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QUANTUM EXPANDERS AND QUANTIFIER REDUCTION FOR
TRACIAL VON NEUMANN ALGEBRAS

ILIJAS FARAH"*, DAVID JEKEL“*, AND JENNIFER PI

Abstract. We provide a complete characterization of theories of tracial von Neumann algebras that
admit quantifier elimination. We also show that the theory of a separable tracial von Neumann algebra
M is never model complete if its direct integral decomposition contains II; factors N such that M>(N)
embeds into an ultrapower of /. The proof in the case of II; factors uses an explicit construction based
on random matrices and quantum expanders.

§1. Introduction.

1.1. On quantifier elimination. A common objection to the model-theoretic study
of operator algebras [29-31, 38] is that one needs to consider formulas with an arbi-
trarily large number of alternations of quantifiers. Since a typical human mind has
difficulty parsing formulas such as (Vx;)(3x2)(Vx3)(3x4) (Vxs5)w (x1. X2, X3. X4, X5)
for a nontrivial relation y, it is natural to ask whether, for some theories, a
given formula is equivalent to something simpler. In particular, a theory T admits
elimination of quantifiers if every formula is equivalent modulo T to a quantifier-
free formula (or in the metric setting, if every formula can be approximated by
quantifier-free formulas).

Quantifier elimination has been isolated as a desirable property of theories from
the very beginnings of model theory. Chang and Keisler [18, Section 5.1] wrote,
“Each time the method is applied to a new theory we must start from scratch
in the proofs, because there are few opportunities to use general theorems about
models. On the other hand, the method is extremely valuable when we want to beat
a particular theory into the ground.” Unfortunately—or fortunately, depending on
one’s disposition—the only tracial von Neumann algebras whose theories admit
quantifier elimination are of type I (i.e., a direct integral of matrix algebras), as
the first author showed in [26] (special cases were noted earlier in [38]). Experts in
operator algebras should not find it surprising that no II; factor has a theory that
can be “beaten into the ground”!

Our first main result concerns which type I algebras admit quantifier elimination
and confirms the conjecture from [26].
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2 ILIJAS FARAH, DAVID JEKEL, AND JENNIFER PI

THEOREM A. Let M = (M, 1) be a WOT-separable tracial von Neumann algebra.
Then the following are equivalent.

(1) Th(M) admits quantifier elimination.
(2) M is type I and any two projections p and q in M witht(p) = t(q) are conjugate
by an automorphism of M.

Since the quantifier-free type of a projection is determined by its trace, condition
(2) asserts that projections with the same quantifier-free type are conjugate by an
automorphism. We also give a more explicit description of when M admits quantifier
elimination in Section 3.2.

Special cases of tracial von Neumann algebras that admit quantifier elimination
have been known for some time. For instance, a diffuse commutative tracial von
Neumann algebra corresponds to an atomless probability space, which Ben Ya’acov
and Usvyatsov showed admit quantifier elimination in [13, Example 4.3] and [10,
Fact 2.10]. For further discussion, see [14] and [51, Section 2.3]. The matrix algebras
M, (C) also admit quantifier elimination thanks to the multivariate Specht’s theorem
[54]. Indeed, this result shows that two matrix tuples are unitarily conjugate if and
only if they have the same x-moments under the trace, or equivalently, the same
quantifier-free type.!

The question of quantifier elimination for II; factors was studied in [38,
Section 2], which showed that the hyperfinite factor R does not admit quantifier
elimination, and this argument was observed in [37] to generalize to McDuff
factors. Furthermore, the results of [38, Section 3] imply that Connes-embeddable
factors not elementarily equivalent to R are not model complete, hence also do
not admit quantifier elimination. The first author [26] extended this argument to
refute quantifier elimination for II; factors in general, and showed that tracial von
Neumann algebras with a type 11} summand never admit quantifier elimination. We
also give another argument for this fact in Remark 5.5.

1.2. On model completeness. Model completeness, introduced by Abraham
Robinson, can be viewed as a poor person’s version of quantifier elimination. A
theory is model complete if every embedding between its models is elementary.
While quantifier elimination means that every formula can be approximated by
quantifier-free formulas, model completeness is equivalent to every formula being
approximable by existential formulas (see §2.4). Thus, both quantifier elimination
and model completeness are forms of quantifier reduction.

Another characterization of model completeness for Th(M), under the assump-
tion of the Continuum Hypothesis, is that for every separable .4 and B elementarily
equivalent to M, every embedding A — B extends to an isomorphism AY — BY
for some ultrafilter / [25. Corollary 16.6.5].> Operator algebraists will recognize this
property as a generalization of the property of the hyperfinite II; factor R. that every

"However. M,,(C) does not admit quantifier elimination as a C*-algebra (i.e., without the trace) since
two nontrivial projections always have the same quantifier-free type but may not have the same type.

2The use of Continuum Hypothesis is. while necessary for this formulation. innocuous and removable
at the expense of having a more complicated (but equally useful) formulation in terms of a back-and-
forth system of partial isomorphisms between separable subalgebras of A and B that is ¢-complete (see
[25, Theorem 16.6.4]).

https://doi.org/10.1017/js1.2025.10100 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10100
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embedding of R into its ultrapower is unitarily equivalent to the diagonal embedding
(the latter is elementary by Lo$’s theorem). By a standard ultrapower argument, this
implies that every embedding of R into a model of its theory, Th(R), is elementary;
this property was studied in [6] under the name of “generalized Jung property.”
Note, however, that every embedding of R into its ultrapower being elementary
does not mean that R is model complete, since model completeness would require
that every M elementarily equivalent to R also has the same property.

Among tracial von Neumann algebras, type I algebras are model complete [26]
and algebras with a type II; summand are generally not model complete. Indeed, the
only possible model complete theory for Connes-embeddable II; factors is Th(R)
[38. Proposition 3.2]. Moreover, [38, Corollary 3.4] showed that if the Connes
embedding problem has a positive solution, then there is no model complete theory
of a II; factor; however, a negative solution of the Connes embedding problem was
announced in [53], so the question of characterizing model complete theories of I1;
factors was still open. It was conjectured in [26] that tracial von Neumann algebras
with a nontrivial type II; summand are never model complete, and our second main
theorem establishes this conjecture under a mild additional hypothesis that the II;
factors in the decomposition satisfy that M>(M) approximately embeds into M.

THEOREM B. If M is a 11y factor such that My(M) embeds into MY for some
ultrafilter U, then Th(M) is not model complete.

More generally, let M be a separable tracial von Neumann algebra with direct
integral decomposition fg? (My,. 10,) dw. Suppose that on a positive measure set, M,,
is a 11y factor such that My(M,,) embeds into MY for some ultrafilter U. Then
Th(M) is not model complete.

The assumption that M,(M) embeds into an ultrapower of M is closely related
to [36, Proposition 4.17], and is immediate in several cases of interest. For instance
if M is Connes embeddable this holds because M>(M) embeds into RY and hence
into MY (of course, Theorem B in the Connes embeddable case also follows from
[38]). Another case where this condition is automatic is if M is existentially closed
in the class of II; factors, since by definition there is an embedding of M;(M) into
MY extending the diagonal embedding. The condition also holds automatically
if M is McDuff, and more generally if its fundamental group is nontrivial; see
Section 6.2. Although there are II; factors such that M,(M) does not embed into
M [60, Theorem C], it is unknown at this point whether there exists any II; factor
such that M,(M) does not embed into MY. Since such an object would not be
Connes-embeddable, it would no doubt be difficult to construct. In Section 6.2, we
will discuss several conditions equivalent to M>(M) embedding into MY,

The proof of Theorem B is divided into two parts. In the case of a II; factor,
we use a random matrix construction to create two tuples with similar behavior
for their one-quantifier types, while their full types are distinguished by one having
factorial commutant when the other does not. In fact, this approach gives explicit
sentences distinguishing their types (see Section 4.5). The matrix construction shares
some common ideas with [26], but also uses more substantial random matrix
results such as Hastings’s quantum expander theorem [45] and concentration of
measure for random unitaries. Thus, this is a first application of the combination
of model theory and random matrix theory envisaged in [51, Section 6]. Already in
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[24, Section 5] it was predicted that deeper analysis of model theory of II; factors
will necessarily involve free probability.

The extension to general tracial von Neumann algebras then requires two cases.
If the von Neumann algebra is a direct integral over a diffuse space, with fibers
M,,. there is a direct argument to show the failure of model completeness when
M»(M,,) embeds into MY (Lemma 5.4). The remaining piece is the observation
that if My & M, is model complete, then both M; and M, are model complete
(Lemma 5.1).

1.3. Organization of this paper. In Section 2, we recall background on tracial
von Neumann algebras and continuous model theory, including specific tests for
quantifier elimination and model completeness. In Section 3.1, we prove Theorem A,
and in Section 3.2, we give several more explicit tests for quantifier elimination. In §4,
we prove Theorem B in the case of I1; factors. Then in Section 5, we prove the general
case, relying on the fact that model completeness passes to direct summands (Section
5.1). In the final section we give closing remarks: in Section 6.1 we discuss topological
properties of theories of von Neumann algebras that have quantifier elimination or
model completeness, Section 6.2 is about the condition of M>(M) embedding to
MY and Section 6.3 is about quantifier elimination and model completeness in the
non-tracial setting.

§2. Preliminaries.

2.1. Tracial von Neumann algebras. We assume familiarity with tracial von
Neumann algebras, and recommend [49] for an introduction to the topic, as well
as the standard reference books [15, 22, 56, 61, 62, 65]. In particular, we use the
following notions and conventions:

e A tracial von Neumann algebra is a finite von Neumann algebra with a specified
tracial state.

e The tracial state on M will usually be denoted by 7 or 7 4.

e The normalized trace on M, (C) will be denoted by tr,,.

o We also write || x|, = 7(x*x)!/? when x is an element of a tracial von Neumann
algebra, and in particular when x is a matrix, [|x|, = tr,(x*x)!/? is the
normalized Hilbert—Schmidt norm.

e The completion of M with respect to 2-norm is denoted L?(M).

e Inclusions and embeddings of tracial von Neumann algebras N’ C M are
assumed to be trace-preserving x-homomorphisms.

o If V' C M, we denote by E s : M — A the canonical conditional expectation;
there is a unique conditional expectation that preserves the trace, and it is the
restriction of the orthogonal projection L2(M) — L2(N).

2.2. Continuous model theory. We also assume some familiarity with continuous
model theory, specifically model theory for metric structures; see, e.g., [11, 44]. In
particular:

e The structures under consideration are metric spaces, and the metric 4 is one of
the symbols in the language. The structure can have multiple sorts; for instance,
for a von Neumann algebra, there is one sort for each operator norm ball.
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e Relation symbols are R-valued, so in particular formulas will take values in R
rather than evaluating to true/false. The relation symbols and function symbols
are required to be uniformly continuous across all models.

e Formulas are created in the usual recursive fashion with connectives from
classical model theory replaced by continuous functions on R, and the
quantifiers vV and 3 replaced with sup and inf (over appropriate bounded
subsets of the von Neumann algebra).

e For alanguage £, and an L-structure M, by the theory of M (denoted Th(M))
we mean the set of all £-sentences ¢ such that ™ = 0. except in Section 6.1,
where it is more convenient to consider the theory as a bounded functional on
the algebra of all formulas into R.

e For an n-tuple a coming from a structure M, the type of a is the map tp™ (a) :
© — ™M (a) which assigns to each £-formula ¢ (x;. ..., x,,) the value of oM (a).
More generally, we say that any map u which assigns a value ¢ (u) € R to each
L-sentence ¢ in n-variables is an n-type. For any fixed n, the space of all n-types
is denoted S,,. Moreover, for a theory T, by S,(T) we denote the space of
n-types that arise in models of T.

e Quantifier-free formulas are those constructed recursively using connectives but
no quantifiers. The quantifier-free type qftpM(a) is the restriction of tp™(a)
to quantifier-free formulas.

o The set S,(T) is equipped with the logic topology. which is the topology of
pointwise convergence on L-formulas, i.e., the weak*-topology. This makes
S,(T) into a compact Hausdorfl space. Dually, each formula ¢ defines a
continuous function on S,,(T).

e Forany cardinal k., we recall that a structure M is k-saturated if every consistent
type with parameters from a set A C M with |4| < « is realized by some tuple
a from M. (For operator algebraists, we note that a type is consistent with the
theory of M if it is in the weak*-closure of the maps tp” (a) for tuples a € M.
Thus, countable ultraproducts of structures are countably saturated.)

The language for tracial von Neumann algebras as metric structures was
developed in [30], and other useful references include [50, Section 2] and [37].
The sorts in this language are operator-norm balls, the functions are addition,
multiplication, scalar multiplication, and adjoint, and the relation symbols are Re tr
and the distance d (x, y) = ||x — y||,. All ultraproducts considered in this work are
tracial; see [31, Section 2.2] for a formal construction of tracial ultraproducts, and
[25. Section 16] or [44, Sections 2 and 6] for more background on ultrafilters and
ultraproducts in continuous model theory.

2.3. Definable sets. Lastly, in many arguments below we will need the notion of a
definable set. These are sets that we are able to quantify over, without formally being
a part of our language; see for instance [11, Theorem 9.17] and [28, Definition 3.2.3
and Lemma 3.2.5]. In particular, when « is a definable element in some structure,
then we can refer to it as if it were an interpretation of a constant symbol in our
language. We will use the following characterization of definable sets over a subset
A relative to a structure M. and refer the reader to [11, Section 9], [34, Section 2],
and [28, Section 3] for more information on definability.
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Fact 2.1. Fix a structure M and some subset A C M. Suppose Z C M" is a
closed subset. Then Z is a definable set in M over A if and only if for every ¢ > 0, there
exist § > 0 and a formula ©(x1. ... x,). possibly using parameters from A, such that
foranyx e M",

eM(x) <6 = d(x.Z) <e.

If we say a set is definable in M, then we mean it is definable in M over the empty
set.

2.4. Quantifier elimination and model completeness. Recall that a theory T is
said to admit quantifier elimination if every L-formula ¢ can be approximated
uniformly across all models of T by quantifier-free £-formulas. We will use the
following characterization of quantifier elimination in terms of types. A closely
related statement for positive bounded logic is given in [46, Proposition 14.21]. The
statement given here follows for instance from the proof of [51, Lemma 2.14].

LemMA 2.2, Let T be an L-theory. Then the following are equivalent:

(1) T admits quantifier elimination.

(2) Foreverynandevery u,v € S,(T), if u and v agree on quantifier-free formulas,
then = v.

There is an analogous characterization for model completeness, which can be
regarded as a folklore result since it closely parallels what happens in discrete model
theory (see, e.g., [47, Theorem 2.2]). Recall that an inf formula, or existential formula.
is a formula obtained by preceding a quantifier-free formula with one or more inf-
quantifiers.

LemMa 2.3. Let T be an L-theory. Then the following are equivalent:

(1) T is model complete, i.e., if M and N are models of T, then every embedding
M — N is an elementary embedding.

(2) For every n and every pair u,v € S,(T), if w(u) < w(v) for every inf-formula
W, then p =v.

(3) For every L-formula @ and ¢ > 0, there exists an inf-formula w such that
lo — w| < & (on the appropriate sort or domain) for all models of T.

The proofis similar to the quantifier elimination case, but more technical. Since it
has not been explicitly given in the literature for metric structures to our knowledge,
we include the proof as an appendix. The fact that quantifier elimination implies
model completeness is immediate since Lemma 2.2 (1) implies Lemma 2.2 (3), or
alternatively since Lemma 2.2 (2) implies Lemma 2.3 (2).

§3. Quantifier elimination for tracial von Neumann algebras.

3.1. Proof of Theorem A. Toward the proof of Theorem A, first note that we can
restrict our attention to type I algebras. Indeed. the first author already showed
that any tracial von Neumann algebra with a type II; summand does not admit
quantifier elimination [26, Theorem 1] (another argument is given in Remark 5.5
below). The next lemma will similarly allow us to eliminate summands of the form
M, (C) ® L*°[0,1] with n > 2, by showing that if either (1) or (2) in Theorem A
happens, then there can be no such summands.
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LemMma 3.1. Suppose that M is a tracial von Neumann algebra. Assume either that
Th(M) admits quantifier elimination or that any two projections of the same trace are
conjugate by an automorphism of M. Then M cannot have a direct summand of the
form M,(C) @ L>[0,1] for n > 2.

Proor. By contrapositive, suppose that M has a direct summand of the form
M, (C) @ L>[0.1]. In M,(C) ® L>[0, 1], consider the projections p =1® 1j1/y
and ¢ = E1; ® 1, where E| is the canonical matrix unit in M,(C). These two
projections have the same trace, hence they have the same x-moments, i.e., the same
quantifier-free type. However, they do not have the same type because p is central
and ¢ is not central in M, (C) ® L*°[0, 1], hence also in M. So M cannot admit
quantifier elimination. Furthermore, since p and ¢ do not have the same type, they
cannot be conjugate by an automorphism of M. -

Therefore, it suffices to prove Theorem A in the case where M is a direct sum of
an optional L°°[0, 1] term and matrix algebras. Let us decompose M as follows:

M = (L[0.1].a0) & | P(M,,(T). ;)

jed

Here o;, for j e {0}UJ, are the weights of the direct summands. Thus
o+ e nja; =1

We rely on the following classification of the automorphisms of M (for
background on the structure theory for finite-dimensional algebras, see, e.g., [21,
Section 3.1], [55. Section 3.2]). Every automorphism of M is a composition of the
following:

(1) A direct sum of automorphisms of each component (a measure-space
automorphism of L°°[0, 1] and a unitary conjugation of each M,,(C) term),
(2) Swaps of matrix algebras M, (C) of the same dimension and the same weight.

We first focus on the atomic portion.

LEmMMA 3.2. Suppose that M is a tracial von Neumann algebra such that any two
projections of the same trace are conjugate by an automorphism of M. Then any two
matrix summands of M with a common dimension greater than or equal to 2 must
have different weights.

PROOF. Suppose there is some j.k € J so that n; =n, > 2, and o; = . Let
p be a projection of rank 2 in the M,, (C) summand, and let ¢ be a projection

of rank 1 in both the M, (C) and M, (C) summands (and p, ¢ are both 0 in all
other summands). Then 7(p) = 7(g) = 2% but p and ¢ are not conjugate by any
automorphism. -

ProOF OF THEOREM A. (1) = (2). Suppose that M admits elimination of
quantifiers. In order to deal with the diffuse L°° term and the atomic terms

separately, we first show that the central projection 1« is a definable element
(see Section 2.3). Note that for each k, the set

Sk ={e1.....ex € PIM)NZ(M) :eie; =0.1(e;) = ap/k fori, j =1.....k}
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is definable using the definability of the center (see [29, Lemma 4.2]) and the stability
of projections. Moreover, if x is any element satisfying

then x is ¢-close to a central projection that is divisible into k central projections of
trace ay/k. If k is large enough, then the sum of the weights of discrete summands
that are less than or equal to ao/k will be less than ¢2. Hence. Zf.:l e; will be
2¢e-close to 17. So 1, is definable.

Let p,g be two projections with the same trace. As noted in the proof of
Lemma 3.1, p and ¢ then have the same quantifier-free type and hence they have
the same type. Because 1, is definable, every formula over L°° and every formula
over N := M © L can be expressed as a definable predicate over M. Thus, 1700 p
and 1700g have the same type in L°°[0, 1] and (1) p and (1,7)q have the same type
in V. Then, 1, p and 1;~¢ are two projections of the same trace in L°°[0, 1] and
therefore conjugate by an automorphism. Meanwhile, (1 — 170 )p and (1 - 17 )g
have the same type in A/, hence they are conjugate by an automorphism in some
elementary extension N of . Since A is type I and atomic, A must equal A (see [27.
Proposition 4.3] or [52, Proposition 3.7(2)]). Thus, (1) p and (17)g are conjugate
by an automorphism of A, and so p and ¢ are conjugate by an automorphism
of M.

(2) = (1) Let T := Th(M). We must check that every T type is determined
by its quantifier-free type. First note that all T types can be realized in M; indeed,
M4 is countably saturated (see Section 2.2) and is a direct sum of L>°[0, 1] and
(C")* = C" and M, (C)* = M, (C). Any tuple of elements in L>[0, 1] has the
same type as some tuple in L>°[0, 1], and swapping out the element in the L>°[0, 1]*
summand for one of the same type will not change the type of the overall element
in MY,

Fix some x = (x1,...,x;) and y = (1, .... yx) in M with the same quantifier-free
type. We shall build a sequence of automorphisms o, of M such that ¢,(x) — vy,
so tpM(x) = tp™M(y). Since there are no identical matrix summands with the same
weight by Lemma 3.2, the only possible automorphisms of M are those which are a
direct sum of automorphisms of each component, possibly composed with swaps of
copies of C which have the same weight. This motivates the following decomposition
of M, where we group together copies of C which have the same weight:*

M= (L¥[0.1l.ag) & [ P(C.e))®" | & [ (M., (C). o)) | - (3.1)

WISyl JE

We will build the automorphisms on each summand of (3.1) separately.

3By [27. Lemma 3.2]. the data used in (3.1) is computable from the theory of M. For reader’s
convenience we provide a translation. In the terminology of [27]. ag = paq(1.0). pag(m.0) = 0 for
m > 2, pp(1, k). for k > 1, is the sequence in which each a;, for j € J;, appears n; times, arranged in
decreasing order. Finally, paq(n;,1) = aj and paq(n. k) = 0if n # nj forall jorif k > 2.
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We start with the matrix summands. Let p;, j € J,, be the central pro-
jection onto the jth summand M,,/.((C), where n; > 2. We claim that p;x =
(pjx1.....pjxx) and p;y = (p;yi..... pjyx) have the same quantifier-free type
in My, (C). Let f be a self-adjoint non-commutative *-polynomial. For Borel
E CR, we have t(1g(f(x))) = t(1g(f(y))). so by assumption there is some
automorphism ¢ conjugating 1z(f(x)) to 1z(f(y)). As noted above, the automor-
phism o must fix p;, so a(p;1£(f(x))) = p;1£(f(y)). Hence, 7(p;1£(f(x))) =
2(p;1£(f (v))). or equivalently tr,, (15(f (p;x))) = try, (15(f (p;¥))). Since E was
arbitrary, f(p;x) and f(p,y) have the same empirical spectral distribution, hence
also tr, (f (p;x)) = tr,(f (p;y)). This holds for all /. so the multivariate Specht’s
theorem [54] implies that u; p;xuj = p;y for some unitary u € M,, (C).

The same argument as in the matrix case shows that when p; for j € J; is the
central projection onto some summand of the form C",n; > 1, Wlth each copy of

C having the same weight «;, we obtain that qftp (p, )= qftp (pjy), SO some
automorphism (i.e., permutation) 7; of C"/ sends p;x to p;y.

Finally, let py be the central projection onto the L°°[0,1] summand. Then
po=1-3c Jyus, Pj- Where p; is the central projection onto the jth summand
of M. Hence, for any non-commutative *-polynomial f;

tlpof (X)) =1(f(x) = > lpifx)=t(f M)~ Y. wlp;f ) =1(pof¥)).

jeJiudy JjeJiuJy

so we again obtain that gftp’~ (pox) = qftp™" (poy). By [51. Lemma 2.16], there is
a sequence of automorphisms o, of L>°[0, 1] such that o, (x) — y.

To conclude, let g,, be the direct sum of the automorphisms in each summand of
M given by the arguments above, that is,

an:an@@n‘;@@Adw.

J€J JE€)2

Then o, (x) — y. so tp™(x) = tp™(y). Hence. M admits elimination of quantifiers
by Lemma 2.2. B

3.2. Tests for quantifier elimination. The criterion for quantifier elimination of
Theorem A, though simple, does not clearly indicate how to decide if a tracial von
Neumann algebra admits quantifier elimination based on a given description as a
direct sum of matrix algebras. So we now give more explicit criteria, starting with
the following characterization in terms of possible obstructions.

PROPOSITION 3.3. A separable tracial von Neumann algebra M admits quantifier
elimination if and only if all the following conditions hold.:

(1) Mistypel.

(2) M has no summands of the form M,(C) ® L>[0, 1] for n > 2.

(3) If M has an L*°[0, 1] summand with weight o, and if p and q are two projections
in the atomic part, then either =(p) = t(q) or |t(p) — 7(q)| > .

(4) If p and q are two projections in the atomic part with t(p) = ©(q), then we have
(letting E 7(pm) denote the center-valued trace in M) E 7 p)[p] = 0 0 Ez(pp)[4]
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where o is an automorphism of M given by a permutation of one-dimensional
summands with the same weight.

PrOOF. Suppose M admits quantifier elimination. Then [26, Theorem 1] implies
(1) and Lemma 3.1 implies (2).

For (3), suppose for contradiction that there are two projections p and ¢ in the
atomic part with 0 < |z(p) — 7(¢)| < ap. and without loss of generality suppose that
7(p) < t(q). Let p’ be a projection in L°>°[0, 1] such that t(p’) = 7(g) — t(p). Then
¢ and p’ + p have the same trace but are not equivalent by an automorphism, so by
Theorem A, M does not have quantifier elimination.

For (4), let p and ¢ be projections in the atomic part with 7(p) = z(g). By
Theorem A, p and ¢ are conjugate by an automorphism. Hence also Ez(rq)[p]
and Ez(n)[g] are conjugate by an automorphism. In light of Lemma 3.2, every
automorphism must fix the central projections associated with M,(C) terms for
n > 2. Thus, Ezn[p] and Ez(nq)[g] must have equal components in each of
the M, (C) summands for n > 2. So they differ by an automorphism that merely
permutes the one-dimensional summands.

Conversely, assume (1)—(4). Let p and ¢ be two projections of the same trace.
Using (3), the traces of p and ¢ in the L*°[0, 1] summand must agree, so there
is an automorphism of M such that a(p) — ¢ is in the atomic part of M. So
assume without loss of generality that p and ¢ are in the atomic part. By (4), after
applying an automorphism, we can assume that E(vq)[p] = Ez(r)lq]. Hence, the
components of p and ¢ in each direct summand M, (C) of M (where n > 1), have
the same rank, and hence are unitarily conjugate. Overall, p and ¢ are conjugate by
an automorphism. By Theorem A, M admits quantifier elimination. -

Next, we describe how to test condition (4) for the atomic part in terms of the
weights in the direct sum decomposition. As motivation, recall that by Lemma 3.2,
two matrix algebras of the same dimension cannot have the same weight. In fact,
there are many more constraints of a similar nature. For instance, if

M=(C,1/2)® (C.1/3) & (C.1/6).

then 1®0®0 and 0® 1 & 1 have the same trace but are not automorphically
conjugate. Another example is if

M = (C.2/5) & (M3(C). 3/5).

then M does not admit quantifier elimination since a rank 2 projection in the
second summand has the same trace as 1 in the first summand. Hence, we must
consider various ways that zero could be written as a linear combinations of ranks
of projections from different summands. More generally, as in Proposition 3.3 (3),
quantifier elimination requires that no number smaller than « can be written as such
alinear combination. This gives essentially all the conditions that are needed, though
one must also handle the one-dimensional summands carefully since Lemma 3.2 only
applies for n > 2.
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ProPOSITION 3.4. Let M be a separable tracial von Neumann algebra. Then M
admits quantifier elimination if and only if M has a decomposition of the form:

M= (L¥[0.1l.ag) & [ P(C.0)®" | & [ (M, (C). )
JEN JED
where for some countable sets Jy, J,, such that

(1) Theweights satisfy ag > 0and o; > 0 for j € Jy U J», and the weights sum to 1.

(2) The indices a; for j € Jy are distinct, that is, we have grouped together all
one-dimensional summands of the same weight in our decomposition.

(3) Forall choices of integers |r;| < n; for j € Jy U Jo which are not all zero, we have

Z Z Fiej
rijo + ~| > .
} n;

JjeN JEJ

PrOOF. Suppose M admits quantifier elimination. We already know M decom-
poses into an optional L°°[0, 1] term and an atomic part. By grouping the one-
dimensional terms with the same weight, we obtain a direct sum decomposition
satisfying conditions (1) and (2). It remains to check condition (3). By contraposi-
tive, suppose that there exist integers |r;| < n; satisfying

i
E riog + E — < oyp.
Je "

JET jeh
For j € Jy. let p; and ¢; be projections in (C. a;)®" such that
rank(p;) = max(r;.0). rank(g;) = max(-r;.0).
Similarly, for j € J5, let p; and g; be projections in (M, (C), «;) with the same

nj

rank conditions. Thus, rank(p;) — rank(g;) = r;. Finally, let
rje
EDILEDY ETh
JEJ J€S

and let py and gy be projections in (L°°[0, 1]. ap) such that 7(pg) = max(- z,0) and
7(qo) = max(z,0), so that t(pg) — (gq9) =— t. Let

r=me@rie@r. s=awec@Puse@Paq-
JEN JED JEN JES
By construction,
_ e @ty _
w(p) ~7lq) = 7(po) = wla0) + D ajri+ ) ol
JeN JE€S

However, p and ¢ are not automorphically conjugate. Indeed, r; is nonzero for
some j. If j € J;, the components of p and ¢ in the central summand (C, a;)®"
have different ranks, and (C. o;)®" is invariant under automorphisms because we
grouped together all the terms with the same weight. Similarly, if j € J,, then the
components of p and ¢ in (M, (C). ;) have different ranks. and by Lemma 3.2,

nj
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(M,;(C), ;) must be invariant under automorphisms since there is only one
summand with a given dimension and weight. Hence, if (3) does not hold, then
Th(M) does not admit quantifier elimination.

Conversely, suppose M has a decomposition satisfying (1)—(3). Consider two
projections p = po & D¢ 1.y, Pj and ¢ = qo ® D ;c;,1.5, 47 in M with the same
trace. Then

(po) —tlq0) = ) o (rank(g;) - rank(p;))

. n;
JEUJ,

Hence,

5 atrankla) ~rank(p)) + 3 ST o)) <
JeJi JE ’

By condition (3). this forces rank(p;) = rank(g;) for all j € J; U J>. In particular,
for j € Ji. p; and ¢; are projections in (C.a;)®" with the same rank and hence
conjugate by an automorphism permuting the summands. Moreover, for j € J;,
p; and g; are projections in M, (C) with the same rank, hence they are unitarily
conjugate. Finally, since p; and ¢; have the same trace for j € J; U J>, we deduce
that py and ¢ have the same trace in L°>°[0, 1] and hence they are conjugate by a
measure-preserving transformation. Patching the automorphisms on each summand
together, p and ¢ are automorphically conjugate. Thus, by Theorem A, M has
quantifier elimination. o

§4. Model completeness for I1; factors. This section proves Theorem B in the case
of a II; factor M. The proof is a more sophisticated variant of [26, Lemma 2.1],
which was in turn based on [17, Corollary 6.11].

Our construction is based on random matrix theory. Let U, denote the unitary
group of M, (C). As a compact Lie group, U, has a unique left-invariant probability
measure, called the Haar measure. By a Haar random unitary, we mean a
U,-valued random variable U™ whose probability distribution is the Haar measure,
ie. E[f(U™)] = Ju, f (u) d Haar(u) for every continuous function f on U,. Let

Ul("), Uz(">, U3(”), and Ui") be independent Haar random unitaries. We assume
throughout that they are on the same probability space (Q, F, P).

Consider the tensor decomposition M = M,,(C) @ M'/" where M'/" is the 1/n
compression of M [58, Sections 2.6-2.8]; for each n, we fix a decomposition for the
entire argument, and write M = M, (C) @ M'/". We set

X = (X", X! Xy = (UM @ 1 g, UM @1, U @1 0m)
and
YO = () ) = (W @ U © 1 1o (U S U @1 120 (U @ UM @1 1730

Fix a free ultrafilter / on A and consider X(w) = [X"(w)]pen and Y(w) =
[Y" (w)]pen. Thus, X and Y are intuitively tuples of random elements of MY:
however, we have to proceed carefully because X and Y are not necessarily
measurable functions of w (see [33, Section 6]). Thus, formally, our arguments
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are based on first fixing an outcome w for which the X")’s satisfy some conditions,
and then using the values of X and Y associated with this .

4.1. Outline of the proof. The outline of the argument is as follows:

(1) Almost surely, for every inf-formula ¢, ™" (Y) < oM (X).
(2) Almost surely, the commutant X’ 1 MY is given by

A= TT(Cly, @ M) C [T (M, (C) @ M.

n—U n—U

(3) Almost surely, the commutant Y N MY is given by
B= H [(Clys, ) ® Cli, o) ® M/ C 1_[ (M3, (C) @ M),

n—U n—U

(4) Consequently, X’ N MY has trivial center but Y' N MY does not and so
X and Y do not have the same type.
(5) By Lemma 2.3 together with (1) and (4), Th(M) is not model complete.

The notation explained above will be fixed throughout the section. Moreover, we
continue with the standing assumption that M,(M) embeds into MY for some
ultrafilter 2/, but this will only be used in the proof of (1), in Lemma 4.3.

4.2. Concentration of measure and approximate embedding. For step (1), we use
the following concentration of measure estimate which is based on the log-Sobolev
inequality of Gross [41]. The application of concentration in random matrix theory
is due to Ben Arous and Guionnet [8]; see also [42] and [2, Sections 2.3 and 4.4].

ProposITION 4.1 (See [2, Section 4.4 and Appendix F.6] and [57, Theorems 5.16
and 5.17]). Let f : U™ — R be an L-Lipschitz function with respect to ||-|,. Let
U™ be a random element of U5 with probability distribution given by the Haar
measure. Then for some positive constant c independent of n, for all 6 > 0,

P(/(U™) ~BLf (U)]] > 6) < e 0/E
LemMmA 4.2, For every 3-variable formula o, there is a constant C () such that

ling{ eM(X") = C(p) for ae. w € Q. (4.1)
n—

In particular, lim,_y; tp™ (X™) is almost surely constant.

Proor. To prove the claims, it suffices to show (4.1) holds almost surely for each
¢ in a countable dense set of formulas (as usual in measure theory, “almost surely”
distributes over countable conjunctions).

In fact, the dense set of formulas can be chosen to be Lipschitz. Indeed, a formula
will be Lipschitz as long as the atomic formulas and the connectives used are all
Lipschitz; the quantifiers do not cause any issue since the supremum of a family
of L-Lipschitz functions is L-Lipschitz. The atomic formulas are traces of non-
commutative polynomials, and for every non-commutative polynomial p and R > 0,
there is some L such that 7(p) is L-Lipschitz with respect to ||-||, on each operator
norm ball of radius R. The connectives in the language are continuous functions
R™ — R, which can all be approximated on compact sets by Lipschitz functions.
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So assume that ¢ is an L-Lipschitz formula in three variables. Note that X
depends in a Lipschitz manner upon U™ = (Ul("), Uz("), U3(n)); indeed, the mapping
M, (C) — M given by u — u ® 1 , 1, is 1-Lipschitz. In particular. eM(X™) is an
L-Lipschitz function of U™ . Therefore, applying Proposition 4.1 withd = 1 /n.

P(p™M (X)) ~ BlpM (X)) > 1/n) < e/,
By the Borel-Cantelli lemma, this implies that almost surely

lim [o™M(X") ~ElpM(X")] =0, hence lim M (X") = lim E[p™ (X")].

n—00 n—U n—Uu
4
Lemma 4.3, Almost surely. for every inf-formula o in three variables,
lim ™ (Y") < lim o™(X"). (4.2)

ProOF. Let X be defined analogously to X but with U, ™ in place of U, n),
that is, X" = (U( " ® lMl/,l U " & Lygi/n- U( " 1/\/(1/"> SlnceX ) has the same
probability distribution as X, the almost sure limit of tp™ (X)) agrees with that
of X,

In the following, we fix an outcome w in the probability space such that the limit
as n — U of the type of X and the type of X" at  agree with the almost sure
limits given by Lemma 4.2. Let ¢ be an existential formula. Then ¢ can be expressed
as

p(x1.x2,x3) = 1nf l//(xl X2, X3, Z1seees 2k )s

where y is a quantifier-free formula and each z; ranges over the unit ball. Since MY
is countably saturated (see Section 2.2), there exists some Z € (M“)l such that
oMY (X) = V/Mu (X, Z). Now because X and X have the same type in MY, there
also exists some Z € (MY)¥ such that (X, Z) and (X, Z) have the same quantifier-
free type.

In the hypotheses of Theorem B, we assumed there is an embedding i : M>(M) —
MY for some ultrafilter V.* Let i) be the corresponding embedding

l(n) . Ml/n — MZ(M)I/Zn N (MV)l/Zn ~ (Ml/Zn)V‘

Then let
iU = T (idu, ) ©i™) : M¥ = ] (M,(C) @ M)
n—U n—U
= [T (M.(C) @ (M2)Y) = (M)A
n—U

Consider i%(X) @ i“(X) and i¥(Z) @ i¥(Z) as elements of
My ((M)P2)VH) = (MY = (M)

4By standard methods, one can choose V = U (see [25, Theorem 16.7.4]), but this is besides the point.
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Note that (i4(X) @ i“(X). i¥(Z) @ i¥(Z)) has the same quantifier-free type as
(X, Z), and in particular,

MO (X) @ (X)) < y™MOT(MX) @ H(X). 1(2) ©(2)) = M (X).
On the other hand,

i“(X) @ i*(X) = j(Y),
where j is the diagonal embedding

j i MY = (MY or equivalently l_[ (M>,(C) ® MI/Z") — 1_[ (M>,(C) ® (Ml/zn)v).

n—U n—U
Hence,
u Uy, UV, s u
M (Y) = MIT(j(Y) = oM (H(X) @ M (X)) < ™M (X).
This proves the asserted inequality (4.2). =

4.3. Spectral gap and quantum expanders. For steps (2) and (3) from Section 4.1,
we want precise control over the commutants of the X and Y. Hence, we will use the
notion of spectral gap for an inclusion A/ C M of tracial von Neumann algebras.
For d € Nand C > 0, we say that N' C M has (C, d)-spectral gap if there exist x;,

.. X4 in the unit ball B{" such that

U

d(y.N' 0 M)? Z I[x;. 1|5 for y € M, (4.3)

where NV N M = {z € M : [z.x] =0 for x € N'}. If this is true for some d and C,
we say that N' C M has spectral gap. In the case N' = M, note that N/ N M reduces
to the center Z (M), and in this case, we will say simply that M has spectral gap. The
relevance of spectral gap for continuous logic was already observed by Goldbring
[34], who showed that spectral gap for N' C M implies that AV N M is a definable
set with parameters from N .

It is well known that when the x;’s in (4.3) are unitaries, the inequality can
be reformulated in the following way, which will motivate our use of quantum

expanders.

LemMA 4.4. Let N C M be an inclusion of tracial von Neumann algebras and
&> 0, letuy, ..., ug be unitaries in N'. Then the following are equivalent:

(1) Fora € M,

2
la = Exrapmla Hz ZH[”J alll; -

(2) Fora € M,

d
uj(a— EN/mM(a))u; + u;‘(a —Enrapm(a)uj| < (2d —¢) lla— Epxrapq(allls

2

—_

J
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Proor. Let T : L*(M) — L*(M)? be given by T(a) = ([u1.a]. ....[ug.a]). By
elementary computation,

d d
T*T(a) =2d a - Z ujau; — Z u;au;.
Jj=1

J=1
Let P = A" N M. Note that T vanishes on P and a — Ep(a) is the orthogonal
projection of a onto P+. Therefore, condition (1) can be restated as ¢ ||a||§ <

||T(a)\|§ = {(a,T*T(a)) for a € P+, which is equivalent to the spectrum of
T*T|p. being contained in [¢, 00). Meanwhile, condition (2) can be restated as
|(2d = T*T)|p1|| < 2d —e:since | T*T|| < 2d. this is equivalent to the above.

Quantum expanders are defined as follows. For e > 0 and d > 2. a (d. ¢)-quantum

expander is a sequence of d-tuples of n x n unitaries Ul("), Utgn) such that for
A€ M,(C).
d
S UP A - e, (AN < (d ) A tr, ()], (4.4)
j:1 2

This estimate has the same form as Lemma 4.4 except that the latter is symmetrized

with respect to u; and u;. We remark that (Ul(”>, U‘Y’), (Uf”))*, . (U(En))*) is a
. (n)

(2d. 2¢)-quantum expander whenever (U,", ..., Ud(">) isa (d, ¢)-quantum expander;

this follows because the adjoint of the map 4 — Z?:l Uj(.")A(U;m)* is the map
A XL (U auy,

The following relationship between spectral gap and quantum expanders is
immediate from applying Lemma 4.4 with ' = M = M,(C) and N " M = CI.

COROLLARY 4.5. Unitaries U1<"), Ua(,") witness (d, 1/¢) spectral gap for M, (C)
if and only if(Ul(”), . U£5”>, (Ul(”))*, s (ULE”))*) is a (2d, &)-quantum expander.

Our argument uses Hastings’s result that random unitaries give quantum
expanders with high probability [45]; a similar result with matrix amplifications
was shown by Pisier [59], and a generalization to other unitary representations was
proved in [16]. We remark as well that various other constructions of quantum
expanders could have been used instead. (A rich variety of deterministic con-
structions exists, for instance, based on discrete Fourier transforms on non-abelian
groups [1, 9], quantum versions of Margulis expanders [40], systematic adaptation
of classical expanders [43], and zig-zag constructions [9, Section 4].) Moreover, if
G is a group with property (T) (see [7] for background) with generators g, ..., g4.
and (7;) ey is a sequence of irreducible unitary representations of G on C"/, then
(m;(g1).....m;(gq)) is a (d. &)-quantum expander where ¢ is related to the Kazhdan
constant; thus, for instance, one can obtain quantum expanders from irreducible
representations of G = SL3(Z). Property (T) groups and quantum expanders can
be applied in many of the same contexts; see for instance the two proofs of
[48, Lemma 4.3].

For the reader’s convenience, we recall the precise statement of Hastings’ result.
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THEOREM 4.6 (Hastings [45], see also [59, Lemma 1.8]). Let U<”) ) be

independent Haar random unitary matrices, and consider the (random) map (I)< n
M,(C) — M,(C),
14
:_dz WAy + (UM au™).

Let /lgm > Ag’” > ... be the eigenvalues of ") (here /lgm = 1 with eigenspace the span
of the identity matrix). Then almost surely

v2d -1
lim )»2 = —
n— o0 d

Proor. The situation above is the Hermitian case with D = 2d in Hastings’s
terminology. Hastings [45] at the top of the second page asserts convergence in

probability of /lg"). Hastings’s arguments in fact yield almost sure convergence.
Indeed, liminf,_, /lg") > v/2d - 1/d follows from a deterministic lower bound on
A" in [45, equation (12)] which gives (using 2y = 2v/D — 1/D = /2d — 1/d. see
[45. equation (3)]). 42 > 24(1 - O(In(In(n))/ In(n)).

For the converse inequality, at the end of Section II.F, Hastings shows that for
¢ > 1, the probability that ig”) is greater than ¢v/2d — 1/d is bounded by

07(1/4),12/15(1 + 0(log(n)n’2/15)).

Because this is summable, the Borel-Cantelli lemma implies that almost surely
we have limsup,,_, ig’” < cAy. Since ¢ > 1 was arbitrary, this yields almost sure
convergence. —

COROLLARY 4.7. Letd > 1, and let Ul(”>, Ud(,”> be Haar random unitary matrices.
Then almost surely, for sufficiently large n, we have for all A € M, (C),

d
. 1o d (n)
4 - (A < <d—1>2;H[A’ U

PrOOE. Let @™ be as in the previous theorem Note that ker(tr,) is the
orthogonal complement of C1, which is the /11 -eigenspace of @), Hence.

E (4.5)

< Zd/l ||A —tru(
2
This means that Ul(”), Ud("> satisfy Lemma 4.4 (2) with N'=C, M = M, (C),
and 2d — ) = 2d/1(”> Hence by Lemma 4.4, the U; ™) witness spectral gap for
C C M, (C) with constant ¢ = 2d(1 — l )). By Hastings’s theorem, almost surely,

A,

d
ZI<U}"><A i (A)(U) + (U (4 - tra(4))U))
=

1 _ 1 . 1 d+V2d -1
e 2g(1- ) 2d-2v2d -1 20d>-2d +1)
We can bound the right-hand side by d/(d — 1)? because vV2d — 1 < d. o
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4.4. Controlling the relative commutants.

LemMA 4.8. Let A, = 1y, ) ® MY and let A = T],_,; An. Then almost surely,
foralla € MY,

3
3
<3 Z ILx;.all-

In particular, A = {X} N MY.

ProOF. By Corollary 4.7 with d = 3, for sufficiently large n and 4 € M, (C), we
have almost surely

3 3
14— tra ()]} < ZZH[AU H

Because this is an inequality between linear operators on a Hilbert space, we may
tensorize with the identity on L>(M!/") (see. e.g.. [39. Lemma 4.18]). to obtain for
a € M,(C) ® M'" = M that

3
> 3 2
la~Eafall} < 53 |ta. x| fora e m.
j=1
Then in the ultralimit, we obtain
33
2
la — Elall; < 1 > llla. X;1|I5 fora € MY,
j=1

since conditional expectations commute with ultraproducts. This is the desired
estimate for A. For the final claim, A C {X}/N MY is immediate from the
construction of X, and the opposite inclusion follows from the spectral gap estimate
that we just proved. o

The analogous statement for Y is more delicate, and this is where we use the

specific way that X and Y were constructed from Ul("), Ui"); this part of the

argument was simplified due to the suggestion of Adrian Ioana and it is a close
relative to the proof of [48, Lemma 4.6].

LemmA 4.9. For a II; factor M and for B and Y as defined in Section 4.1, almost
surely, for b € MY,

3
d(b.B)? <73 1Y b1
=1
In particular, {Y} N MY = B.

Proofr. To prove the estimate for B, the same tensorization and ultralimit
argument as in the proof of Lemma 4.8 apply. and so it suffices to show that
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By B>
By By

[

for B = [ } € M,,(C), we have

|:U;'X)Bl.l - By, Uj(-") U;")Bl 2 By, zU( )]

U(")Bz_l =By Uj(-n) U<n)Bz,2 - By U(n

J
2)
2

2

Ug(n)Bl.l - B U3(") U3<")Bl.2 - Bl.zUin)]

Equivalently, we want to show that

2 2
1B11 — tra(Biy)ll; + [[Baz — tra(Baa)ll + [ Bialls + || B2 |13
3 ol LS o1
<7(> [ v ]H2+ZIH[BZ,2, oM
]:

j=1

2 (n) |
oo

)

2
+ > [ Uy
j=1

2 (n) (n)
}2 n ” U™ By — By UL

2
#2081 )
j=1

From Corollary 4.7, we already know

2
1Br1 — tra (B < ‘

-lklw

i” By, U"

and similarly for the B;, term. Thus, it remains to estimate the B, and B, terms.
We will handle the B, term and show that

2 2 2
1Bl <7 Y[ v+ |0 B - BUY| ) 46)
Jj=1

the argument for the B, term is symmetrical. First, we note that by Corollary 4.7
with d = 2, we have almost surely for sufficiently large n,

\j 4.7)

2
2 n
|Bi2— tra(Bio)|3 <2 H [Bi.2. U; ]
=1

Thus, it remains to estimate tr,(B;>). We note that

|trn(31‘2)| H US(H) — Uin)

= H U;") tr,(By2) — trn(Bl,Z)Uin) 5

< H U;H)(BI,Z —tr,(B12)) — (B2 — trn(Bl.Z))in ,
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(n) (n)
+ H U;" By - B12U, ,

< 2Bz - tru(Bi2)l, + H U3(n)31,2 - Bi» Ui")

Note that ]Etrn((U;"))*Ui")) =0, and so by Proposition 4.1, we have
2
trn((U3("))* U‘f")) — 0 almost surely, and thus H US(”) - U‘f”) = Hl - (U;"))* U‘f") ,

— 2 almost surely, and hence is eventually larger than 9/5. Hence, we have that for
sufficiently large n,

| tr,(B12)| < /5/9 (2 | Bi2 —tr,(Bi2)]|, + H U3(">BL2 — Bi; U4(") Hz) .
By the Cauchy—Schwarz inequality and our previous estimate for || By > — tr,, (B12),.

)

5 n
[ tr,(B12)* < §( +1/8) <4 | Bi2— trn(Bl,Z)Hg +38 H U3< 'Bi» - Bi> Uin)

IN

Nk (n) |2
s sact

2
Z [Bi,. U

i
8
%

2 2
H[B1 2 UM ‘2 +s H Ul B - BioUY|

Hence, using this and (4.7),

2
HB1,2||§ = ||B12 — tr,(B12)||; + tr,(By2)?

T o (LI W [
j=1

B> U4(”)

2
<7 Z H [B12. U
=1

as desired. =

REMARK 4.10. In the spirit of Goldbring’s work on spectral gap and definability
[34]. our bound on the distance to the relative commutant in Lemma 4.8 shows that
A= {X} N MY is a definable set with parameters X (see Section 2.3). Similarly,
Lemma 4.9 implies that {Y}' N MY is definable with parameters Y.

4.5. Conclusion of the proof of Theorem B in the II; factor case.

ProoOF OF THEOREM B IN THE II; FACTOR cASE. Referring to the outline of the
proof stated in Section 4.1, we have shown (1) in Lemma 4.3, (2) in Lemma 4.8, and
(3) in Lemma 4.9. Ttem (1) shows that, almost surely, o (X) < ™" (Y) for all
inf-formulas. If M were model complete, then X and Y would have the same type
by Lemma 2.3. Hence, to finish the argument, it suffices to show that X and Y do
not have the same type.
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In fact, we claim that X and Y do not even have the same two-quantifier type.
Consider the formula

w(x1.x2,x3) =

3 3
inf {1 Iz M3 + [tz +7 2:1 ||[Xj-21]||§ + sup |:||[Zla 2]I13-28 2:1 x;. 22]||§H .
J= J=
where z; and z; range over the unit ball. Then the condition w(xi,x2,x3) =0
attempts to assert the existence of z; with |z;|, = 1 and tr(z;) = 0 such that z
commutes with x; for j =1,2,3 and also commutes with every z, in the relative
commutant of {x;, x2, x3}.” We will find a self-adjoint unitary z; that commutes
with Y; for j = 1.2, 3, has zero trace, and commutes with everything in the relative
commutant of { Y}, Y, Y3}; this will suffice to show that 1///‘"u (Y) =0.
Indeed. {Y}' N MY = Bis a direct sum of two copies of ], ,;, M'/?*" so it has a
central projection p of trace 1/2. Let z; = 2p — 1, so that ||z; H% =1landtr(z;) =0
and Zj’:l I[Y;.z1]]l, = 0. Also for every z3. we have

3
2
Iz1. 220lI < (1. Eslz2]llly + 2|21l d (2. B)” = 4d (z2. B)* < 28 Y " [|[¥;. z2]>.
j=1
because of Lemma 4.9 and the fact that [z}, Eg[z2]] = 0.

On the other hand, we claim that ¥ (X) = 1. Because the ultraproduct MY
is countably saturated (see Section 2.2). there is some z; € MY that attains the
infimum in the formula. Let z{ = E 4[z]. Because A is a factor, a Dixmier averaging
argument (see, e.g., [29. Lemma 4.2]) shows that

2 2
2115 = [tz = ||z = tw(2) 5 < sup |[[z1. z]|l;.
HEA|
where A; is the unit ball of A. Using choices of z; € A witnessing this inequality as
candidates for the supremum in y, we conclude

u
M) 2 1 |21+ () + d A2+ [ - )P +0]

where we have also applied the spectral gap inequality from Lemma 4.8 to
get the d(z;..A)? term. Noting that d(z;. A)? = |z fz{”i = |lz1ll3 - Hz{”i and
that tr(zj) = tr(z;), the entire expression evaluates to 1. For the upper bound
z//Mu (X) < 1, simply take z; = 0. -

REMARK 4.11 (Lack of quantifier elimination for II; factors). Our argument
also gives another proof of [26, Theorem 1], that a II; factor never admits
quantifier elimination, even without the assumption that M,(M) embeds into

MY Indeed, this assumption was only used to relate the existential types of
X and Y. It is immediate from Lemma 4.2 that the quantifier-free type of

(Ul(”), Uz("), U3<")) converges almost surely as n — U, and the quantifier-free type

SThe statement does not literally assert this, but it asserts the first two statements in an approximate
sense, and the last part is necessarily imperfect because there is no implication in continuous logic, but
we will see that it serves the purpose.
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of (U, U (n) .U, (n >) converges to the same limit, hence so does the quantifier-free

type of (U, " @ U U2<") @ Uz(”), U3(”> ® Uéf”)). Therefore, X and Y have the same
quantlﬁer—free type almost surely. In fact, by Voiculescu’s asymptotic freeness theory
[63, 64]. X and Y are almost surely triples of freely independent unitaries whose
spectral measures are uniform over the circle. However, the argument given above
shows that X and Y do not have the same type, so that M does not admit quantifier
elimination.

REMARK 4.12 (Alternative approaches to the proof). Theorem B in the II; factor
case can be proved in various ways using other constructions of quantum expanders,
similar to how IF used spectral gap property (T) groups to show a lack of quantifier
elimination for II; factors in [26, Lemma 2.1]. Let U 1<"), Uzgn) be a sequence

n)

of deterministic matrices such that U, . U;" and their adjoints are a (2d.¢)-

quantum expander. Let U 1 and Uﬂz be independent Haar random unitaries.

Then the above argument for Theorem B in the factor case could also be done using
X(n) = (Ul(n) X IMI/”’ ey Utgn) & lMl/n, U(§+>1 ® 1Ml/n)a
and
= (Mo UM el (U o UMY @1, (U, @ UM )21, 41)
1 1 MY A g d pitns (Vg @ a’+2 M)

Indeed, concentration of measure (Proposition 4.1 and the proof of Lemma 4.2)
still apply to a mixture of deterministic matrices and Haar random unitaries, and
hence Lemma 4.3 still goes through. The arguments for Lemma 4.8 and 4.9 only

use the fact that Ul(”), US") is an expander and that H ) U;’fgz

to v/2 as n — co. Further comments on alternative proofs can be found in the first
arXiv version of this paper.

‘ converges
2

§5. Model completeness for tracial von Neumann algebras. It is now straight-
forward to extend Theorem B from II; factors to arbitrary tracial von Neumann
algebras as outlined in the introduction.

5.1. Model completeness and direct sums.

LEMMA 5.1. If the theory of a tracial von Neumann algebra M is model-complete,
then the theory of every direct summand of M is model-complete.

ProOF. Let M be a tracial von Neumann algebra which decomposes as a direct
sum M; @& M, with weights a and 1 — «. Assume the theory of M is model
complete; we will prove that the theory of each one of M; and M, is model
complete.

Let Ny = M; and N3 = M,, and 1; : M; = N} and 1, : M>, — N> be trace-
preserving x-homomorphisms; we need to show that 1; and 1, are elementary. Let A/
be the direct sum of A/} and N> with weights o and 1 — a. Note that by [27]. /' = M
since the theory of NV is uniquely determined by the theories of the direct summands.
By model completeness of M, the map: =1 ® 1 : M — N is elementary.

Let o(x1. ..., x,) be an Ly-formula, and we will show that V1 (1;(a)) = pM1(a)
fora=(a,...a,) € M{. Because prenex formulas are dense in the space of all
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formulas [11, Section 6]. assume without loss of generality that

p(x1.....x,) =infsup... inf sup F(Retr(pi(x.y)).....Retr(pr(x.y))).
1oy, Y2m=1 yy,,
where yi. .... yo, are variables in the unit ball, F : R — R is continuous, and p,
.... D are non-commutative x-polynomials. Define

w(x1.....Xn.z) =infsup... inf supF (l Retr(pi(x.zy))..... 1 Retr(py (x. zy))) .
Yoy, Yam-1 yy,, « «

where zy = (zy1. ..., zy2,). Observe that
oMi(ay,....a,) = y™(a; ®0.....a,®0,1®0),
because (1®0)(y @ y’) =y & 0. Similarly,
oM@(ay).....n(ay) = N ((a ®0). ....1(a, ®0).1(1 & 0)).
The mapping 1 : M — N is elementary, and hence
N ((ar ®0).....1(a, ®0).1(180)) = yM(a; &0.....a, ®0.150).

This shows ¢V (1;(a)) = ¢Mi(a), so the mapping 1, is elementary as desired. The
same argument applies to z,. Therefore, M| and M, are model complete. -

REMARK 5.2. Similarly, if M = (Mj.a) @ (M>.1—a) and if Th(M) admits
quantifier elimination, then Th(M ;) admits quantifier elimination for j = 1, 2. To
see this, consider n-tuples x and y in M that have the same quantifier-free type
in M; (i.e.. they have the same *-moments). Then (x; ©0.....x, ®0.1®0) and
(»31®©0.....y, ®0,1®0) have the same quantifier-free type in M. Therefore, by
Lemma 2.2, they have the same type in M. As we saw above, for each formula
. there exists w such that M1 (xy,....x,) = y™(x; ®0,....x, ®0.1®0) (and
similarly for the y;’s). and hence x and y have the same type in M. and so Th(M)
has quantifier elimination by Lemma 2.2.

REmARK 5.3. The relationship between model theoretic properties and direct
sums/integrals is an important topic of recent study: [27] showed how to determine
the theory of the direct integral from that of the integrands, and the opposite
direction was studied for von Neumann algebras in [33], both of which are now
special cases of the general theory of direct integrals developed by Ben Yaacov,
Ibarlucia, and Tsankov [12]. Based on these works, it is plausible that model
completeness of a direct integral implies model completeness of the integrands
almost everywhere in general, but we leave this as a question for future research.

5.2. Conclusion of the proof of Theorem B. By Lemma 5.1, because we already
proved Theorem B in the case of II; factors, we can eliminate any direct summands
that are I1; factors satisfying that M,(M,,) embeds into MY It remains to handle
the diffuse part of the direct integral decomposition for M, which actually turns out
to be much easier.

LEMMA 5.4. Let (M, 1) = f[o.l](Mw’ T, ) dow, where M, is a separable 11, factor

such that M>(M,) embeds into MY . Then M is not model complete.
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PrOOF. Let N' = L*°[0, 1] ® M. Note that

N = M, do do'.
[0.112
Thus, the distribution of Th(M,,) over [0, 1]> is the same as the distribution of
the Th(M,,) over [0, 1]. Therefore, it follows from [27, Theorem 2.3] that M = N
Moreover, N ® N = N. Now fix an ultrafilter &/ on N and note that M,(M,,)
embeds into MY for all w, hence M,(N) embeds into NY. Consider a trace
preserving x-homomorphism

N SNoN = M(N) = NY,

where the first map is an isomorphism and the second map is the block diagonal
embedding. Then 1 ¢ 0is centralin N & N but 1 @ 0is not centralin M, (A). Hence,
our homomorphism does not map Z(N) into Z(NY). so it is not elementary. -

PrOOF OF THEOREM B. Suppose M has a direct integral decomposition where
M,, is a I1; factor such that M,(M,,) embeds MY, for w in some positive measure
set. If the positive measure set has an atom, then M has a direct summand A which
is a II; factor such that M, (') embeds into A, The results of the previous section
show that A/ is not model complete, hence by Lemma 5.1, M is not model complete.

If there is no atom in our positive measure set, then M has a direct summand of the
form N = f[m] N, do: where the integral occurs with respect to Lebesgue measure

and N, is a I1; factor such that M,(N,) embeds into N¥. Hence, by Lemma 5.4,
N is not model complete, and so by Lemma 5.1, M is not model complete. o

REMARK 5.5. A similar argument recovers the result of the first author that the
theory of any separable tracial von Neumann algebra with a type II; summand
never admits quantifier elimination [26]. An algebra satisfying the assumptions of
Theorem B either has a II; factor as a direct summand, or it has a type II; direct
summand with diffuse center. If there is a type II; direct summand A, then Th(\)
does not have quantifier elimination by Remark 4.11 and hence by Remark 5.2,
Th(M) does not have quantifier elimination. On the other hand, suppose N is a
type II; direct summand of M with diffuse center. In this case, we argue similarly
to Lemma 3.1; A/ has a central projection of trace 1/2, and also a non-central
projection of trace 1/2, and hence Th(N) does not have quantifier elimination. So
by Remark 5.2, Th(M) does not have quantifier elimination.

§6. Further remarks.

6.1. Topological properties. In this section, we study the topological properties
of the set of theories that admit quantifier elimination (and those that are model
complete), and in particular we will see that quantifier elimination is generic among
purely atomic tracial von Neumann algebras (though a lack of quantifier elimination
is generic for tracial von Neumann algebras in general).

There is a natural topology on the space of complete theories, where basic open
sets have the form

{T ): |Q01 761‘ < E1yeees

Yk —Ck| < éer}
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for some finite list of formulas ¢, ..., ¢, real numbers c1. ..., ¢;, and positive ¢, ...,
&,. In fact, this topology can be understood in functional analytic terms as follows.
The sentences of a fixed language £ form a real algebra that has a natural norm
(see the last sentence of [25, Definition D.2.4]). A complete theory in language L is
naturally identified with a bounded homomorphism from this algebra into R ([25,
Definition D.2.8]), and the topology on the space of complete theories then agrees
with the weak-* topology. The space of theories is metrizable whenever the language
L is separable (which is the case for tracial von Neumann algebras). Moreover,
if C is a class of L-structures that is closed under elementary equivalence, then C
is axiomatizable if and only if The = {Th(M) : M € C} is a closed set and every
model of some theory in Th¢ belongs to C.

A very basic observation is that quantifier elimination and model completeness
define sets that are neither open nor closed in the space of theories of tracial von
Neumann algebras.

PRrROPOSITION 6.1. The following sets of theories of tracial von Neumann algebras
are not closed (equivalently, the corresponding classes are not axiomatizable):

(1) Those which admit quantifier elimination.

(2) Those which do not admit quantifier elimination.
(3) Those which are model complete.

(4) Those which are not model complete.

Proor. We use the following observation several times: For any two tracial
von Neumann algebras M, and M, the theory of M, = (My. 1 —a) @ (M. a)
depends continuously on « € [0, 1]. This idea was used in [35, Proposition 5.1].
Indeed, one can show by induction that for each formula ¢. the quantity
oMo (x; @ X{..... X, @ x;) is continuous in « uniformly over x; and x; in the unit
ball.

Now we proceed to the main claims:

(1) M, (C) admits quantifier elimination. Fixing an ultrafilter 2/ on the natural
numbers, lim,_,;; Th(M,(C)) = Th([],_,,, M,(C)). which does not admit
quantifier elimination by [26] since the matrix ultraproduct is a II; factor.®

(2) Consider (M,(C).1 - a) @ (R.«a). This does not admit quantifier elimina-
tion when a > 0 but does admit quantifier elimination when a = 0.

(3) This follows from the same argument as (1).

(4) This follows from the same argument as (2) since (M,(C),1 - a) @ (R, a) is
not model complete by Theorem B. —|

While the sets of theories defined by quantifier elimination and model complete-
ness are not open or closed, they are Ggs-sets. In fact, this holds for separable
metric languages in general. We remark that the analogous statement also holds for
countable languages in discrete model theory (and the analog of Proposition 6.1
is true for some languages). Hence, the descriptive complexity of these sets does
not increase when we pass from discrete structures to metric structures (in stark
contrast, there is a bizarre increase in complexity for sets of omissible types [32]).

OThis also follows from [38. Section 3] since the matrix ultraproduct is Connes embeddable and not
elementarily equivalent to R, because it does not have property Gamma.
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PROPOSITION 6.2. Let L be a separable language of metric structures. Both the set
of complete theories that admit quantifier elimination and the set of complete theories
that are model complete are Gy sets.

Proor. Consider quantifier elimination. Since the language is separable, choose
for each 7 a countable dense set F,, of formulas in # variables (if there are multiple
sorts, then we choose such a set for each tuple of sorts). For each n and ¢ € F,,
for each k > 1, let G, be the set of complete theories T such that there exists a
quantifier-free formula w such that T models

sup (X1, ey xn) — WX, x0)| <

X1.eeesXn

x| =

Then G4 is open and [ ok Opi is precisely the set of theories that admit quantifier
elimination, since it suffices to approximate a dense subset of formulas by quantifier-
free formulas. The argument for model completeness works the same way using
Lemma 2.3 (3). -

So the set of theories of tracial von Neumann algebras with quantifier elimination
is non-closed, non-open, and Gs. We now show it is meager, since in fact the set
of theories of type I von Neumann algebras is meager. Our proof goes by way of
spectral gap.

LemMa 6.3. Letd € N and C > 0. The complete theories of tracial von Neumann
algebras with (C, d )-spectral gap form a closed set with dense complement.

ProOF. By [29, Lemma 4.2], the center Z (M) is definable relative to the theory of
tracial von Neumann algebras. Hence, similar to [28, Definition 3.2.3 and Lemma
3.2.5]in the C*-algebra case. d (y. Z(M))? is a definable predicate (or it is a formula
in an expanded language with a sort added for Z(M)). Thus, consider the sentence

d
inf sup d(y,Z(M))ZLCZH[vaJ/]Hg =0.

M
xlﬁ...,xdEBl yeBl/\/l =1

Note that M has (C, d)-spectral gap, then M satisfies this sentence. The converse
holds when M is countably saturated because we can choose some xi, ..., x; that
realize the infimum. Since every complete theory had a countably saturated model,
the set of theories of von Neumann algebras with (C, d)-spectral gap is equal to the
set of theories satisfying this sentence, hence is closed. To see that its complement is
dense. note that for every tracial von Neumann algebra M, the direct sum (M, 1 —
a) ® (R.a) does not have spectral gap, and Th((M,1-a) ® (R.a)) - M as
a — 0. o

ProposITION 6.4. The following properties define meager sets in the space of
complete theories of tracial von Neumann algebras.

(1) Tracial von Neumann algebras with spectral gap.
(2) Type 1 tracial von Neumann algebras.
(3) Tracial von Neumann algebras whose theory admits quantifier elimination.
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Proor. (1) By Lemma 6.3 the (C, d)-spectral gap property defines a closed set
whose complement is dense. Taking the union over C and d in N yields a meager F,
set.

(2) Hastings’s result (see Theorem 4.6 and Corollary 4.7 above) shows that matrix
algebras M, (C) have spectral gap for a fixed C and d (for instance one can take
d =2 and C = 2). It is straightforward to check that a direct integral of tracial
von Neumann algebras with (2, 2)-spectral gap also has (2,2)-spectral gap. Hence,
all separable type I tracial von Neumann algebras have (2, 2)-spectral gap, so their
theories are contained in the meager set from (1).

(3) Quantifier elimination can only hold for the theories of type I tracial von
Neumann algebras [26, Theorem 1]. -

As the set of theories of von Neumann algebras with quantifier elimination is
meager in the space of all theories, we now consider its topological properties within
the space of theories of type I von Neumann algebras. In light of Theorem A, tracial
von Neumann algebras M whose theories admit quantifier elimination come in two
varieties, those with an L>°[0, 1] summand and those without. First, those M with
an L°°[0, 1] summand can only have finitely many matrix algebra summands, since
projections in the atomic part cannot have trace smaller than the weight ay of the
L*°[0, 1] summand by Proposition 3.3 (3). Fix natural numbers k and n1, ..., ny.
and consider

k
M = (L=[0.1].a) & P (M, (C). a)).
j=1

From 3.4, we can see that the set of weights (o, ... , ;) such that M admits quantifier
elimination is an open subset of the k-simplex, as we can see from Proposition 3.4.
However, it is not dense since everything in the closure must satisty «; /n; > « for
j=>1

Second, we have purely atomic M. As noted in [27, Section 3], purely atomic
algebras can be parameterized by p(m,n) for m,n > 1, where for each m € N,
the values paq(m.1) > prg(m.2) > ... are the weights of the central projections
associated with M,,(C) terms in the direct sum decomposition. If there are only
finitely many M,,(C) terms, we set paq(m.n) = 0 for n larger than the number of
such terms. Let

A= (am,n)m.,nzl YO 2 Oyl 2> 0, Z Qypn = 1

mmn>1

We view A as a metric space with respect to the L! metric. The resulting topology
on A agrees with the topology of pointwise convergence (however, A is not compact
because elements of A can converge pointwise to zero).

LEMMA 6.5. For & = (apn)mn>1. let
Mg = @ (Mn1(C)=am.n)
m.n>1

be the associated purely atomic tracial von Neumann algebra. The map & — Th(Mg)
is a homeomorphism onto its image.
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Proor. [27, Theorem 2.3] implies that the theory of M depends continuously
on the weights a. The construction in [27, Lemma 3.2] shows that o, = pa, (m.n)
can be recovered from Th(Mg). In particular, one can see from this that for each
m,n > 1, if @ € A and the theory of N is sufficiently close to that of Mg, then
pn(m, n) will be close to ay, . -

PROPOSITION 6.6. The set of & € A such that Th(Mg) has quantifier elimination
is comeager.

PROOF. Let Mg i = @B <,y (Mn(C). amn) € Mg. and let Mz, be the direct
sum over the complementary indices. Let 75 be the trace on Mg. Let

e (@) = min{|z5(p) — 75(q)| : p.q projections in Mg, with z(p) # t(q)}.
Let

Gk:{&GAll— Z am‘n<8k(&)}.

1<mn<k

Note that G is open in A, hence also (J,~., Gk is open. Moreover, contains the set
of @ such that & is supported on {1. ...k }?, and so |, -, Gy is dense. Therefore,

¢-NUa

LeNk>L
is comeager. Furthermore,
F ={a € A: ay, are linearly independent over Q}

is comeager because non-vanishing of QQ-linear combinations is a countable family
of open conditions. Hence, F N G is comeager.

We claim that if @ € F N G, then Mg admits quantifier elimination. Let p and
g be projections of the same trace in Mg. For each k., write p = p; @ p;t and
q = qx @ gqi- with respect to the decomposition Mg = Mg & M3, If & € Gy,
then by construction of Gy, we have

s (pk) — talar)| = [ta(pp) — talgi)| < ex(@).

which forces 75 (pi) = t5(gx) by definition of ¢ (a@). Now let p,,,, and ¢, be the
components of p and ¢ respectively in the direct summand (M,,(C). o). Because
the .., ’s are linearly independent over Q, the condition that 75 (py) = 75 (g ) forces
that tr,,(pm.n) = tr(gmn) for m.n < k. Because & € G, we know that & € Gy for
infinitely many k., and thus tr,,,(p,.,) = try,(gm,) for all m,n, which means that
p and ¢ are conjugate by an automorphism. Therefore, by Theorem A, Th(Mg)
admits quantifier elimination. -

6.2. Matrix amplification and approximate embedding. In Theorem B, we
assumed the condition that M>(M) embeds into MY. While this condition holds
automatically if M is Connes-embeddable or if M is existentially closed, we do not
know if it holds for all II; factors. In this section, we investigate this problem by
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giving a series of equivalent conditions. This expands upon the results about the
“universal fundamental group” by Goldbring and Hart [36, Proposition 4.17].”

Recall that for II; factors M and N, the statement Ths(M) = Ths(N\) means
that for every inf-sentence ¢, we have o™ = V. An equivalent statement is
that for some ultrafilter /. we have that M embeds into Y and N embeds
into MY. For instance. when M is Connes-embeddable. then Th3(M) = Th3(R).
We will show that the condition of M;(M) embedding into MY is equivalent
to Thz(M’) = Th3(M) for some or all 7 € (0,00) \ {1}, where M’ is the rth
compression/amplification of M.

PROPOSITION 6.7. Let M be a 1, factor. Then
tl_i}n’l Thg(Mt) = Thg(M ® R),
lim Th3(M") exists.
t—0

Proor. Consider an existential sentence ¢ = infy, ., w(x1, ..., x,) where v is
a quantifier-free formula and x; ranges over the unit ball. We can express
y(x) = F(Retr(pi(x))..... Retr(pe(x))) (6.1)

for some non-commutative *-polynomials p; and a continuous real-valued
function F. By rescaling the input variables to F, assume without loss of generality
that ||p;(x)|| <1 when x, ..., x, are in the unit ball. Let wr be the modulus of
continuity of F with respect to the £°°-norm on [~ 1, 1]¥. Suppose that s < ¢. Write

t =ms +¢ wherem € Nand ¢ € [0, #/s).

Let 75, : M* — M’ be the non-unital x-homomorphism z;,(x) = x®" @ 0, and
note that

t K & S
| (14 (1)) — 0™ ()] < 2yl = Z il
Hence, from (6.1) and the uniform continuity of F,

l//M’(lM(X)) < M (x) + wr(s/t), hence <pM’ <M 4 wr(s/t).
For each s € (0, 00), we have

limsup o™ < liminf [(pMS —l—a)F(s/t)] = oM,
t—o0

t—o0

Since s was arbitrary, it follows that lim, . ™' = inf,c(g0) ™. A similar

argument shows that lim,_,+ goMt = SUP,£(0.00) <th. It remains to show that the
limit as  — oo agrees with Ths(M ® R). First, note that M embeds into M ® R,
so also M! embeds into (M R@R) = MR =2 M ®R. Thus, for each inf-
sentence . we have M®® < lim,_, goM[. For the opposite inequality, note that
M ® R embeds into N =], ,,, M ® M,(C). .

n—U

"The reader should be warned that in this proposition, clauses (1) and (2) should start with ‘For any
II; factor M.....

https://doi.org/10.1017/js1.2025.10100 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2025.10100

30 ILIJAS FARAH, DAVID JEKEL, AND JENNIFER PI

PrROPOSITION 6.8. Let M be a 11, factor. Then the following are equivalent:

(1) M»(M) embeds into MY for some ultrafilter U.

(2) aM @ (1 — a) M embeds into MY for some ultrafilter U and some o € (0.1).
(3) Th3(M) = Ths(M @ R).

(4) Ths(M?") = Tha(M) for all t > 0.

(5) Thg(M?) = Ths(M) for some t # 1.

(6) lim,_,oc Th3(M") = lim,_,o Thg(M").

(7) There exists a McDuff 11, factor N such that Th3(M) = Thy(W).

(8) There exists a Gamma 11; factor N such that Ths(M) = Ths(N).

Proor. (1) = (2) because (1/2)M @ (1/2) M is contained in M>(M).

(2) = (3). Let t1:aM @ (1 —a)M — MY be an embedding where U is
an ultrafilter on index set . Let p = 1(1 ©0). Let A: M — aM @ (1 - a)M be
the diagonal map. Then A(M) commutes with p and hence Ad, o1 0 A gives an
embedding M — p(MY)p since M is a II; factor. Now p lifts to a family of
projections (p:)ic; with trM(p;) = trM*(p) = a. Since p; is unitarily conjugate
to some fixed projection py € M for all i, we have pMYp =[], piMp; =
(poM po)¥ . In other words, M embeds into an ultraproduct of M®. This also implies
that M’ embeds into an ultraproduct of M for each ¢ € (0, 00). Hence, M/ ol
embeds into an ultraproduct of M for each k € N. Thus, for an inf-formula ¢,

eMER — lim oM = lim o™ g %)

M MRR
<o .
t—00 k~>oo

Hence, Thy(M) = Ths(M @ R).

(3) = (1). Note M>(M) embeds into M ® R, which embeds into MY

(3) <= (4). When (3) holds, M and M ® R are embeddable into each
other’s ultrapowers, which implies that M’ and M @R)! X M IR X MR
are embeddable into each other’s ultrapowers. Hence, Th3(M?’) = Ths(M @ R) =
Ths(M) for all ¢ € (0, 00). Conversely, if Thg(M) = Ths(M?) for all ¢, then we
have Tha(M ® R) = lim, o, Tha(M?) = Tha(M).

(4) = (5) is immediate.

(5) = (6). As in the proof of Proposition 6.7 orin (2) = (3), since M’ and
M embed into each other’s ultrapowers, the same holds for /\/lfk for each k € Z,
which implies (6).

(6) = (4). This follows immediately from the fact that for any inf-sentence ¢.
we have lim,_,oc oM = inf, ¢ (.00) oM and lim,_, M = SUP; ¢ (0.00) oM’ which
we showed in the proof of Proposition 6.7.

(3) = (7) = (8) is immediate by definition.

(8) = (2). By assumption M embeds into A“. Since N has property Gamma,
there exists a projection p € NY that commutes with the image of M (provided
that ultrafilter ¢/ is on a sufficiently large index set). Then M and p generate a copy
of aM @ (1 - a)M in N, where a = trV*(p). Finally, N¥ embeds into M for
some ultrafilter V, hence (2) holds. -

REMARK 6.9. By the usual arguments concerning countable saturation, if M is
separable, then it suffices to consider some or all free ultrafilters on N for conditions

(1) and (2).
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REMARK 6.10. Similar reasoning shows that if M’ embeds into MY for some
t > 1, then M |= Ths(M ® R), and hence Th3(M) = Ths(M ® R). Therefore, if
these conditions fail, then M* does not embed into (M) for any s > ¢. Thus, all
the existential theories of M’ for ¢ € R, are distinct and the first-order fundamental
group is trivial.

Compare [36, Proposition 4.16] which showed that if the first-order fundamental
group of M is not all of R, then it is countable and hence there are continuum
many non elementary equivalent matrix amplifications of M. The same argument of
course applies to the fundamental group for the existential theory. Note also from
[35. Proposition 5.1] that a negative solution to Connes embedding immediately
implies the existence of continuum many existential theories of type II; algebras
(but not factors).

6.3. The non-tracial setting. What major elementary classes of self-adjoint
operator algebras admit quantifier elimination? The question for C*-algebras (both
unital and non-unital) has been resolved in [23] and the results of the present paper,
together with [26], resolve the question in case of tracial von Neumann algebras.
What remains is the case of von Neumann algebras with arbitrary faithful normal
states, in particular type III von Neumann algebras. Metric languages for the non-
tracial setting were given in [5, 20]; see [3, 4] for ultraproducts in the non-tracial
setting.

For non-tracial factors, quantifier elimination and model completeness can
depend on the choice of state. For instance, on M3(C) consider the state ¢(A4) =
tr3(AH) where H = diag(hy. hy, h3) with hy > hy > h3. Let ¢ € (0,1) such that
hy = thy + (1 - l)h3, and let

t 0 1121 -1)\/2 00 0
P= 0 0 0 , 0=101 0
H2(1-02 0o 1-1¢ 0 0 0

Then P and Q are projections and ¢(P) = ¢(Q) but they are not conjugate by a
state-preserving automorphism of M3(C). Hence, the theory of (M3(C). ) does
not admit quantifier elimination.

However, in the type I1I; setting, the Connes—Stermer transitivity theorem [19]
implies that all states are approximately unitarily equivalent, and hence for any two
states the associated Ocneanu ultraproducts (M. ¢)¥ and (M. y )" are isomorphic,
and so (M. ) and (M. y) are elementarily equivalent. In fact, we believe the
random matrix argument given here likely will adapt to the type III; setting. Indeed,
let T be the theory of some type II1; factor (M., ). Since M is type 111, we have
M = M@ M,(C). Thus, the ultraproduct (N, w) = [],_,;,(M,(C). tr,) @ (M. )
is a model of T. The random matrix construction of Section 4 yields two elements X
and Y in this ultraproduct such that fV-¥(Y) < fN¥(X) for inf-formulas /. {X}’
and {Y}' are definable sets with respect to parameters X and Y respectively,® and
{X} is a III; factor and {Y}' is not. Because III; factors are an axiomatizable class
[5, Proposition 8.8], this means that X and Y cannot have the same type.

8Technically, one has to check that appropriate sets of left /right bounded elements in the commutant
are definable sets, which could require a small additional argument.
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In the type 111, setting for A € (0. 1), we do not know if this argument goes through
because we would have to pay more attention to the choice of state, and the random
matrix argument requires having models with a tensor product decomposition
(M,(C), tr,) ® (M, ). In the type Il and type Il setting, another issue arises,
namely that type 11y and type 11, factors are not axiomatizable classes [5, Corollary
8.6 and Proposition 8.3], so examining factoriality of the relative commutant of X
and Y may not distinguish their types. Likely, a different approach is needed in these
cases.

Appendix A. Model completeness and inf-formulas This section proves the
characterization of model completeness for theories of metric structure in terms
of types and formulas.

LemMA A.1. Let T be an L-theory. Then the following are equivalent:

(1) T is model complete, i.e., if M and N are models of T, then every embedding
M — N of L-structures is an elementary embedding.

(2) For every n and every pair u,v € S,(T), if w(u) < w(v) for every inf-formula
v, then u = v.

(3) For every L-formula ¢ and ¢ > 0, there exists an inf-formula w such that
| — w| < & (on the appropriate sort or domain) for all models of T.

Proor. (3) == (1). Assume that (3) holds. Let M — A be an inclusion of
models of T. Let ¢ be an n-variable formula and let x = (x, ..., x,,) be a tuple of
the appropriate sort from M. Let ¢ > 0. Then by (3), there exist inf-formulas
and w; such that [y — | < ¢ and |y, — (— ¢)| < ¢ in all models of T. In particular,

N (%) < (%) Fe < p(x) + e < M%) + 26

and symmetrically — ¢V (x) <— pM(x) 4 2¢. Since ¢ was arbitrary, we have
eM(x) = ¢ (x). so the embedding M — A is elementary.

(1) = (2). Suppose T is model complete. Let u and v be n-types satisfying
the hypothesis for (2). Let x be the density character of £, and fix a x"-saturated
model M of T. Then M contains some x with type u and some y with type v. By
the downward Lowenheim—Skolem theorem [11, Proposition 7.3], there exists an
elementary substructure N’ < M containing y with density character at most «. Let
z be a family indexed by some set I of cardinality » that is dense in . For every
finite F C I, every k > 1, and every k-tuple of quantifier-free formulas ¢, ..., ¢ in
n + | F| variables, consider the formula

wur.....uy) = inf max |o;(ur.....up. (v;)icr) — @ 01 yu. (2i)ier )
(vj)ieF J=Loik )

By assumption y™M(x1.....x,) < yM(y1.....y,) = 0. Therefore. for any &> 0,
there exists (w;);er such that |gof‘/‘(y1, e Vns (Wi)ier) - goj"‘(xl, v X (Zi)ier)| <
¢ forall j = 1,..., k. By saturation, this implies that there exists a family w indexed
by I in M such that (x, w) has the same quantifier-free type as (y, z). In particular,
the substructure N of M generated by (x. w) is isomorphic to the substructure A°
generated by (y.z). So AV is a model of T and by model completeness the inclusion
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N — Mis elementary. Therefore,

and x4 = v as desired.
(2) = (3). Our argument uses point-set topology on S, (T) and is motivated by
Urysohn’s lemma and the Stone—Weierstrass theorem.

Cram 1. For every type u and neighborhood O of u, there exist inf-formulas
Wi. .., Wy and & > 0 such that for types v, if w;(v) > w;(u) -0 for j =1, ...k, then
v e O.

Fix u and a neighborhood O, and suppose for contradiction that no such inf-
formulas exist. Then for every d > 0 and every finite collection of inf-formulas
W1. .... Wk, there exists some type v € S,(T) \ O satisfying y;(v) > y;(u) -6 for
j =1,...k. Since S,(T) \ O is compact, there exists some v € S,,(T) \ O satisfying
w(v) > w(u) for all inf-formulas . By (3), this implies v = u, which contradicts
v €S,(T)\ 0.

CLamM 2. For every type u and neighborhood O, there exists an inf-formula w
taking values in [0, 1] such that w(u) > 0 and, for all types v, if w(v) > 0. thenv € O.

Let w1, .... w, and 0 be as in Claim 1, and set
Y= mjinmaX(V/j —w;(u) +0.0).

which is an inf-formula by the monotonicity of max and min.

Cram 3. Let & and &) be disjoint closed subsets of S, (T). Then there exists an
inf-formula y taking values in [0, 1] such that y|g, = 0 and y|e, = 1.

By Claim 2, for each u € &, there exists a nonnegative inf-formula y, such that
wu(u) > 0andif w,(v) > 0. thenv € S,(T) \ &. Let O, = {v : w,(v) > 0}. These
neighborhoods form an open cover of the compact set £, and hence &£ can be
covered by finitely many of these neighborhoods, say O,,. ..., O, . Thus, ZI;ZI v
is strictly positive on £ and attains some minimum ¢ > 0 on this set. Then

k
. 1
v=min(153

is an inf-formula with the desired properties.

Cram 4. For every formula ¢ and ¢ > 0, there exists an inf-formula w such that
| — w| < & in every model of T.

By affine transformation, assume without loss of generality that 0 < ¢ < 1. Let
k € Nwith 1/k <e. For j =1, ..., k, the sets {p < (j — 1)/k} and {¢ > j/k} are
disjoint and closed in S, (T). By Claim 3, there exists an inf-formula y; such that
0<y,; <landforv e S,(T).

() <G -D/k = w;(v)=0. o) >j/k = y;(v)=1
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Let P

1
‘/’:EZ'/’J‘

J=1

Then fortypesv.ifo(v) € [(j — 1)/k. j/k]. theny(v), ...y, 1 (v)are land y ;1 (v).
.... Wi (v) are zero, so that w(v) € [(j — 1)/k. j/k]. Hence, |p(v) —w(v)| < 1/k <&
forall v € S,(T) as desired. -
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