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On the structure of Stone lattices

P. D. Finch

C.C. Chen and G. Gratzer have shown that a Stone lattice is

determined by a triple (C, D, (j>) where C is a boolean

algebra, D is a distributive lattice with 1 and <j> is an

e-homomorphism from C into V{D) , the lattice of dual ideals

of D .

It is shown here that any Stone lattice is, up to an isomorphism,

a subdirect product of its centre C{L) and a special Stone

lattice M{L) . Special Stone lattices are characterised, in the

terminology of the Chen-Gratzer triple, by the fact that the

e-homomorphism (f> is one to one.

In this paper we characterise a special Stone lattice L as a

triple [H, C, DQ) where B is a distributive lattice with 0

and 1 , C is a boolean e-subalgebra of the centre of H and

D is a sublattice of H with 0 such that

and which separates the elements of C in the sense that for any

cl ^ C2 i-n C there is a d in D with d £ C\ but d £ c 2 .

It then turns out that C is C(L) and D is the dual of

D(L) .

1. Introduction

We adopt, without further explanation, the notation and terminology

of Chen and Gratzer. The motivation for the results given below comes from
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402 P.D. Finch

PROPOSITION 1. Let M be a Stone lattice and let 8 : B •* C(M) be

an e-homomorphism from the boolean algebra B onto the centre of M

which preserves complementation. Let L be the set of ordered pairs

(x, b> j with x in M , b in B and b% = x** . Then L is a

subdirect product of M and B 3 it is a Stone lattice, its centre £7(1)

is isomorphic to B and D(L) = D(M) x {l} .

Proof. It is easily verified that

biQ = XV ' i = -1' 2 " (-bl A b2^ = ( x l A X2)** &
(2>i v b2)Q = (*i v x2)** .

It follows that £ is a sublattice of M x B and, since 8 is onto

C(M) , L is a subdirect product of M and B . L is distributive, it

has a least element <0, 0> and a greatest element <1, 1> . Since 8

preserves complementation

<x, b> € L = < * * , b'> e L

where the prime denotes complementation in B . Since

<x, b> A <y, c) = < 0 , 0> => <y, c) 5 (x*, b') ,

L is pseudocomplemented by

<x, b)* = (x*, b') .

Since

{x, b)* v (x, b)** = <a:* v x**, b v b*> = <1, 1> ,

L i s a Stone l a t t i c e . Clearly

DU) = {<d, 1> : d € O(M)} = 0(W) x {l}

and

C{L) = {<x, &> : a; € C(M), b € B, £8 = x} .

The correspondence (x, b) •* b and b •+ <bQ, b) are mutually inverse

isomorphisms between C(L) and B .

This proposition suggests the possibility that any Stone lattice L

is representable, up to an isomorphism, as a subdirect product of another

suitably chosen Stone lattice M and a boolean algebra B isomorphic to

the centre of L , in the manner described in the proposition. In what

follows we show that this is so and we demonstrate it in the following
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way. We introduce a ''-congruence T on the Stone lattice L (i.e. a

lattice congruence which preserves pseudocomplements). We say that a

Stone lattice is special when the ^-congruence T on it is the identity

relation. L/x is a special Stone lattice and x , the restriction of x

to C(L) , is a congruence on C{L) which preserves complements, further

C{L/x) = C(L)/XQ . The mapping C(L) •* C(L/T) is an e-homomorphism

which preserves complementation and L is isomorphic to a subdirect

product of L/x and C{.L) in the manner described in Proposition 1 with

L/x playing the role of M .

The ^-congruence T is defined explicitly by writing xxy to mean

(i) id i D(L) , d > x* «• d > y* , and

(ii) x V x* = y v y* .

Note that (ii) is always true when x and y are in C(L) .

Through the paper L denotes a fixed but arbitrary Stone lattice,

unless the contrary is explicitly stated.

2. The congruence T on C(L)

For a in C(L) write

Ga = {d : d € d(L), d > a"} .

Then ax b if and only if G = G, . Then XQ is an equivalence

relation on C{L) , we write ax for the T -equivalence class in C(L)

determined by a , C(L)/x for the set of TQ-equivalence classes and

T^ for the natural mapping C(L) •*• C(L)/T .

In fact T is a congruence on C(L) which preserves complements.

That T preserves join and meets follows from the fact that

Gai<b = Ga A Gb '

aw a b '

where the lattice operations on the right are those of the lattice

https://doi.org/10.1017/S0004972700042076 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042076


404 P.D. Finch

V[D(L)) . From this it follows that C(L)/x is a lattice with ordering

ax 5 bx if and only if G £ G. ,

and lattice operations

arQ A bxQ = (a A b)xQ , axQ v bxQ = (a v b)xQ .

Note that

0TQ = L : a

is the least element of C(L)/x and

1T Q = L : a

is its greatest element.

Next we observe that G is in the centre of V(D[L)) , its

complement being G ^ , so that

G A G, = G » fl, c ff
a & o b — a*

Thus

axQ A bxQ = 0To - foxo < a*xQ - aTo 5 b*xQ .

aTo = &T = b*\ a*T

In particular

so that

Thus one can define (ax ) * = a*x . One ver i f ies that C(L)/x is a

boolean algebra with complementation ax •* [ax J * .

We note that the congruence T is Just that associated with the

s t ructure map (j> of Chen and Gratzer; th i s is an e-homomorphism from

C(L) in to V{p(L)) . We summarize the resu l t s above in

LEMMA 2 . 1 . The map x^ : C(L) -»• C(L)/x is an e-homomorphism from
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the boolean algebra C(L) onto the boolean algebra C(L)/T which

preserves complementation.

We conclude this section with

LEMMA 2.2. If ai b then d v a = d v b for every d in D(l) .

Proof, d v a is in G ^ = G, ̂  . Thus d v a 2 d v b , by symmetry

d v b 2 d v a .

3. T is a *-congruence on L

We start "by providing some background motivation for the introduction

of the ''-congruence T . For a in C[L) let

Fa = {x : x i L, x** = a} ,

then as noted by Chen and Gratzer, the correspondences

x •*• x v a* and d •+ d A a

are mutually inverse isomorphisms between F and G . It follows that

LEMMA 3.1. If ai b then the correspondences

x •*• (x v a*) A b and y •*• (y v b*) A a

are mutually inverse isomorphisms betueen the lattices F and F, .

Elements of F and F, [ax b] which correspond under these
a b *• o '

isomorphisms will be said (provisionally) to be T -similar; more

explicitly, elements X, y in L are T -similar when

(i) x**TQy** ;

(ii) (x v x*) A y** = y and {y v y*) A x** = x .

Then we have

LEMMA 3.2. Elements x, y in L are T -similar if and only if

they are T-equivalent.

Proof. T-equivalence clearly implies T -similarity. To prove the
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converse note that, since y v y* is dense, x**x y** implies that

y v y* i x* . From (ii) above we obtain

x v x* = (y v y* V x*) A (x* v x**) = y v y* .

We mention the obvious.

COROLLARY.

1. a, b £ C(L) & ax b => axb

2. a d C(L), x d L & axa; => x i. C(L) & ax x ;

3. 0T = 0To, IT = 1TO .

We proceed now to show that T is a ''-congruence on L . That T

preserves meets and pseudocomplements is easy to prove and we dispose of

it in

LEMMA 3.3.

1. If xiy then x*xy* ;

2. if x.xy. , i = l, 2 then (xi A x2)x(y\ A y2) .

Proof. Firstly

xxy =» x**x y** =» X*T y* ° x*xy*

Secondly, when x.xy. ,

(Xi A X2)** = U * * A X**) (y** A y**) =

and, using Lemma 2.2 at the third line below,

(Xj A x2) V (X! A x 2 ) * = *= {{xi

= {(yx

= Uvi
= (i/i

vxT
v 2/1

v y*
A 2/2)

) A

) A

) A

V (

( * 2

(j/2

(^2

'2 /1

V

V

V

A 2

x 2 ) }

2/2)}

» 2 ) >

v (a
v (a

v (j

; j A

: l A

' 1 A

x2)*
x2)*

2 / 2 ) *

This proves the lemma.

To show that T preserves lattice joins is a little more difficult;

we do so through a number of contributory results.

LEMMA 3.4. If xxy and d is in D(L) then
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d v x = d v y .

Proof. By Lemma 2.2

1**T J** = d V 1** = (i V j " ,

x x y = > d v x \ i x * = d \ i y » j * .

Then when xxy one has

{d v x**) A (d v x v a:*) = (d v j/**) A (d V y V y*)

that i s ,

d si x = d v y .

This is the desired result.

LEMMA 3.5. Write d\ = x\ v x* d2 = x2 M x* ; then

xi v x2 v (aj v z 2 ) * = W i A d2) v Qdi v d2) A a;** A X2*] .

Proof. Routine computation of the right-hand side.

We are now able to establish

LEMMA 3.6. If x.xy. , i - 1, 2 ; then (xl v xz)x{yl v y2) .
Is Is

Proof. Clearly {xx v x2)**x {y1 v y2)** . It is then only

necessary to show that

xi v x2 v (a?! v x2)* = y\ v j 2 v (z/j v y2)* .

But this equation follows easily from Lemmas 3-^ and 3-5 since

ix** A x2 )T(J/I* A t/2*) a n d T preserves meets, so that

[«! v d2) A aj* A X ^ ] T [ W ! v d2) A y*x* A y^] .

Finally d. - x. V x*. = y . v y* and so we obtain the desired result.
1* If 1r Is If

Collecting the above results we have

THEOREM 1. L/x is a special Stone lattice with

pseudocomplementation (,xx)* = x*x . C(L/x) = C{L)/XQ and D(L/x) is

isomorphic to D(L) . Further x : C(L) •+• C(L/x) is an e-homomorphism

of C(L) onto C(L/x) which preserves complementation.

That L/x is a special Stone lattice is easily verified and the
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only part of the theorem which calls for proof is the statement about

D(L/T) ; to establish its isomorphism with D{L) we need

LEMMA 3.7.

(i) if dij d2 are in D(L) and dxTd2 then d\ = d2 ,

(ii) if d is in D(L) then dj is in D{L/T) ,

(Hi) if XT is in D(L/T) then there is exactly one d in D(L)

with xi = dx .

Proof. If dlt d2 axe in D(L) and dXTd2 then

di = dx v d* = d2 v d2 = d2 .

If d is in D(L) then

W T ) * = d*T = Ox ,

so dx is in D(L/x) .

Finally if XT is in D{L/T) then (XT)* = OT SO

(x V X*)T = XT V X*T = XT

and x v x* is dense.

It follows from Lemma 3.7 that

D(L/T) = {dT : d 6 D{L)}

and the isomorphism between D{L/T) and D(L) is an obvious consequence.

4. L is a subdirect product of L/T and C(L)

We prove

THEOREM 2. Let L be a Stone lattice. Then L is *-isomorphic

with the subdirect produot of L/T and C(L) consisting of all ordered

pairs <tj a> with t in L/T 3 and a in C(.L) and ax =.*** .

Proof. The theorem is proved by a routine verification that £,, T)

defined by

xE, = (.XT, x**) , x i L ,

(t, a)r\ = t A a , ax^ = t** ,
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are mutually inverse ^-isomorphisms between the two Stone lattices in

question.

Thus any Stone lattice L determines a triple (C(L), M(L), 8J

where M(L) = L/x is a special Stone lattice and 9 is an

e-homomorphism form C(L) onto C[M(L)) which preserves complementation.

Conversely, if (B, M, 8) is a triple where

1 (i) B is a "boolean algebra,

(ii) M is a special Stone lattice,

(iii) 6 is an e-homomorphism form B onto C(M) which preserves

complementation,

then the Stone lattice L constructed in Proposition 1 is such that

B = C{L) and M ~ L/x . This is the content of

I PROPOSITION 2. If M in Proposition 1 is a special Stone lattice

then L/x is *-isomoriphia to M .

Proof. Returning to the notation of Proposition 1 one finds that

! G(x**, b) = Gx**X{l}

and it follows that, if M is a special Stone lattice,

(x**, b)xoiy**, a) <=> x** = y** .

Thus

(x, b)T(.y, a) => x** = y** & x v x* = y v j *

=» x = {x V x*) A x** = {y V y*) A y** = y .

Hence, for <x, b) in L , one has

(x, b)x = {(x, o) : c9 * bQ) .

It is now routine to verify that the correspondence x -*• (x, b) T is

a ^-isomorphism between M and L/x .

The preceeding results reduce the study of arbitrary Stone lattices

to that of special Stone lattices. As noted in the summary, special Stone

lattices are characterised by the fact that the structure map in their

Chen-Gratzer triple is one to one. It follows at once that a special

Stone lattice M is characterised by the distributive lattice D(M) and
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a boolean e-subalgebra of the centre of V(p(.M)) , namely the image of

the latt ice C(.M) under the structure map ((> . However, rather than

pursue a direct analogy with the approach of Chen and Gratzer we embark on

a slightly more oblique one in the next section. This second approach is

based on the observation that the sublattice of P(o(Af)) consisting of

the principal dual ideals of D(M) is isomorphic with the dual of D .

We can then characterise a special Stone lattice through the distributive

la t t ice V[D{M)) , a boolean e-subalgebra of i t s centre and P(D(M)) ,

the sublattice of principal dual ideals of D(M) .

5. The construction of Stone lattices

We prove the following

THEOREM 3. Let H be a distributive lattice with 0 and 1 . Let

C be a boolean e-subalgebra of H and let D be a sublattice of H

which contains 0 and which has the property that

d € D & c € C => d A c € D .
o o

Let L be the set of ordered pairs (d} c) with d in D } c in C

and d 5 o . Order L by the prescription (d\, ej) 5 (di, erf if and

only if o\ £ <?2 and ^2 A c\ 5 d\ .

Then {L3 £) is a lattice which is a Stone lattice

pseudocomplemented by

<d, c)* = <0J c') ,

the prime denoting comptementation in C . Its centre is isomorphic to C

and its lattice of dense elements is isomorphic to the dual of D .

Moreover (L} 2, *) is a special Stone lattice if and only if D

separates the elements of C , in the sense that for any C\ ̂  c2 in C

there is d in D with d £ c\ but d ̂  C2 •

Proof. £ is clearly reflexive and antisymmetric on L . To

establish transitivity we note
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( i i , o\) £ <d2, e2) £ (d$, o3> => ox £ c 2 - <?3 & ci A d2 £ d\ &

c 2 A d 3 £ d 2

=> C\ £ d3 & Cj A d3 = Cj A e2 A cf3 £ <3i A d2 £ dj .

To establish the lattice property we show that

(1) <dj, ci> A <d2, c2> = <{d\ A o2) v (d2 A O\), C\ A e2) ,

(2) <dls C!> v <d2, c2> = < (dj A e2) v (d2 A C } ) V {d\ A d2), e\ v e2) .

To prove (l), one verifies firstly that its right-hand side is in L and

is a common lower bound to <di, O\) , (d2, o2) ; if (d^, 03) in L

is any other lower bound one has d^ £ C3 £ C\ A e2 and

c3 A (di V d2) £ <i3 . Then

e3 £ {(di v d2) A cx A c2} £ d3 ,

so

<d3, c3> £ <(di v d2) A ej A c2, C! A e2> .

Since

(di v d2) A o\ A c2 = (di A c2) v (d2 A cj) ,

we obtain the desired result.

To establish (2) one verifies firstly that its right-hand side is in

L and is a common upper bound to (d\, o\) , (d2, o2) . On the other

hand if <d3, e3> in L is any other upper bound then (J3 v ej v c2 £ c3

and d3 A e. £ d. , i = 1, 2 . Whence

d3 £ (di v cj) A (d2 v e2) .

From

(di v ej) A (d2 v c2) A (c! v c 2 ) , o\ v e2 £ (d3 A (ej V C 2 ) , ej V C2>

£ <^3, c3>

and

(dj v c}) A (d2 v e2) A (cj v e2) = (di A e2) v (d2 Ac}) v {d\ A d2)

we obtain the desired result.

It is routine, though tedious, to verify that L is distributive.

Straight-forward calculations establish that, (0, 0) is the least

element in L , (0, 1> is the greatest element,
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and that L is a Stone lattice and finally that

C{L) = {<0, c> : a (. C)

D{L) = Ud, 1> : d (. DQ} .

To establish the conditions under which £ is a special Stone

lattice observe that

<d, 1> i <0, a'> *=> d A a' = 0 .

Since d A c and d A e' belong to 5

d = (d A c) v (d A a')

and we deduce that

<0, C 1 > T O < 0 , e2> ^ * "Vd € Z?O, d s cx <=» d < e2" •

But if £ is a special Stone lattice x is the identity relation on

C(L) and we have the property stated in the theorem. Conversely if that

property holds then T is the identity relation on C{L) . If then

(d\, Oi)x(d.2, 02) we must have O\ = ci - o , say, and

{di, 1) = (di, a) v (di, c)* = (d2, a) v <d2, e>* = (d2, 1>

and so T is the identity relation on L , that is L is a special Stone

lattice.

We show now that any special Stone lattice can be constructed in the

way described in Theorem 3.

THEOREM 4. Let L' be a special Stone lattice. Take

H = V[DW))DQ = P(D(L')) , the set of principal dual ideals of D(L' ) ,

and let C be a boolean e-subalgebra of C Y0{D{L')}\ . Then L' and L

are isomorphio as Stone lattices.

Proof. We firstly verify that L is a special Stone lattice. This

follows from the fact that the intersection of any principal dual ideal of

a distributive lattice with an arbitrary dual ideal in the centre of the

lattice of its dual ideals is again a principal dual ideal. Thus
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d € ?{D(L')) & o € c[p(z>(L')}] - d A e € P(fl(L'1} .

That 0 separates C is otvious since L' is special.

The theorem is proved by verifying that the correspondence

x •* <[x v x*), GxAit)

from L' onto L is the desired isomorphism.
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