge x = 0, \ we have: \\ (a+k) \cdot b + a \cdot b = \left\{ \left[(a \wedge k') \vee (a' \wedge k) \right] \vee x + (a \vee x) \right\} \wedge b \\ & = \left[\left\{ \left[x \vee (a \wedge k') \vee (k \wedge a') \right] \wedge (a' \wedge x') \right\} \vee \left\{ x' \wedge (a \wedge k')' \wedge (k \wedge a')' \wedge (a \vee x) \right\} \right] \wedge b \\ & = \left[(k \wedge a') \wedge x') \vee \left\{ \left[(x' \wedge a') \vee (x' \wedge k) \right] \wedge \left[(k' \wedge x) \vee a \right] \right\} \right] \wedge b \\ & = \left[(k \wedge a') \vee \left\{ \left[(x \vee a)' \vee k \right] \wedge (x \vee a) \right\} \right] \wedge b = \left[(k \wedge a') \vee (k \wedge a) \right] \wedge b \\ & = k \wedge b. \end{array}$

COROLLARY 3.5. The ideals $I \subseteq P(x^1)$ of $(B,+,\cdot)$ are exactly the left ideals $I \subset P(x^1)$ of $(B,+,\cdot)$.

THEOREM 3.6. The ideals of (B,+,·) are exactly the left ideals of (B,+,·).

<u>Proof.</u> That the sum of two ideals is an ideal follows from $(n + a + b) \cdot m - n \cdot m = (n + a + b) \cdot m - (n + a) \cdot m + (n + a) \cdot m - n \cdot m$. Now the proof is an immediate consequence of Corollaries 3.3 and 3.5 and Proposition 2.3.

4. Ideals I such that B/I is a Boolean ring. If I is a proper ideal of the near-ring N of affine transformations of a vector space, then N/I is isomorphic to a ring of linear transformations of that vector space [13]. In this section we determine which ideals I of a special Boolean near-ring (B,+,·) have the property that B/I is a Boolean ring. The following lemma is crucial.

LEMMA 4.1. If $a,b,c \in B$, then $(a+b)\cdot c + a\cdot c + b\cdot c = x \wedge c$.

Proof. $(a+b) \cdot c + a \cdot c + b \cdot c = \{[(a+b) \lor x] + (a \lor x) + (b \lor x)\} \land c.$ Now $(a+b) \lor x + (a \lor x) + (b \lor x)$

```
 = (a + b) \lor x + \{ [(a \lor x) \land b' \land x'] \lor [a' \land x' \land (b \lor x)] \} 
 = (a + b) \lor x + \{ [(a \land b') \lor (a' \land b)] \land x' \} = (a + b) \lor x + (a + b) \land x' 
 = \{ [(a + b) \lor x] \land [(a + b) \land x']' \} \lor \{ [(a + b) \lor x]' \land [(a + b) \land x'] \} 
 = \{ [(a + b) \land (a + b)'] \lor x \} \lor \{ (a + b)' \land x' \land (a + b) \} = (0 \lor x) \lor (0 \land x') 
 = x. 
Hence, (a + b) \cdot c + a \cdot c + b \cdot c = x \land c.
```

THEOREM 4.2. Let I be an ideal of $(B,+,\cdot)$. Then B/I is a Boolean ring if and only if $P(x) \subset I$.

<u>Proof.</u> Suppose B/I is a Boolean ring. Then the right distributive law holds so that

(*)
$$[(a+I) + (b+I)](c+I) = (a+I)(c+I) + (b+I)(c+I).$$

Thus, $(a+b)\cdot c+I=(a\cdot c+b\cdot c)+I$. Hence, $(a+b)\cdot c+a\cdot c+b\cdot c=x\wedge c \in I$, by Lemma 4.1. Since c is arbitrary, we have $P(x)\subseteq I$. Conversely, if $P(x)\subseteq I$, then equation (*) is valid if and only if $(a+b)\cdot c+a\cdot c+b\cdot c\in I$. But $(a+b)\cdot c+a\cdot c+b\cdot c\in I$, by Lemma 4.1.

5. Isomorphism of special Boolean near-rings. Using Theorem 1.3 we can construct, from an arbitrary Boolean ring, β Boolean near-rings where β is the cardinality of the underlying set. Which of these Boolean near-rings are isomorphic? We answer this question in the following theorem.

THEOREM 5.1 Let $(B,+,\wedge,1)$ be a Boolean ring with identity. Let $x,y \in B$ define special Boolean near-rings $(B,+,\cdot)$ and $(B,+,\cdot)$ as in Theorem 1.3, respectively. Then the following are equivalent:

- (a) $(B,+,\cdot_x)$ is isomorphic to $(B,+,\cdot_y)$;
- (b) $P(x^{\dagger})$ is isomorphic to $P(y^{\dagger})$ as subrings of $(B, +, \land, 1)$;
- (c) P(x) is isomorphic to P(y) as subrings of $(B, +, \land, 1)$;
- (d) there exists an automorphism α of $(B, +, \wedge, 1)$ such that $\alpha(x) = y$.

<u>Proof.</u> (a) → (b). First note, using Proposition 2.2, that P(x) P(x') are, respectively, the maximal sub-Z-ring and maximal sub-C-ring of $(B,+,\cdot)$. A similar statement holds for P(y), P(y') of $(B,+,\cdot)$. Since $(B,+,\cdot)$ has an ideal decomposition $P(x) \oplus P(x')$ and $(B,+,\cdot)$ has an ideal decomposition $P(y) \oplus P(y')$ (Proposition 2.3 and Theorem 3.6), any isomorphism of $(B,+,\cdot)$ onto $(B,+,\cdot)$ can be restricted to an isomorphism of $(P(x'),+,\cdot)$ onto $(P(y'),+,\cdot)$, since isomorphisms of near-rings take maximal sub-C-rings onto maximal sub-C-rings. (This last statement follows from [12, Proposition 1].) If $a,b \in P(x')$,

then $a \cdot_{\mathbf{x}} b = (a \vee \mathbf{x}) \wedge b = (a \wedge b) \vee (\mathbf{x} \wedge b) = a \wedge b$, so multiplication $\cdot_{\mathbf{x}}$ in $P(\mathbf{x}')$ is identical to that in $(B, +, \wedge, 1)$. Similarly, multiplication $\cdot_{\mathbf{y}}$ in $P(\mathbf{y}')$ is identical to that in $(B, +, \wedge, 1)$. Hence $P(\mathbf{x}')$ is isomorphic to $P(\mathbf{y}')$ as subrings of $(B, +, \wedge, 1)$.

- (b) \rightarrow (c). Now P(x), P(x'), P(y), P(y') are all ideals in the ring (B,+, \lambda,1) and we have B = P(x') \oplus P(x) = P(y') \oplus P(y), hence P(y') \oplus P(x) $\stackrel{\sim}{=}$ P(x') \oplus P(x) = P(y') \oplus P(y). Consequently P(x) $\stackrel{\sim}{=}$ P(y).
- (c) \rightarrow (d). Now x and y act as identities in the subrings P(x) and P(y), respectively. A proof analogous to that of (b) \rightarrow (c) shows that (c) \rightarrow (b). So we have the existence of isomorphisms $\alpha_1 \colon P(x) \rightarrow P(y)$ and $\alpha_2 \colon P(x') \rightarrow P(y')$. Now $\alpha_1(x) = y$ since x and y are identities. Define $\alpha \colon B \rightarrow B$ by $\alpha(b) = \alpha_1(b_1) + \alpha_2(b_2)$ where $b = b_1 + b_2$ with $b_1 \in P(x)$ and $b_2 \in P(x')$. It is direct to see that α is our required automorphism.
- (d) \rightarrow (a). $\alpha(b \cdot x^c) = \alpha[(b \lor x) \land c] = [\alpha(b) \lor y] \land \alpha(c) = \alpha(b) \cdot y^{\alpha(c)}$. This completes the proof of the theorem.
- 6. Ideals that are direct summands of $(B,+,\cdot)$. Let $(B,+,\cdot)$ be the special Boolean near-ring determined by $x \in B$. We have seen in Proposition 2.2 that $B = P(x) \oplus P(x')$ and we have seen from Propositions 2.4 and 2.9 and Theorem 3.6 that P(x) and P(x') are near-ring ideals. In this section we classify those ideals that are direct summands. We will make use of the following:
- LEMMA 6.1. Let $(B,+, \land, 1)$ be a Boolean ring with identity 1, and let A be an ideal of B. Then A is a direct summand if and only if A = P(x) for some $x \in B$.

<u>Proof.</u> For $x \in B$, $B = P(x) \oplus P(x')$. Conversely, suppose $B = A \oplus C$ where A and C are ideals. Now 1 = x + x', $x \in A$ and $x' \in C$. Let $a \in A$. Then $a = a \wedge 1 = (a \wedge x) + (a \wedge x')$ and $a \wedge x' = 0$, since $x' \in C$. Hence $a = a \wedge x$ which implies that $a \in P(x)$. Consequently $A \subset P(x)$. But $P(x) \subset A$ since $x \in A$. Hence A = P(x).

Let A be an ideal of $(B,+,\cdot)$. As seen from Theorem 2.3 and Theorem 3.6, $A = A(x) \oplus A(x')$ where $A(x) = \{a \land x \mid a \in A\}$ and $A(x') = \{a \land x' \mid a \in A\}$. Suppose $B = A \oplus C$ where C is also an ideal. Then $B = A(x) \oplus C(x) \oplus A(x') \oplus C(x')$ and $P(x) = A(x) \oplus C(x)$ and $P(x') = A(x') \oplus C(x')$. So the problem of determining which ideals are direct summands has been reduced to finding the ideals that are direct summands of P(x) and P(x'), respectively. Since $(P(x'),+,\cdot,x')$ is a Boolean ring with identity x', we know from Lemma 6.1 the ideals

that are direct summands of $P(x^1)$. We now have only to find the ideals $I \subseteq P(x)$ that are direct summands of $(P(x), +, \cdot)$. Recall from Proposition 2.4 and Theorem 3.6 that the ideals $I \subseteq P(x)$ of $(B, +, \cdot)$ are exactly the subgroups. We shall see that they are all direct summands.

Suppose $P(x) = M \oplus N$ where M and N are ideals of $(B,+,\cdot)$. Then M and N are subgroups of (B,+) and are direct summands of (P(x),+). We now will see that the converse is also true. Since each subgroup $M \subseteq P(x)$ is bounded and is a pure subgroup, then a theorem of Prüfer [9, Theorem 24.5] shows that M is a direct summand. We have already seen that each subgroup is also an ideal. In summary we have the following:

THEOREM 6.2. An ideal I of $(B,+,\cdot)$ is a direct summand if and only if I = $P(t) \oplus M$ where $P(t) \subseteq P(x')$ is an ideal and $M \subseteq P(x)$ is a subgroup, hence an ideal.

Remark. In this paper we have considered only one type of Boolean near-ring. It would be of interest to classify all Boolean near-rings according to Definition 1.1.

REFERENCES

- 1. M. Anshel and J.R. Clay, Planar algebraic systems: some geometric interpretations. Jour. of Algebra 10 (1968) 166-173.
- 2. M. Anshel and J.R. Clay, Planarity in algebraic systems. Bull. Amer. Math. Soc. 74 (1968) 746-748.
- G. Berman and R. J. Silverman, Near-rings. Amer. Math. Monthly 66 (1959) 23-34.
- 4. G. Berman and R. J. Silverman, Embedding of Algebraic Systems. Pacific J. Math. 10 (1960) 777-786.
- 5. D.W. Blackett, Simple and semi-simple near-rings. Proc. Amer. Math. Soc. 4 (1953) 772-785.
- 6. D. W. Blackett, The near-ring of affine transformations. Proc. Amer. Math. Soc. 7 (1956) 517-519.
- 7. D. W. Blackett, Simple near-rings of differentiable transformations. Proc. Amer. Math. Soc. 7 (1956) 599-606.

- 8. J.R. Clay, The near-rings on groups of low order. Math. Z. 104 (1968) 364-371.
- 9. L. Fuchs, Abelian Groups (Publishing House of the Hungarian Academy, Budapest, 1958).
- 10. H. Gonshor, On abstract affine near-rings. Pacific J. Math. 14 (1964) 1237-1240.
- 11. J. Lambek, Lectures on Rings and Modules (Blaisdell, Toronto, 1966).
- 12. J.J. Malone, Jr., Near-ring homomorphisms. Canad. Math. Bull. 11 (1968) 35-41.
- 13. K.G. Wolfson, Two sided ideals of the affine near-ring. Amer. Math. Monthly 65 (1958) 29-30.

University of Arizona Tucson, Arizona 85721