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We present a numerical study analysing the breakup of a single cohesive particle aggregate
in turbulence. Solid particles with diameters smaller than the Kolmogorov length scale
(dp < η) are initially aggregated into a spherical ‘clump’ of diameter D > η and placed
in homogeneous isotropic turbulence. Parameters are chosen relevant to dust or powder
suspended in air such that cohesion due to van der Waals is important. Simulations
are performed using an Eulerian–Lagrangian framework that models two-way coupling
between the fluid and solid phases and resolves particle–particle interactions. Aggregate
breakup is investigated for different adhesion numbers Ad, Taylor microscale Reynolds
numbers Reλ and non-dimensional clump sizes D/dp. The intermittency of turbulence is
found to play a key role on the early stage breakup process, which can be characterized
by a turbulent adhesion number Adη that relates the potential energy of the van der
Waals force to turbulent shear stresses. A scaling analysis shows that the time rate of
breakup for each case collapses when scaled by Adη and an aggregate Reynolds number
proportional to D. A phenomenological model of the breakup process is proposed that acts
as a granular counterpart to the Taylor analogy breakup (TAB) model commonly used for
droplet breakup. Such a model is useful for predicting particle breakup in coarse-grained
simulation frameworks, such as Reynolds-averaged Navier–Stokes, where relevant spatial
and temporal scales are not resolved.

Key words: breakup/coalescence, particle/fluid flow, low-dimensional models

1. Introduction

The transport and deposition of tiny (cohesive) particles in turbulent flows play important
roles in many engineering, environmental and medical systems. Examples include dry
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powder inhalers for drug delivery (Begat et al. 2004; Yang, Wu & Adams 2013, 2015),
dust ingestion in gas turbine engines (Batcho et al. 1987; Dunn, Baran & Miatech 1996;
Bons, Prenter & Whitaker 2017; Sacco et al. 2018) and fluidized bed reactors (Mikami,
Kamiya & Horio 1998; van der Hoef et al. 2008; Mahecha-Botero et al. 2009; Pan
et al. 2016). Micrometre-sized particles tend to form aggregates owing to inter-particle
cohesion. The dynamical evolution and morphology of these aggregates involve a complex
interplay between turbulent stresses and inter-particle cohesive forces. As a result, particle
clumping can arise under various circumstances, which is known to compromise the
performance of the aforementioned systems. For example, agglomeration has been shown
to significantly deteriorate the delivery efficiency of drug particles (Begat et al. 2004),
accelerate turbine blade erosion in gas turbine engines (Grant & Tabakoff 1975; Hamed,
Tabakoff & Wenglarz 2006) and defluidize two-phase reactors (Mikami et al. 1998; Cocco
et al. 2010). Of particular interest to the present study is turbulence-induced breakup of
fine particulate aggregates.

Several mechanisms are responsible for particle deagglomeration in a flow field.
Breakup can be induced by inertial stresses (Kousaka et al. 1979; Higashitani, Iimura
& Sanda 2001), rotary stresses (Sonntag & Russel 1987; Jarvis et al. 2005; Fanelli, Feke
& Manas-Zloczower 2006a,b; Zeidan et al. 2007; Mousel & Marshall 2010) or turbulent
stresses (Bache 2004; Wengeler & Nirschl 2007; Bäbler, Morbidelli & Baldyga 2008;
Weiler et al. 2010). Several models have recently been developed for deagglomeration
due to rotary stress in simple shear flows (Dizaji, Marshall & Grant 2019; Ruan, Chen &
Li 2020; Vo et al. 2020). The mechanisms responsible for deagglomeration in turbulence,
however, are more complicated and less established. Weiler et al. (2010) developed a model
of critical shear stress for instantaneous breakage as a function of aggregate size and the
mean cohesive force. However, aggregates often break up progressively from the surface,
and the critical stress at the vicinity of the aggregate is not always directly available,
especially in course-grained simulations where subgrid-scale stresses are not resolved such
as in Reynolds-averaged Navier–Stokes (RANS) frameworks.

The major challenge in numerically investigating the breakage of cohesive particles is
properly resolving the wide range of length and time scales at play. One common approach
is to couple Lagrangian particle tracking with a mean flow field obtained from RANS. The
turbulent dispersion of particles is often modelled in a stochastic manner. This approach
has been widely used for particle ingestion in gas turbine engines (Grant & Tabakoff 1975;
Hamed et al. 2006; Bons et al. 2017). Despite its low computational cost, Lagrangian
particle tracking coupled with RANS has been shown to under-predict turbulent dispersion
and deposition of particles compared with experiments (Whitaker, Prenter & Bons 2015),
especially near boundary layers (Rybalko, Loth & Lankford 2012; Forsyth, Gillespie &
McGilvray 2018). In contrast, particle-resolved direct numerical simulation (PR-DNS)
has been applied to fully capture the flow field and particle interactions (Uhlmann 2008;
Vowinckel et al. 2019a,b). While PR-DNS is highly accurate, it is limited to small physical
systems owing to its high computational cost.

Alternatively, the Eulerian–Lagrangian method tracks individual particles and solves
the fluid phase on an Eulerian mesh with grid spacing larger than the particle diameter. It
is capable of capturing detailed particle–particle interactions and particle–fluid coupling
with moderate computational cost. This approach has been widely applied to study
cohesive particles in turbulence (Ho & Sommerfeld 2002; Kosinski & Hoffmann 2010;
Breuer & Almohammed 2015; Liu & Hrenya 2018; Sun, Xiao & Sun 2018; Yao &
Capecelatro 2018). However, most existing studies consider one-way coupling without
considering the influences of drag or volume displacement by particles on the fluid. Such
an approach is not appropriate when modelling large particle aggregates as it over-predicts
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D
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Figure 1. Simulation configuration shown with background fluid velocity (blue, low; red, high). Particles are
initially close-packed in a spherical aggregate of diameter D. Particles are fixed in place until the flow reach a
statistically stationary state prior to deagglomeration.

the interphase slip velocity in the vicinity of the particles (Dizaji & Marshall 2017).
Another known deficiency of this method when dealing with cohesive particles is the
restrictive time step.

In the present study, an Eulerian–Lagrangian framework is employed where two-way
coupling is accounted for via drag and volume displacement effects. The van der Waals
force model is modified to allow for soft-sphere contact. A multiscale time-stepping
algorithm is introduced to minimize the computational cost. Details on the numerical
framework are presented in § 2. The relative importance of turbulence and adhesion on
breakup dynamics of a single aggregate is analysed by adjusting the Taylor microscale
Reynolds number, Reλ, and the adhesion number, Ad, that relates the van der Waals surface
energy, γ , and the kinetic energy of particles (Marshall & Li 2014). The Hamaker constant
A is varied by three orders of magnitude to mimic weakly cohesive particles (e.g. silica)
and strongly cohesive materials such as metal oxides. The role of turbulence intermittency
on the early stage deagglomeration is discussed. We then report the temporal evolution of
the aggregate, present a breakage regime diagram and a scaling analysis of the breakup rate
in § 3. Finally, a phenomenological model of the breakup process is proposed in § 4 using
a mass–spring–damper analogy. Together with the scaling analysis, the proposed model
provides a complete prediction of the deagglomeration process using quantities available
in coarse-grained simulations that do not resolve the relevant fluid and particle time scales,
such as in RANS.

In the remainder of the text, the term ‘clump’ and ‘aggregate’ will be used
interchangeably.

2. Numerical configuration

2.1. Problem set-up
In this work, we consider an initially spherical ‘clump’ of particles suspended in
homogeneous isotropic turbulence (see figure 1). Particles are monodisperse with
diameters dp = 20 μm and particle-to-fluid density ratio ρp/ρ = 2200, corresponding
to typical Geldart A/C-type particles (e.g. dust or powder in air) in which inter-particle
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Physical parameters
dp Particle diameter 20 μm
D Aggregate diameter 200 μm 400 μm
Np Number of particles 682 5484
ρp Particle density 2650 kg m−3

ρ Fluid density 1.2 kg m−3

ν Fluid kinematic viscosity 1.5 × 10−5 m2 s−1

e Coefficient of restitution 0.9
A Hamaker constant [0.4, 300] × 10−20 J

Non-dimensional parameters
N3 Number of grid points 323 643 1283

Reλ Taylor microscale Reynolds number 30 43 64
dp/η Normalized particle diameter 0.19 0.42 0.80
D/η Normalized aggregate size [1.9, 16]
Ad Adhesion number [0, 9.0]

Table 1. Parameters used in the simulations with square brackets denoting the parameter range.

cohesion is important (McCave 1984; Wang, Zhu & Beeckmans 2000). The simulation
domain is triply periodic with sides of length L = 400dp. The initial aggregate is formed
by randomly distributing particles throughout the domain and assigning inward-facing
normal velocities, commonly referred to as the ‘centripetal packing method’ (Liu, Zhang
& Yu 1999; Yang et al. 2015; Ruan et al. 2020). First, particles are initially randomly
distributed within in a spherical region without overlap. A constant centripetal force is
then imposed on each particle to attract the particles towards the center of the domain.
Particles undergo collisions and agglomerate in the absence of fluid forces until a single
aggregate is formed. The aggregate is then submerged in the flow and held in place until
a statistical stationary state is reached. At t = 0 the particles are free to evolve, potentially
resulting in breakup and the formation of smaller aggregates, sometimes referred to as
‘flocs’ in liquid suspensions (Pandya & Spielman 1983; Flesch, Spicer & Pratsinis 1999;
Jarvis et al. 2005; Vowinckel et al. 2019a; Zhao et al. 2020).

The competition between turbulent shear stress and inter-particle cohesion on the
breakup process is studied by adjusting the initial aggregate diameter D, the Hamaker
constant A and Taylor Reynolds number Reλ = urmsλ/ν where ν is the kinematic
viscosity, urms is the average root-mean-square velocity and λ = √

15ν/εurms is the Taylor
microscale with ε the viscous dissipation rate. The particle adhesion number is introduced
to quantify the effect of van der Waals attraction, defined as Ad = 2γ /(ρpu2

rmsdp) where
γ = A/(24πδ2) is the potential energy associated with van der Waals force with δ = 0.165
nm (Marshall & Li 2014). The Hamaker constant A is a material property that indicates
the strength of cohesion due to van der Waals (Hamaker 1937). In this study, A is varied
between O(10−21) J for weakly cohesive particles (e.g. silica) and O(10−18) J for strongly
cohesive materials such as metal oxides (Marshall & Li 2014). A list of relevant two-phase
flow parameters used in each case is provided in table 1.

2.2. Gas-phase equations
Despite the relatively small size of the particles (dp < η), two-way coupling between the
phases must be taken into account because particles are initially close-packed within an
aggregate of size D > η. To account for the presence of particles without requiring a
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resolution sufficient to resolve the boundary layers at the surface of each particle, a volume
filter is applied to the constant-density Navier–Stokes equations (Anderson & Jackson
1967), thereby replacing the point variables (fluid velocity, pressure, etc.) by smoother,
locally filtered fields. The volume-filtered conservation equations for a constant-density
fluid are given by

∂α

∂t
+ ∇ · (αu) = 0, (2.1)

and
∂αu
∂t

+ ∇ · (αu ⊗ u) = ∇ · τ + F inter + F t, (2.2)

where u is the fluid velocity, α is the fluid volume fraction and τ = −p/ρI + ν(∇u +
∇u� − 2

3(∇ · u)I) is the stress tensor with p the fluid-phase pressure and I the identity
matrix. Here F inter is the interphase exchange term owing to particles that is defined in
§ 2.4 and F t is a linear forcing term to enforce statistically stationary turbulence. It is
important to note that most standard forcing techniques are not sufficient at maintaining
desired turbulence properties (e.g. Reλ) when two-way coupling is present (Mallouppas,
George & van Wachem 2013). In this work, we propose to extend the linear forcing scheme
of Lundgren (2003), such that the mean interphase exchange contribution is removed and
the turbulence statistics remain unaffected by the presence of particles, given by

F t = Qt (αu − 〈αu〉) − 〈F inter〉, (2.3)

where Qt is the linear forcing coefficient, and 〈·〉 denotes the volumetric mean of the
quantity within the computational domain.

The equations are implemented in the framework of NGA (Desjardins et al. 2008),
a fully conservative solver tailored for turbulent flow computations. The Navier–Stokes
equations are solved on a staggered grid with second-order spatial accuracy for
both the convective and viscous terms, and the second-order accurate semi-implicit
Crank–Nicolson scheme of Pierce (2001) is used for time advancement.

2.3. Particle-phase equations
Particles are treated in a Lagrangian manner where the translational and rotational motion
of an individual particle i is given by

dx(i)
p

dt
= v(i)

p , (2.4)

mp
dv

(i)
p

dt
= f (i)

inter + f (i)
col + f (i)

vw, (2.5)

and

Ip
dω

(i)
p

dt
=
∑

j

dp

2
nij × f col

t,j→i, (2.6)

where x(i)
p , v

(i)
p and ω

(i)
p are the instantaneous particle position, velocity and angular

velocity, respectively, mp = ρpπd3
p/6 is the particle mass, Ip = mpd2

p/10 is the moment of
inertia for a sphere and nij is the unit normal vector outward from particle i to particle j. The
translational motion of each particle is determined by momentum exchange with the gas
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phase, f (i)
inter, which is defined in § 2.4, in addition to inter-particle collisions f (i)

col and van
der Waals attraction f (i)

vw, which will be made explicit in the following sections. Particle
rotation is a consequence of the tangential component of the collision force, f col

t,j→i.
Owing to the large density ratio under consideration (ρp/ρ = 2200), the effects of

fluid torque and lubrication forces on particle motion are neglected. In addition, it is
important to note that cohesion due to van der Waals attraction and collisions are treated
independently, which implicitly assumes these effects are additive in nature according to
the Derjaguin, Muller and Toporov (DMT) theory (Derjaguin, Muller & Toporov 1975).
The underlying assumption of the DMT theory is that cohesive forces do not modify
the surface profile during particle contact. Another popular contact theory proposed
by Johnson, Kendall & Roberts (1971), known as the Johnson, Kendall and Roberts
(JKR) theory, assumes that adhesion occurs only within the flattened contact region such
that the collision force is nonlinearly coupled with the cohesion force and consequently
cannot be treated as additive. As suggested by Johnson & Greenwood (1997), the DMT
approximation is valid when λT � 1 (typically λT � 0.1) and the JKR model is valid
when λT 	 1 (typically λT � 10), with λT the dimensionless Tabor parameter defined as

λT =
(

2dpγ
2

E2
s δ

3

)1/3

, (2.7)

where Es is the elastic modulus of particles. For the simulations considered herein, 0.19 �
λT � 0.98, and it is therefore not immediately obvious which assumptions readily apply.
To this end, a variance-based sensitivity analysis is performed in appendix A. It is found
that the results reported herein are largely unaffected by the choice in contact theory. The
results were also found to be insensitive to the restitution coefficient and inclusion of fluid
torque. In the remainder of this work, particle contact mechanics are based on the DMT
theory owing to the low values of λT under consideration and to be consistent with a
recently proposed cohesion model that enables larger simulation timesteps (Gu, Ozel &
Sundaresan 2016), which is discussed in § 2.3.2.

2.3.1. Inter-particle collisions
Particle collisions are needed to prevent unphysical overlap that may arise when attractive
inter-particle forces are present (Yao & Capecelatro 2018). In this work, normal and
tangential collisions are modelled using a soft-sphere approach originally proposed by
Cundall & Strack (1979). When two particles come into contact, a repulsive force is created
as

f col
n,j→i =

{−kδijnij − ζvij,n if s < 0,

0 else, (2.8)

where s is the distance between the particle surfaces, δij is the overlap between the
particles, nij is the unit normal vector from particle i to particle j and vij,n is the normal
relative velocity between particles i and j. The spring stiffness and damping parameter
are given by k and ζ , respectively. A model for the damping parameter (Cundall & Strack
1979) uses a coefficient of restitution 0 < e < 1 such that

ζ = −2 ln e

√
kmp/2√

π2 + (ln e)2
. (2.9)
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The spring stiffness is related to the collision time, τcol, according to

k = mp/2τ 2
col

(
π2 + (ln e)2

)
. (2.10)

Collisions are treated as inelastic with a coefficient of restitution e = 0.9, representative of
many solid spherical objects in dry air. To properly resolve the collisions without requiring
an excessively small timestep, τcol is set to be 20 times the simulation time step Δt for all
simulations presented in this work. A detailed account on the sensitivity of the results
reported herein to the collision parameters is provided in appendix A.

To account for friction between particles and, thus, particle rotation, the static friction
model is employed for the tangential component of the collision force, given by

f col
t,j→i = −μf

∣∣∣ f col
n,j→i

∣∣∣ tij, (2.11)

where μf = 0.1 is the coefficient of friction and tij is the tangential unit vector. Once each
individual collision force is computed, the full collision force that particle i experiences
can be expressed as

f (i)
col =

∑
j/=i

(
f col

n,j→i + f col
t,j→i

)
. (2.12)

Further details can be found in Capecelatro & Desjardins (2013).

2.3.2. Van der Waals models compatible with soft-sphere collisions
The magnitude of the van der Waals force between two particles i and j of the same size,
Fvw

ij , is modelled as (Hamaker 1937)

Fvw
ij (A, s) = A

6

d2
p
(
dp + s

)
s2(2dp + s)2

[
s
(
2dp + s

)
(dp + s)2 − 1

]2

. (2.13)

Owing to the short range nature of the van der Waals force, it is assumed that the force
saturates at a minimum separation, smin = 1 × 10−9 m and is cut off at smax = dp/4.

A brute-force implementation of the unmodified Hamaker model would require
excessively small time steps to resolve inter-particle contact forces. As described
previously, the spring stiffness k used in the soft-sphere collision model is determined
based on the collision time τcol according to (2.10), resulting in artificially ‘soft’ particles
to enable larger time steps. A modified van der Waals model was recently proposed to
be compatible with the soft-sphere collision model outlined in § 2.3.1 (Gu et al. 2016).
The modification ensures the work done by the van der Waals force remains unchanged
when particles overlap, such that its overall effect is insensitive to the choice of k and
consequently the results remain unchanged as Δt is adjusted. This is accomplished by
modifying the saturation distance and Hamaker constant when two particles are in direct
contact, according to

f (i)
vw = −F(i)

vwnij =
{−Fvw

ij (A, s − s0)nij for ss
min < s < smax

−Fvw
ij (As, smin) nij for s � ss

min,
(2.14)

with As = A(k/kr)
1/2 where kr is the ‘real’ spring stiffness of the particle that would

result in negligible overlap during collisions. A value of kr = 7000 N m−1 is used
and the simulation spring stiffness k is chosen such that kr/k = 700 as described in
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Gu et al. (2016). The offset s0 and shifted saturation distance ss
min can be obtained by

solving the following nonlinear equations

Fvw

(
θ, sR

min

)
= Fvw

(
1, ss

min − s0
)
, (2.15)

and

Fvw (1, smin) · smin +
∫ smax

smin

Fvw(1, s) ds = Fvw (θ, smin) · ss
min +

∫ smax

ss
min

Fvw (1, s − s0) ds.

(2.16)

A bisection method is used to solve the nonlinear system of equations as a preprocessing
step prior to simulation runtime.

2.4. Two-way coupling
Particle information is projected to the mesh using a Gaussian filtering kernel G with a
characteristic length δf . The local volume fraction and interphase exchange term appearing
in the fluid-phase equations (2.1)–(2.3) are evaluated as

α = 1 −
Np∑
i=1

G
(∣∣∣x − x(i)

p

∣∣∣)Vp, (2.17)

and

F inter = − 1
ρ

Np∑
i=1

G
(∣∣∣x − x(i)

p

∣∣∣) f inter, (2.18)

where Vp = πd3
p/6 is the particle volume, and the momentum exchange term for particle

i is given by

f (i)
inter = f (i)

drag + ρVp∇ · τ [x(i)
p ], (2.19)

which contains contributions of resolved fluid stresses at the particle location (τ [x(i)
p ]) and

unresolved stresses (i.e. drag) modelled according to

f (i)
drag

mp
= F

(
α, Rep

)
τp

α
(

u[x(i)
p ] − v(i)

p

)
, (2.20)

where u[x(i)
p ] is the fluid velocity at the location of particle i, Rep = α‖u[x(i)

p ] − v
(i)
p ‖dp/ν

is the particle Reynolds number and τp = ρpd2
p/(18ρν) is the particle response time. In this

work, F(α, Rep) is modelled according to the dimensionless drag coefficient of Tenneti,
Garg & Subramaniam (2011) to take into account finite Reynolds number and volume
fraction effects on the drag force.

In order to project the particle data to the grid in an efficient manner and ensure
numerical stability, the two-step filtering approach of Capecelatro & Desjardins (2013)
is employed. First the particle data is sent to the neighbouring grid points via
trilinear extrapolation, the solution is then diffused such that the projection resembles
a Gaussian with characteristic size of δf . To avoid restrictive time step constraints in
the diffusion process, the latter step is solved implicitly via approximate factorization
with a second-order alternating direction implicit (ADI) scheme. In this work, the
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Fluid time step Particle time step

Subiteration

for each particle i

Start

Find and store particle

nearest neighbor list

Interpolate f luid quantities

to particle location

Compute collision, drag

and adhesion force

Advance particles in time

Update interphase exchangeAdvance fluid velocity

Repeat until simulation

has finished

End

�t < �x/ max |υp| O(10–3 s) O(10–7 s)

O(10–5 s)

O(10–5 s)

�tp
(i) = min (τcol/20, τadv/10, τp/10, �t)

τcol = mp/2k, [π2 + (ln e)2]√
τadv = dp/|υp

(i)|

τp = ρpdp
2/(18ρν)

if � �tp
(i) = �t

Figure 2. Multiscale time-stepping algorithm used in the simulations. For each fluid time step Δt, particles
are subiterated at a smaller time step Δtp until they are in sync with the fluid.

filter size δf = 8dp. Such an approach has been demonstrated to accurately predict the
characteristics of particle clustering in turbulent flows (Capecelatro, Pepiot & Desjardins
2014). This simulation framework was recently demonstrated to provide accurate results
when considering attractive inter-particle forces due to electrostatics (Yao & Capecelatro
2018, 2019).

2.5. Numerical time-stepping
The wide range of time scales associated with cohesive particles in turbulent flows presents
a significant challenge in numerical simulations. In the present work, the fluid time scale
τf = (ν/ε)1/2 is O(10−3 s), whereas the particle response time τp = O(10−5 s) and the
collision time scale τcol = O(10−7 s), even with the artificially softened particles and
modified van der Waals model. In order to properly resolve the time scales at play in a
tractable manner, a multiscale time-stepping framework based on the method proposed
by Marshall (2009) is employed (see figure 2). In this approach, the fluid equations
are solved on a separate time scale from the particles. To avoid O(N2

p) calculations of
the inter-particle forces, a nearest-neighbour detection algorithm is employed, such that
interactions via collisions and van der Waals are only considered between particles in
adjacent grid cells (Capecelatro & Desjardins 2013). The fluid time step, Δt, is limited
by the convective time scale dictated by the Courant–Friedrichs–Lewy (CFL) number. To
simplify the implementation of the two-way coupling described in § 2.4, the fluid time
step is further constrained to prevent particles from moving more than one grid cell, i.e.
Δt < Δx/ max |vp|. This ensures that the particle nearest-neighbour list only needs to be
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t/τp = 4

t = 0
Re
λ
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 6
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λ
 =

 4
3
.5

Re
λ
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Ad = 0 Ad = 1.2 Ad = 3 Ad = 6 Ad = 9

Figure 3. The first column shows an initially spherical particle aggregate (D = 20dp) suspended in
homogeneous isotropic turbulence. The remaining columns show particle positions after t/τp = 4 coloured
by their velocity (blue, low; red, high) for different values of Ad and Reλ.

updated once per fluid time step. The particle advection time scale, τadv = dp/|vp|, must
be small enough to prevent significant overlap between particles. To ensure the particle
dynamics are well resolved, particles are subiterated each fluid time step based on a time
scale that is one order of magnitude smaller than the minimum of the collision time,
particle response time and particle advection time. Finally, a second-order Runge–Kutta
scheme is used for updating each particle’s position, velocity and angular velocity.

3. Results and discussion

3.1. Flow visualization
Simulations are carried out for three Taylor microscale Reynolds numbers and five
adhesion numbers as listed in table 1. The spatial distribution of particles at t/τp = 4
is compared in figure 3. In the absence of van der Waals forces, the aggregate breaks up
immediately and particles are dispersed by the background turbulence. It can be observed
that particles progressively shed off from the surface of the clump, and gain speed as they
are transported away. Particles within the aggregate experience smaller interphase slip
velocities owing to two-way coupling, resulting in negligible drag forces. It is important
to note that the deagglomeration process would be markedly different if two-way coupling
were not taken into account. If the simulation was performed with one-way coupling, all of
the particles would experience similar drag, resulting in simultaneous breakup throughout
the aggregate (see appendix A).

As Ad increases, inter-particle cohesion eventually overcomes the fluid stresses,
preventing breakup from occurring when Ad � 9. For the same Ad, the rate of
deagglomeration increases with increasing Reλ due to larger fluid velocity fluctuations.
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Figure 4. Instantaneous fluid stress at the aggregate surface (−) and within the entire domain (−−) normalized
by the root-mean-square quantities with Reλ = 30 and Ad = 0.3. Four realizations under consideration (•, red).

It is clear from figure 3 that the competition between turbulent stresses acting to
disintegrate the particle aggregate and cohesive forces opposing breakup is entirely
controlled by Reλ and Ad. A quantitative assessment of Reλ and Ad on the evolution of
the breakup process is presented in the following sections.

3.2. The role of turbulence intermittency on deagglomeration
Fluid stresses exerted on the aggregate surface by turbulence is highly intermittent.
Figure 4 shows a comparison of the fluid stress at the aggregate surface, defined as
ρu′2|c = ∑Np

i=1 ρ‖u′[x(i)
p ]‖2/Np, with the domain-averaged stress. As can be seen, the

instantaneous fluid stress at the vicinity of the aggregate fluctuates by as much as four
times the domain-averaged value. The time scales of these fluctuations are significantly
smaller than the time required to complete breakup (∼300τf for this case), which amplifies
the effect of turbulence intermittency on early stage breakup.

To investigate the effect of turbulence intermittency on the breakup process, particles
are held in place until four values of t/τf as highlighted in red in figure 4. The particle
clump is then free to evolve from that particular instant in time. These four realizations
contain different fluid stress levels at the vicinity of the clump. In order to quantify its effect
on breakup, the gyration radius, Rg, and the fractal dimension, Df , are computed, which
are commonly used to characterize the dynamics and morphology of particle aggregates
(Friedlander 2000; Ruan et al. 2020). The gyration radius is defined as

Rg =
√√√√ 1

Nc

Nc∑
i=1

∥∥∥x(i)
p − xc

∥∥∥2
, (3.1)

where Nc is the number of particles in the clump, xc = ∑Nc
i=1 x(i)

p /Nc is the center of mass
of the aggregate. The fractal dimension indicates the compactness of its spatial structure.
For a dense spherical aggregate, Df ≈ 3. In this work, we follow Ruan et al. (2020) and
obtain Df by solving the following nonlinear equation

Nc = kf
(
2Rg/dp

)Df , (3.2)
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Figure 5. Characteristics of the aggregate for four different realizations with Reλ = 64 and Ad = 0.3:
(a) number of particles, (b) normalized Gyration radius and (c) fractal dimension of the particle clump. Line
types −, − ·, −− and · · · correspond to red data points from left to right shown in figure 4.

where the fractal prefactor kf is

kf = 0.7321 + 0.8612((Df −1)/2)1.95
. (3.3)

The initial clump generated by centripetal packing has values Rg/dp = 7.625 and Df =
2.94. The total volume of the clump is defined by Vc(t) = {x ∈ R

3 : α(x, t) < 0.75}, which
is evaluated at each simulation timestep in order to quantify the evolution of Rg and Df .
Nc represents the number of particle inside the volume Vc(t).

Figure 5 shows the temporal evolution of Nc, Rg and Df for the four realizations with
Reλ = 64 and Ad = 0.3. It can be seen that the breakup statistics change substantially
over the different realizations despite Reλ and Ad being held constant. The cases with
higher initial turbulence intensity result in quicker initial breakup yet later time statistics
remain relatively unchanged. This can be associated with the time scale of the intermittent
fluctuations being significantly smaller than the time it takes for total breakage. Although
the aggregate breaks up faster with larger initial surface stress, it is subject to smaller
fluctuations on average (see figure 4) resulting in slower breakage at late times. Despite
this intermittency, Nc decays in an approximately linear manner whereas Rg decreases
much faster at late time. The fractal dimension Df decreases from 2.94 to approximately
2.5, indicating significant deformation of the aggregate. Note that the statistics of the
fractal dimension Df becomes noisy when the number of particles in the aggregate is
Nc � 1000 or equivalently the gyration radius Rg � 2dp owing to the limited sample
size. To mitigate the effect of turbulence intermittency on the subsequent results reported
herein, all simulations are initialized such that ρu′2|c is approximately equal to the global
fluid stress at t = 0.

3.3. Early stage deagglomeration
Figure 6 shows the temporal evolution of the number of particles Nc and the gyration
radius Rg of the aggregate for Reλ = 64 as a function of Ad. The number of particles within
the aggregate decreases linearly as it breaks up. As Ad increases, inter-particle cohesive
forces become more significant, resulting in a decreased rate of deagglomeration. It can
be seen that the deagglomeration statistics exhibit a stair-step behaviour when Ad exceeds
a critical value of Ad = 3. This is attributed to the intermittency of turbulent fluctuations,
as shown in figure 7. Particles shed off from the aggregate more rapidly when the clump
experiences larger velocity fluctuations. Similar trends are also observed for the gyration
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Figure 6. Temporal evolution of (a) the number of particles and (b) gyration radius of the aggregate for
Reλ = 64 and Ad = 0, 0.3, 0.6, 1.2, 1.8, 3 (from black to light gray).
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Figure 7. The plots on the left temporal evolution of the number of particles (blue) and gyration radius (red)
of the aggregate and corresponding fluid stress at the aggregate surface for Ad = 3 and Reλ = 64. Stair-step
behaviour is observed in the statistics indicating intermediate breakup occurs when the local fluid stress exceeds
a threshold value. In (a)–(f ) the corresponding instantaneous snapshots of particle position are shown, with
iso-contour of α = 0.75 (white) representing the surface of the aggregate. Colour scheme is the same as
figure 3.

radius, whereas the radius decreases faster during the late stage of deagglomeration, as
a direct consequence of the linear decay in Nc, or equivalently linear decay in aggregate
volume. Note that when Ad > 3, particles become so cohesive that the clump retains its
original shape and size, which were omitted from figure 6.

Figure 7 highlights the effect of fluid stresses at the aggregate surface for Ad = 3
and Reλ = 64. The iso-contour of α = 0.75 shown in white is used to visualize
the surface of the aggregate. A direct one-to-one correspondence can be observed
between the stair-step breakup behaviour and instantaneous turbulent velocity fluctuations.
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Figure 8. Breakage regime diagram for a particle aggregate suspended in homogeneous isotropic
turbulence for Reλ = 30 (�, red), 43 (•, green), 64 (�, blue) and non-dimensional clump size D/dp =
10 (solid), 20 (hollow), with + and × denoting cases without breakage for D/dp = 10 and 20, respectively.
The linear dashed line separating the breakup outcome is given by Adη,crit = γ /(ρpu2

rmsη) = 1.8.

The snapshots indicate the abrupt decrease in aggregate size is associated with turbulent
eddies interacting with the aggregate resulting in breakup of smaller satellite aggregates.
Before breakage, the clump is seen to remain relatively spherical. In the presence of large
velocity fluctuations, the aggregate breaks from the side of its surface where the velocity
gradient is high. As the aggregate shrinks, the net effect of cohesion within the aggregate
also decreases and consequently breaks up in all directions. Although the surface area is
smaller than the original aggregate, particles shed off at higher speeds resulting in the
same rate-of-change in Nc. At late time (t > 1000τf ), D drops below a critical value where
turbulent eddies can no longer break the aggregate into smaller pieces, i.e. when D ∼ η.

3.4. Scaling analysis
To better understand the role of turbulence and adhesion on the breakup process, the
breakage outcome associated with each simulation is plotted in terms of the adhesive
stress, γ /η, and the turbulent stress, ρpu2

rms. As shown in figure 8, larger fluid stress
results in a transition from a ‘no breakage’ regime to a ‘breakage’ regime at a given γ /η.
A simulation is classified as ‘no breakage’ when Nc remains unchanged for t � 1000 τf .
Similarly, at a given ρpu2

rms, the increase of γ /η, either due to enhanced cohesion or
smaller η, reduces the likelihood of breakup. The breakup outcome is found to depend on
a turbulent adhesion number Adη,crit = γ /(ρpu2

rmsη) = 1.8 where Adη = Ad(dp/η). Note
that for simple shear flow where η is not well defined, it has been found that the breakage
outcome is instead characterized by D (Ruan et al. 2020). The simulations performed in
the present study indicate that the characteristic length scale associated with aggregate
breakup is η when η � D. In simple shear flow, particles experience a uniform shear rate
within the aggregate, therefore larger aggregates will experience larger velocity differences
across the surface. In homogeneous isotropic turbulence, however, turbulent eddies create
local regions of high shear of size proportional to η. When η � D, these eddies are
agnostic to the clump size D resulting in progressive breakup into smaller clumps, as
depicted in figure 7.

Figure 6 shows that the breakup rates (Ṅc = dNc/dt) are approximately constant for
each case under consideration. The breakup rates are extracted from each simulation and
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Figure 9. Rate of deagglomeration quantified by the time-rate-of-change of number of particles within the
aggregate for different Ad, Reλ = 30 (�, red), 43 (•, green), 64 (�, blue) and aggregate size D/dp =
10 (solid), 20 (hollow). Rate of deagglomeration plotted (a) as a function of Ad and (b) as a function of
ReD(1 − Adη/Adη,crit). Here Ṅcτp = 28 ReD(1 − Adη/Adη,crit) (−−).

plotted in figure 9(a). It can immediately be seen that the breakup rate increases with D
and Reλ, but decreases with Ad. The effect of D and Reλ can be taken into account via an
aggregate Reynolds number ReD = urmsD/ν. When Adη = 0, adhesion has no effect on
the breakup rate and consequently Ṅcτp ∼ ReD. When Adη � Adη,crit, no breakage will
occur according to figure 8 (Ṅcτp = 0). With this, a correction factor (1 − Adη/Adη,crit)
can be introduced to account for the effect of cohesion. Based on these observations,
the data is rescaled with respect to ReD(1 − Adη/Adη,crit). As shown in figure 9(b), the
breakup rate follows a linear scaling given by Ṅcτp = 28 ReD(1 − Adη/Adη,crit). Note that
small deviations are observed at lower Reynolds numbers (e.g. Reλ = 30). For these cases,
the eddy size becomes comparable to D, and turbulence must break up the entire aggregate
instead of a piece of it. As a result, the assumption that η is the characteristic length scale
for deagglomeraton does not hold at low Reynolds numbers and the breakup will exhibit
dependance of D/dp instead. Based on the simulation results, the dependence of breakup
on η is applicable when D/η � 5.

4. Phenomenological model of deagglomeration

Despite valuable insights provided by the numerical simulations presented herein and
many other works using PR-DNS, they are limited to relatively small-scale systems owing
to the high computational cost needed to resolve the relevant length and time scales.
Particle transport in large-scale systems is typically modelled without knowledge of the
velocity field at the scale of individual particles. However, the breakup of cohesive
particles reported in §§ 3.2 and 3.3 are shown to depend strongly on local turbulence
statistics such as η and urms. In addition, the effect of turbulence intermittency is not
captured when particles traverse an averaged flow field, such as in the case of RANS. The
aim here is to develop a reduced-order model capable of capturing the breakup of cohesive
particles in the absence of a resolved turbulent flow field.

The Taylor analogy breakup (TAB) model is widely used in calculating droplet
breakup. This method is based on Taylor’s analogy (Taylor 1963) for an oscillating and
distorting droplet. The droplet deformation is treated as a mass–spring–damper system,
where the surface tension force acts as a restorative force, the force exerted by the
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Figure 10. Time to initial breakup tbr as a function of the turbulent adhesion number. Symbols are the same
as figure 8. The black line corresponds to (4.14) with CF = 0.8, Ck = 2 × 10−4, Cd = 0.3 and Cb = 1. The
vertical dashed lines correspond to Adη = 0.5 and Adη = 1.8.

surrounding gas phase acts as an external force, and the droplet viscosity acts as a damper.
Motivated by the TAB model, we propose a similar mass–spring–damper analogy to model
turbulence-induced breakup of cohesive particles. In this case, the van der Waals force is
treated as an analogue to the droplet surface tension, and friction due to inter-particle
contact is treated as an analogue to the droplet viscosity. We refer to this model as a
granular Taylor analogy breakup (G-TAB) model.

Assuming the local turbulence statistics are known from a turbulence model such as
RANS, Adη can be determined to estimate whether or not breakup occurs. As shown in
figure 10, three distinct breakup regimes are observed: Adη � 0.5, the cohesive force is
weak compared with turbulent stresses and the aggregate breaks up instantaneously; 0.5 <

Adη � 1.8, the competition between turbulence and cohesion results in delayed breakage
of the aggregate; and when cohesion becomes significant (Adη > 1.8), turbulence is
unable to overcome the attractive forces, resulting in no breakup. The G-TAB model is
employed to predict the breakup time as a function of Adη when 0.5 < Adη � 1.8. The
governing equation is given by

F − kx − d
dx
dt

= m
d2x
dt2

, (4.1)

where x is the displacement of the aggregate equator from its spherical (undisturbed)
position. The coefficients of this equation are based on Taylor’s analogy, given as

inertial force due to turbulence:
F
m

= CF
ρu2

rms

ρpη
, (4.2)

restorative force due to adhesion:
k
m

= Ck
γ

ρpη3 , (4.3)

damper due to inter-particle friction:
d
m

= Cd
μp

ρpη2 , (4.4)

911 A10-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1020


Deagglomeration of cohesive particles by turbulence

10–2

10–3

10–2
Θ

/(
Γ

d p)
2

10–1

10–1

ReD
–1

Figure 11. Scaling of the mean granular temperature within the aggregate for D = 10dp (blue) and
20dp (red). Here Θ/(Γ dp)

2 = 0.2 Re−1
D (−−).

where μp is the effective solids viscosity at random close packing (RCP) and CF, Ck and
Cd are model coefficients that will be determined later.

For non-cohesive particles, Bocquet et al. (2001) gives the solids viscosity as
μ0

p = (mp
√

Θ/d2
p)g

β−1
0 from kinetic theory, where Θ = 〈v(i)

p · v
(i)
p 〉/3 is the granular

temperature, g0 = (1 − n/nc)
−1 is the radial distribution function at contact with n the

local number density and nc the maximum number density at RCP. Here β = 1.75 is
a phenomenological constant measured from experiments. For cohesive particles, μp
increases monotonically with increasing adhesion due to enhanced inter-particle attraction.
A linear correction has been introduced by Roy, Luding & Weinhart (2017) as μp =
μ0

p(1 + 1.47 Bo) where Bo = Fvdw/( psd2
p) is the Bond number that measures the cohesion

strength relative to the compressive force. The solids pressure ps at RCP is given as ps =
n0g0mpΘ with n0 = (1 + e)(π/3)n2

cd3
p (Bocquet et al. 2001). Based on these relations, μp

is computed as a function of Θ and Bo

μp = (mp
√

Θ/d2
p)g

β−1
0 (1 + 1.47 Bo), (4.5)

which depends on Reλ and Ad. Based on the simulation results reported herein, Θ/(Γ dp)
2

is found to scale linearly with Re−1
D (see figure 11). Therefore, we propose a simple model

for the granular temperature of the particles within the aggregate near RCP as

Θ = CΘRe−1
D (Γ dp)

2, (4.6)

where the coefficient CΘ = 0.2 is determined from the simulations, and the shear rate is
approximated as Γ ≈ urms/D. A more detailed algebraic expression for Θ was presented
by Syamlal, Rogers & O’Brien (1993).

The aggregate is assumed to break up if the distortion grows to a critical ratio of the
Kolmogorov length scale. This breakup requirement is given as

y = x/ (Cbη) > 1. (4.7)
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Consequently, (4.2) can be non-dimensionalized as

d2y
dt2

= CF

Cb

ρ

ρp

u2
rms

η2 − Ckγ

ρpη3 y − Cdμp

ρpη2
dy
dt

, (4.8)

which exhibits the following analytical solution

y(t) = Adc

(
1 − e−(t/td)

[
cos(ωt) + 1

ωtd
sin(ωt)

])
, (4.9)

where
1
td

= Cd

2
μp

ρpη2 , (4.10)

Adc = CF

CkCb

1
Adη

ρf

ρp
, (4.11)

and

ω2 = Ck
γ

ρpη3 − 1
t2d

. (4.12)

The aggregate is assumed to break up when the maximum displacement satisfies

max( y) = Adc

(
e−π/(ωtd) + 1

)
> 1, (4.13)

and the corresponding breakup time is uniquely obtained by solving

y(tbr) = 1, tbr < π/ω. (4.14)

The model coefficients are determined by solving (4.10)–(4.12) and (4.14) using tbr
extracted from each simulation. The G-TAB model is able to predict tbr and the correct
Adη,crit as shown in figure 10 with CF = 0.8, Ck = 2 × 10−4, Cd = 0.3 and Cb = 1. These
coefficients are of the same order as the original TAB model except for Ck, which is
significantly smaller, indicative that a larger restorative force is required to prevent breakup
compared with that of the surface tension required for liquid droplets. This discrepancy
is primarily due to the short-range nature of the van der Waals force which results in
non-restorative deformation as inter-particle distances increase beyond the force range.
Note that the model is not applied when Adη < 0.5, resulting in the instantaneous breakage
regime where tbr = 0.

In summary, for any spherical aggregate of particles with known size ratio D/dp,
Hamaker constant A and local turbulence quantities η and urms, the non-dimensional
numbers Adη, Bo and ReD can be calculated. With this, the G-TAB model predicts the
time it takes to initiate breakage based on Adη and Bo. If an aggregate is predicted to
break (i.e. Adη < 1.8), then the rate of breakup is modelled using the scaling shown in
figure 9 given by

dNc/dt = 28 ReD

τp
(1 − Adη/Adη,crit). (4.15)

This provides a comprehensive prediction of the deagglomeration process of a clump of
cohesive particles in turbulence from the onset of breakage to complete fragmentation
into primary particles. Because urms and η are readily available in a RANS calculation,
the G-TAB model can readily be incorporated. We note that this model is specifically
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designed for the breakup of a single dense spherical aggregate in turbulence. Although
non-spherical or less-densely packed aggregates may require different model coefficients,
the mass–spring–damper analogy proposed here is anticipated to hold.

Many efforts have recently been made towards modelling aggregate breakup due to
particle interactions. Chen & Li (2020) showed that the collision-induced breakage
rate scales exponentially with Ad and aggregate size. van Wachem et al. (2020)
proposed a discrete fragmentation model (DFM) to simulate the breakup behaviour due
to aggregate–aggregate and aggregate–wall collisions without tracking each individual
primary particle. Unlike these studies, the present work provides a framework that isolates
the effect of turbulence on particle breakup using a simple phenomenological model. At
present, experimental measurements of particle breakup in turbulence are scarce. While
such measurements are challenging to make experimentally, primarily due to the difficulty
in seeding an individual aggregate in a controlled manner and due to the opaque nature of
the particles, such data would be invaluable to further validate such models.

5. Conclusion

In the present study, a ‘clump’ of Geldart A/C-type particles (e.g. dust or powder in
air) was placed in homogeneous isotropic turbulence to study the interplay between
turbulence and adhesion on deagglomeration. Numerical simulations were carried out in
an Eulerian–Lagrangian framework that resolves particle–particle interactions and models
fluid–particle coupling. The adhesion number Ad, Taylor microscale Reynolds number Reλ
and non-dimensional clump size D/dp were varied to investigate the breakup criteria and
breakup rate of the aggregate.

To fully resolve the wide range of length and time scales present in the system, we
employed a multiscale time-stepping algorithm that subiterates particles at a smaller time
step than the fluid phase. A modified linear-forcing technique was introduced to maintain
statistically stationary turbulence in the presence of particles with two-way coupling.
A modified van der Waals model developed for soft-sphere collisions was also adopted
to allow for larger simulation time steps while keeping the results insensitive to the choice
of particle stiffness. A variance-based sensitivity analysis was performed to quantify the
relative importance of the modelling parameters appearing in the particle-phase equations
on the time-to-breakup and breakup rate. The simulation results were found to be most
sensitive when switching between one-way and two-way coupling. In the absence of
two-way coupling, the local flow remains unmodified in the presence of particles, resulting
in relatively large interphase slip velocities and consequently instantaneous breakup.

The temporal evolution of the aggregate size and flow visualizations demonstrated that
turbulence intermittency plays an important role on the deagglomeration process. It was
found that the time rate of breakup is affected substantially by different flow realizations of
the same Reλ. As particles become more cohesive (e.g. Ad � 3), a stair-step behaviour was
observed for the breakup rate owing to the presence of large turbulent velocity fluctuations
at the vicinity of the aggregate.

The aggregate is shown to breakup progressively into smaller clumps proportional to
η. A regime map of fluid stress versus adhesive stress revealed that a critical turbulent
adhesion number, Adη,crit = γ /(ρpu2

rmsη) = 1.8, is capable of predicting the breakup
outcome of an aggregate in turbulence. A scaling analysis further demonstrated a linear
relation between the time rate of breakup Ṅc and the aggregate Reynolds number ReD,
with a correction due to adhesion (1 − Adη/Adη,crit).
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As a direct analogue to the TAB model commonly used for droplet breakup in the spray
community, the analysis performed herein was used to inform a mass–spring–damper
model to predict the breakup time of the aggregate, referred to as G-TAB. Here, turbulent
velocity fluctuations act to deform the aggregate, damped by solid-phase shear stress
modelled using a solids viscosity informed by Kinetic theory. The predicted breakup time
for a given Adη was in good agreement with simulations.
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Appendix A. Sensitivity of aggregate breakup to modelling parameters

Two key metrics used in the analysis of aggregate breakup and model development in the
present study are the time-to-breakup, tbr, and breakup rate, Ṅc. As summarized in § 2,
the numerical prediction of breakup depends on a set of parameters for modelling inelastic
collisions and cohesion due to van der Waals forces. The purpose of this appendix is
to evaluate the sensitivity of the quantities of interest (QoIs), namely tbr and Ṅc, to the
various modelling parameters employed. Specific attention is paid to the effect of the
spring stiffness, k, and restitution coefficient, e, appearing in (2.8), the role of two-way
coupling, the relative importance of fluid torque and choice in cohesion model. The
simulation configuration outlined in § 2 is used, with Reλ = 64 and Ad = 0.3 and 3. It
should be noted that although Gu et al. (2016) demonstrated previously that simulations
of gas-fluidization of cohesive particles are insensitive to the particle stiffness using the
modified cohesion model employed here, the present study represents the first application
of this model to large (with respect to the Kolmogorov length scale) and dense (near close
packing) particle aggregates.

Table 2 summarizes the non-dimensional time-rate-of-breakup and breakup time for
different model parameters and conditions, with the values used to generate the results
reported in § 3 highlighted in bold. The modified van der Waals model of Gu et al. (2016)
is also compared with the original model of Hamaker (1937) to demonstrate the reduced
dependence of spring stiffness on the QoIs. It can immediately be seen that the QoIs are
far more sensitive to the particle stiffness when the original model of Hamaker (1937) is
used. Taking the ‘real’ value of particle stiffness to be k = 7000 N m−1, both models yield
the same results when this value is used, albeit with excessively small timesteps. However,
as k is reduced to an artificially soft value of 10 N m−1, tbr/τf changes from 0 to 1750
using Hamaker (1937) with Ad = 0.3, whereas tbr/τf predicted using the modified model
remains 0. The QoIs are seen to be even less sensitive to k for higher values of Ad with the
modified model. Specifically, varying the stiffness from k = 7000 to k = 10 N m−1 results
in a 23.3 % change in breakup rate for Ad = 0.3 and only a 0.9 % change for Ad = 3. This
is likely due to the increased duration of breakup at higher values of Ad. Similar variations
in the breakup rate can also be seen when varying the coefficient of restitution, despite
it changing from near-elastic (e = 0.9) to highly inelastic (e = 0.1). Similar trends are
observed for the other QoI (tbr/τf ) as well.

The QoIs are found to be much less sensitive to the inclusion of fluid torque. It can
be seen that accounting for the fluid torque slightly increases the breakup rate, and has
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Ad Spring stiffness, k Restitution Two-way Fluid torque
(N m−1) coefficient, e coupling

10 100 300 7000 0.1 0.3 0.9 w/ w/o w/ w/o

Gu et al. (2016) Ṅcτp 0.3 1523 1219 1246 1167 1371 1167 1523 1523 17 138 1594 1523
3.0 570 577 565 568 576 568 570 570 10 968 593 570

tbr/τf 0.3 0 0 0 0 0 0 0 0 0 0 0
3.0 225 210 280 230 180 210 225 225 0 225 225

Hamaker (1937) Ṅcτp 0.3 914 979 997 1167 826 793 914 914 17 312 937 914
3.0 0 0 0 568 0 0 0 0 10 765 0 0

tbr/τf 0.3 1750 840 800 0 1740 1780 1750 1750 0 1760 1750
3.0 ∞ ∞ ∞ 230 ∞ ∞ ∞ ∞ 0 ∞ ∞

Table 2. Breakup time (tbr) and time rate of breakup (Ṅc) for different values of model parameters. Values
used in the primary study displayed in bold.

negligible effect on the breakup time. For Ad = 0.3, the non-dimensional breakup rate
Ṅcτp varies from 1523 to 1594, and with Ad = 3, it varies from 570 to 593. Meanwhile,
it has no noticeable change in the breakup time tbr. This is not surprising as fluid torque
acting on each particle i, M (i)

f , is proportional to the dynamic viscosity μ, which is added
to the right-hand side of (2.6) according to (Chen, Li & Marshall 2019)

M (i)
f = −πμd3

p

(
ω(i)

p − ω
)

, (A1)

where ω = ∇ × u/2 is the fluid rotation rate vector. While such effects are known to
be important for liquid–solid suspensions, the dynamic viscosity is typically two orders
of magnitudes smaller in gas-solid flows. Meanwhile, two-way coupling is seen to have
substantial effects on the results.

To obtain a quantitative understanding of how sensitive the QoIs are to the modelling
parameters, a variance-based sensitivity analysis is performed. The total-effect Sobol
sensitivity indices are computed for each parameter, defined as

STi = EX∼i

(
VarXi (Y | X∼i)

)
Var(Y)

, (A2)

where Y is the output (QoI), X is a vector of four input parameters (i.e. k, e, two-way
coupling, fluid torque), X∼i denotes the set of all variables except Xi, and E and Var
denote the expectation and variance, respectively. Here STi can be interpreted as a measure
of the contribution of Xi to the output variance, including the total variance caused by its
interactions with other input variables, normalized by the global output variance of the
QoI, Var(Y). Note that for cases in which the aggregate fails to breakup, tbr = ∞, which
results in ill-defined Sobol indices. To this end, a transformed QoI t̂br is defined to measure
the breakup time by monotonically mapping tbr to a finite range via

t̂br = (tbr/tbr)
2/
(
(tbr/tbr)

2 + 1
)

(A3)

with tbr the mean of all finite tbr values such that t̂br = 0 when tbr = 0 and t̂br = 1 when
tbr = ∞. We found that STi is not sensitive to the specific choice of the mapping function
as long as it is a monotonic function such that they have the same physical meaning.
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Figure 12. Total-effect Sobol sensitivity index of time-to-breakup (a,c) and breakup rate (b,d) for Ad = 0.3
and 3.0 normalized by the global variance of each QoI. Particle stiffness k (blue), restitution coefficient e
(orange), two-way coupling (yellow) and the fluid torque (purple).

As shown in figure 12, the modified model of Gu et al. (2016) significantly reduces the
sensitivity of the particle stiffness on both QoIs. The effect is more profound on Ṅcτp for
Ad = 3 than Ad = 0.3 as previously observed in table 2. For t̂br, however, the dependency
on these input parameters are completely removed when Ad = 0.3 because the aggregate
breaks up instantaneously for all cases. Even when particles are highly cohesive (Ad = 3),
the Sobol index of k using the model of Gu et al. (2016) is approximately three orders of
magnitude smaller than Hamaker’s original model, which demonstrates the advantage of
using the modified model. Nevertheless, both QoIs are most sensitive to two-way coupling
for both values of Ad.

To better illustrate the large discrepancy in QoIs between one-way and two-way
coupling, we compare the instantaneous particle distribution and the corresponding flow
field at t/τf = 60 in figure 13. When one-way coupling is considered, the local flow
remains unmodified by the presence of particles, resulting in relatively large interphase slip
velocities and consequently large values in drag. It can be seen that despite the presence
of cohesion, strong drag induced by the turbulence results in instantaneous breakup.
However, with two-way coupling, the near close-packing distribution of particles is seen to
result in a no-slip boundary condition, resulting in null drag for all of the particles except
those near the surface of the aggregate. In § 3, this was shown to result in fragmentation
that occurs progressively from the outer surface where the shear stresses are greatest.

Figure 14 compares the evolution of aggregate breakup using the van der Waals models
of Gu et al. (2016) and Hamaker (1937). The time-to-breakup and breakup rate are seen
to be relatively similar for both values of Ad as k is adjusted using the Gu et al. model.
However for the original Hamaker model, larger values of k results in significantly larger
breakup time when Ad = 0.3, and fails to predict breakup when Ad = 3, which confirms
that the particle dynamics are highly sensitive to particle stiffness using the original
Hamaker model. Note that although the dependency of k is not removed completely as

911 A10-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
20

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1020


Deagglomeration of cohesive particles by turbulence

(b)(a)

Figure 13. Comparison of the velocity field and particle distribution with (a) one-way coupling and
(b) two-way coupling for Reλ = 64 and Ad = 3 at t/τf = 60. Colour scheme is the same as figure 1 with
white dashed line showing the aggregate interface.
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Figure 14. Evolution of the number of particles within the aggregate for (a) Ad = 0.3 and (b) Ad = 3 with
Reλ = 64. van der Waals model of Gu et al. 2016 (black) and Hamaker 1937 (red) with k = 10 (−), 100 (−−),
300 (− ·) and 7000 (· · · ) N m−1. JKR theory (which is independent of k) (blue).

shown in figure 12, the sensitivity is relatively small and the model of breakup proposed
herein is anticipated to apply generally for dense spherical aggregates.

Recall that treating inter-particle collisions and cohesion as additive forces implicitly
assumes the surface profile of the particles remain unmodified according to the DMT
theory (Derjaguin et al. 1975). For solid particles in air, this assumption is typically
only valid for submicrometre-size particles. For larger particles, the JKR theory might be
more appropriate, which assumes that adhesion occurs only within the flattened contact
region, and consequently the collision force is nonlinearly coupled with the adhesion force.
The validity of each theory is characterized by the Tabor number (2.7). DMT is most
appropriate when λT � 1 (typically λT � 0.1) and the JKR model is valid when λT 	 1
(typically λT � 10). As discussed in § 2, 0.19 � λT � 0.98, and thus DMT was chosen
in the present study. In order to show the applicability of the DMT theory in the cases
considered here, the aggregate breakup processes using both theories are compared in
figure 14 for Ad = 0.3 and 3. The DMT theory is analysed by coupling the soft-sphere
collision model with the cohesion model of Gu et al. (2016) in addition to the original
van der Waals model of Hamaker (1937). The numerical implementation of JKR model
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is based on Chen et al. (2019). For both values of Ad, the JKR model predicts a slightly
larger rate of breakup than the DMT models (Ṅcτp = 1610 versus 1523 for Ad = 0.3 and
598 versus 570 for Ad = 3), and the breakup times are in reasonable agreement for all
cases (tbr/τf = 0 versus 0 for Ad = 0.3 and 220 versus 225 for Ad = 3).
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