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Transient development

of capillary-gravity waves in a

running stream

Kalyan Kumar Bagchi and Lokenath Debnath

An init ial value investigation is made of the propagation of

capillary-gravity waves generated by an oscillating pressure

distribution acting at the free surface of a running stream of

finite, infinite, and shallow depth. The solution for the free

surface elevation is obtained explicitly by using the

generalized Fourier transform and its asymptotic expansion. It

is found that the solution consists of both the steady state and

the transient components. The latter decays asymptotically as

t •* °° and the ultimate steady state is attained. It is shown

that the steady state consists of two or four progressive

capillary-gravity waves travelling both upstream and downstream

according as the basic stream velocity is less or greater than

the critical speed. Special attention is given to the existence

of the critical values associated with the running stream of

finite, infinite, and shallow depth. A comparison is made between

the unsteady wave motions in an inviscid fluid with or without

surface tension.
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1. Introduction

Recently, Debnath and Rosenblat [2] have made an initial value

investigation of the propagation of two-dimensional waves generated by an

oscillating pressure distribution acting at the free surface of an inviscid

running stream of finite depth. With the aid of the generalized function

method and asymptotic devices, they have solved the wave problem and

determined the nature of the unsteady wave motions. It has been shown that

the ultimate steady state consists of either two or four waves depending on

the relative magnitudes of the velocity of the stream, i ts depth, and the

forcing frequency of the applied pressure. Special attention is given to

the singular behavior of the free surface elevation on the critical curve

separating these two possible states of the solution. Several limiting

cases of interest have been discussed.

In recent years, interest in the linearized theory of water waves

including the effects of surface tension has been revived by Evans [3, 41,

Rhodes-Robinson [9], Packham [S], and Debnath [ / ] . Most of these works are

concerned with the propagation of surface waves due to submerged sources,

singularities, or obstacles of localised disturbances applied at the free

surface of the liquid. In spite of these works, an attempt has hardly been

made to study the development of surface waves generated by disturbances

acting at the free surface of a running stream which includes the effect of

surface tension.

The present analysis is intended to make a study of the transient

development of capillary-gravity waves generated by an oscillatory pressure

acting at the free surface of a running stream of finite, infinite, and

shallow depth. With the aid of the generalized Fourier transform and i ts

asymptotic expansion, the solution for the free surface displacement is

found explicitly. It is shown that the solution consists of both the

steady state and the transient components. The transient effects decay

asymptotically as t -*•<*> and the ultimate steady state is reached. It is

predicted that the steady state consists of two or four progressive

capillary-gravity waves travelling both upstream and downstream according

as the stream velocity is less or greater than the critical speed. Special

emphasis is given to the existence of the critical values related to the

running stream of finite, infinite, and shallow depth. A comparison is made
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between the unsteady wave motions in an inviscid fluid with or without

surface tension.

2. Mathematical formulation

Based upon the assumptions of the linearized theory of water waves , we

consider the propagation of capillary-gravity waves on the surface of an

inviscid, incompressible, homogeneous liquid including the effects of

surface tension. The unsteady analysis is carried out under the following

assumptions:

(i) in an undisturbed state, an infinitely horizontal extent

of liquid has constant depth H and flows with uniform

velocity I/- ;

(ii) the liquid has constant density p and surface tension

(i i i ) the wave-generating mechanism is a harmonically

oscillating pressure applied at the free surface of the

liquid;

(iv) the applied pressure distribution is two-dimensional so

that the wave motion is entirely parallel to the flow.

It is convenient to take the cartesian coordinates so that the origin

is situated on the undisturbed free surface, the Z-axis is vertical

positive upward and the basic stream moves parallel to the *-axis with the

velocity £/_ relative to the coordinate frame.

The applied pressure distribution may be an arbitrary function of X

but i t would be enough for the investigation of the principal features of

the unsteady flow to take the simple form

(2.1) p U , T) = PQ6(X)eiuTH(T) ,

where PQ is constant, 6(X) is the Dirac delta function and H(T) is

the Heaviside unit function of time T .

As the motion is irrotational, there exists a disturbance velocity

potential $(#, Z; T) which satisfies the Laplace equation
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in -# £ Z < 0 , -°° < * < °° , T > 0 .

Taking into account the effect of the surface tension, the linearized

free surface conditions are

<2-3) f + " o I + ^ - T 0 = - P u ' r ) ' z = 0 ' y > 0 '

(2.U) I + y o f " I f • Z = ° > T > 0 '
where £ = £(•?, T) denotes the vertical surface elevation and g is the

acceleration due to gravity.

The boundary condition at the bottom is

(2.5) || = 0 on Z = -fl , T > 0 .

The initial conditions of the problem are

(2.6a, b) $U, Z; 0) = E{X, 0) = 0 .

Further, we shall treat $ and E as the generalized functions of X

in the sense of Lighthi I I [7] so that their Fourier transforms with respect

to X exist.

3. The solution of the ini t ia l value problem

It is convenient to introduce the dimensionless quantities defined by

P u5 J
(X, Z, H) , t = uff , cj> = - \

9

2 P u
(x, s , h) = 2~ (X, Z, H) , t = uff , cj> = \

9

p =

pg pg'

2^2

U = - Un and 2" =
go i

I t is then easy to rewrite the equations (2.2)-(2.6) in terms of these

non-dimensional quan t i t i e s . In order to solve the i n i t i a l value problem,

we take the Fourier transform with respect to x defined by [7, JO],
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(3.1)
.» 1 ( -ikx,,

, z; t) = -— e <j>U, z; t)dx .

Thus the solution of the transformed non-dimensional equation with the

bottom boundary condition is

(3.2) , z; t) = A(k, t)coshk(z+h) ,

where A and r\ are determined from the transformed non-dimensional free

surface conditions

(3.3)

(3.U)

#
— ! ?1— P 7'f

tfc<j> + 1+T fe n = - e , 3 = 0 , t > 0 ,

: 5 i ' 3 = 0 , t > 0 ,

with the in i t i a l conditions

(3.5a, b) ?(£, s; 0) = n(k, 0) = 0 .

The solution for T](k, t) can readily be obtained from the above as

(3.6) n(k, t) = fetanhfeh

•l+iyc'

it
e -e

imt
%t

e -e
1-m,

where m and m are given by

(3.7a, b) = -kU ± \ 11+^fe'

The inverse Fourier transformation gives the integral solution for

r\(x, t) as

(3.8) n(>• " • & [.
im t

1ktarihkh
l-m. 1-m.

e dk .

I n t h e c a s e o f i n f i n i t e d e p t h , /!-»•«> s o t h a t |fc|tanhfc?z ^ \k\ and

( 3 . 8 ) r e d u c e s t o

( 3 - 9 )
fM 'it *"l* it i m2^e -e e -e

1 - m ,
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where

-kU ±

m and m? are to be. replaced by their limiting values

Similarly-, the integral solution for the wave potential <fi(x, z; t)

can be found in both finite and infinite depth cases.

It is noted that the principal features of the unsteady wave motions

can be determined completely if integrals (3.8)-(3.9) are evaluated exactly

or asymptotically. It should be acknowledged that the exact evaluation of

(3.8)-(3-9) is a formidable task. It is thus necessary to resort to

asymptotic methods. We next turn our attention to the asymptotic analysis.

4. Asymptotic analysis

In order to carry out the asymptotic analysis, i t is convenient to

rewrite (3.8) as

(k.i) n(*. *) = -j£ [e^i-j] ,

where I and J are

( U . 3 )

-r
' - c o

-f

ktazihkh
X-m1 i-m2

±-hikxdx ,

ktaiihkh

•1+Tjk
dk

To evaluate these wave integrals for large values of |a:| and t , we

shall use the formulae advanced by Lighthi II [7] and Jones [5] for the

asymptotic expansion of Fourier transforms of generalized functions. The

nature of the ultimate wave system and of the transients is determined by

the singularities and stationary points of the wave integrals (1».2)-(U.3).

We next turn our attention to the nature and location of these singular-

ities and stationary points.

The significant contribution to I , as |x| •*• °° , comes from the

poles of the integrand in (U.2), that is, from the roots of the equations
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(h.ka, b) 1 + kU = ± <\l+Tk \ktarihkh> .

These poles are determined from the points of intersections of the

curve | 1+T k2\ktarihkh\ with the straight lines ±(l+kU) for different

values of the parameters U, (0 and h ; and are shown in Figures 1 and 2.

These figures give one positive pole at k = s and one negative pole at

s = -s , provided Figure 1 is relevant. On the other hand, whenever

U > U* , there are two further poles arising from Figure 2 at the negative

values of k given by k = -a. and k = -O? ; where U* is the critical

value of V whose details will be examined later on.

Following the procedure advanced by Debnath and Rosenblat [2], the

steady state wave integral (U.2) can be directly evaluated to obtain

(1+.5) I ^ TT-isgnx

where

ikt&rihkh/l+T k2) iktaiihkh/i+T k2)

The method of stationary phase [Jones, 5] for the generalized Fourier

integral can be employed for the asymptotic evaluation of J for large

t .

For |a;| « Vt , the stationary points of the integral (1».2) are the

solutions of the equations

(Ma, b) -kfW = ±U '

where

( U . 8 ) f{k) =

Unlike in the case without surface tension f (k) is not a monotonic
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function of k . I t appears from the graphs of f(k) that f (k) s t a r t s

from >/h at k = 0 and decreases monotoni cally to at ta in a minimum at

k = k- and then increases monotoni cally without any limit as k •* °° ,

where kQ i s the root of the equation / " (&)= 0 . Thus a necessary and

suff ic ient condition for the existence of roots of the equations (h.Ta, b)

i s that V > k . Hence each of these equations has two roots in the range

f [kQ) < U < Jh. and has one root whenever U > Jh .
Q

In the case of in f in i t e depth, f(k) = \l+T k \k\ so

and f(k) = i J X - \ 3 / 2
 f ° r

I t follows from a careful inspection that f'(k) tends to inf ini ty as

k -*• 0+ and k •* °° ; and decreases monotoni cally from °° to f' [k^j as

k increases from 0 to k . Further, i t increases monotonically from

f' [kQ] to °° as k goes from k to in f in i ty . Consequently, each of

the equations f (k) = ±£/ has two roots when V > f'[kQ) where kQ i s

numerically evaluated and i s approximately equal to \ L \ • Thus for

the f luid of f in i t e depth, there are four stationary points at k = ±0 ,±p

when / ' [k-] < U < 7h ; and there are two stationary points when V 2 Jh

and also when U = f' [kQ) . In the case of in f in i t e depth, there are also

four stat ionary points at k = ±o, ±p provided U > f [kQ) and two

stat ionary points wnenever U = f (feQ) . I t appears that U = f' (fê J

represents another c r i t i c a l velocity.

Using the standard formula for the stationary phase approximation

(Jones, [5] , p . 323), the transient component of J , that i s , the dominant

contribution to J from the stationary points involved in various cases

can be obtained as
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(U.9) J.transient
-f [kQ)}-H(U-Sh)]

exp[i{tm1(a)+ox}]

ptanhpfc 2TT

2ir

*IT(-P)
exp[i{tm1(-p)-px}]

l-m2(-p)

This result incorporates all the cases of four, two or no stationary points

as indicated earlier. However, the transient solution breaks down at the

critical speed U = /'[kQ) . Hence this case needs further investigation.

It remains to calculate the contribution to J from its poles, which

are the same as the poles of I . A procedure similar to that of Debnath

and Rosenblat [2] can be employed for finding the polar contribution to

J .

It may be helpful to write down (U.2) in the form

(l».10) J = J-, - J~ ,

so that

( l t . l l )

and

c-rj ktaxiiikh
, i [m^t+kx]

dk

, i [m t+kx)
* e d dk

K-iJ

or
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I _oo ' _p j

ktanhkh
, i [m-t+kx)

dk

accord ing as f' (k) = -V has one or two roo ts and m (±k) -*• -°° as

k •*• °° . We then change the variable of integration from k to m = m (k)

in in tegra l ( l* . l l ) , and from k to m = m^ik) in (U. 12)-(U. 13) • I t

turns out that

( it . 'i-[L-C
im t

e d

which i s , invoking result (2U) of Debnath and Rosenblat [2 ] ,

-is x ^. r - is x ^spxl
(it.15) ^ irie -<f>(-s )e +<J)(s Je , as

w h e r e m ( p ) = -A/ < 0 .

Similarly, (U.12)-(U.13) reduce to

(U.16) J = ff(y-i/*)

1 J

ff* ikx\

2 '

2 '

where m (-p) = W > 0 and m2(-a) = -Wg < 0 with a < p .

It follows from formula (2M of Debnath and Rosenblat [2] that

r ~^°px -io ii
•nie'ltH{u-U*}h[-a2)e

 2 - ^ ( -a je I , as

The polar contribution to J as t •*•<*> is therefore given by

(U. 19) J
polar

- M l -IB X

}]•
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Thus the asymptotic representation of the surface elevation is

explicitly obtained as t •*• °° and can be written as a convenient form

(U.20) r\(x, t) = r\st(x, t) + n^ix, t) ,

where r| Ax, t) is the steady state component and r\ (x, t) is the

transient solution.

It is noted that the former is essentially made up of the polar

contributions to J and J which are given by {k.5) and (i*. 19)

respectively, and has the final representation

. p r i[t-s x) i [t-0 x)-i

(J».2l) r\st{x, t) <^?f [<f>(-Sl)e
 X ^{v-V^l-o^e X J , x > 0 ,

and

: [ t - ^ ] ] , ,(U.22) r\ Ax, t) <v- ̂ - -<(. s . }e c +H[U-U*j^[-a)e " \ , x<0.

The significant contribution to the transient solution T\^p is given

by (k.9) which eventually decays in the limit t -*• °° . Thus the steady

state is attained in the limit and described by (^.21)-(U.22). Further,

the steady state wave system has the following characteristic features:

(a) when U < U* , solutions (l».2l)-(l+.22) confirm the existence

of two progressive capillary-gravity waves on the surface of

the running stream. One of these waves is travelling down-

stream of the origin with the phase velocity ĝ— and the

q
other is propagating upstream with the phase velocity -~— ;

2

(b) when U > U* , there are four capillary-gravity waves

propagating on both upstream and downstream sides of the

origin. Three of these waves are travelling downstream

with the phase velocities -*—, ̂ — and -j£— respectively,

and the remaining one is propagating upstream with the speed

ws2
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As i t has been found earlier that the nature of the singularities and

the stationary points of the wave'integrals involved in (3-9) is somewhat

similar to those of (3-8), the conclusions are also true in an infinitely

deep fluid with the exceptions of the magnitudes of the phase velocities

of these waves.

The present analysis reveals that the structure of the wave system

above or below the cr i t ical velocity shows a striking contrast to that

predicted by Debnath and Rosenblat in an inviscid fluid without surface

tension.

5. The cr i t i ca l values

I t is now necessary to recognize the critical speeds associated with

the problem. The cri t ical value occurs when there eyists a common root of

the equations (l*.l+b) and (U.Tb), that i s ,

ff 2l 1 *
(5.1) 1 + kU + Ul+T^k \ktarihkh> = 0 ,

I! ?1 f ?1 ? 1 l( p)3* )%
( 5 . 2 ) I 1 + 3 ^ \tanhkh+ \l+Tk \khsech kh\ = -2(A h+T^k \ ktanhkh\ .

Replacing k by -A and eliminating the hyperbolic function from the

above equations, the cri t ical velocity is given by the solution of the

equation

(5-3) [l+ST^jd-Af/)2 + ̂ |x2(i+I'lA
2|-(l-X[/)H + 2At/(l+T1X

2j(l-X/y) = 0 .

In particular, for an infinitely deep fluid {h •*• °°) , the critical

speed V* is given by the equation
G

(5.!*) Itui/5 - U + l(Tii)V + 30Tu2lf - 2ku!riU + HT + 2 7 ^ " = 0 .

This result is believed to be new, and when T = 0 with w # 0 , the

cr i t ica l value is given by, in dimensional form,

(5.5) U* = U = •&- .

This result has been independently predicted by Kaplan [6], and Debnath and

Rosenblat [2].
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Further, when u = 0 with T t 0 , there exists a new critical speed

which has the dimensional form

(5.6) [/* =

f l lwhich depends on the ratio — for a given g , and is exactly identical

with the minimum velocity of the capillary-gravity waves in deep water

without any basic stream.

If we treat equation (5.*+) as a quadratic in T , then the existence

of at least one positive value of T requires U < r— , which is a

necessary restriction on the velocity of the basic stream.

In the case of shallow depth, the long wave approximation holds good,

so that the equation determining the crit ical speed has the form

(5.7, \^#)-J*T§ = 27[| T
In par t icu la r , when <*> = 0 , the dimensional form of the c r i t i c a l

velocity i s ygH which is obviously unaffected by surface tension.

On the other hand, when surface tension is neglected, equation (5-7)

admits no solution. Of course, in th is case, the relevant equation for the

common root i s k [u-h] + 2kU + 1 = 0 , which has no double root. Thus

there i s no c r i t i c a l speed in a shallow fluid when i t s free surface i s

disturbed by a periodic pressure of frequency u .

6. Concluding remarks

The ini t ia l value problem has been solved for the propagation of

capillary-gravity waves in an inviscid fluid with surface tension. In the

absence of surface tension, the findings of this paper are in excellent

agreement with those of Debnath and Rosenblat [2], and of Stoker [H] when

the additional restrictions T = 0 , to = 0 are made. In real

applications, i t would be interesting to solve the problem including the

viscous effects. Such a study may be made in a subsequent paper.
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