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Finite Groups Generated by Involutions
on Lagrangian Planes of C2

E. Falbel

Abstract. We classify finite subgroups of SO(4) generated by anti-unitary involutions. They corre-
spond to involutions fixing pointwise a Lagrangian plane. Explicit descriptions of the finite groups
and the configurations of Lagrangian planes are obtained.

1 Introduction

Finite subgroups of U (n) generated by complex reflections were classified by Shep-
hard and Todd [ST] (see also [C2]). In this paper we consider the problem of classify-

ing finite subgroups of Û (2), the group generated by the unitary transformations and
their complex conjugate transformations, generated by involutions on Lagrangian
planes.

A Lagrangian planeΠ is a totally real plane such that JΠ is orthogonal to Π (here,
J is the linear operator defined on R4 such that J2 = −I which defines the complex

structure). There is a special involution in Û (2) associated to a Lagrangian plane. It
is an antiholomorphic map which fixes pointwise that plane and acts as a rotation
by 180 degrees on its orthogonal plane. We call those involutions inversions (see
Section 4). One can define them simply as anti-unitary transformations which are
involutions.

The interest in those groups arouse from complex hyperbolic geometry [G] and
the construction of discrete subgroups of PU(2, 1) (the group of biholomorphisms
of the two dimensional complex ball). In fact (see [FZ], [FK]), one obtains natural
constructions of those groups as index two subgroups of groups generated by invo-
lutions on totally geodesic totally real planes of the complex ball considered as the
complex hyperbolic space.

We hope in a future paper to consider the analogous problem in higher dimen-
sions. Dimension two is rather special as one can use the many properties of quater-
nions to give very explicit descriptions of the groups. Moreover, the proof given
here makes appeal to the classification of finite groups of SO(4). We also hope that
those finite subgroups will constitute building blocks of new discrete subgroups of
SU(2, 1).

In Sections 2 and 3 we recall the classification of finite subgroups of SU(2) and
U (2) for the reader’s benefit. The main classification theorem is Theorem 4.1. In
Section 5 we give explicit descriptions of the configurations of Lagrangian planes.
Those can be visualized if we consider their intersections with S3 ⊂ C2.
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Involutions on Lagrangian Planes 409

2 Finite Subgroups of SU(2)

Let H be the space of quaternions x = x0 + x1i + x2j + x3k. We denote x̃ = x0− x1i−
x2j− x3k, the conjugate, Sx = x0 and V x = x1i + x2j + x3k. If Sx = 0 the quaternion
is called pure. Consider the group of unit quaternions isomorphic to SU(2) which
can be identified to S3.

Using the notation of [C2, p. 68], we enumerate the finite subgroups of SU(2).

1. the cyclic group Cn of order n,
2. the dicyclic group 〈p, 2, 2〉 (also denoted Dp) of order 4p,
3. the binary tetrahedral group 〈3, 3, 2〉 of order 24,
4. the binary octahedral group 〈4, 3, 2〉 of order 48,
5. the binary icosahedral group 〈5, 3, 2〉 of order 120.

It will be important in the following to determine those groups generated by pure
quaternions.

Proposition 2.1 (see [C2, Section 7.5]) The following finite groups are generated by
pure quaternions

1. C2 generated by U = i,
2. 〈p, 2, 2〉 generated by U1 = j, U2 = exp(iπ/p)j, in particular 〈2, 2, 2〉 is generated

by j and k,
3. 〈4, 3, 2〉 generated by p1 =

1√
2
(k− j), p2 =

1√
2
(i− k), p3 =

1√
2
(k + j),

4. 〈5, 3, 2〉 generated by U1 = j, U2 = −
1
2 (i + τ j − τ−1k), U3 = i, where τ =

1
2 cos (2π/5) .

3 Finite Subgroups of SO(4)

The finite subgroups of SO(4) are classified in Du Val’s book (see [D] and his histor-
ical remarks). We use the slightly different coordinates of Coxeter (see [C2]).

We define two right actions of SU(2), identified to the unit quaternions Q, on the
space of quaternions identified to R4.

1. right screw: SU(2)× R4 → R4, given by (q, x)→ xq.
2. left screw: SU(2)× R4 → R4, given by (q, x)→ q̃x.

Proposition 3.1 (see [D], [C2]) The map SU(2) × SU(2) → SO(4) given by
(q, q ′)→ (x→ q̃xq ′) is a two to one covering homomorphism.

We will characterize the transformations of U (2) and their conjugates, a set we
denote by U (2). Observe that U (2) is not a group. We think x = x0 +x1i+x2j+x3k =
u + vj, where u = x0 + x1i and v = x2 + x3i are complex numbers. Restricting the map
above to the complex left screws times the unit quaternions, that is, to U (1)× SU(2)
where U (1) = {z = x0 + x1i ∈ Q}, we get U (2) ⊂ SO(4).

Proposition 3.2 (see [Cr], [D], [C2]) The map U (1) × SU(2) → U (2) given by
(ε, q)→ εxq is a two to one covering homomorphism.
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Now, observe that if u is a complex number juj = −u. So one obtains the follow-
ing:

Proposition 3.3 The map U (1)× SU(2)→ U (2) given by (ε, q)→ εjxjq is a two to
one covering.

The description of a finite group G of SU(2)× SU(2) is based on the groups L =
{l ∈ SU(2) | (l, r) ∈ G for a certain r ∈ SU(2)} and R = {r ∈ SU(2) | (l, r) ∈ G for
a certain l ∈ SU(2)}. We consider the normal subgroups LK = {l ∈ L | (l, 1) ∈ G}
and RK = {r ∈ R | (1, r) ∈ G}. We must have L/LK ≡ R/RK . A choice of this
isomorphism defines a subgroup of SU(2)×SU(2) denoted (L/LK ; R/RK). The same
discussion with the same notation is valid for subgroups of U (2), but now L ∈ U (1)
and R ∈ SU(2).

Example 3.1 (See [D, p. 55]) Consider L = Cmr ⊂ U (1) and R = Cnr ⊂ SU(2),
cyclic groups. We have that p j Cm → qs jCn (where p, q are generators of Cmr and Cnr)
defines an isomorphism Cmr/Cm → Cnr/Cn, if s is prime to r. For different values
of s < r/2 we obtain distinct groups denoted by (Cmr/Cm; Cnr/Cn)s. Observe that if
G ⊂ U (1) × SU(2) covers a group in U (2), −1 ∈ Cmr, that is, mr is even and, also,
m and n are both odd or both even.

Example 3.2 In the case L = LK = C2m ⊂ U (1) and R = RK = 〈p, q, r〉 ⊂ SU(2),
the quotient L/LK being trivial, the group is G = C2m × 〈p, q, r〉 and is denoted
〈p, q, r〉m.

Theorem 3.1 (see [D], [C2]) The finite groups of U (2) are

1. (C2m/C f ; C2n/Cg)d of order gm = f n ( f ≡ g(mod 2), (d, 2m/ f ) = 1 and d <
m/ f )

2. 〈p, 2, 2〉m (4mp)
3. (C4m/C2m; 〈p, 2, 2〉/C2p) (4mp) and (C4m/Cm; 〈p, 2, 2〉/C p), m and p odd, (2mp)
4. (C4m/C2m; 〈2p, 2, 2〉/〈p, 2, 2〉) (8mp)
5. 〈3, 3, 2〉m (24m)
6. (C6m/C2m; 〈3, 3, 2〉/〈2, 2, 2〉) (24m)
7. 〈4, 3, 2〉m (48m)
8. (C4m/C2m; 〈4, 3, 2〉/〈3, 3, 2〉) (48m)
9. 〈5, 3, 2〉m (120m).

4 Finite Groups Generated by Involutions

4.1 Reflections versus Inversions

Definition 4.1 Û (2) is the subgroup of SO(4) generated by U (2) and U (2).

In fact, U (2) is generated by U (2) and one element of U (2) which is not the iden-
tity.
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Involutions on Lagrangian Planes 411

Definition 4.2 A complex reflection is a finite order element (different from the
identity) of U (2) fixing pointwise a complex line.

In the following we will call a complex line a complex plane as opposed to a real
plane.

Definition 4.3 An inversion is an element (different from the identity) of U (2) fix-
ing pointwise a totally real plane.

Proposition 4.1 An inversion is an involution. It acts on the orthogonal totally real
plane as a half-turn. Moreover Lagrangian planes are in one to one correspondence to
involutions.

Proof It is enough to show that the set of anti-unitary transformations fixing a
specific Lagrangian plane contains only one element which is an involution. Take
the Lagrangian plane fixed by the conjugation (z1, z2) → (z1, z2). The plane is
{(z1, z2) | Im(z1) = Im(z2) = 0} and the conjugation acts on the orthogonal plane as
a half turn. Other anti-unitary transformation are compositions of the conjugation
and unitary maps. As the Lagrangian plane is fixed by the conjugation, the unitary
map should also fix that plane. The only possibility is that the unitary map be the
identity.

Using 3.3 we may characterize inversions as in the following

Proposition 4.2 The map x → εjxjq ∈ U (2) is an inversion if and only if q =
q0 + q1i + q3k ∈ Q, that is, the j-component of q is 0. This implies that the space of
inversions is 2-1 covered by S1 × S2.

Proof We impose that the square of an element of U (2) be the identity. Using 3.3
we get εjεjxjqjq = −εεx(−u − vj)(u + vj), where we wrote q = u + vj ∈ Q. Writing
q = q0 + q1i + q2j + q3k, and substituting above we obtain q2 = 0.

In other words the inversions are described by x → ιxp ∈ U (2), where ι = εj (ε
complex) and p = p1i + p2j + p3k is a pure quaternion.

4.2 Finite Groups Generated by Inversions

The finite groups of U (2) generated by reflections were enumerated by Shephard

and Todd ([ST], see also [C1]). In this section we classify the finite groups of Û (2)
generated by inversions. Observe that by Proposition 4.2 inversions are associated to
pairs (εj, p), with p a pure quaternion. The product of two such inversions I(ε1j,p1) ◦

I(ε2j,p2) is an element of U (2) given by the pair
(
−ε1ε2, (−p1.p2 + p1 × p2)

)
.

Example 4.1 (Groups Generated by Two Inversions) If we take the pair r1 = (j, j)
and r2 =

(
exp(−iπ/q)j, exp(−isπ/p)j

)
, we obtain

(
exp(iπ/q), exp(isπ/p)

)
as gen-

erator of the index two unitary subgroup. If we impose (s, 2p) = 1, we obtain the
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group (C2q/Cq1 ; C2p/C p1 )s where d = (p, q) and we put p1 = p/d, q1 = q/d. Ob-
serve that

(C2q/Cq1 ; C2p/C p1 )s ⊂ (Dq/Cq1 ; Dp/C p1 )s.

It is an index two subgroup of the subgroup of Û (2) of order 2sp1q1 (see [D, types 1
and 11, p. 57]). On the other hand, if we start with r1 = (−j, j) (with p and q odd),
one obtains the groups (C2q/C2q1 ; C2p/C2p1 )s ⊂ (Dq/C2q1 ; Dp/C2p1 )s (see [D, types
1 ′ and 11 ′]).

Example 4.2 (Groups Generated by Three Inversions I) Take r1 = (j, j), r2 =(
exp(−iπ/q)j, j

)
and r3 =

(
j, exp(−iπ/p)j

)
. In that case the group generated by

these inversions contains, as an index two subgroup, the group (C2q/C2q; C2p/C2p).
Here we don’t suppose that (p, q) = 1 otherwise the unitary subgroup would be gen-
erated by r2 and r3. On the other hand, if we start with r1 = (−j, j) (with p and q
odd), one obtains the group (C2q/Cq; C2p/C p).

Example 4.3 (Groups Generated by Three Inversions II) Take r1 = (j, j), r2 =(
exp(−iπ/mr)j, exp(−isπ/nr)j

)
and r3 =

(
j, exp(−iπ/n)j

)
, with (s, r) = 1. In

that case the group generated by these inversions contains, as an index two subgroup,
the group (C2mr/C2m; C2nr/C2n)s. Several of these groups, as in Example 4.1, can be
generated with two inversions. The groups (C2mr/Cm; C2nr/Cn)s with n and m odd,
are obtained using r3 =

(
−j, exp(−iπ/n)j

)
.

Example 4.4 (Groups Generated by Three Inversions III) Three inversions are
given by three pairs (ε1j, p1), (ε2j, p2), (ε3j, p3). The subgroup L is generated by
p1, p2, p3. The subgroups of SU(2) generated by pure quaternions are enumer-
ated above. As an example, we take 〈4, 3, 2〉 a group generated by p1 =

1√
2
(k − j),

p2 =
1√

2
(i − k), p3 =

1√
2
(k + j). In this case (see [C2, p. 79]) a = p1p2, b = p2p3

and c = p3p1 are generators of 〈3, 3, 2〉. If we take ε1 = exp(πi/m), ε2 = 1 and
ε3 = exp(−πi/m) we obtain an index two unitary subgroup

(C2m/C2m; 〈3, 3, 2〉/〈3, 3, 2〉) ⊂ (Dm/C2m; 〈4, 3, 2〉/〈3, 2, 2〉)

of a subgroup of Û (2) of order 48m (see types 5 and 16 of [D]).

Theorem 4.1 The finite subgroups of Û (2) generated by inversions are the following,
where we indicate their index two subgroup in U (2).

1. • (C2mr/C2m; C2nr/C2n)s ⊂ (Dmr/C2m; Dnr/C2n)s, of order 4mns (1 and 11 of
[D]).

• (C2mr/Cm; C2nr/Cn)s ⊂ (Dmr/Cm; Dnr/Cn)s, of order 2mns (1 ′ and 11 ′ of [D]).
2. (C2m/C2m; 〈3, 3, 2〉/〈3, 3, 2〉) ⊂ (Dm/C2m; 〈4, 3, 2〉/〈3, 2, 2〉) of order 48m (types

5 and 16 of [D]).
3. (C2m/C2m; 〈4, 3, 2〉/〈4, 3, 2〉) ⊂ (Dm/Dm; 〈4, 3, 2〉/〈4, 3, 2〉) of order 96m (types 7

and 15 of [D]).
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4. (C4m/C2m; 〈4, 3, 2〉/〈3, 3, 2〉) ⊂ (D2m/Dm; 〈4, 3, 2〉/〈3, 3, 2〉) of order 96m (types
8 and 17 of [D]).

5. (C2m/C2m; 〈5, 3, 2〉/〈5, 3, 2〉) ⊂ (Dm/Dm; 〈5, 3, 2〉/〈5, 3, 2〉) of order 240m (types
9 and 19 of [D]).

Proof The proof follows from the classification of [D] and by a case by case verifica-
tion. Observe that, for a group generated by inversions, C2m ⊂ Dm is the subgroup
of index two that should appear in the first component of Du Val’s notation. This
restricts the many possibilities in his list. Analogously, the second component should
be generated by pure quaternions, excluding 〈3, 3, 2〉.

We recall [C2] that 〈5, 3, 2〉 and 〈4, 3, 2〉 are generated by three pure quaternions
U1, U2 and U3 satisfying Ap = B3 = C2 = ABC = −1 (p = 4, 5) with A = U1U2,
B = U2U3, C = U3U1 also generating the groups. Define the following gener-
ators µ1 = (j,U1), µ2 = (−j,U2) and µ3 =

(
(exp iπ/m)j,U3

)
. We claim that

〈µ1, µ2, µ3〉 = Dm × 〈p, 3, 2〉; observe that if we call a = µ1µ2, b = µ2µ3 and
c = µ3µ1, one obtains c2 = (exp iπ/m,−1), c2b2 = (1,B−1) and a(c2b2)−1 =
(1,A)(1,B) = (1,C). We conclude that 1 × 〈p, 3, 2〉 is in the group and there-
fore 〈µ1, µ2, µ3〉 = Dm × 〈p, 3, 2〉. This proves the cases 19 and 15. The
case 17 is obtained considering the following generators: µ1 = (−j, j), µ2 =(

(exp iπ/2m)j, (k− j)/
√

2
)

and µ3 =
(

(exp iπ/2m)j, (i− k)/
√

2
)

in (D2m/Dm;
〈4, 3, 2〉/〈3, 3, 2〉). By a computation, one shows that (µ1µ2µ3)3 = (j, 1) and
(µ1µ3)2 = (exp iπ/m,−1). We conclude that Dm × 1 ⊂ 〈µ1, µ2, µ3〉 and there-
fore the elements generate the whole group. The other cases were constructed in the
examples above. Finally, verifying the orders of the remaining groups, we obtain only
the cases above. The construction of each group belonging to those cases shows, in
particular, that each group is generated by, at most, three inversions.

Observe that the first class of groups (types 1 and 1 ′ in Du Vals’ notation) corre-
spond to type 1 of Coxeter’s notation (see Theorem 3.1 above).

5 Configurations of Lagrangian Planes

5.1 S3 and the Cayley Transform

We will consider the action of Û (2) on the sphere S3 ⊂ C2. Recall that, in matrix
notation, an element x→ εxq ∈ U (2) corresponds to

ε

[
a −c
c a

]

with a = q0 + q1i and c = q2 + q3i acting on (w1,w2) where x = w1 + w2j.
Each inversion fixes a totally real plane in C2 called an R-plane or Lagrangian

plane, which intersects S3 along a circle called R-circle. The intersection of S3 with a
complex plane is called a C-circle. One may verify the following proposition which
gives a redundant representation, but which is sufficient for our calculational pur-
poses.
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Proposition 5.1 In quaternionic coordinates, R-circles are given by ε exp(jθ)q and C-
circles by exp(iθ)q, where ε ∈ U (1) ⊂ C, q ∈ SU(2).

Proof The proposition follows from the observation that the action of U (2) is transi-
tive on R-circles and C-circles. It suffices, then, to describe one in each class. Clearly
exp(iθ) is a C-circle in quaternionic coordinates. Also it is easy to see that exp(jθ)
describes an R-circle.

The mapping

C : (w1,w2) �→

(
z1 =

iw1

1 + w2
, z2 = i

1− w2

1 + w2

)

is usually referred to as the Cayley transform. It maps the unit ball

B = {w ∈ C2 : |w1|
2 + |w2|

2 < 1}

biholomorphically onto

V = {z ∈ C2 : Im(z2) > |z1|
2}.

The Cayley transform leads to a generalized form of the stereographic projection. This
mapping π : S3 \ {−e2} → R3, where S3 = ∂B and e2 = (0, 1) ∈ C2, is defined
as the composition of the Cayley transform restricted to S3 \ {−e2} followed by the
projection

(z1, z2) �→
(

z1,Re(z2)
)
.

The stereographic projection π can be extended to a one to one mapping from S3

onto the one-point compactification R
3

of R3 = {(z, t) | z ∈ C, t ∈ R} = H. Its
inverse function is given by

π−1(z, t) =

(
−2iz

1 + |z|2 − it
,

1− |z|2 + it

1 + |z|2 − it

)
.

Observe that the x-axis in R3 corresponds to the intersection of S3 with the real
plane Re(w1) = 0, Im(w2) = 0. Also, the y-axis corresponds to the intersection of
S3 with the real plane Im(w1) = 0, Im(w2) = 0.

5.2 Inversions

The antipodal map of H is defined on H \ {(0, 0)} by

ŝ : (z, t) �→

(
−z

|z|2 − it
,−

t

|z|4 + t2

)
.

Note that ŝ = π ◦ s ◦ π−1, where s is the involution

s : (w1,w2) �→ (−w1,−w2), (w1,w2) ∈ C2.
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It corresponds to the map x→ exp(iπ)x1.
The map ĵ defined by

ĵ : (z, t) �→ (−z,−t),

corresponds to
π−1 ◦ ĵ ◦ π(w1,w2) = (w1,w2).

It corresponds to the map x→ exp(iπ)jxj = −jxj.
Also, define

I0 : (z, t) �→

(
−z

|z|2 + it
,

t

|z|4 + t2

)

which corresponds to

π−1 ◦ I0 ◦ π(w1,w2) = (w1,−w2).

I0 leaves pointwise fixed the standard R-circle R0 (see [G] for details)

r2 + it = −e−2iθ

where z = reiθ. In cylindrical coordinates R0 is given by

r =
√
− cos(2θ), t = sin(2θ).

In quaternionic coordinates, this R-circle is parametrized by α → exp(αk). Using
this parametrization, after the Cayley transform, one obtains the following expres-
sion for R0 (

sin(2α)

2
(

1 + sin2(α)
) , cos(α)

1 + sin2(α)
,

2 sin(α)

1 + sin2(α)

)
.

Observe that the relation between the two parametrizations is sin(α) = 1/ tan(θ).

Proposition 5.2 The transformation εjxjq is an inversion on the image of the R-circle
fixed by jxj, by the transformation ε1xq1, where ε21 = ε and q2

1 = q.

Proof Recall that by Proposition 4.2 x → εjxjq ∈ U (2) is an inversion if and only if
q = q0 + q1i + q3k ∈ Q, that is, the j-component of q is 0. Using the matrix notation,
an element x→ εjxjq ∈ U (2) corresponds to

ε

[
a −c
c a

]

with a = q0 + q1i and c = q3i acting on (−w1,−w2) where x = w1 + w2j. Observe
now that, if ε21 = ε and q2

1 = q, εjxjq = ε1jε1jjxjjq1jq1, where we used the fact that
q = q̃ if the j-component of q is missing. So we conclude that the transformation is
conjugated to jxj by ε1xq1.

Observe that the fixed R-circle by jxj is, in quaternionic coordinates, i exp(jα).
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Figure 1: Views of the configuration with three generators fixing the vertical axis with q = 4,
p = 2.

Remark 5.1 The map x→ εxa, with a ∈ C, represented by

Rε =

[
εa 0
0 εa

]

acting on (w1,w2) where x = w1 + w2j transforms an R-circle with center on the
vertical axis to another one with center on the vertical axis. In fact those transforma-
tions form the group fixing setwise the complex disc w1 = 0 whose intersection with
S3 is precisely the vertical axis after applying the Cayley transform. This is the case in
the following three examples.

Example 5.1 (Two Generator Groups) If we take the pair r1 = (j, j) and r2 =(
exp(−iπ/q)j, exp(−isπ/p)j

)
as in 4.1, we obtain (ε1, q1) = (1, 1) and (ε2, q2) =(

exp(iπ/2q), exp(isπ/2p)
)

.

Example 5.2 (Three Generator Groups I) As in 4.2 we take r1 = (j, j), r2 =(
exp(−iπ/q)j, j

)
and r3 =

(
j, exp(−iπ/p)j

)
. In that case we obtain (ε1, q1) =

(1, 1), (ε2, q2) =
(

exp(iπ/2q), 1
)

and (ε3, q3) =
(

1, exp(iπ/2p)
)

. See Figure 1
where a configuration of three R-circles is drawn.

Example 5.3 (Three Generator Groups III) From Example 4.4 we have p1 =
1√

2
(k− j) = j exp(−3iπ/4), p2 =

1√
2
(i− k) = j

(
exp
(

1√
2
(k + i)π/2

))
= j
(

1√
2
(k +

i)
)

, p3 =
1√

2
(k + j) = j exp(−iπ/4) and ε1 = exp(πi/m), ε2 = 1, ε3 = exp(−πi/m).

So we obtain qi and ηi such that q2
i = −jpi and η2

i = εi to be q1 = exp(−3iπ/8),
q2 = exp

(
1√

2
(k + i)π/4

)
= 1√

2
+ i

2 + k
2 , q3 = exp(−iπ/8) and η1 = exp(πi/2m),

η2 = 1, η3 = exp(−πi/2m). The R-circles obtained using those generators are repre-
sented in Figures 2, 3, and for m = 1 and m = 2, where the standard R-circle rotated
by π/2 is also represented in dotted lines.
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Figure 2: Two views of the configuration with three generators m = 1.

Figure 3: Two views of the configuration with three generators m = 2.

Figure 4: Configuration of three Lagrangian planes showing invariant C-circles: two views.
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Example 5.4 (Three Generator Groups III. Invariant C-Circles) The invariant C-
circles associated to an element of U (2) are the intersections of the eigenspaces of
that element with S3. For a transformation x → εxp, the eigenspace is completely
determined by the transformation x→ xp.

We determine now for each element g1 = p2 ◦ p3, g2 = p3 ◦ p1 and g3 = p1 ◦ p2

the invariant C-circles. From a calculation (cf. [C2, p. 79]) we get

g1 = p2 ◦ p3 = j exp

(
1
√

2
(k + i)π/2

)
j exp(−iπ/4) = 1/2 + i/2− j/2 + k/2

g2 = p3 ◦ p1 = j exp(−iπ/4)j exp(−3iπ/4) = i

g3 = p1 ◦ p2 = j exp(−3iπ/4)j
1
√

2
(k + i) = 1/2 + i/2 + j/2 + k/2.

To find the invariant C-circles we find the eigenvalues of

[
a −c
c a

]

with a = q0 + q1i and c = q2 + q3i, where q = q0 + q1i + q2j + q3k. We find
the eigenvalues for g1, g2, g3, respectively, exp(iπ/3), i, exp(iπ/3) and their complex
conjugates:

• for g1 we find eigenvectors 1√
6±2
√

3
(1±

√
3 + j + k), so the C-circles are given by

exp iθ√
6±2
√

3
(1±

√
3 + j + k)

• for g2 we find eigenvectors 1 and j having invariant C-circles exp iθ and exp iθj
• for g3 the eigenvectors are 1√

6±2
√

3
(1 ±

√
3 + j − k) having invariant C-circles

exp iθ√
6±2
√

3
(1±

√
3 + j− k).

In Figure 4 we see the invariant C-circles above corresponding to the eigenvalues
exp(iπ/3), i, exp(iπ/3) in the configuration for m = 1. Observe that the C-circles do
not depend on m.
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