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Abstract
To any free group automorphism, we associate a universal (cone of) limit tree(s) with three defining properties:
first, the tree has a minimal isometric action of the free group with trivial arc stabilizers; second, there is a unique
expanding dilation of the tree that represents the free group automorphism; and finally, the loxodromic elements
are exactly the elements that weakly limit to dominating attracting laminations under forward iteration by the
automorphism. So the action on the tree detects the automorphism’s dominating exponential dynamics.

As a corollary, our previously constructed limit pretree that detects the exponential dynamics is canonical. We
also characterize all very small trees that admit an expanding homothety representing a given automorphism. In
the appendix, we prove a variation of Feighn–Handel’s recognition theorem for atoroidal outer automorphisms.
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Introduction

We previously constructed a limit pretree that detects the exponential dynamics for an arbitrary free
group automorphism [22]. In this sequel, we prove the construction is canonical. This completes the
existence and uniqueness theorem for a free group automorphism’s limit pretree. Recall that if we record
all the compact geodesics in an R-tree but forget their lengths, then the resulting structure is a pretree;
briefly, a pretree is a set with a structure that encodes the notion of closed intervals satisfying certain
axioms. Pretrees are the baseline of our constructions; for instance, (R-)trees will be defined as pretrees
with convex metrics, and pseudotrees as pretrees with a certain hierarchy of convex pseudometrics.

In [22], we motivated the existence and uniqueness theorem of a limit pretree by describing it as a
free group analogue to the Nielsen–Thurston theory for surface homeomorphisms, which in turn can
be seen as the surface analogue to the Jordan canonical form for linear maps. We now give our own
motivation for this result.

Universal representation of an endomorphism

It feels rather odd to discuss my personal motivation while using the communal ‘we’; excuse me as I
break this convention a bit for this section. In my doctoral thesis, I extended Brinkmann’s hyperboliza-
tion theorem to mapping tori of free group endomorphisms. This required studying the dynamics of
endomorphisms. Along the way, I proved that injective endomorphisms have canonical representatives.
More precisely, suppose 𝜙 : 𝐹 → 𝐹 is an injective endomorphism of a finitely generated free group;
then there is

1. a minimal simplicial F-action on a simplicial tree T with trivial edge stabilizers;
2. a 𝜙-equivariant expanding embedding 𝑓 : 𝑇 → 𝑇 (unique up to isotopy); and
3. an element in F is T-elliptic if and only if one of its forward 𝜙-iterates is conjugate to an element in

a [𝜙]-periodic free factor of F.

Existence of the limit free splitting (i.e., T with its F-action) for the outer class [𝜙] was the core of
my thesis (see also [21, Theorem 3.4.5]). Universality follows from bounded cancellation: any other
simplicial tree 𝑇 ′ satisfying these three conditions will be uniquely equivariantly isomorphic to T
[21, Proposition 3.4.6].

In a way, the limit free splitting detects and filters the ‘nonsurjective dynamics’ of the (outer)
endomorphism. When 𝜙 : 𝐹 → 𝐹 is an automorphism, then T is a singleton and the free splitting
provides no new information. On the other extreme, the F-action on T can be free; in this case, let
Γ ..= 𝐹\𝑇 be the quotient graph. Then the outer endomorphism [𝜙] is represented by a unique expanding
immersion [ 𝑓 ] : Γ → Γ and [𝜙] is expansive – such outer endomorphisms are characterized by the
absence of [𝜙]-periodic (conjugacy classes of) nontrivial free factors [21, Corollary 3.4.8]. The most
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important thing is that the expanding immersion [ 𝑓 ] has nice dynamics and greatly simplifies the study
of expansive outer endomorphisms.

After completing my thesis, I found myself in a paradoxical situation: I had a better ‘understanding’
of nonsurjective endomorphisms than automorphisms – the main obstacle to studying the dynamics of
nonsurjective endomorphisms was understanding the dynamics of automorphisms. The naïve expec-
tation (when I started my thesis) had been that nonsurjective endomorphisms have more complicated
dynamics as they are not invertible. The current project was born out of an obligation to correct this
imbalance.

Universal representation of an automorphism

What follows is a direct analogue of the above discussion in the setting of automorphisms. The main the-
orem of [22] produces an action that detects and filters the ‘exponential’ dynamics of an automorphism.
Specifically, suppose 𝜙 : 𝐹 → 𝐹 is an automorphism of a finitely generated free group. Then there is

1. a minimal rigid F-action on a real pretree T with trivial arc stabilizers;
2. a 𝜙-equivariant ‘expanding’ pretree-automorphism 𝑓 : 𝑇 → 𝑇 ; and
3. an element in F is T-elliptic if and only if it grows polynomially with respect to [𝜙].

The pair of the pretree T and its rigid F-action is called a (forward) limit pretree for the outer auto-
morphism [𝜙]. The theorem is stated properly in Chapter 3 as Theorem 3.1. When [𝜙] is polynomially
growing, then the limit pretree is a singleton (and hence unique) but provides no new information. We
are mainly interested in exponentially growing [𝜙] as their limit pretrees are not singletons. On the other
hand, the F-action on a limit pretree is free if and only if [𝜙] is atoroidal, (i.e., there are no [𝜙]-periodic
(conjugacy classes of) nontrivial elements) [22, Corollary III.5]. As with expanding immersions and
expansive outer endomorphisms, the expanding ‘homeomorphism’ [ 𝑓 ] (on the quotient space 𝐹\𝑇) has
dynamics that could facilitate the study of atoroidal outer automorphisms.

Unlike the endomorphism case, uniqueness of limit pretrees requires a more involved argument. It
was remarked in the epilogue of [22] that the only source of indeterminacy in the existence proof was
[22, Proposition III.2]; this proposition is restated in Section 1.4 as Proposition 1.2, and a proof is
sketched in Sections 2.1 and 2.4. The main result of this paper is a universal version of the proposition.
It can also be thought of as an existence and uniqueness theorem for an action that detects and filters
the ‘dominating’ exponential dynamics of an outer automorphism:

Main Theorem (Theorems 3.10–3.11).
Let 𝜙 : 𝐹 → 𝐹 be an automorphism of a finitely generated free group and {A𝑑𝑜𝑚𝑗 [𝜙]}𝑘𝑗=1 a (possibly
empty) subset of [𝜙]-orbits of dominating attracting laminations for [𝜙].

Then there is

1. a minimal factored F-tree (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ) with trivial arc stabilizers;
2. a unique 𝜙-equivariant expanding dilation 𝑓 : (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ) → (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ); and
3. for 1 ≤ 𝑗 ≤ 𝑘 , a nontrivial element in F is 𝛿 𝑗 -loxodromic if and only if its forward 𝜙-iterates have

axes that weakly limit to A𝑑𝑜𝑚𝑗 [𝜙];

moreover, the factored F-tree (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ) is unique up to a unique equivariant dilation.

Thus, the factored tree (up to rescaling of its factors 𝛿 𝑗 ) is a universal construction for outer auto-
morphisms of free groups, and we call it the complete dominating (resp. topmost) tree if we consider
the whole set of orbits of dominating (resp. topmost) attracting laminations. As a corollary, the previ-
ously constructed limit pretrees are independent of the choices made in the proof of Theorem 3.1 (i.e.,
the limit pretree is canonical) (Corollary 3.9). Let us now briefly define the emphasized terms in the
theorem’s statement.

An F-tree is an (R-)tree with an isometric F-action. Informally, an F-tree is factored if its metric has
been equivariantly decomposed as a sum

∑𝑘
𝑗=1 𝛿 𝑗 of pseudometrics. For a factored F-tree (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ), an
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element in F is 𝛿𝑖-loxodromic if it is Y-loxodromic and its axis has positive 𝛿𝑖-diameter. An equivariant
homeomorphism (𝑇, Σ𝑘𝑗=1𝑑 𝑗 ) → (𝑌, Σ𝑘𝑗=1𝛿 𝑗 ) of factored F-trees is a dilation if it is a homothety of each
pair of factors 𝑑 𝑗 and 𝛿 𝑗 ; a dilation is expanding if each factor-homothety is expanding.

A lamination in F is a nonempty closed subset in the space of lines in F. A sequence of lines (e.g.,
axes) weakly limits to a lamination if some subsequence converges to the lamination. Any [𝜙] has a
finite set of attracting laminations which is empty if and only if [𝜙] is polynomially growing; this set
is partially ordered by inclusion and has an order-preserving [𝜙]-action. The maximal elements of the
partial order are called topmost. An attracting lamination A for [𝜙] has an associated stretch factor
𝜆(𝐴); it is dominating if any distinct attracting lamination 𝐴′ for [𝜙] containing A has a strictly smaller
stretch factor 𝜆(𝐴′) < 𝜆(𝐴). Topmost attracting laminations are vacuously dominating; moreover, the
[𝜙]-action permutes the dominating attracting laminations.

Remark. If one considers a subset {A𝑡𝑜𝑝𝑗 [𝜙]}𝑘𝑗=1 of [𝜙]-orbits of topmost attracting laminations, then
we prove the topmost tree has the additional property that its factor-pseudometrics are pairwise mutually
singular: for each i, there is an element that is 𝛿𝑖-loxodromic but 𝛿 𝑗 -elliptic for 𝑗 ≠ 𝑖 (see Section 3.4).
We highlight this feature by using the notation (𝑌, ⊕𝑘𝑗=1𝛿 𝑗 ) for topmost trees.

Some applications of universal representations. Fix an automorphism 𝜙 : 𝐹 → 𝐹; since [𝜙] has
a unique equivariant dilation class [𝑌, Σ𝑘𝑗=1𝛿 𝑗 ] of complete dominating limit trees, any invariant of the
class is automatically an invariant of [𝜙]. For instance, the Gaboriau–Levitt index 𝑖(𝑌 ) (as defined in
[11, Chapter III]) is the dominating forward index for [𝜙]. In fact, since the limit pretree T for [𝜙]
is canonical, its index 𝑖(𝑇) (defined in [22, Appendix A]) is the exponential (forward) index for [𝜙];
when [𝜙] is atoroidal, the index 𝑖(𝑇) is closely related to the Gaboriau–Jaeger–Levitt–Lustig index for
[𝜙] defined in [10, Section 6]. Each factor 𝛿 𝑗 has an associated F-tree (𝑌 𝑑𝑜𝑚𝑗 , 𝛿 𝑗 ); the pairing of 𝛿 𝑗
with the orbit of dominating attracting lamination A𝑑𝑜𝑚𝑗 [𝜙] means 𝑖(𝑌 𝑑𝑜𝑚𝑗 ) is an index for A𝑑𝑜𝑚𝑗 [𝜙],
respectively.

Our main application is a characterization of minimal F-trees with 𝜙-equivariant expanding homo-
theties:

Main Corollary (Theorem 5.3).
Let 𝜙 : 𝐹 → 𝐹 be an automorphism and (𝑌, 𝛿) a minimal very small F-tree. The F-tree (𝑌, 𝛿) admits
a 𝜙-equivariant expanding homothety if and only if it is equivariantly isometric to the dominating tree
for [𝜙] with respect to a subset of [𝜙]-orbits of dominating attracting laminations with the same stretch
factor.

In the appendix, we prove a variation of Feighn–Handel’s recognition theorem for atoroidal outer
automorphisms.

Some historical context

This paper continues Gaboriau–Levitt–Lustig’s philosophy of prioritizing limit trees in their alternative
proof of the Scott conjecture [12]. In particular, our paper relies only on the existence of irreducible
train tracks [4, Section 1] but none of the typical splitting paths analysis of relative train tracks [3, 9].
Zlil Sela gave another dendrogical proof the conjecture (now Bestvina–Handel’s theorem) that used
Rips’s theorem in place of train track technology [25]. Frédéric Paulin gave yet another dendrological
proof that avoids both train tracks and Rips’s theorem [23].

About the same time, Bestvina–Fieghn–Handel used train tracks and trees to prove fully irreducible
(outer) automorphisms have universal limit trees [2]. They used this to give a short dendrological proof
of a special case of the Tits Alternative for Out(𝐹); their later proof of the general case was much
more involved due to the lack of such a universal limit construction [3]. Universal limit trees have
been indispensable for studying fully irreducible automorphisms. In principle, a universal construction
of limit trees for all automorphisms would lead to a dendrological proof of the Tits alternative and
extend much of the theory for fully irreducible automorphisms to arbitrary automorphisms. Speaking
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of dendrological proofs of the Tits alternative, we mention that Camille Horbez gave such a proof with
a very different approach [15].

Continuing the work started in [3], Feighn–Handel defined and proved the existence of completely
split relative train tracks (CTs) in [9, Section 4]; they use CTs to characterize abelian subgroup of Out(𝐹)
[8]. The main obstacle when working with topological representatives is that they are not canonical,
which can make defining invariants of the outer automorphism quite technical. This is the difficulty
that we had to deal with in this paper; however, now that it is done, we can use our new universal
representatives to define other invariants rather easily. A minor inconvenience when working with CTs
is that they are only proven to exist for some (uniform) iterate of the outer automorphism; we were
very careful (perhaps to a fault) in this paper to ensure our universal representatives exist for all outer
automorphisms. Finally, a subtle advantage to our approach is that we find universal representatives for
automorphisms and not just outer automorphisms!

In a sequel to [25], Sela used limit trees and Rips’s theorem to give a canonical hierarchical decompo-
sition of the free group F that is invariant under a given atoroidal automorphism [24]. This second paper
was never published, and a third announced paper that extends the canonical decomposition to arbitrary
automorphisms was never released even as a preprint (as far as we know). We remark that the limit trees
used in that paper were not (or rather, were never proven to be) canonical/universal. Perhaps, one could
combine Sela’s canonical decomposition with Bestvina–Feighn–Handel’s work to give a universal con-
struction of limit trees for atoroidal automorphisms – our approach is independent of Sela’s work and
applies more generally to exponentially growing automorphisms. Conversely, we suspect that a careful
study of the structure of our topmost trees might recover Sela’s canonical hierarchical decomposition.

Morgan–Shalen introduced the term ‘R-trees’ in [20]. They also defined ‘Λ-trees’ for an ordered
abelian group Λ. At first glance, the hierarchy of pseudometrics on a real pretree (defined in Section 1.2)
looks like a Λ-tree. But paths in our constructed hierarchies ‘exit’ infinitesimal trees through metric
completion points, whereas paths in a Λ-tree exit at infinity. Hierarchies appear to be a new construction
to the best of our knowledge.

Proof outline for existence of topmost tree (Theorem 3.7)

One method for constructing limit trees is iterating expanding irreducible train tracks. This is carried
out in Section 2.1, but it has two drawbacks: exponentially growing automorphisms do not always have
expanding irreducible train tracks; and even when they do, the point stabilizers of the corresponding
limit tree are not canonical as they can change with the choice of train tracks. We handle the first
obstacle in Section 2.4 by constructing a limit tree (𝑌1, 𝛿1) using a descending sequence of irreducible
train tracks, where only the last train track is expanding. Such descending sequences always exist for
exponentially growing automorphisms.

Next, we construct in Section 3.1 a pretree with an F-action whose point stabilizers are canonical. Set
𝐺1

..= 𝐹, and let G2 be the [𝜙]-invariant subgroup system determined by the point stabilizers of𝐺1 acting
on𝑌1. By restricting [𝜙] to G2 and inductively repeating the construction, we get a descending sequence
of limit forests (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. Each limit forest (Y𝑖 , 𝛿𝑖) has ([𝜙]-orbits of) attracting laminations A𝑖 [𝜙]
for [𝜙] that are forward limits of Y𝑖-loxodromic elements in G𝑖 . Starting with 𝑋 (1) = 𝑌1, equivariantly
replace the points in 𝑋 𝑖 fixed by G𝑖+1 with the pretrees Y𝑖+1 to produce 𝑋 (𝑖+1) for 𝑖 < 𝑛. The limit pretree
𝑇 = 𝑋 (𝑛) has canonical point stabilizers: the maximal polynomially growing subgroups.

Everything we have mentioned so far is a rehash of [22]. From the blow-up construction, the limit
pretree T inherits an F-invariant hierarchy (𝛿𝑖)

𝑛
𝑖=1 of convex pseudometrics – the pseudometric 𝛿𝑖 is

defined on maximal G𝑖-invariant convex subsets of T of 𝛿𝑖−1-diameter 0. The theorem is finally proven
in Section 3.4. The new insight for this proof: if attracting laminations A𝑖 [𝜙] are topmost, then the
G𝑖-invariant pseudometric 𝛿𝑖 can be extended to an F-invariant convex pseudometric, still denoted 𝛿𝑖 ,
on T. Let {A 𝜄 ( 𝑗) [𝜙]}𝑘𝑗=1 be a subset of topmost attracting laminations. The sum of the corresponding
F-invariant pseudometrics on T, denoted ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) , is an F-invariant convex pseudometric on T. Let
Y be the partition of T into its maximal subsets of ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) -diameter 0; as these subsets are convex,
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Y inherits a pretree structure from T. The pseudometric ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) on T induces a convex metric, also
denoted ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) , on Y. The metric space (𝑌, ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) is our topmost tree. This concludes the outline.

At the end of Section 3.5, we prove universality. The proof relies on Chapter 4: variations of Bestvina–
Feighn–Handel’s convergence criterion [2]; it boils down to bounded cancellation and Perron–Frobenius
theory.

We use the results of [22] as black boxes, and the two papers can be read in any order.

1. Preliminaries

In this paper, F denotes a free group with 2 ≤ rank(𝐹) < ∞. Subscripts never indicate the rank but
instead are used as indices. For inductive arguments, we also work with a free group system of finite
type: disjoint union

⊔
𝑗∈𝐽 𝐹𝑗 of nontrivial finitely generated free groups 𝐹𝑗 indexed by a possibly empty

finite set J. In this paper, F is always a free group system of finite type with some component 𝐹𝑗 that is
not cyclic.

1.1. Group systems and actions

Nearly all statements and results about groups and connected spaces that we are interested in still
hold when ‘connectivity’ is relaxed and we work with ‘systems’ componentwise. In general (almost
categorical) terms, a system of [?-objects] is a disjoint union O =

⊔
𝑗∈𝐽 𝑂 𝑗 of [?-objects]𝑂 𝑗 indexed by

some set J. An [?-isomorphism] of systems 𝜓 : O → O′ is a bijection 𝜎 : 𝐽 → 𝐽 ′ of the corresponding
indexing sets and a union of [?-isomorphisms] 𝜓 𝑗 : 𝑂 𝑗 → 𝑂 ′

𝜎 · 𝑗 . The calligraphic font is reserved for
systems.

In more concrete terms, here are some basic concepts that will show up in the paper:

1. an isomorphism of group systems 𝜓 : G → G ′ is a bijection whose restriction to any component
𝐺 𝑗 ⊂ G is a group isomorphism of components; for group systems, we always assume (for conve-
nience) components are nontrivial if the system is nonempty.

2. two isomorphisms of group systems 𝜓, 𝜓 ′ : G → G ′ are in the same outer class [𝜓] if the component
isomorphisms 𝜓 𝑗 , 𝜓 ′

𝑗 : 𝐺 𝑗 → 𝐺 ′
𝜎 · 𝑗 differ only by post-composition with an inner automorphism of

𝐺 ′
𝜎 · 𝑗 for all 𝑗 ∈ 𝐽.

3. a metric on a set system X is a disjoint union of metrics 𝑑 𝑗 : 𝑋 𝑗 × 𝑋 𝑗 → R≥0 on the components
𝑋 𝑗 ⊂ X .

4. for a group system G indexed by J and object system O indexed by 𝐽 ′, a G − action on O (or
G − objectsystemO) is a union of component 𝐺 𝑗 -actions on 𝑂𝛽 · 𝑗 for some bijection 𝛽 : 𝐽 → 𝐽 ′.

5. for an automorphism of a group system 𝜓 : G → G and a G-object system O, the 𝜓-twisted G-object
system O𝜓 is given by precomposing the component 𝐺𝜎 · 𝑗 -action on 𝑂𝛽𝜎 · 𝑗 with the component
isomorphism 𝜓 𝑗 : 𝐺 𝑗 → 𝐺𝜎 · 𝑗 to get a 𝐺 𝑗 -object 𝑂𝛽𝜎 · 𝑗 .

1.2. Pretrees, trees and hierarchies

Pretrees are what arises when one wants to discuss ‘treelike’ objects without reference to a metric or
topology. In this paper, the pretrees are the ‘primitive’ objects, and metrics/topologies are additional
structures on the pretree – think of it the same way a Riemannian metric is a compatible addition to a
manifold’s smooth structure.

Fix a set T; an interval function on T is a function [·, ·] : 𝑇 × 𝑇 → P (𝑇), where P (𝑇) is the power
set of T, that satisfies the following axioms: for all 𝑝, 𝑞, 𝑟 ∈ 𝑇 ,

1. (symmetric) [𝑝, 𝑞] = [𝑞, 𝑝] contains {𝑝, 𝑞};
2. (thin) [𝑝, 𝑟] ⊂ [𝑝, 𝑞] ∪ [𝑞, 𝑟]; and
3. (linear) if 𝑟 ∈ [𝑝, 𝑞] and 𝑞 ∈ [𝑝, 𝑟], then 𝑞 = 𝑟 .

A pretree is a pair (𝑇, [·, ·]) of a nonempty set T and an interval function [·, ·] on T.
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The subsets [𝑝, 𝑞] ⊂ 𝑇 are called closed intervals, and they should be thought of as the points
between p and q (inclusive). We can similarly define open (resp. half-open) intervals by excluding both
(resp. exactly one) of {𝑝, 𝑞}. Generally, ‘interval’ (with no qualifier) refers to any of the three types of
intervals we have defined. An interval is degenerate if it is empty or a singleton. We usually omit the
interval function and denote a pretree by T. Note that the real line R is a pretree.

Any subset 𝑆 ⊂ 𝑇 of a pretree inherits an interval function: [𝑢, 𝑣]𝑆 ..= [𝑢, 𝑣] ∩ 𝑆 for all 𝑢, 𝑣 ∈ 𝑆. A
subset 𝐶 ⊂ 𝑇 is convex if [𝑝, 𝑞] ⊂ 𝐶 for all 𝑝, 𝑞 ∈ 𝐶; or equivalently, [·, ·]𝐶 is the restriction of [·, ·]
to 𝐶 × 𝐶 ⊂ 𝑇 × 𝑇 . A system of pretrees is a set system T =

⊔
𝑗∈𝐽 𝑇𝑗 and a disjoint union of interval

functions on 𝑇𝑗 ; we call these systems pretrees for short.
Let (𝑇, [·, ·]) and (𝑇 ′, [·, ·] ′) be pretrees. A pretree-isomorphism is a bijection 𝑓 : 𝑇 → 𝑇 ′ satisfying

𝑓 ([𝑝, 𝑞]) = [ 𝑓 (𝑝), 𝑓 (𝑞)] ′ for all 𝑝, 𝑞 ∈ 𝑇 . Similarly, a pretree-automorphism of (𝑇, [·, ·]) is a pretree-
isomorphism 𝑔 : (𝑇, [·, ·]) → (𝑇, [·, ·]). A pretree is real if its closed intervals are pretree-isomorphic
to closed intervals of R. By definition, the real line R is a real pretree. Note that being real is a property
of a pretree, not an added structure like a metric! An arc of a real pretree T is a nonempty union of an
ascending chain of nondegenerate intervals. A real pretree is degenerate if it is a singleton; and a system
of real pretrees is degenerate if all components are degenerate.

Fix a real pretree T; a convex pseudometric on T is a function 𝑑 : 𝑇 × 𝑇 → R≥0 satisfying the
following axioms: for all 𝑝, 𝑞, 𝑟 ∈ 𝑇 ,

1. (symmetric) 𝑑 (𝑝, 𝑞) = 𝑑 (𝑞, 𝑝);
2. (convex) 𝑑 (𝑝, 𝑟) = 𝑑 (𝑝, 𝑞) + 𝑑 (𝑞, 𝑟) if 𝑞 ∈ [𝑝, 𝑟]; and
3. (continuous) 𝑑 (𝑝, 𝑞) = 2 𝑑 (𝑝, 𝑞′) for some 𝑞′ ∈ [𝑝, 𝑞].

For any given convex pseudometric d on T, the preimage 𝑑−1(0) ⊂ 𝑇 × 𝑇 is an equivalence relation
on the real pretree T such that each equivalence class is convex and the set 𝑇𝑑 of equivalence classes
inherits a real pretree structure. A convex metric on T is a convex pseudometric whose equivalence
relation 𝑑−1(0) is the equality relation on T. A (metric) tree (or R-tree) is a real pretree with a convex
metric; a forest is a system of trees. For example, the real line R is a tree with the standard metric
𝑑std(𝑝, 𝑞) ..= |𝑝 − 𝑞 |. Note that a convex pseudometric d on a real pretree T induces a convex metric,
still denoted d, on the real pretree 𝑇𝑑; we refer to the tree (𝑇𝑑 , 𝑑) as the associated tree.

A 𝜆-homothety of trees ℎ : (𝑇, 𝑑) → (𝑌, 𝛿) is a pretree-isomorphism ℎ : 𝑇 → 𝑌 that uniformly scales
the metric d by 𝜆:

𝛿(ℎ(𝑝), ℎ(𝑞)) = 𝜆 𝑑 (𝑝, 𝑞) for all (𝑝, 𝑞) ∈ dom(𝑑) = 𝑇 × 𝑇 ;

equivalently, ℎ∗𝛿 = 𝜆𝑑, where ℎ∗𝛿 is the pullback of 𝛿 via h. A homothety is a 𝜆-homothety for some
𝜆 > 0; it is expanding (resp. an isometry) if 𝜆 > 1 (resp. 𝜆 = 1). An isometry 𝜄 : (𝑇, 𝑑) → (𝑇, 𝑑) is
elliptic if it fixes a point of T; otherwise, it is loxodromic and acts by a nontrivial translation on its axis,
the unique 𝜄-invariant arc of (𝑇, 𝑑) isometric to (R, 𝑑std); the translation distance ‖𝜄‖𝑑 ∈ R≥0 is 0 if 𝜄 is
elliptic and equal to the displacement of points in 𝜄’s axis if 𝜄 is loxodromic. These definitions extend
componentwise to forests.

Let 𝑑1 be a nonconstant convex pseudometric on T and 𝑑𝑖+1 : 𝑑−1
𝑖 (0) → R≥0 a nonconstant disjoint

union of convex pseudometrics for 1 ≤ 𝑖 < 𝑛. The sequence (𝑑𝑖)
𝑛
𝑖=1 will be known as an n-level

hierarchy of convex pseudometrics on T; we will say just hierarchies for short. A hierarchy (𝑑𝑖)
𝑛
𝑖=1 has

full support if 𝑑𝑛 is a disjoint union of convex metrics. A pseudotree is a pair (𝑇, (𝑑𝑖)𝑛𝑖=1) of a real pretree
and a hierarchy with full support; a pseudoforest is a system of pseudotrees. A (𝜆i)i=1

n-homothety of
n-level pseudoforests ℎ : (T , (𝑑𝑖)𝑛𝑖=1) → (Y , (𝛿𝑖)𝑛𝑖=1) is a system of pretree-isomorphisms ℎ : T → Y
that scales each pseudometric 𝑑𝑖 by 𝜆𝑖:

𝛿𝑖 (ℎ(𝑝), ℎ(𝑞)) = 𝜆𝑖 𝑑𝑖 (𝑝, 𝑞) for all 𝑖 ≥ 1 and (𝑝, 𝑞) ∈ dom(𝑑𝑖);

a homothety is a (𝜆𝑖)𝑛𝑖=1-homothety for some 𝜆𝑖 > 0; it is expanding (resp. isometry) if each 𝜆𝑖 > 1 (resp.
each 𝜆𝑖 = 1). As with trees, an isometry of a pseudotree is either elliptic (fixes a point) or loxodromic
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(translates a ‘pseudoaxes’). Hierarchies and pseudoforests are the fundamental (perhaps novel) tool in
this paper. They are first used in Chapter 3.

1.3. Simplicial actions and train tracks

For a pretree T, a direction at 𝑝 ∈ 𝑇 is a maximal subset 𝐷 𝑝 ⊂ 𝑇 \ {𝑝} not separated by p (i.e., 𝑝 ∉ [𝑞, 𝑟]
for all 𝑞, 𝑟 ∈ 𝐷 𝑝). A branch point is a point with at least three directions, and a branch is a direction at
a branch point. An endpoint is a point with at most one direction. A simple pretree is a pretree whose
closed intervals are finite subsets. A pretree T is simplicial if it is real, its subset V of branch points
and endpoints is a simple pretree, and no convex proper subset contains V; a vertex is a point in V. An
(open) edge in a simplicial pretree T is a maximal convex subset 𝑒 ⊂ 𝑇 that contains no vertex. By
construction, edges are open intervals; the corresponding closed intervals in T are called closed edges.

Remark. Being simplicial is a property of a pretree, not an added structure! Besides that, our definition
of a simplicial pretree is more general (with one exception) than the standard definition of a simplicial
tree and has the advantage that it is independent of any choice of metric/topology. See [22, Interlude]
for a discussion on this distinction. The one exception: the real line R is not a simplicial pretree!

An F-pretree is a pretree with an F-action by pretree-automorphisms. An F-pseudotree is a pair of
a real F-pretree and an F-invariant hierarchy with full support; equivalently, an F-pseudotree (resp. F-
tree) is a pseudotree with an isometric F-action. An F-pseudotree or F-tree is minimal if the underlying
F-pretree has no proper nonempty F-invariant convex subset; in this case, the underlying F-pretree has
no endpoints. We mostly consider minimal F-pseudotrees with trivial arc (pointwise) stabilizers.

Suppose an F-pseudotree (𝑇, (𝑑𝑖)
𝑛
𝑖=1) has trivial arc stabilizers. For any nontrivial subgroup 𝐺 ≤ 𝐹,

the characteristic convex subset (of T) for G is the unique minimal nonempty G-invariant convex subset
𝑇 (𝐺) ⊂ 𝑇 . In an F-tree (𝑇, 𝑑) with trivial arc stabilizers, the restriction of d to 𝑇 (𝐺) is a G-invariant
convex metric, still denoted d; the minimal G-tree (𝑇 (𝐺), 𝑑) is the characteristic subtree (of (𝑇, 𝑑))
for G.

Remark. We do not really need an isometric action to define characteristic convex subsets and mini-
mality. All we need is the F-action on the real pretree T to be rigid/non-nesting: no closed interval is
sent properly into itself by the F-action [22, Section II.2]. While rigid actions are central to [22], they
are superseded by isometric actions in this paper.

An F-pretree T is simplicial if T is simplicial and admits an F-invariant convex metric d; equivalently,
a simplicial F-pretree is a simplicial pretree with a rigid F-action. Any simplicial F-pretree has an open
cone (over a finite dimensional open simplex) worth of F-invariant convex metrics (up to an equivariant
isometry isotopic to the identity map). The definitions given so far extend componentwise to systems.

Let T and T ′ be simplicial pretrees and 𝑓 : T → T ′ a tight cellular map (i.e., a function that maps
vertices to vertices and the restriction to any closed edge is a pretree-embedding – that is, a pretree-
isomorphism onto its image). For any choice of convex metrics 𝑑, 𝑑 ′ on T , T ′, respectively, there is a
unique map (T , 𝑑) → (T ′, 𝑑 ′) that is linear on edges and isotopic to f ; whenever a choice of convex
metrics is made, we implicitly replace f with this map.

Let T be a free splitting of F – that is, minimal simplicial F-pretrees with trivial edge stabilizers,
and suppose 𝜓 : F → F is an automorphism of a free group system. The 𝜓-twisted free splitting T 𝜓
is the same real pretrees T , but the original simplicial F-action is precomposed with 𝜓. A (relative)
topological representative for 𝜓 is a 𝜓-equivariant tight cellular map 𝑓 : T → T on a nondegenerate
free splitting T of F : 𝜓-equivariance means 𝑓 (𝑥 · 𝑝) = 𝜓(𝑥) · 𝑓 (𝑝) for all 𝑥 ∈ F and 𝑝 ∈ T , or
equivalently, 𝑓 : T → T 𝜓 is equivariant. Given a topological representative 𝑓 : T → T for 𝜓, we let
[ 𝑓 ] denote the induced map on the quotient F\T ; we say [ 𝑓 ] is a topological representative for the
outer class [𝜓]. A (relative) train track for 𝜓 is a topological representative 𝜏 : T → T for 𝜓 whose
iterates 𝜏𝑚 (𝑚 ≥ 1) are topological representatives for 𝜙𝑚 – or equivalently, whose iterates 𝜏𝑚 restrict
to pretree-embeddings on closed edges.
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For any free splitting T of F , Bass-Serre theory gives a uniform bound on the number of F-orbits
of edges (linear in rank(F)) and relates the vertices with nontrivial stabilizers in a (componentwise)
connected fundamental domain to a (possibly empty) free factor system F [T ] of F – take this as the
working definition of free factor systems. The theory also gives a uniform bound on the complexity (e.g.,
ranks) of free factor systems. A free factor system F [T ] is proper if F [T ] ≠ F ; equivalently, F [T ] is
proper if and only if T is not degenerate. Any proper free factor system ofF has strictly lower complexity
than F . The trivial free factor system of F is the (possibly empty) free factor system consisting of the
cyclic F-components; it is always proper since we assume F has a noncyclic component.

Remark. We will abuse notation and write F [T ] = F [T ′] for two free splittings T , T ′ of F when we
mean an element of F is T -elliptic if and only if it is T ′-elliptic.

Fix an automorphism 𝜓 : F → F and a topological representative 𝑓 : T → T for 𝜓. By 𝜓-
equivariance of f, the proper free factor system F [T ] is [𝜓]-invariant – again, we can take this as the
definition of [𝜓]-invariance for proper free factor systems. Form a nonnegative integer square matrix
𝐴[ 𝑓 ] whose rows and columns are indexed by the F-orbits of edges in T ; and the entry at row-[𝑒]
and column-[𝑒′] is given by the number of e-translates in the interval 𝑓 (𝑒′), where 𝑒, 𝑒′ are edges
in T. The topological representative f is irreducible if the matrix 𝐴[ 𝑓 ] is irreducible; or equivalently,
if, for any pair of edges 𝑒, 𝑒′ in T , a translate of e is contained 𝑓 𝑚(𝑒′) for some 𝑚 = 𝑚(𝑒, 𝑒′) ≥ 1.
It is a foundational theorem of Bestvina–Handel that automorphisms have irreducible train
tracks.

Theorem 1.1 (cf. [4, Theorem 1.7]). Let 𝜓 : F → F be an automorphism of a free group system and Z
a [𝜓]-invariant proper free factor system of F . Then there is an irreducible train track 𝜏 : T → T for
𝜓, where the components of Z are T -elliptic.

The proof outline of [22, Theorem I.1] explains how to deduce the theorem as currently stated from
the cited theorem.

Suppose 𝜓 : F → F is an automorphism with an irreducible topological representative 𝑓 : T → T .
Perron–Frobenius theory implies the matrix 𝐴[ 𝑓 ] has a unique real eigenvalue 𝜆 = 𝜆[ 𝑓 ] ≥ 1 with a
unique positive left eigenvector 𝜈[ 𝑓 ] whose entries sum to 1. From the eigenvector 𝜈[ 𝑓 ], we get an
F-invariant convex metric 𝑑 𝑓 on T (well-defined up to an equivariant isometry isotopic to the identity
map). The restriction of f to any edge is a 𝜆-homothetic embedding with respect to 𝑑 𝑓 ; the metric 𝑑 𝑓
is the eigenmetric (on T ) for [ 𝑓 ]. If 𝜆 = 1, then f is a 𝜓-equivariant simplicial automorphism of T .

1.4. Growth types and limit trees

Since the introduction of train tracks, it has been standard to construct limit forests by iterating an
expanding irreducible train track (Section 2.1). Unfortunately, such a construction is not canonical as it
can depend on the initial train track. The main idea of the paper: patch together a ‘descending’ sequence
of limit trees to get a limit pseudoforest and inductively ‘normalize’ its hierarchy into a canonical limit
pseudoforest.

Fix a free group systemG of finite type (unlikeF , all components ofG can be cyclic), an automorphism
𝜓 : G → G, and a metric free splitting (T , 𝑑) of G whose free factor system Z ..= F [T ] is [𝜓]-invariant.
An element 𝑥 ∈ G [𝜓]-grows exponentially rel. d with rate 𝜆x if it is T -loxodromic and the limit inferior
of the sequence

(
𝑚−1 log ‖𝜓𝑚(𝑥)‖𝑑

)
𝑚≥0 is log𝜆𝑥 > 0. If an element [𝜓]-grows exponentially rel. d,

then it [𝜓]-grows exponentially rel. 𝑑 ′ with the same rate for any metric free splitting (T ′, 𝑑 ′) of G with
F [T ′] = Z; say the element [𝜓]-grows exponentially rel. Z . An element 𝑥 ∈ G [𝜓]-grows polynomially
rel. Z with degree < n if the sequence (𝑚−𝑛‖𝜓𝑚 (𝑥)‖𝑑)𝑛≥0 converges to 0. Any element of G [𝜓]-grows
either exponentially or polynomially rel. Z [22, Corollary III.4]. The growth type of an element is
preserved when passing to invariant subgroup systems of finite type.

The automorphism𝜓 is exponentially growing rel.Z if some element [𝜓]-grows exponentially rel.Z;
otherwise, 𝜓 is polynomially growing rel. Z . The growth type of an outer class [𝜓] is also well-defined.
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The ‘rel. Z’ in our terminology may be omitted when Z is trivial. The next proposition deals with the
first obstacle:

Proposition 1.2 (cf. [22, Proposition III.2]). Let 𝜓 : F → F be an automorphism of a free group system
and Z a [𝜓]-invariant proper free factor system. Then there is a

1. a minimal F-forest (Y , 𝛿) with trivial arc stabilizers for which Z is elliptic; and
2. a unique 𝜓-equivariant expanding homothety ℎ : (Y , 𝛿) → (Y , 𝛿).

The forest (Y , 𝛿) is degenerate if and only if [𝜓] is polynomially growing rel. Z .

The constructed F-forest (Y , 𝛿) is the limit forest for [𝜓] rel. Z ′, for some [𝜓]-invariant proper free
factor system Z ′ that supports Z (see Sections 2.1 and 2.4). Unfortunately, these limit forests depend
on the choice of Z ′; our goal is to give a canonical contruction.

Given the central tool (hierarchies) and objective (universal limit trees), we outline again how these
two fit together. Gaboriau–Levitt’s index theory [11] gives a uniform bound on the complexity of the
point stabilizers system G [Y] for a minimal F-forest (Y , 𝛿) with trivial arc stabilizers – this is a partial
generalization of Bass–Serre theory. When Y is not degenerate, the subgroup system G [Y] has strictly
lower complexity than F . This allows us to induct on complexity (see Chapter 3).

Suppose the automorphism 𝜓 : F → F has a nondegenerate limit forest (Y1, 𝛿1) with nontrivial
point stabilizers; the system of stabilizers G ..= G [Y] has strictly smaller complexity than F . By 𝜓-
equivariance of 𝜆1-homothety ℎ1 : (Y1, 𝛿1) → (Y1, 𝛿1), theF-orbits of points with nontrivial stabilizers
are permuted by [ℎ1], the subgroup system G is [𝜓]-invariant, and the restriction of 𝜓 to G determines
a unique outer automorphism [𝜑] of G.

Suppose 𝜑 : G → G has a nondegenerate limit forest (Y2, 𝛿2) with stretch factor 𝜆2. Using the blow-
up construction from [22], we equivariantly blow up Y1 with respect to ℎ𝑖 : Y𝑖 → Y𝑖 (𝑖 = 1, 2) to get
real pretrees T with a minimal rigid F-action and a 𝜓-equivariant ‘F-expanding’ pretree-isomorphism
𝑓 : T → T induced by ℎ1 and ℎ2. In fact, the blow-up construction implies the F-pretrees T inherit an
F-invariant 2-level hierarchy (𝛿1, 𝛿2) with full support and f is an expanding homothety with respect
to this hierarchy. So we have a limit pseudoforest (T , (𝛿1, 𝛿2)) for [𝜓] (see Section 3.1). Under what
conditions can we construct an F-invariant convex metric on T from (𝛿1, 𝛿2)? The heart of the paper
is the following observation: the two limit forests (Y𝑖 , 𝛿𝑖) are paired with attracting laminations L+

𝑖 [𝜓]
partially ordered by inclusion; an F-invariant convex metric on T can be naturally constructed from
(𝛿1, 𝛿2) if L+

2 [𝜓] is not in L+
1 [𝜓] (see Section 3.4) or 𝜆1 < 𝜆2 (see Section 3.5)!

1.5. Bounded cancellation and laminations

Suppose a minimal F-forest (Y , 𝛿) is very small – that is, nontrivial arc stabilizers are maximal
cyclic subgroups and the fixed point subset for a nontrivial elliptic element is an arc. Let (T , 𝑑) be a
metric free splitting of F and [·, ·]𝑇 (resp. [·, ·]𝑌 ) denote the interval function for T (resp. Y). A map
𝑓 : (T , 𝑑) → (Y , 𝛿) is piecewise-linear (PL) if the restriction to any closed edge is a linear map; an
equivariant PL-map exists if and only if T -elliptic elements in F are Y-elliptic. Equivariant PL-maps
(T , 𝑑) → (Y , 𝛿) are surjective and Lipschitz since the isometric F-action on (Y , 𝛿) is minimal and
there are only finitely many F-orbits of edges in T ; 1-Lipschitz maps are also known as metric maps.
Generally, if T ,Y are free splittings of F , then an equivariant function 𝑓 : T → Y is a (simplicial)
PL-map if its restrictions to any closed edge is isotopic to a linear map with respect to some/any F-
invariant convex metrics 𝑑, 𝛿 on T ,Y , respectively.

Lemma 1.3 (bounded cancellation). Let 𝑓 : (T , 𝑑) → (Y , 𝛿) be an equivariant PL-map. For some
constant 𝐶 [ 𝑓 ] ≥ 0 and all points 𝑝, 𝑞 ∈ T , the image 𝑓 ([𝑝, 𝑞]𝑇 ) is in the 𝐶 [ 𝑓 ]-neighborhood of the
interval [ 𝑓 (𝑝), 𝑓 (𝑞)]𝑌 .

Such a 𝐶 [ 𝑓 ] is a cancellation constant for f. This proof is due to Bestvina–Feighn–Handel.

https://doi.org/10.1017/fms.2024.122 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.122


Forum of Mathematics, Sigma 11

Sketch of proof [2, Lemma 3.1]. Let Lip( 𝑓 ) be the Lipschitz constant and vol(T , 𝑑) the volume
(mod F). Then 𝑓 = 𝑔 ◦ ℎ for some equivariant Lip( 𝑓 )-homothety h and metric PL-map g. Suppose f is
simple: its target is a metric free splitting with free factor system F [T ]. Then g factors as finitely many
equivariant edge collapses and Stallings folds followed by an equivariant metric homeomorphism. The
homeomorphism and each edge collapse have cancellation constants 0. A fold has a cancellation constant
given by the length of folded segment. Finally, the metric PL-map g has a cancellation constant since
cancellation constants are (sub)additive over compositions of metric maps. As cancellation constants are
preserved by precomposition with homeomorphisms, the PL-map 𝑓 = 𝑔 ◦ ℎ has a cancellation constant
𝐶 [ 𝑓 ] < Lip( 𝑓 ) vol(T , 𝑑).

Otherwise, the PL-map f is not simple. For a contradiction, suppose the image 𝑓 ([𝑝, 𝑞]𝑇 ) is not in the
Lip( 𝑓 ) vol(T , 𝑑)-neighborhood of [ 𝑓 (𝑝), 𝑓 (𝑞)]𝑌 for some 𝑝, 𝑞 ∈ T . Let 𝛿( 𝑓 (𝑟0), [ 𝑓 (𝑝), 𝑓 (𝑞)]𝑌 ) >
Lip( 𝑓 ) vol(T , 𝑑) + 𝜖0 for some 𝜖0 > 0 and point 𝑟0 ∈ [𝑝, 𝑞]𝑇 . For any 𝜖 > 0, the PL-map f is approxi-
mated by an equivariant simple PL-map 𝑓𝜖 with Lip( 𝑓𝜖 ) < Lip( 𝑓 )+𝜖 and𝐶 [ 𝑓𝜖 ] ≥ Lip( 𝑓 ) vol(T , 𝑑)+𝜖0
(see [16, Theorem 6.1]). By the previous paragraph, 𝐶 [ 𝑓𝜖 ] < Lip( 𝑓𝜖 ) vol(T , 𝑑) for 𝜖 > 0. So
𝐶 [ 𝑓𝜖 ] < Lip( 𝑓 ) vol(T , 𝑑) + 𝜖0 for small enough 𝜖 > 0 – a contradiction. �

Remark. The results in this section apply to 𝜓-equivariant PL-maps 𝑔 : (T , 𝑑) → (T , 𝑑) for any
automorphism 𝜓 : F → F : view g as an equivariant PL-map (T , 𝑑) → (T 𝜓, 𝑑) instead.

A line in a forest is an arc that is isometric to (R, 𝑑std); a ray in a forest is an arc that is isometric to
(R≥0, 𝑑std), and its origin is the point corresponding to 0 under the isometry. Two rays are end-equivalent
if their intersection is a ray; an end of a forest is an end-equivalence class of rays in the forest. Note
that there is a natural bijection between the set of lines in a forest and set of unordered pairs of distinct
ends in the same component of the forest. For simplicial F-pretrees T , the notions of line/ray/end are
well-defined for the cone of F-invariant convex metrics on T .

Corollary 1.4 (cf. [10, Lemma 3.4]).
Let 𝑓 : (T , 𝑑) → (Y , 𝛿) be an equivariant PL-map.

1. For any ray 𝜌 in (T , 𝑑) with origin 𝑝0, the image 𝑓 (𝜌) is either bounded or in the𝐶 [ 𝑓 ]-neighborhood
of a unique ray 𝑓∗ (𝜌) ⊂ 𝑓 (𝜌) with origin 𝑓 (𝑝0); moverover, if 𝜌, 𝜌′ represent the same end e and 𝑓 (𝜌)
is unbounded, then so is 𝑓 (𝜌′) and 𝑓∗(𝜌), 𝑓∗(𝜌′) are end-equivalent – denote their end-equivalence
class by 𝑓∗(𝑒).

2. For any line l in (T , 𝑑), 𝑓 (𝑙) is in a 𝐶 [ 𝑓 ]-neighborhood of a unique line 𝑓∗(𝑙) ⊂ 𝑓 (𝑙) if both ends
of l have unbounded f-images.

3. For any end 𝜖 of (Y , 𝛿), there is a unique end 𝑓 ∗(𝜖) of (T , 𝑑) with 𝜖 = 𝑓∗( 𝑓
∗(𝜖)).

Sketch of proof
(1): Let 𝜌 be a ray in (T , 𝑑), 𝑝0 ∈ 𝜌 its origin, 𝑓 (𝜌) unbounded, and 𝑠0 = 𝑓 (𝑝0). Use Figure 1 for
reference. By bounded cancellation and the Lipschitz property, 𝑓 (𝜌) has at most one end of (Y , 𝛿). For
some 𝑛 ≥ 0, assume 𝑠𝑛 ∈ [𝑠0, 𝑓 (𝑝)]𝑌 for all 𝑝 ∈ 𝜌\ [𝑝0, 𝑝𝑛]𝑇 . Set𝐶 ..= 𝐶 [ 𝑓 ]. Since 𝑓 (𝜌) is unbounded,

𝛿(𝑠0, 𝑓 (𝑝𝑛+1)) > 2 𝛿(𝑠0, 𝑠𝑛) + 𝐶

for some 𝑝𝑛+1 ∈ 𝜌 \ [𝑝0, 𝑝𝑛]𝑇 . Pick 𝑠𝑛+1 ∈ [𝑠0, 𝑓 (𝑝𝑛+1)]𝑌 satisfying 𝛿(𝑠0, 𝑠𝑛+1) > 2 𝛿(𝑠0, 𝑠𝑛)
and 𝛿(𝑠𝑛+1, 𝑓 (𝑝𝑛+1)) > 𝐶; so 𝑠𝑛 ∈ [𝑠0, 𝑠𝑛+1]𝑌 . By bounded cancellation, the interval [𝑠0, 𝑠𝑛+1]𝑌 in
𝑓 ([𝑝0, 𝑝𝑛+1]𝑇 ) is disjoint from 𝑓 (𝜌 \ [𝑝0, 𝑝𝑛+1]𝑇 ). So the union

⋃
𝑛≥0 [𝑠0, 𝑠𝑛]𝑌 is a ray 𝑓∗(𝜌) in 𝑓 (𝜌)

with origin 𝑠0. By construction, 𝑓 (𝜌) is in the C-neighborhood of 𝑓∗(𝜌). Any bounded neighborhood
of a ray contains a unique ray, up to end-equivalence.

(2): Represent both ends of l with rays 𝜌± ⊂ 𝑙 sharing the same origin. By Part 1 and
bounded cancellation, we have rays 𝑓∗(𝜌±) representing unique distinct ends 𝜖± of (Y , 𝛿); moreover,
𝑓 (𝑙) = 𝑓 (𝜌−)∪ 𝑓 (𝜌+) is in the C-neighborhood of 𝑓∗(𝜌−)∪ 𝑓∗(𝜌+) ⊂ 𝑓 (𝑙). Let 𝑓∗(𝑙) ⊂ 𝑓∗(𝜌

−)∪ 𝑓∗(𝜌
+)

be the line determined by the ends 𝜖±. Then 𝑓 (𝑙) is in the C-neighborhood of 𝑓∗(𝑙). Any bounded neigh-
borhood of a line contains a unique line.
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Figure 1. The ray 𝑓∗(𝜌) with origin 𝑠0 = 𝑓 (𝑝0) is built inductively in the image 𝑓 (𝜌).

(3): The argument is almost the same. Let 𝜌′ be a ray representing 𝜖 and 𝑠0 = 𝑞0 its origin. Pick points
𝑞𝑛+1, 𝑠𝑛+1 ∈ 𝜌′ with 𝛿(𝑠0, 𝑠𝑛+1) > 2 𝛿(𝑠0, 𝑠𝑛), 𝛿(𝑠0, 𝑞𝑛+1) > 2 𝛿(𝑠0, 𝑠𝑛) + 𝐶 and 𝛿(𝑠𝑛+1, 𝑞𝑛+1) > 𝐶.
Since 𝑓 : T → Y is surjective, we can lift 𝑞𝑛 to 𝑝𝑛 ∈ 𝑇 . By bounded cancellation and K-Lipschitz
property, the distance 𝑑 (𝑝0, [𝑝𝑛, 𝑝𝑛+𝑚]𝑇 ) >

1
𝐾 𝛿(𝑠0, 𝑠𝑛). Thus, (𝑝𝑛)𝑛≥0 determines an end e of (T , 𝑑)

with unbounded f -image. Let 𝜌 be a ray representing e with origin 𝑝0. As 𝜌′ ⊂ 𝑓 (𝜌) by construction,
we get 𝑓∗(𝜌) = 𝜌′ by Part 1. By Part 2, the end e is the unique end with 𝑓∗(𝑒) = 𝜖 , and we denote it
by 𝑓 ∗(𝜖). �

The corollary defines the equivariant lifting (resp. projecting) function 𝑓 ∗ (resp. 𝑓∗), where the
domain dom( 𝑓 ∗) of 𝑓 ∗ is the set of lines in (Y , 𝛿) and the domain dom( 𝑓∗) of 𝑓∗ is the set of lines in
(T , 𝑑) whose ends both have unbounded f -images. Note that the image im( 𝑓 ∗) is dom( 𝑓∗); moreover,
𝑓 ∗ and 𝑓∗ are inverses of each other. Both lifting and projecting functions are canonical: 𝑓 ∗ = 𝑔∗ and
𝑓∗ = 𝑔∗ for any equivariant maps 𝑓 , 𝑔 : (T , 𝑑) → (Y , 𝛿) since 𝑓 , 𝑔 will be a bounded 𝛿-distance from
some equivariant PL-map; for lack of better notation, we still denote the functions by 𝑓 ∗, 𝑓∗ despite this
independence.

Alternatively, we view 𝑓 ∗ and 𝑓∗ as functions on the sets of F-orbits of lines. We can equip these
sets with a natural topology. The set R(Y , 𝛿) of F-orbits of lines in (Y , 𝛿) has the following topology:
for any 𝑝, 𝑞 ∈ Y , let 𝑈 [𝑝, 𝑞] be the F-orbit of lines that contain a translate of [𝑝, 𝑞]; the collection
{𝑈 [𝑝, 𝑞] : 𝑝, 𝑞 ∈ Y} is a basis for the space of (F-orbits of) lines. This space is well-defined for the
equivariant homothetic class of (Y , 𝛿). The space of lines is also well-defined for the free splitting T
and denoted R(T ).
Claim 1.5. The canonical lifting function 𝑓 ∗ : R(Y , 𝛿) → R(T ) is a topological embedding.

Henceforth, we identify R(Y , 𝛿) with a subspace of R(T ) using the canonical embedding 𝑓 ∗.
Sketch of proof. We first prove the injection 𝑓 ∗ is continuous. Let Λ ⊂ R(T ) be a closed subset and
Λ 𝑓 ..= Λ ∩ im( 𝑓 ∗). Suppose [𝛾] is in the closure of 𝑓∗(Λ 𝑓 ) in R(Y , 𝛿). For continuity, it is enough to
show 𝑓 ∗ [𝛾] ∈ Λ. Fix a long interval 𝐼𝛾 ⊂ 𝛾; then 𝐼𝛾 ⊂ [ 𝑓 (𝑝), 𝑓 (𝑞)]𝑌 for some 𝑝, 𝑞 ∈ 𝑓 ∗(𝛾). As [𝛾]
is in the closure of 𝑓∗(Λ 𝑓 ), the interval 𝐼𝛾 ⊂ 𝛾 is in the line 𝑓∗(𝑙) for some [𝑙] ∈ Λ 𝑓 . By bounded
cancellation, the f -image of the intersection 𝐼𝑙 ..= 𝑓 ∗(𝛾) ∩ 𝑙 contains a long interval in 𝐼𝛾 . As the interval
𝐼𝛾 will exhaust 𝛾, the interval 𝐼𝑙 exhausts 𝑓 ∗(𝛾); in particular, any interval in 𝑓 ∗(𝛾) is contained in l for
some [𝑙] ∈ Λ. So 𝑓 ∗ [𝛾] is in the closed subset Λ.

We finally prove 𝑓 ∗ : R(Y , 𝛿) → im( 𝑓 ∗) is an open map, where the image im( 𝑓 ∗) ⊂ R(T ) has the
subspace topology. Suppose 𝑝, 𝑞 ∈ Y and [𝛾] ∈ 𝑈 [𝑝, 𝑞] (i.e., a line 𝛾 in (Y , 𝛿) contains an interval
[𝑝, 𝑞]𝑌 ). There is an interval [𝑢, 𝑣]𝑇 ⊂ 𝑓 ∗(𝛾) whose f -image covers a long neighborhood of [𝑝, 𝑞]𝑌 . By
bounded cancellation, any line 𝑓 ∗(𝛾′) containing [𝑢, 𝑣]𝑇 will have an 𝑓∗-image 𝛾′ containing [𝑝, 𝑞]𝑌 .
So 𝑓 ∗ [𝛾] ∈ 𝑈 [𝑢, 𝑣] ∩ im( 𝑓 ∗) ⊂ 𝑓 ∗(𝑈 [𝑝, 𝑞]). As [𝛾] ∈ 𝑈 [𝑝, 𝑞] was arbitrary, the image 𝑓 ∗(𝑈 [𝑝, 𝑞])
is open in im( 𝑓 ∗). �

Now assume T ′ is a free splitting of F with F [T ] = F [T ′] and let 𝑓 : T → T ′ be an equivariant
PL-map. The folds in the factorization of f never identify points in the same F-orbit. For [𝑙] ∈ R(T ),
each end of l has unbounded f -image (i.e., dom( 𝑓∗) = R(T )); so 𝑓∗ : R(T ) → R(T ′) is a canonical
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homeomorphism (with inverse 𝑓 ∗). Similarly, if 𝑔 : T → T is a 𝜓-equivariant PL-map for some
automorphism 𝜓 : F → F , then 𝑔∗, 𝑔∗ : R(T ) → R(T ) are canonical homeomorphisms for [𝜓].
Remark. We use ambiguous terminology and say ‘line’ when we mean a line or an F-orbit of a line;
our notation remains distinct: ‘l’ is always a line, while ‘[𝑙]’ is its F-orbit.

A lamination in (Y , 𝛿) (resp. T ) is a nonempty closed subset of R(Y , 𝛿) (resp. R(T )); when the
F-forest in question is clear, we say lamination with no qualifier. An element of a lamination is called
a leaf; a leaf segment of a lamination Λ is a nondegenerate closed interval in a line representing a leaf
of Λ. A lamination is minimal if each leaf is dense in the lamination; a lamination is perfect if it has no
isolated leaves.

Let [𝑙] be a line and Λ a lamination in R(Y , 𝛿) (or R(T )). A sequence [𝑙𝑚]𝑚≥0 in the space of lines
weakly limits to [𝑙] if some subsequence converges to [𝑙]; we say [𝑙] is a weak limit of the sequence.
The sequence [𝑙𝑚]𝑚≥0 weakly limits to Λ if it weakly limits to every leaf of Λ. The ‘weak’ terminology
is used to highlight that the space of lines is not Hausdorff – a convergent sequence may have multiple
limits!

More generally, a sequence [𝑝𝑚, 𝑞𝑚]𝑚≥0 of intervals converges to [𝑙] if, for any closed interval
[𝑎, 𝑏] ⊂ 𝑙, [𝑝𝑚, 𝑞𝑚] contains a translate of [𝑎, 𝑏] for 𝑚 � 1 (i.e., for large enough m) – precisely,
there is an 𝑀 [𝑎, 𝑏] ≥ 1 such that 𝑈 [𝑎, 𝑏] contains 𝑈 [𝑝𝑚, 𝑞𝑚] for 𝑚 ≥ 𝑀 [𝑎, 𝑏]. Again, a sequence of
intervals weakly limits to [𝑙] if some subsequence converges to [𝑙], and it weakly limits to Λ if it weakly
limits to every leaf of Λ.

2. Limit forests

In this chapter, we sketch the proof of Proposition 1.2 (existence of limit forests) and, in the process,
introduce stable laminations. The first half deals with limit forests for expanding irreducible train tracks;
then, in the second half, we extend the results to all limit forests.

2.1. Constructing limit forests (1)

This is a summary of [12, Appendix]; the reader is invited to read that appendix.
Fix an automorphism 𝜓 : F → F with an expanding irreducible train track 𝜏 : T → T . Set

𝜆 ..= 𝜆[𝜏] > 1 and let 𝑑𝜏 be the eigenmetric on T for [𝜏]. For 𝑚 ≥ 0, let 𝑑𝑚 be the pullback of 𝜆−𝑚𝑑𝜏
via 𝜏𝑚:

𝑑𝑚(𝑝, 𝑞) ..= 𝜆−𝑚𝑑𝜏 (𝜏
𝑚(𝑝), 𝜏𝑚(𝑞)) ≤ 𝑑𝜏 (𝑝, 𝑞) for 𝑝, 𝑞 in a component of 𝑇.

By definition, the pullback 𝑑𝑚 is an F-invariant (not necessarily convex) pseudometric on T whose
quotient metric space is equivariantly isometric to (T 𝜓𝑚, 𝜆−𝑚𝑑𝜏). The 𝜆-Lipschitz property for 𝜏 with
respect to 𝑑𝜏 implies the sequence of pseudometrics 𝑑𝑚 is (pointwise) monotone decreasing. The limit
𝑑∞ is an F-invariant pseudometric on T , the quotient metric space (T∞, 𝑑∞) is an F-forest, and the 𝜓-
equivariant 𝜆-Lipschitz train track 𝜏 induces a 𝜓-equivariant 𝜆-homothety ℎ : (T∞, 𝑑∞) → (T∞, 𝑑∞); in
particular, the equivariant metric surjection 𝜋 : (T , 𝑑𝜏) → (T∞, 𝑑∞) semiconjugates 𝜏 to h: 𝜋◦𝜏 = ℎ◦𝜋.

As 𝜏 is a train track, the restriction of 𝜋 to any edge of T is an isometric embedding. So T∞ is
not degenerate. In fact, the 𝜋-image of any edge of T can be extended to an axis for a T∞-loxodromic
element in F . Thus, the F-forest (T∞, 𝑑∞) is minimal, and the uniqueness of h follows from [6, Theorem
3.7]. Finally, the minimal F-forest (T∞, 𝑑∞) has trivial arc stabilizers. This sketches the first case of
Proposition 1.2. The F-forest (Y𝜏 , 𝑑∞) ..= (T∞, 𝑑∞) is the (forward) limit forest for [𝜏].

2.2. Stable laminations (1)

The first part of this section is mostly adapted from Section 1 of [2]. The following definition of stable
laminations is from [2, Definition 1.3].
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Fix an automorphism 𝜓 : F → F with an expanding irreducible train track 𝜏 : T → T . Set
𝜆 ..= 𝜆[𝜏] > 1, let 𝑑𝜏 be the eigenmetric on T for [𝜏], and pick an edge 𝑒 ⊂ T . Expanding irreducibility
implies the interval 𝜏𝑘 (𝑒) contains at least three translates of e for some 𝑘 ≥ 1. By the intermediate
value theorem, 𝜏𝑘 (𝑝) = 𝑥 · 𝑝 for some 𝑥 ∈ F and 𝑝 ∈ 𝑒. Recall that edges are open intervals; since
the restriction of 𝑥−1 · 𝜏𝑘 to the edge e is an expanding 𝜆𝑘 -homothetic embedding 𝑒 → T (with respect
to 𝑑𝜏) that fixes p and has e in its image, we can extend e to a line 𝑙𝑝 ⊂ T by iterating 𝑥−1 · 𝜏𝑘 . By
construction, the restriction of 𝑥−1 · 𝜏𝑘 to 𝑙𝑝 is a 𝜆𝑘 -homothety 𝑙𝑝 → 𝑙𝑝 with respect to the eigenmetric
𝑑𝜏 for [𝜏]; the F-orbit [𝑙𝑝] is an eigenline of [𝜏𝑘 ] based at [𝑝] (in F\T ). A stable T −laminationΛ+

for [𝜏] is the closure of an eigenline of [𝜏𝑘 ] for some 𝑘 ≥ 1. By 𝜙-equivariance of 𝜏, the restriction
of 𝜏 to l representing a leaf of a stable lamination Λ+ is a 𝜆-homothetic embedding. In fact, [𝜏] maps
eigenlines to eigenlines, and the image 𝜏∗(Λ+) ..= {[𝜏(𝑙)] : [𝑙] ∈ Λ+} is also a stable lamination for [𝜏].

As the transition matrix 𝐴[𝜏] is irreducible, it is a block transitive permutation matrix, and the ‘first
return’ matrix for each block is primitive (i.e., has a positive power). There is a bijective correspondence
between the stable laminations for [𝜏] and the blocks of 𝐴[𝜏]. In particular, there are finitely many
stable laminations for [𝜏], these laminations are pairwise disjoint, and 𝜏∗ transitively permutes them
[2, Lemma 1.2]. By finiteness, their union L+[𝜏] is a lamination and is called the system of stable
laminations for [𝜏].

2.2.1. Quasiperiodic lines
A line [𝑙] in an F-forest is periodic if it is the axis for the conjugacy class of some loxodromic element of
F . A line [𝑙] is quasiperiodic in an F-forest if any closed interval I in l has an assigned number 𝐿(𝐼) ≥ 0
such that any interval in l of length 𝐿(𝐼) contains a translate of I; periodic lines are quasiperiodic. If [𝑙]
is a quasiperiodic line, then any leaf of its closure Λ is quasiperiodic and hence dense in Λ (exercise)
(i.e., Λ is minimal). If [𝑙] is quasiperiodic but not periodic, then no leaf of its closure Λ is isolated
(exercise) (i.e., Λ is also perfect).
Remark. When the F-action on a free splitting T is free, then our definition of quasiperiodicity is
equivalent to [2, Definition 1.7]; however, our definition is weaker when the action is not free.
Lemma 2.1 (cf. [2, Proposition 1.8]). The eigenlines of [𝜏𝑘 ] are quasiperiodic but not periodic for
𝑘 ≥ 1. Thus, the stable laminations for [𝜏] are minimal and perfect.
Proof. There is a length 𝐿0 such that any interval in T of length 𝐿0 contains an edge. Fix an F-orbit [𝐼]
of intervals in an eigenline [𝑙] of [𝜏𝑘 ]. By construction, I is contained in 𝜏𝑘𝑚(𝑒) for some edge e in T
and integer 𝑚 ≥ 0. As the blocks in 𝐴[𝜏𝑘 ] are primitive, there is an integer 𝑚′ ≥ 1 such that 𝜏𝑘𝑚′

(𝑒′)
contains a translate of e for any edge 𝑒′ in l. Altogether, any interval in l of length 𝜆[𝜏]𝑘 (𝑚+𝑚′)𝐿0
contains a translate of I. This proves quasiperiodicity.

Now assume, for a contradiction, that the eigenline [𝑙] was periodic (i.e., l is an axis for a
T -loxodromic element 𝑥 ∈ F). By construction, the F-orbit [𝑙] is 𝜏𝑘 -invariant, and hence, the cyclic
subgroup 〈𝑥〉 is [𝜓𝑘 ]-invariant. So x is [𝜓]-periodic as 𝜓 is an automorphism; yet x must [𝜓]-grow
exponentially since its axis is an eigenline and 𝜏 is expanding. �

Fix an equivariant PL-map 𝑓 : (T , 𝑑) → (Y , 𝛿) and canonically embed R(Y , 𝛿) into R(T ) via 𝑓 ∗
(Claim 1.5). If a quasiperiodic line [𝑙] ∈ R(T ) is in the subspace R(Y , 𝛿) = im( 𝑓 ∗), then so its closure
Λ in R(T ) (exercise). Returning to limit forests, the equivariant metric PL-map 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞)
restricts to an isometric embedding on the leaves of L+[𝜏]; therefore, the stable lamination L+[𝜏] is in
R(Y𝜏 , 𝑑∞) ⊂ R(T ).

2.2.2. Characterizing loxodromics
Let (Y𝜏 , 𝑑∞) be the limit forest for [𝜏], ℎ : (Y𝜏 , 𝑑∞) → (Y𝜏 , 𝑑∞) the unique 𝜓-equivariant 𝜆-
homothety, and 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞) the constructed equivariant metric PL-map. By Lemma 1.3,
the map 𝜏 : (T , 𝑑𝜏) → (T , 𝑑𝜏) has a cancellation constant 𝐶 ..= 𝐶 [𝜏]. Set 𝐶 ′ ..= 𝐶

𝜆−1 and denote the
interval functions for T by [·, ·]. The equivariant metric maps 𝜏𝑚 : (T , 𝑑𝜏) → (T 𝜓𝑚, 𝜆−𝑚𝑑𝜏) have
cancellation constants

∑𝑚
𝑖=1 𝜆

−𝑖𝐶 ≤ 𝐶 ′; so their limit 𝜋 has a cancellation constant 𝐶 [𝜋] ..= 𝐶 ′.
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Let 𝑃 ⊂ Y𝜏 be F-orbit representatives of points with nontrivial stabilizers. Define the subgroup
system G [Y𝜏] ..=

⊔
𝑝∈𝑃 𝐺 𝑝 , where 𝐺 𝑝 ..= StabF (𝑝) is the stabilizer in F of 𝑝 ∈ 𝑃. As the action on Y𝜏

has trivial arc stabilizers, the system G [Y𝜏] is malnormal: each component is malnormal (as a subgroup
of the appropriate component of F) and conjugates of distinct components (in the same component of
F) have trivial intersections. The 𝜓-equivariance of homothety h implies G [Y𝜏] is [𝜓]-invariant. By
Gaboriau–Levitt’s index theory, the complexity of G [Y𝜏] is strictly less than that of F [11, Theorem
III.2]. In particular, G [Y𝜏] has finite type: P is finite, and each component 𝐺 𝑝 is finitely generated. The
restriction of 𝜓 to G [Y𝜏] determines a unique outer automorphism of the system.

We now characterize the elliptic/loxodromic elements in F in the limit forest (Y𝜏 , 𝑑∞):

Proposition 2.2 (cf. [2, Proposition 1.6]). Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an
expanding irreducible train track for 𝜓, and (Y𝜏 , 𝑑∞) the limit forest for [𝜏].

If 𝑥 ∈ F is a T -loxodromic element, then the following statements are equivalent:

1. the element x is Y𝜏-loxodromic;
2. the element 𝑥 [𝜓]-grows exponentially rel. T : lim

𝑚→∞

1
𝑚 log ‖𝜓𝑚 (𝑥)‖T = log𝜆[𝜏]; and

3. the T -axis for 𝜓𝑚(𝑥) has an arbitrarily long leaf segment of L+[𝜏] for 𝑚 � 1.

The restriction of 𝜓 to the [𝜓]-invariant subgroup system G [Y𝜏] of Y𝜏-point stabilizers has constant
growth rel. T : {‖𝜓𝑚 (𝑥)‖T : 𝑚 ≥ 0} is bounded for all 𝑥 ∈ G [Y𝜏].

Proof. Let𝜆 ..= 𝜆[𝜏] > 1,𝐶 ..= 𝐶 [𝜏] be a cancellation constant for 𝜏 : (T , 𝑑𝜏) → (T , 𝑑𝜏), and𝐶 ′ ..= 𝐶
𝜆−1

a cancellation constant for 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞). Fix a line l in T , and let 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞)
be the constructed equivariant metric PL-map.

Case 1: 𝑑∞(𝜋(𝑝), 𝜋(𝑞)) > 2𝐶 ′ + 𝐿 for some 𝑘 ≥ 0, 𝑝, 𝑞 ∈ 𝜏𝑘∗ (𝑙), and 𝐿 > 0. By definition of
𝑑∞ (construction of 𝜋), 𝑑𝜏 (𝜏𝑚 (𝑝), 𝜏𝑚(𝑞)) > 𝜆𝑚(2𝐶 ′ + 𝐿) for 𝑚 � 1. Pick 𝑚 � 1 and 𝑟𝑚, 𝑠𝑚 in
[𝜏𝑚 (𝑝), 𝜏𝑚(𝑞)] so that 𝑑𝜏 (𝜏𝑚(𝑝), 𝑟𝑚), 𝑑𝜏 (𝑠𝑚, 𝜏𝑚(𝑞)) > 𝜆𝑚𝐶 ′ and 𝑑𝜏 (𝑟𝑚, 𝑠𝑚) > 𝜆𝑚𝐿. By bounded
cancellation (for 𝜏𝑚), the interval 𝐼𝑚 ..= [𝑟𝑚, 𝑠𝑚] is disjoint from 𝜏𝑚(𝜏𝑘∗ (𝑙) \ [𝑝, 𝑞]) in (𝑇, 𝑑𝜏). So 𝐼𝑚
is an interval in 𝜏𝑚+𝑘∗ (𝑙).

Let 𝑁 ..= 𝑁 (𝑝, 𝑞) be the number of vertices in the interval (𝑝, 𝑞). Then 𝐼𝑚 is covered by 𝑁 + 1
leaf segments (of L+[𝜏]) as 𝜏 is a train track. By the pigeonhole principle, 𝐼𝑚 (and hence 𝜏𝑚+𝑘∗ (𝑙))
contains a leaf segment with 𝑑𝜏-length > 𝜆𝑚𝐿

𝑁+1 ; therefore, the line 𝜏𝑛∗ (𝑙) in T contains arbitrarily long
leaf segments for 𝑚 � 1.

Case 2: 𝜋(𝜏𝑚∗ (𝑙)) has diameter ≤ 2𝐶 ′ for all 𝑚 ≥ 0. We claim that any leaf segment in the line
𝜏𝑚∗ (𝑙) (𝑚 ≥ 0) has 𝑑𝜏-length ≤ 2𝐶 ′. For the contrapositive, suppose some 𝜏𝑚∗ (𝑙) has a leaf segment with
𝑑𝜏-length 𝐿 > 2𝐶 ′. By the train track property and bounded cancellation, 𝜏𝑚+1

∗ (𝑙) has a leaf segment
with 𝑑𝜏-length ≥ 𝜆𝐿 − 2𝐶 > 𝐿. By induction, 𝜋(𝜏𝑚+𝑚′

∗ (𝑙)) has diameter ≥ 𝜆𝑚′
(𝐿 − 2𝐶 ′) for 𝑚′ ≥ 0

and 𝜆𝑚′
(𝐿 − 2𝐶 ′) > 2𝐶 ′ for 𝑚′ � 1.

We finally return to the proof of the proposition. Fix a T -loxodromic element 𝑥 ∈ F and let 𝑙 ⊂ T
be its axis; in particular, 𝜋(𝑙) is x-invariant by equivariance of 𝜋. As 𝜏 is 𝜆-Lipschitz with respect to 𝑑𝜏 ,
lim sup
𝑚→∞

1
𝑚 log ‖𝜓𝑚 (𝑥)‖𝑑𝜏 ≤ log𝜆.

Case–i: 𝑑∞(𝜋(𝑝), 𝜋(𝑞)) > 2𝐶 ′ for some 𝑘 ≥ 0 and 𝑝, 𝑞 ∈ 𝜏𝑘∗ (𝑙). The line 𝜏𝑚∗ (𝑙), the axis for
𝜙𝑚(𝑥) in T , contains an arbitrarily long leaf segment for 𝑚 � 1 by the Case 1 analysis. By bounded
cancellation (for 𝜋), some nondegenerate interval I in [𝜋(𝑝), 𝜋(𝑞)]∞ is disjoint from 𝜋(𝜏𝑘∗ (𝑙) \ [𝑝, 𝑞]).
Since 𝜏𝑘∗ (𝑙) is the axis for 𝜓𝑘 (𝑥), it contains disjoint translates [𝑝, 𝑞], 𝜓𝑘 (𝑥−𝑛) · [𝑝, 𝑞], 𝜓𝑘 (𝑥𝑛) · [𝑝, 𝑞]
for some 𝑛 � 1. Then 𝜓𝑘 (𝑥−𝑛) · 𝐼 and 𝜓𝑘 (𝑥𝑛) · 𝐼 are in distinct components of Y𝜏 \ 𝐼 and 𝜓𝑘 (𝑥) is
Y𝜏-loxodromic. Since ‖ · ‖𝑑∞ ≤ ‖ · ‖𝑑𝜏 and ‖𝜓(·)‖𝑑∞ = 𝜆‖ · ‖𝑑∞ , we get log𝜆 ≤ lim inf

𝑚→∞

1
𝑚 log ‖𝜓𝑚 (𝑥)‖𝑑𝜏

and x is Y𝜏-loxodromic. Finally, log𝜆 = lim
𝑚→∞

1
𝑚 log ‖𝜓𝑚 (𝑥)‖T since 𝑑𝜏 and the combinatorial metric

on T are bilipschitz.
Case–ii: 𝜋(𝜏𝑚∗ (𝑙)) has diameter ≤ 2𝐶 ′ for all 𝑚 ≥ 0. Any leaf segment in 𝜏𝑚∗ (𝑙) (𝑚 ≥ 0) has 𝑑𝜏-

length ≤ 2𝐶 ′ by Case 2 analysis. Let N be the number of vertices in a fundamental domain of x acting
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on l. By the train track property, the fundamental domain of 𝜏𝑚∗ (𝑙) is covered by 𝑁 + 1 leaf segments
and ‖𝜓𝑚(𝑥)‖T ≤ 𝐾 ‖𝜓𝑚(𝑥)‖𝑑𝜏 ≤ 2𝐶 ′𝐾 (𝑁 + 1) for some 𝐾 ≥ 1 and all 𝑚 ≥ 0. But x acts on Y𝜏 by an
isometry, and 𝜋(𝑙) ⊂ Y𝜏 is x-invariant; so x must be Y𝜏-elliptic. �

We now introduce the notion of factored forests. Suppose the stable laminations L+[𝜏] have com-
ponents Λ+

𝑖 (1 ≤ 𝑖 ≤ 𝑘). The F-orbits of edges in T can be partitioned into blocks B𝑖 indexed by the
components Λ+

𝑖 ⊂ L+[𝜏]. For 𝑝, 𝑞 ∈ T , let 𝑑 (𝑖)𝜏 be the 𝑑𝜏-length of the intersection of the interval [𝑝, 𝑞]
and the subforest spanned by B𝑖; this defines an F-invariant convex pseudometric 𝑑 (𝑖)𝜏 on T . The metric
𝑑𝜏 is a sum of the pseudometrics 𝑑 (𝑖)𝜏 , denoted Σ𝑘𝑖=1𝑑

(𝑖)
𝜏 ; we call Σ𝑘𝑖=1𝑑

(𝑖)
𝜏 a factored F-invariant convex

metric and (T , Σ𝑘𝑖=1𝑑
(𝑖)
𝜏 ) a factored F-forest. This factored metric is special: the factors 𝑑 (𝑖)𝜏 (1 ≤ 𝑖 ≤ 𝑘)

are pairwise mutually singular: for 𝑖 ≠ 𝑗 , there are intervals (e.g., the leaf segments) with positive 𝑑 (𝑖)𝜏 -
length and 0 𝑑 ( 𝑗)𝜏 -length – such factored pseudometrics will be denoted by ⊕𝑘𝑖=1𝑑

(𝑖)
𝜏 to invoke the idea

of independence in direct sums. The limit pseudometrics 𝑑 (𝑖)∞ are pairwise mutually singular since 𝜋 is
surjective and isometric on leaf segments; thus, 𝑑∞ = ⊕𝑘𝑖=1𝑑

(𝑖)
∞ . The next lemma is the cornerstone of

our universality result:

Lemma 4.3 (cf. [2, Lemma 3.4]). Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding
irreducible train track for 𝜓 with eigenmetric 𝑑𝜏 , (Y𝜏 , 𝑑∞) the limit forest for [𝜏], and 𝜆 ..= 𝜆[𝜏].

If (T , 𝑑𝜏) → (Y , 𝛿) is an equivariant PL-map and the k-component lamination L+[𝜏] is in
R(Y , 𝛿) ⊂ R(T ), then the sequence (Y𝜓𝑚𝑘 , 𝜆−𝑚𝑘𝛿)𝑚≥0 converges to (Y𝜏 , ⊕𝑘𝑖=1𝑐𝑖 𝑑

(𝑖)
∞ ), where 𝑑∞ =

⊕𝑘𝑖=1 𝑑
(𝑖)
∞ and 𝑐𝑖 > 0.

Remark. Factored F-forests are needed for this lemma when 𝑘 ≥ 2; moreover, the sequence
(Y𝜓𝑚, 𝜆−𝑚𝛿)𝑚≥0 will not converge in general (but is asymptotically periodic) when 𝑘 ≥ 2. Convergence
is in the subspace of translation distance functions in RF

≥0 with the product topology.

We give the proof in Section 4.1. In particular, if 𝜏′ : T ′ → T ′ is another expanding irreducible train
track for 𝜓 and F [T ′] = F [T ], then the limit forest for [𝜏′] is equivariantly homothetic to (Y𝜏 , 𝑑∞) –
set (Y , 𝛿) ..= (T ′, 𝑑𝜏′ ), apply the lemma, then observe that the sequence (𝑐𝑖)

𝑘
𝑖=1 must be constant in this

case. A minimal very small F-forest (Y , 𝛿) is an expanding forest for [𝜓] like Y𝜏 if it is nondegenerate
and there is

1. a 𝜓-equivariant expanding homothety (Y , 𝛿) → (Y , 𝛿); and
2. an equivariant PL-map (T , 𝑑𝜏) → (Y , 𝛿).
Corollary 2.3. Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding irreducible train track
for𝜓, and (Y𝜏 , 𝑑∞) the limit forest for [𝜏]. Any expanding forest for [𝜓] likeY𝜏 is uniquely equivariantly
homothetic to (Y𝜏 , 𝑑∞).
Proof. Let (Y , 𝛿) be an expanding forest for [𝜓] like Y𝜏 , 𝑓 : (T , 𝑑𝜏) → (Y , 𝛿) an equivariant PL-map
with cancellation constant 𝐶 ..= 𝐶 [ 𝑓 ], 𝑔 : (Y , 𝛿) → (Y , 𝛿) the 𝜓-equivariant expanding s-homothety,
𝑥 ∈ F a Y-loxodromic element. By equivariance of f, the element x is T -loxodromic with axis 𝑙𝑥 ⊂ T .
Let [𝑝0, 𝑥 · 𝑝0] ⊂ 𝑙𝑥 be (the closure of) a fundamental domain of x acting on 𝑙𝑥 . The interval [𝑝0, 𝑥 · 𝑝0] is
a concatenation of 𝑁 ≥ 1 leaf segments (ofL+[𝜏]). Choose𝑚 � 1 so that ‖𝜓𝑚 (𝑥)‖𝛿 = 𝑠𝑚‖𝑥‖𝛿 > 2𝐶𝑁 .
Note that the action of 𝜓𝑚(𝑥) on its axis has a fundamental domain [𝑝𝑚, 𝜓

𝑚(𝑥) · 𝑝𝑚] covered by N leaf
segments as 𝜏 is a train track. So 𝛿( 𝑓 (𝑝𝑚), 𝑓 (𝜓𝑚(𝑥) · 𝑝𝑚)) > 2𝐶𝑁 and, by the pigeonhole principle,
[𝑝𝑚, 𝜓

𝑚(𝑥) · 𝑝𝑚] contains a leaf segment [𝑞, 𝑟] with 𝛿( 𝑓 (𝑞), 𝑓 (𝑟)) > 2𝐶.
Let 𝑙 ⊃ [𝑞, 𝑟] represent some leaf [𝑙] ∈ L+[𝜏]. Bounded cancellation implies the components of

𝑙 \ [𝑞, 𝑟] have f -images with disjoint closures. By quasiperiodicity of [𝑙] and equivariance of f, both
ends of l have unbounded f -image ( i.e., [𝑙] ∈ dom( 𝑓∗) = R(Y , 𝛿)) (Corollary 1.4, Claim 1.5). Finally,
the closure of [𝑙] in R(T ), a component Λ+

𝑖 ⊂ L+[𝜏], is a subset of R(Y , 𝛿) by quasiperiodicity of [𝑙].
Note that the 𝜓-equivariant homothety g induces a homeomorphism 𝑔∗ : R(Y , 𝛿) → R(Y , 𝛿) that is the
restriction of the homeomorphism 𝜏∗ : R(T ) → R(T ). So L+[𝜏] ⊂ R(Y , 𝛿) since 𝜏∗ acts transitively on
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Figure 2. For 𝑚 ≥ 𝑀1, the line 𝑓 ∗(𝜋∗(𝛾1,𝑚)) cannot intersect 𝑇 ′(𝐺◦).

the k components of L+[𝜏]. Set 𝜆 ..= 𝜆[𝜏]; by Lemma 4.3, the sequence (Y𝜓𝑚𝑘 , 𝜆−𝑚𝑘𝛿)𝑚≥0 converges
to the factored F-forest (Y𝜏 , ⊕𝑘𝑖=1𝑐𝑖 𝑑

(𝑖)
∞ ) for some 𝑐𝑖 > 0. Yet (Y , 𝛿) is equivariantly isometric to

(Y𝜓, 𝑠−1𝛿); thus, 𝑠 = 𝜆, 𝑐𝑖 = 𝑐𝑖+1 (𝑖 < 𝑘), (Y , 𝛿) is equivariantly isometric to (Y𝜏 , 𝑐1 𝑑∞), and the
equivariant isometry is unique [6, Theorem 3.7]. �

2.2.3. Iterated turns
We have already shown how iterating an edge in T by the train track 𝜏 produces the system of stable
laminations L+[𝜏]. Later, we will consider how L+[𝜏] determines laminations in (a free splitting of)
the subgroup system G [Y𝜏].

Let T ′ be a free splitting of F whose free factor system F [T ′] is trivial. Then there is an equivariant
PL-map 𝑓 : (T ′, 𝑑 ′) → (T , 𝑑𝜏). Let 𝛾 be a line in (Y𝜏 , 𝑑∞), 𝜋∗(𝛾) its lift to (T , 𝑑𝜏), and 𝑓 ∗(𝜋∗(𝛾))
its lift to (T ′, 𝑑 ′). Denote the ends of 𝛾 by 𝜀𝑖 (𝑖 = 1, 2). Let 𝑇 ⊂ T be the component containing 𝜋∗(𝛾),
and 𝑇 ′ ⊂ T ′, 𝑌𝜏 ⊂ Y𝜏 , and 𝐹 ⊂ F be the matching components. Denote the first return maps of 𝜏, h
and 𝜓 on T, 𝑌𝜏 and F by 𝜏, ℎ̃ and 𝜑 respectively. For the rest of the section, redefine 𝜆 to be the stretch
factor of the expanding homothety ℎ̃.

Suppose ◦ is a point on the line 𝛾 with a nontrivial stabilizers 𝐺◦
..= Stab𝐹 (◦). Let 𝑑𝑖 (𝑖 = 1, 2) be

the direction at ◦ containing 𝜀𝑖 . By Gaboriau–Levitt index theory, ℎ̃ 𝑗 (◦) = 𝑦 · ◦ and ℎ̃ 𝑗 (𝑑𝑖) = 𝑦𝑠𝑖 · 𝑑𝑖 for
some 𝑦 ∈ 𝐹, 𝑠𝑖 ∈ 𝐺◦, and minimal 𝑗 ≥ 1. Since F acts on 𝑌𝜏 with trivial arc stabilizers, the elements
𝑦𝑠1, 𝑦𝑠2 are unique and 𝑠−1

1 𝑠2 ∈ 𝐺◦ is independent of the chosen 𝑦 ∈ 𝐹.
Set 𝑦0

..= 𝜖 to be the trivial element and 𝑦𝑚+1
..= 𝜑𝑚𝑗 (𝑦𝑠1)𝑦𝑚 for 𝑚 ≥ 0. Let 𝑇 ′(𝐺) be the charac-

teristic convex subset of 𝑇 ′ for a nontrivial subgroup 𝐺 ≤ 𝐹. Since 𝑇 ′ is simplicial, the characteristic
convex subset 𝑇 ′(𝐺) is closed, and we have the closest point retraction 𝑇 ′ → 𝑇 ′(𝐺); it extends uniquely
to the ends-completions. Let 𝑞′𝑖,𝑚 be the closest point projection of 𝑓 ∗(𝜋∗( ℎ̃𝑚𝑗∗ (𝜀𝑖))) to 𝑇 ′(𝜑𝑚𝑗 (𝐺◦)).
Set 𝜏◦ ..= (𝑦𝑠1)

−1 · 𝜏 𝑗 and ℎ◦ ..= (𝑦𝑠1)
−1 · ℎ̃ 𝑗 to be 𝜓◦-equivariant maps for an automorphism 𝜓◦ : 𝐹 → 𝐹

in the outer class [𝜑 𝑗 ]. As ℎ◦ fixes ◦, we get 𝜓◦(𝐺◦) = 𝐺◦ and 𝑦−1
𝑚 · 𝑇 ′(𝜑𝑚𝑗 (𝐺◦)) is the character-

istic convex subset for 𝜓𝑚◦ (𝐺◦) = 𝐺◦. Thus, 𝑞𝑖,𝑚 ..= 𝑦−1
𝑚 · 𝑞′𝑖,𝑚 is in 𝑇 ′(𝐺◦) for 𝑖 = 1, 2 and 𝑚 ≥ 0.

The interval [𝑞1,𝑚, 𝑞2,𝑚] in 𝑇 ′(𝐺◦) (i.e., the closest point projection of 𝑓 ∗(𝜋∗(ℎ𝑚◦ (𝛾)))) is the turn in
𝑓 ∗(𝜋∗(ℎ𝑚◦ (𝛾))) about 𝑇 ′(𝐺◦).

Since ℎ◦(𝑑1) = 𝑑1, the ends ℎ𝑚◦∗(𝜀1) (𝑚 ≥ 0) are in fact ends of 𝑑1. If ℎ◦∗(𝜀1) = 𝜀1, then the sequence
(𝑞1,𝑚)𝑚≥0 is constant. Otherwise, the ends ℎ𝑚◦∗(𝜀1) are distinct for 𝑚 ≥ 0. Let 𝛾1,𝑚 be the line in 𝑑1
determined by ℎ𝑚+1

◦∗ (𝜀1) and ℎ𝑚◦∗(𝜀1). As ℎ◦ is an expanding homothety, the distance 𝑑∞(◦, 𝛾1,𝑚) > 0
from ◦ to 𝛾1,𝑚 grows exponentially in m. So 𝑑∞(◦, 𝛾1,𝑀1 ) > 2𝐶 [𝜋 ◦ 𝑓 ] for some minimal 𝑀1 ≥ 0, and
the line 𝑓 ∗(𝜋∗(𝛾1,𝑚)) is disjoint from 𝑇 ′(𝐺◦) for 𝑚 ≥ 𝑀1 by bounded cancellation (see Figure 2). In
particular, the ends 𝑓 ∗(𝜋∗(ℎ𝑚+1

◦∗ (𝜀1))) and 𝑓 ∗(𝜋∗(ℎ𝑚◦∗(𝜀1))) have the same closest point projection to
𝑇 ′(𝐺◦), and the sequence (𝑞1,𝑚)𝑚≥𝑀1 is constant.

Since ℎ◦(𝑑2) = 𝑠−1
1 𝑠2 · 𝑑2, the ends 𝑓 ∗(𝜋∗(ℎ𝑚+1

◦∗ (𝜀2))) and 𝜓𝑚◦ (𝑠−1
1 𝑠2) · 𝑓

∗(𝜋∗(ℎ𝑚◦∗(𝜀2))) have the
same closest point projection to 𝑇 ′(𝐺◦) for 𝑚 � 1 by similar bounded cancellation reasoning (i.e.,
𝑞2,𝑚+1 = 𝜓𝑚◦ (𝑠−1

1 𝑠2) · 𝑞2,𝑚 for some minimal 𝑀2 ≥ 0 and all 𝑚 ≥ 𝑀2).
Set 𝑀 = max(𝑀1, 𝑀2). The sequence [𝑞1,𝑀+𝑚, 𝑞2,𝑀+𝑚]𝑚≥0 of intervals is well-defined for the line

𝛾 and point ◦ ∈ 𝛾 as 𝑀1 and 𝑀2 were chosen minimally. An iterated turn over 𝑇 ′(𝐺◦) rel. 𝜓◦ |𝐺◦
is
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any such sequence of intervals. More generally, we define an iterated turn over T rel. 𝜑: pick arbitrary
points 𝑝𝑖 ∈ 𝑇 (𝑖 = 1, 2) and elements 𝑥𝑖 ∈ 𝐹; set 𝑝𝑖,0 ..= 𝑝𝑖 and 𝑝𝑖,𝑚+1

..= 𝜑𝑚 (𝑥𝑖) · 𝑝𝑖,𝑚 for 𝑚 ≥ 0;
the sequence [𝑝1,𝑚, 𝑝2,𝑚]𝑚≥0 is the iterated turn denoted by (𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 . Any iterated turn
(𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 translates to a unique normal form (𝑝1, 𝑝2 : 𝜖, 𝑥−1

1 𝑥2; 𝜑̃)𝑇 with 𝜑̃ : 𝑦 ↦→ 𝑥−1
1 𝜑(𝑦)𝑥1.

We now characterize the growth of an iterated turn over T rel. 𝜑:
Proposition 2.4. Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding irreducible train track
for 𝜓 with eigenmetric 𝑑𝜏 , and (Y𝜏 , 𝑑∞) the limit forest for [𝜏]. Choose a nondegenerate component
𝑇 ⊂ T , corresponding components 𝐹 ⊂ F , 𝑌𝜏 ⊂ Y𝜏 , and a positive iterate 𝜓𝑘 that preserves F.
Let ℎ̃ : (𝑌𝜏 , 𝑑∞) → (𝑌𝜏 , 𝑑∞) be the 𝜑-equivariant 𝜆-homothety, where 𝜑 is in the outer automorphism
[𝜓𝑘

��
𝐹 ] and 𝜆 ..= (𝜆[𝜏])𝑘 . Finally, for 𝑖 = 1, 2, pick 𝑝𝑖 ∈ 𝑇 and 𝑥𝑖 ∈ 𝐹.

The point 𝑝𝑖,𝑚 ..= 𝜑−1(𝑥𝑖) · · · 𝜑
−𝑚 (𝑥𝑖) · 𝑝𝑖 in (𝑇𝜑𝑚, 𝜆−𝑚𝑑𝜏) converges to★𝑖 in (𝑌 𝜏 , 𝑑∞) as 𝑚 → ∞,

where ★𝑖 is the unique fixed point of 𝑥−1
𝑖 · ℎ̃ in the metric completion (𝑌 𝜏 , 𝑑∞); concretely:

lim
𝑚→∞

𝜆−𝑚𝑑𝜏 (𝑝1,𝑚, 𝑝2,𝑚) = 𝑑∞(★1, ★2).

If 𝑥−1
1 𝑥2 fixes★1, then★1 = ★2 and the 𝑚𝑡ℎ term [𝑝1,𝑚, 𝑝2,𝑚] of the iterated turn (𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇

has 𝑑𝜏-length ≤ (𝑚 + 1)𝐴 for some constant 𝐴 ≥ 1. Otherwise, ★1 ≠ ★2, and the iterated turn has
arbitrarily long leaf segments of L+[𝜏].

The limit [★1, ★2] ⊂ 𝑌 𝜏 of an iterated turn is independent of the points 𝑝1, 𝑝2 ∈ 𝑇 . Thus, we
introduce the notion of an algebraic iterated turn over F rel. 𝜑, denoted (𝑥1, 𝑥2; 𝜑)𝐹 .

Proof. Let 𝑝1, 𝑝2 ∈ 𝑇 , 𝑥1, 𝑥2 ∈ 𝐹 and 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞) be the constructed equivariant metric
PL-map. For 𝑖 = 1, 2, set 𝑝𝑖,0 ..= 𝑝𝑖 and 𝑝𝑖,𝑚+1

..= 𝜑𝑚(𝑥𝑖) · 𝑝𝑖,𝑚 for 𝑚 ≥ 0. Recall that T and 𝑇𝜑𝑚 are
the same pretrees but with different actions; thus, in 𝑇𝜑𝑚, we have 𝑝𝑖,𝑚 = 𝜑−1(𝑥𝑖) · · · 𝜑

−𝑚 (𝑥𝑖) · 𝑝𝑖 for
𝑚 ≥ 0. As 𝜋 : (𝑇, 𝑑𝜏) → (𝑌𝜏 , 𝑑∞) is an equivariant metric PL-map, so is the composition

𝜋𝑚 : (𝑇𝜑𝑚, 𝜆−𝑚𝑑𝜏)
𝜋

−→ (𝑌𝜏𝜑
𝑚, 𝜆−𝑚𝑑∞)

ℎ̃−𝑚

−→ (𝑌𝜏 , 𝑑∞).

The point 𝑝𝑖 in (𝑇, 𝑑𝜏) projects (via 𝜋) to 𝜋(𝑝𝑖) in (𝑌𝜏 , 𝑑∞); the point 𝑝𝑖,𝑚 in (𝑇𝜑𝑚, 𝜆−𝑚𝑑𝜏) projects
(via 𝜋𝑚) to

𝜋𝑚 (𝑝𝑖,𝑚) ..= ℎ̃−𝑚 (𝜋(𝑝𝑖,𝑚))

= 𝜑−1(𝑥𝑖) · · · 𝜑
−𝑚(𝑥𝑖) · ℎ̃

−𝑚(𝜋(𝑝𝑖)) ( 𝑝𝑖,𝑚, 𝑝𝑖 ∈ 𝑇𝜑
𝑚 )

= (𝑥−1
𝑖 · ℎ̃)−𝑚(𝜋(𝑝𝑖)) ( 𝑝𝑖 ∈ 𝑇 )

in (𝑌𝜏 , 𝑑∞) for 𝑚 ≥ 1 – in the last line, 𝑥−1
𝑖 · ℎ̃ is a 𝜆-homothety (𝑌𝜏 , 𝑑∞) → (𝑌𝜏 , 𝑑∞). Since (𝑥−1

𝑖 · ℎ̃)−1

is contracting, the point 𝜋𝑚(𝑝𝑖,𝑚) converges (as 𝑚 → ∞) to the unique fixed point★𝑖 of (𝑥−1
𝑖 · ℎ̃)−1 (and

𝑥−1
𝑖 · ℎ̃) in the metric completion (𝑌 𝜏 , 𝑑∞) by the contraction mapping theorem; note that 𝑥−1

1 𝑥2 ·★1 = ★1
if and only if★1 = ★2. Thus, the 𝜋𝑚-projection of the point 𝑝𝑖,𝑚 in (𝑇𝜑𝑚, 𝜆−𝑚𝑑𝜏) converges (as𝑚 → ∞)
to ★𝑖 in (𝑌 𝜏 , 𝑑∞); in particular,

lim
𝑚→∞

𝜆−𝑚𝑑∞(𝜋(𝑝1,𝑚), 𝜋(𝑝2,𝑚)) = lim
𝑚→∞

𝑑∞(𝜋𝑚 (𝑝1,𝑚), 𝜋𝑚 (𝑝2,𝑚)) = 𝑑∞(★1, ★2).

Let 𝜏 : 𝑇 → 𝑇 be the 𝜑-equivariant translate of a component of 𝜏𝑘 . The interval [𝑝1,𝑚, 𝑝2,𝑚] ⊂ 𝑇 ,
the 𝑚𝑡ℎ term in (𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 , is covered by these 2𝑚 + 1 intervals:

𝜑𝑚−1(𝑥1) · · · 𝜑(𝑥1) · [𝑥1 · 𝑝1, 𝜏(𝑝1)], . . . , 𝜑
𝑚−1(𝑥1) · [𝜏

𝑚−2(𝑥1 · 𝑝1), 𝜏
𝑚−1(𝑝1)],

[𝜏𝑚−1(𝑥1 · 𝑝1), 𝜏
𝑚(𝑝1)], [𝜏

𝑚 (𝑝1), 𝜏
𝑚(𝑝2)], [𝜏

𝑚(𝑝2), 𝜏
𝑚−1(𝑥2 · 𝑝2)],

𝜑𝑚−1(𝑥2) · [𝜏
𝑚−1 (𝑝2), 𝜏

𝑚−2(𝑥2 · 𝑝2)], . . . , 𝜑
𝑚−1(𝑥2) · · · 𝜑(𝑥2) · [𝜏(𝑝2), 𝑥2 · 𝑝2] .

Set 𝐷 ..= max{𝑑𝜏 (𝑥𝑖 · 𝑝𝑖 , 𝜏(𝑝𝑖) : 𝑖 = 1, 2} and 𝐷 ′ ..= 𝐷
𝜆−1 .
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Recall that lim
𝑚′→∞

𝜆−𝑚
′
𝑑𝜏 (𝜏

𝑚′
(𝑝1,𝑚), 𝜏

𝑚′
(𝑝2,𝑚)) = 𝑑∞(𝜋(𝑝1,𝑚), 𝜋(𝑝2,𝑚)). For 𝑚′ ≥ 0, we get a

similar covering of [𝑝1,𝑚+𝑚′ , 𝑝2,𝑚+𝑚′ ] by 2𝑚′ + 1 intervals with the ‘middle’ [𝜏𝑚′
(𝑝1,𝑚), 𝜏

𝑚′
(𝑝2,𝑚)].

Since 𝜏 is 𝜆-Lipschitz with respect to 𝑑𝜏 , the sum of the 𝑑𝜏-lengths of all intervals but the middle in
this covering is ≤ 𝜆𝑚′2𝐷 ′. By the triangle inequality,

𝜆−(𝑚+𝑚
′)
���𝑑𝜏 (𝑝1,𝑚+𝑚′ , 𝑝2,𝑚+𝑚′ ) − 𝑑𝜏 (𝜏

𝑚′

(𝑝1,𝑚), 𝜏
𝑚′

(𝑝2,𝑚))
��� ≤ 𝜆−𝑚2𝐷 ′.

Fix 𝜖 > 0; then 𝜆−𝑚2𝐷 ′ < 𝜖 and
��𝜆−𝑚𝑑∞(𝜋(𝑝1,𝑚), 𝜋(𝑝2,𝑚)) − 𝑑∞(★1, ★2)

�� < 𝜖 for some 𝑚 � 1.
Similarly,

𝜆−𝑚
���𝜆−𝑚′

𝑑𝜏 (𝜏
𝑚′

(𝑝1,𝑚), 𝜏
𝑚′

(𝑝2,𝑚)) − 𝑑∞(𝜋(𝑝1,𝑚), 𝜋(𝑝2,𝑚))
��� < 𝜖

and
���𝜆−(𝑚+𝑚′)𝑑𝜏 (𝑝1,𝑚+𝑚′ , 𝑝2,𝑚+𝑚′ ) − 𝑑∞(★1, ★2)

��� < 3𝜖 for 𝑚′ � 1;

that is, lim
𝑚→∞

𝜆−𝑚𝑑𝜏 (𝑝1,𝑚, 𝑝2,𝑚) = 𝑑∞(★1, ★2).

Let 𝑁 (𝑢, 𝑣) be the number of vertices in an interval (𝑢, 𝑣) ⊂ 𝑇 ; set N to be the maximum of
𝑁 (𝑝1, 𝑝2), 𝑁 (𝑥1 · 𝑝1, 𝜏(𝑝1)), and 𝑁 (𝜏(𝑝2), 𝑥2 · 𝑝2). As 𝜏 is a train track, the interval [𝑝1,𝑚, 𝑝2,𝑚] is
covered by (2𝑚 + 1) (𝑁 + 1) leaf segments.

Suppose ★1 = ★2. We claim that any leaf segment (of L+[𝜏]) in [𝑝1,𝑚, 𝑝2,𝑚] has uniformly (in
𝑚 ≥ 0) bounded 𝑑𝜏-length – this implies [𝑝1,𝑚, 𝑝2,𝑚] has 𝑑𝜏-length ≤ (2𝑚 + 1) (𝑁 + 1)𝐵 for some
bounding constant 𝐵 ≥ 1. We mimic Case 2 from the proof of Proposition 2.2. For the contrapositive,
suppose some term [𝑝1,𝑚, 𝑝2,𝑚] has a leaf segment with 𝑑𝜏-length 𝐿 > 2(𝐶 [𝜋] + 𝐷 ′). By the train
track property, bounded cancellation and interval covering, [𝑝1,𝑚+𝑚′ , 𝑝2,𝑚+𝑚′ ] has a leaf segment with
𝑑𝜏-length ≥ 𝜆𝑚

′
(𝐿−2𝐶 [𝜋] −2𝐷 ′) for𝑚′ ≥ 0; in (𝑇𝜑𝑚+𝑚

′
, 𝜆−(𝑚+𝑚

′)𝑑𝜏), [𝑝1,𝑚+𝑚′ , 𝑝2,𝑚+𝑚′ ] has length
≥ 𝜆−𝑚(𝐿 − 2𝐶 [𝜋] − 2𝐷 ′). In the limit (as 𝑚′ → ∞), 𝑑∞(★1, ★2) ≥ 𝜆

−𝑚(𝐿 − 2𝐶 [𝜋] − 2𝐷 ′) > 0.
Suppose ★1 ≠ ★2. Set 𝐿 ..= 1

2𝑑∞(★1, ★2) > 0; then 𝜆−𝑚𝑑𝜏 (𝑝1,𝑚, 𝑝2,𝑚) > 𝐿 for some 𝑚 � 1. By the
pigeonhole principle, the interval [𝑝1,𝑚, 𝑝2,𝑚] has a leaf segment with 𝑑𝜏-length 𝜆𝑚𝐿

(2𝑚+1) (𝑁+1) , which
can be arbitrarily large (in m). �

2.2.4. Nested iterated turns
The first part of the previous subsection explains how a line in (Y𝜏 , 𝑑∞) determines algebraic iterated
turns over G [Y𝜏]. We now give a similar discussion for an iterated turn over T ′.

Recall how 𝑓 , 𝑇, 𝑇 ′, 𝑌𝜏 , 𝐹, 𝜏, ℎ̃ and 𝜑 were chosen, and 𝜆 was redefined in the previous subsec-
tion. Pick points 𝑝′1, 𝑝

′
2 ∈ 𝑇 ′ and elements 𝑥1, 𝑥2 ∈ 𝐹. Set 𝑇 ′

𝑚
..= 𝑇 ′𝜑𝑚, 𝑇𝑚 ..= 𝑇𝜑𝑚, 𝑝′𝑖,0

..= 𝑝′𝑖 ,
𝑝′𝑖,𝑚

..= 𝜑−1(𝑥𝑖) · · · 𝜑
−𝑚(𝑥𝑖) · 𝑝

′
𝑖 in 𝑇 ′

𝑚 and 𝑝𝑖,𝑚 = 𝑓 (𝑝′𝑖,𝑚) for 𝑚 ≥ 1 and 𝑖 = 1, 2. By Proposition 2.4,
the point 𝑝𝑖,𝑚 in (𝑇𝑚, 𝜆

−𝑚𝑑𝜏) converges (as 𝑚 → ∞) to ★𝑖 , the unique fixed point of 𝑥−1
𝑖 · ℎ̃ in the

metric completion (𝑌 𝜏 , 𝑑∞). The 𝜆-homothety ℎ𝑖 ..= 𝑥−1
𝑖 · ℎ̃ is 𝜑𝑖-equivariant for some automorphism

𝜑𝑖 : 𝐹 → 𝐹 in the outer class [𝜑]. Set 𝐺1
..= Stab𝐹 (★1).

Case–a: 𝑠 ..= 𝑥−1
1 𝑥2 ∈ 𝐺1. Suppose 𝐺1 is not trivial, and let 𝑎𝑖,𝑚 be the closest point projection of

𝑝′𝑖,𝑚 to 𝑇 ′(𝜑𝑚 (𝐺1)) for 𝑚 ≥ 0. As ℎ̃(★1) = 𝑥1 · ★1 and ℎ̃ is 𝜑-equivariant, we get 𝑇 ′(𝜑𝑚+1(𝐺1)) =
𝜑𝑚 (𝑥1) · 𝑇

′(𝜑𝑚(𝐺1)), 𝑎1,𝑚+1 = 𝜑𝑚 (𝑥1) · 𝑎1,𝑚, and

𝑎2,𝑚+1 = 𝜑𝑚 (𝑥1)𝜑
𝑚(𝑠) · 𝑎2,𝑚

= 𝜑𝑚 (𝑥1) · · · 𝜑(𝑥1)𝑥1𝜑
𝑚
1 (𝑠) · · · 𝜑𝑚1 (𝑠)𝑠 · 𝑎2,0 for 𝑚 ≥ 0.

Thus, the closest point projection to 𝑇 ′(𝜑𝑚 (𝐺1)) of the 𝑚𝑡ℎ term of the given iterated turn (𝑝′1, 𝑝
′
2 :

𝑥1, 𝑥2; 𝜑)𝑇 ′ is a translate of the 𝑚𝑡ℎ term in (𝑎1,0, 𝑎2,0 : 𝜖, 𝑠; 𝜑1 |𝐺1)𝑇 ′ (𝐺1) , where 𝑚 ≥ 0 and 𝜖 is the
trivial element. Hence, we have an algebraic iterated turn (𝜖, 𝑠; 𝜑1 |𝐺1)𝐺1 that is well-defined for the
algebraic iterated turn (𝑥1, 𝑥2; 𝜑)𝐹 .
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Figure 3. The two figures illustrating certain closest point projections are the same.

Case–b: ★1 ≠ ★2. Suppose 𝐺1 is not trivial – the argument is symmetric if Stab𝐹 (★2) is not trivial
– and let d be the direction at ★1 containing ★2. By Gaboriau–Levitt index theory, ℎ 𝑗1 (𝑑) = 𝑡 · 𝑑
for some 𝑡 ∈ 𝐺1 and minimal 𝑗 ≥ 1. For 𝑚 � 1, 𝜋𝑚 (𝑝2,𝑚) = ℎ−𝑚2 (𝜋(𝑝2)) is in the direction d
since ℎ−𝑚2 (𝜋(𝑝2)) → ★2 in (𝑌 𝜏 , 𝑑∞). For 𝑚 � 1 and 𝑚′ ≥ 0, the interval [𝑝2,𝑚+𝑚′ 𝑗 , 𝜏

𝑚′ 𝑗 (𝑝2,𝑚)]

in (𝑇𝑚+𝑚′ 𝑗 , 𝜆
−𝑚−𝑚′ 𝑗𝑑𝜏) is disjoint from 𝑇𝑚+𝑚′ 𝑗 (𝐺1) by bounded cancellation (see Figure 3, top);

or equivalently, the interval [𝑝2,𝑚+𝑚′ 𝑗 , 𝜏
𝑚′ 𝑗 (𝑝2,𝑚)] in 𝑇𝑚 is disjoint from 𝑇𝑚 (𝜑

𝑚′ 𝑗 (𝐺1)). In fact, the
𝜆−𝑚𝑑𝜏-distance in𝑇𝑚 from [𝑝2,𝑚+𝑚′ 𝑗 , 𝜏

𝑚′ 𝑗 (𝑝2,𝑚)] to𝑇𝑚 (𝜑𝑚
′ 𝑗 (𝐺1)) can be arbitrarily large for𝑚′ � 1.

Set 𝑧0
..= 𝜖 and 𝑧𝑚′+1

..= 𝜑𝑚
′
(𝑥1)𝑧𝑚′ . Let 𝑏𝑖,𝑚′

′ (𝑖 = 1, 2) be the closest point projection of 𝑝𝑖,𝑚+𝑚′ 𝑗
′

to 𝑇𝑚 ′(𝜑𝑚
′ 𝑗 (𝐺1)) = 𝑧𝑚′ 𝑗 · 𝑇𝑚

′(𝐺1) and set 𝑏𝑖,𝑚′
..= 𝑧−1

𝑚′ 𝑗 · 𝑏𝑖,𝑚′
′ in 𝑇𝑚 ′(𝐺1). Following the definitions,

𝑧−1
𝑚′ 𝑗 · 𝑝1,𝑚+𝑚′ 𝑗

′ = 𝑝1,𝑚
′ in 𝑇𝑚 ′ and 𝑧−1

𝑚′ 𝑗 · 𝜏
𝑚′ 𝑗 = 𝜏

𝑚′ 𝑗
1 in 𝑇𝑚, where 𝜏1

..= 𝑥−1
1 · 𝜏; in particular,

𝑏1,𝑚′ = 𝑏1,0 for 𝑚′ ≥ 0. Since ℎ 𝑗1 (𝑑) = 𝑡 · 𝑑, bounded cancellation implies the 𝜆−𝑚𝑑𝜏-distance in 𝑇𝑚
from [𝜏

(𝑚′+1) 𝑗
1 (𝑝2,𝑚), 𝜑

𝑚′ 𝑗
1 (𝑡) · 𝜏

𝑚′ 𝑗
1 (𝑝2,𝑚)] to 𝑇𝑚 (𝐺1) is arbitrarily large for 𝑚′ � 1 (see Figure 3,

bottom).
So [𝑧−1

(𝑚′+1) 𝑗 · 𝑝2,𝑚+(𝑚′+1) 𝑗 , 𝜑
𝑚′ 𝑗
1 (𝑡)𝑧−1

𝑚′ 𝑗 · 𝑝2,𝑚+𝑚′ 𝑗 ] is arbitrarily far from 𝑇𝑚 (𝐺1) by transitivity.
By bounded cancellation, [𝑧−1

(𝑚′+1) 𝑗 · 𝑝2,𝑚+(𝑚′+1) 𝑗
′, 𝜑
𝑚′ 𝑗
1 (𝑡)𝑧−1

𝑚′ 𝑗 · 𝑝2,𝑚+𝑚′ 𝑗
′] is disjoint from 𝑇𝑚

′(𝐺1)

for 𝑚′ � 1(i.e., 𝑏2,𝑚′+1 = 𝜑
𝑚′ 𝑗
1 (𝑡) · 𝑏2,𝑚′ for 𝑚′ � 1). Thus, for some 𝑀 ′ � 1, the se-

quence [𝑏1,𝑀 ′+𝑚′ , 𝑏2,𝑀 ′+𝑚′ ]𝑚′≥0 is an iterated turn over 𝑇𝑚 ′(𝐺1) rel. 𝜑 𝑗1 |𝐺1 , denoted (𝑏1,𝑀 ′ , 𝑏2,𝑀 ′ :
𝜖, 𝑡; 𝜑 𝑗1 |𝐺1 )𝑇𝑚′ (𝐺1) . The corresponding algebraic iterated turn (𝜖, 𝑡; 𝜑 𝑗1 |𝐺1 )𝐺1 is well-defined for
(𝑥1, 𝑥2; 𝜑)𝐹 .

Now suppose ◦ ∈ (★1, ★2) has a nontrivial stabilizer𝐺◦
..= Stab𝐹 (◦). Let 𝑑𝑖 (𝑖 = 1, 2) be the direction

at ◦ containing ★𝑖 . By index theory again, ℎ 𝑙1 (◦) = 𝑥 · ◦ and ℎ 𝑙1 (𝑑𝑖) = 𝑥𝑠𝑖 · 𝑑𝑖 for some 𝑥 ∈ 𝐹, 𝑠𝑖 ∈ 𝐺◦,
and minimal 𝑙 ≥ 1. Since F acts on 𝑌𝜏 with trivial arc stabilizers, the elements 𝑥𝑠1, 𝑥𝑠2 are unique
and 𝑠−1

1 𝑠2 ∈ 𝐺◦ is independent of the chosen 𝑥 ∈ 𝐹. For 𝑚 � 1, 𝜋𝑚 (𝑝𝑖,𝑚) is in the direction 𝑑𝑖 since
𝜋𝑚 (𝑝𝑖,𝑚) → ★𝑖 . A variation of the bounded cancellation argument used in the preceding paragraphs
proves the following. For 𝑚, 𝑚′ � 1, the interval [𝑝𝑖,𝑚+𝑚′𝑙 , 𝜏

𝑚′𝑙 (𝑝𝑖,𝑚)] in (𝑇𝑚, 𝜆
−𝑚𝑑𝜏) is far from

𝑇𝑚 (𝜑
𝑚′𝑙 (𝐺◦)).

Set 𝑦0
..= 𝜖 , 𝑦𝑚′+1

..= 𝜑𝑚
′

◦ (𝑥)𝑦𝑚′ , 𝜏◦ ..= 𝑥−1 · 𝜏 𝑙1 , and ℎ◦ ..= 𝑥−1 · ℎ 𝑙1 to be 𝜑◦-equivariant
maps for an automorphism 𝜑◦ : 𝐹 → 𝐹 in the outer class [𝜑

𝑗
1]. Let 𝑐𝑖,𝑚′

′ ∈ 𝑇𝑚
′(𝜑𝑚

′𝑙 (𝐺◦))

be the closest point projection of 𝑝𝑖,𝑚+𝑚′𝑙
′ and set 𝑐′𝑖,𝑚′

′ ..= 𝑧−1
𝑚′𝑙 · 𝑐

′
𝑖,𝑚′ ∈ 𝑇𝑚

′(𝜑𝑚
′𝑙

1 (𝐺◦)). Then
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𝑐𝑖,𝑚′
..= 𝑦−1

𝑚′ · 𝑐′′𝑖,𝑚′ ∈ 𝑇𝑚
′(𝐺◦) is the closest point projection of 𝑦−1

𝑚′𝑧−1
𝑚′𝑙 · 𝑝𝑖,𝑚+𝑚′𝑙

′. Since ℎ◦(𝑑𝑖) = 𝑠𝑖 · 𝑑𝑖 ,
the interval [𝜏𝑚′+1

◦ (𝑝𝑖,𝑚), 𝜑
𝑚′

◦ (𝑠𝑖) · 𝜏
𝑚′

◦ (𝑝𝑖,𝑚)] is arbitrarily far from 𝑇𝑚 (𝐺◦) for 𝑚′ � 1. By transi-
tivity, [𝑦−1

𝑚′+1𝑧
−1
(𝑚′+1)𝑙 · 𝑝𝑖,𝑚+(𝑚′+1)𝑙 , 𝜑

𝑚′

◦ (𝑠𝑖)𝑦
−1
𝑚′𝑧−1
𝑚′ · 𝑝𝑖,𝑚+𝑚′𝑙] is arbitrarily far from 𝑇𝑚 (𝐺◦). As before,

[𝑦−1
𝑚′+1𝑧

−1
(𝑚′+1)𝑙 · 𝑝𝑖,𝑚+(𝑚′+1)𝑙

′, 𝜑𝑚
′

◦ (𝑠𝑖)𝑦
−1
𝑚′𝑧−1
𝑚′ · 𝑝𝑖,𝑚+𝑚′𝑙

′] is disjoint from 𝑇𝑚
′(𝐺◦) for 𝑚′ � 1 (i.e.,

𝑐𝑖,𝑚′+1 = 𝜑𝑚
′

◦ (𝑠𝑖) · 𝑐𝑖,𝑚′ for 𝑚′ � 1). Thus, for some 𝑀 ′′ � 1, the sequence [𝑐1,𝑀 ′′+𝑚′ , 𝑐2,𝑀 ′′+𝑚′ ]𝑚′≥0
is an iterated turn over 𝑇𝑚 ′(𝐺◦) rel. 𝜑◦ |𝐺◦

: (𝑐1,𝑀 ′′ , 𝑐2,𝑀 ′′ : 𝑠1, 𝑠2; 𝜑◦ |𝐺◦
)𝑇𝑚′ (𝐺◦) . It is a ‘translate’ of the

normalized iterated turn: (𝑐1,𝑀 ′′ , 𝑐2,𝑀 ′′ : 𝜖, 𝑠−1
1 𝑠2; 𝜑◦ |𝐺◦

)𝑇𝑚′ (𝐺◦) . The corresponding algebraic iterated
turn (𝜖, 𝑠−1

1 𝑠2; 𝜑◦ |𝐺◦
)𝐺◦

is well-defined for (𝑥1, 𝑥2; 𝜑)𝐹 and ◦ ∈ (★1, ★2).

2.3. Coordinate-free laminations

We have only defined the stable laminations for an expanding irreducible train track [𝜏] representing
[𝜓]. The free splitting T of F can be seen as a coordinate system, and we need a coordinate-free
definition of stable laminations that applies to all outer automorphisms.

Fix a proper free factor system Z of F and consider the set 𝑠𝑐𝑣(F ,Z) of all free splittings T ′ of
F with F [T ′] = Z (i.e., an element of F is T ′-elliptic if and only if it is conjugate to an element of
Z); this set with some natural partial order is the spine of relative outer space [7]. For any pair of free
splittings T1, T2 ∈ 𝑠𝑐𝑣(F ,Z), there are changes of coordinates, equivariant PL-maps T1 � T2. We saw
in the discussion following Claim 1.5 that a change of coordinates 𝑓 : T1 → T2 induces a canonical
homeomorphism 𝑓∗ : R(T1) → R(T2) on the space of lines. Denote the canonical homeomorphism
class of R(T1) � R(T2) by R(F ,Z). If Z is the trivial free factor system of F , then we denoted the
canonical homeomorphism class by R(F) instead.

Fix an automorphism 𝜓 : F → F and a [𝜓]-invariant proper free factor system Z . Let
𝜓∗ : R(F ,Z) → R(F ,Z) be the canonical induced homeomorphism on the space of lines:
𝑓∗ ◦ 𝑔1∗ = 𝑔2∗ ◦ 𝑓∗ for any T1, T2 ∈ 𝑠𝑐𝑣(F ,Z), equivariant PL-map 𝑓 : T1 → T2, and 𝜓-equivariant
PL-maps 𝑔𝑖 : T𝑖 → T𝑖 (𝑖 = 1, 2). A line [𝑙] ∈ R(F ,Z) weakly 𝜓*-limits to a lamination Λ ⊂ R(F ,Z)

if the sequence (𝜓𝑛∗ [𝑙])𝑛≥0 weakly limits to Λ.
A coordinate-free definition of stable laminations boils down to characterizing the lines of a stable

T -lamination for [𝜏] in a way that is independent of coordinates. For the rest of the section, assume there
is an equivariant PL-map (T , 𝑑) → (Y , 𝛿) and consider the canonical embedding R(Y , 𝛿) ⊂ R(T ).
Note that a lamination Λ ⊂ R(Y , 𝛿) is contained in a canonical lamination L ⊂ R(T ): set L to be the
closure of Λ in R(T ).

Claim (cf. [2, Lemma 1.9(2)]). A line is quasiperiodic inR(Y , 𝛿) if it is quasiperiodic inR(T ). (exercise)

So quasiperiodicity is a well-defined property for a line in R(F ,Z); moreover, the induced homeo-
morphism 𝜓∗ : R(F ,Z) → R(F ,Z) preserves quasiperiodicity for any automorphism 𝜓 : F → F that
preserves Z (up to conjugacy).

Suppose there is an expanding irreducible train track 𝜏 : T → T for 𝜓 with F [T ] = Z . Recall that
the eigenlines of [𝜏𝑘 ] (for some 𝑘 ≥ 1) are constructed by iterating an expanding edge; more precisely,
an eigenline [𝑙] of [𝜏𝑘 ] is the union

⋃
𝑛≥1 𝜏

𝑘𝑛 (F · 𝑒) for some edge 𝑒 ⊂ 𝑙. The leaf segments 𝜏𝑘𝑛 (𝑒)
determine a neighborhood basis for [𝑙] in the space of lines.

For a line [𝑙] ∈ R(F ,Z), a subset𝑈 ⊂ R(F ,Z) is a𝜓𝑘∗ -attracting neighborhood of [𝑙] if𝜓𝑘∗ (𝑈) ⊂ 𝑈
and {𝜓𝑘𝑛∗ (𝑈) : 𝑛 ≥ 1} is a neighborhood basis for [𝑙] in the space of lines. A stable lamination for [𝜓]
rel. Z is the closure of a quasiperiodic line in R(F ,Z) with a 𝜓𝑘∗ -attracting neighborhood for some
𝑘 ≥ 1. Note that the homeomorphism 𝜓∗ : R(F ,Z) → R(F ,Z) permutes the stable laminations for [𝜓]
rel. Z and, by Lemma 2.1, each stable T -lamination for [𝜏] is identified with some stable lamination
for [𝜓] rel. Z . Let L+

Z [𝜓] be the union of stable laminations for [𝜓] rel. Z .

Lemma 2.5 (cf. [2, Lemma 1.12]). Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding
irreducible train track for 𝜓, and Z ..= F [T ]. The stable laminations L+[𝜏] for [𝜏] are identified with
the stable laminations L+

Z [𝜓] for [𝜓] rel. Z .
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So L+
Z [𝜓] is a lamination system whose finitely many components are the stable laminations for [𝜓]

rel. Z , and these are transitively permuted by 𝜓∗ : R(F ,Z) → R(F ,Z).

Sketch of proof. Suppose a quasiperiodic line [𝑙] in T has a 𝜏𝑘∗ -attracting neighborhood U for some
𝑘 ≥ 1. This forces any T -loxodromic conjugacy class [𝑥] with axis in U to have a translation distance that
(eventually) grows under forward [𝜓𝑘 ]-iteration. In particular, the conjugacy class [𝑥] isY𝜏-loxodromic,
and the line [𝑙], a weak 𝜓𝑘∗ -limit of the T -axis for [𝑥], is a leaf in L+[𝜏] by Proposition 2.2. �

The stable laminations L+
Z [𝜓] are in the subspace R(Y𝜏 , 𝑑∞) ⊂ R(F ,Z).

2.4. Constructing limit forests (2)

This chapter has thus far focused on automorphims with expanding irreducible train tracks. For the rest
of the chapter, we extend our focus to all automorphisms.

Fix an automorphism 𝜓 : F → F , set F1
..= F , 𝜓1

..= 𝜓, and let Z be a [𝜓1]-invariant proper
free factor system. By Theorem 1.1, there is an irreducible train track 𝜏1 : T1 → T1 for 𝜓1. By 𝜓1-
equivariance of 𝜏1, the nontrivial vertex stabilizers of T1 determine a [𝜓1]-invariant proper free factor
system F2

..= F [T1]. The restriction of 𝜓1 to F2 determines a unique outer class of automorphisms
𝜓2 : F2 → F2. We can repeatedly apply Theorem 1.1 to 𝜓𝑖+1 (𝑖 ≥ 1) as long as 𝜆[𝜏𝑖] = 1 and
F𝑖+1

..= F [T𝑖] contains a noncyclic component. Bass-Serre theory implies this process must stop; we
end up with a maximal sequence (𝜏𝑖)

𝑛
𝑖=1 of irreducible train tracks with 𝜆[𝜏𝑖] = 1 for 1 ≤ 𝑖 < 𝑛 – such a

maximal sequence is called a descending sequence of irreducible train tracks for [𝜓] rel. Z .
This leads to our working definition of growth type: [𝜓] is polynomially growing rel. Z if and only

if 𝜆[𝜏𝑛] = 1 [22, Proposition III.1]. For automorphisms that are polynomially growing rel. Z , define
the limit forest to be degenerate.

Suppose [𝜓] is exponentially growing rel. Z and (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 is a descending sequence of
irreducible train tracks for [𝜓] rel. Z . Sections 2.1–2.2 already cover the case 𝑛 = 1, so we may assume
𝑛 > 1 for the rest of the chapter. Set 𝜆 ..= 𝜆[𝜏𝑛] > 1, T ◦

𝑛
..= T𝑛, 𝜏◦𝑛 ..= 𝜏𝑛, and 𝑑◦𝑛 the eigenmetric on T ◦

𝑛 for
𝜏◦𝑛 . For 1 ≤ 𝑖 < 𝑛, we inductively form an equivariant simplicial blow-up T ◦

𝑖 of T𝑖 rel. T ◦
𝑖+1: the vertices

with nontrivial stabilizers are equivariantly replaced by copies of corresponding components of T ◦
𝑖+1,

and arbitrary vertices in T ◦
𝑖+1 are chosen as attaching points for the edges of T𝑖 . Let 𝜏◦𝑖 : T ◦

𝑖 → T ◦
𝑖 be

the topological representative for 𝜓𝑖 induced by 𝜏𝑖 and 𝜏◦𝑖+1. As 𝜏𝑖 is a simplicial automorphism, we can
make 𝜏◦𝑖 a 𝜆-Lipschitz map by assigning the same large enough length to the edges of T𝑖 in the blow-up
T ◦
𝑖 when extending the metric 𝑑◦𝑖+1 on T ◦

𝑖+1 to a metric 𝑑◦𝑖 on T ◦
𝑖 . The topological representative 𝜏◦ ..= 𝜏◦𝑖

on T ◦ ..= T ◦
1 is an equivariant blow-up of the descending sequence (𝜏𝑖)

𝑛
𝑖=1. Set 𝑑◦ ..= 𝑑◦1 and identify

(T ◦
𝑖 , 𝑑

◦
𝑖 ) with the characteristic subforest of (T ◦, 𝑑◦) for F𝑖 . We will abuse terminology and refer to 𝑑◦

as the eigenmetric as well. Translates of edges in T ◦ coming from T𝑖 form the 𝑖th stratum of T◦: the 𝑛𝑡ℎ
stratum is exponential, while the rest are (relatively) polynomial.

As in Section 2.1, the maps 𝜏◦𝑚 : (T ◦, 𝑑◦) → (T ◦𝜓𝑚, 𝜆−𝑚𝑑◦) converge (as 𝑚 → ∞) to an equiv-
ariant metric surjection 𝜋◦ : (T ◦, 𝑑◦) → (Y , 𝛿). The map 𝜏◦ induces a 𝜓-equivariant 𝜆-homothety
ℎ : (Y , 𝛿) → (Y , 𝛿) and 𝜋◦ semiconjugates 𝜏◦ to h. By restricting to T ◦

𝑖 , we have also constructed an
equivariant metric surjection 𝜋◦𝑖 : (T ◦

𝑖 , 𝑑
◦) → (Y𝑖 , 𝛿) and 𝜓𝑖-equivariant 𝜆-homothety ℎ𝑖 on (Y𝑖 , 𝛿) for

2 ≤ 𝑖 ≤ 𝑛.
The F𝑛-forest (Y𝑛, 𝛿) is the limit forest for [𝜏◦𝑛]; so it is a nondegenerate minimal F𝑛-forest with

trivial arc stabilizers. For induction, assume (Y𝑖 , 𝛿) is a nondegenerate minimal F𝑖-forest with trivial
arc stabilizers for 2 ≤ 𝑖 ≤ 𝑛. Equivariantly collapse T ◦

2 in (T ◦, 𝑑◦) to get the F-forest (T1, 𝑑1). For
𝑚 ≥ 0, the metric free splitting (T ◦𝜓𝑚, 𝜆−𝑚𝑑◦) is an equivariant metric blow-up of (T1𝜓

𝑚, 𝜆−𝑚𝑑1)
rel. (T ◦

2 𝜓
𝑚
2 , 𝜆

−𝑚𝑑◦). Since 𝜏1 : (T1, 𝑑1) → (T1𝜓, 𝑑1) is an equivariant isometry, the limit (Y , 𝛿) is
equivariantly isometric to an equivariant metric blow-up of (T1, 𝑑1) rel. (Y2, 𝛿) whose top stratum
(edges coming from T1) have then been equivariantly collapsed, also known as a graph of actions (with
degenerate skeleton) – more details are given in the next subsection. Thus, (Y , 𝛿) is a nondegenerate
minimal F-forest with trivial arc stabilizers. See [22, Theorem IV.1] for a direct construction of (Y , 𝛿)
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as a graph of actions. This sketches the general case of Proposition 1.2. The F-forest (Y , 𝛿) is the limit
forest for [𝜏𝑖]𝑛𝑖=1.

2.4.1. Decomposing limit forests
We now give a hierarchical decomposition of the limit forest (Y , 𝛿) and its space of lines.

Choose an iterate [𝜏𝑘
′

1 ] that fixes all F-orbits of branches in T1. Pick an edge e in T1 and one of
its endpoints p. Replace 𝜓𝑘′ with an automorphism in its outer class [𝜓𝑘

′
] if necessary and assume

𝜏𝑘
′

1 fixes p and e. Identify (T ◦𝜓𝑚𝑘
′
, 𝜆−𝑚𝑘

′
𝑑◦) with an equivariant metric blow-up of (T1, 𝜆

−𝑚𝑘′𝑑1)

rel. (T ◦
2 𝜓
𝑚𝑘′

2 , 𝜆−𝑚𝑘
′
𝑑◦) for 𝑚 ≥ 0, then let 𝑝𝑚 ∈ T ◦

2 𝜓
𝑚𝑘′

2 be the attaching point of e to T ◦
2 𝜓
𝑚𝑘′

2
corresponding to the endpoint p. Since 𝜏𝑘′1 fixes e and p, we get 𝑝𝑚 = 𝑝0 for 𝑚 ≥ 1. As in the first
part of the proof for Proposition 2.4, the sequence (𝑝𝑚)𝑚≥0 converges to the unique fixed point ★ of
ℎ𝑘

′

2 in the metric completion (Y2, 𝛿). So, in the description of (Y , 𝛿) as a graph of actions, the edge
e is collapsed and identified with ★. Thus, the closure Ŷ2 of Y2 in (Y , 𝛿) is the union of Y2 with the
F2-orbits of attaching points ★ as the pair (𝑒, 𝑝) ranges over the F-orbit representatives e of edges and
their endpoints p. For the same reasons, we inductively get a similar description of the closure Ŷ𝑖+1 of
Y𝑖+1 in (Y𝑖 , 𝛿) for 2 ≤ 𝑖 < 𝑛.

Remark. Constructing (Y , 𝛿) directly by iterating 𝜏◦ allows us to lift metric properties of (Y , 𝛿) to
dynamical properties of 𝜏◦ through the semiconjugacy 𝜋◦ ◦ 𝜏◦ = ℎ ◦ 𝜋◦; this viewpoint is used in
the Section 2.5. On the other hand, constructing (Y , 𝛿) directly as we did in [22, Theorem IV.1] (and
sketched in this subsection) gives us a nice structural description of intervals in the limit forest. This is
explained in the next subsection and will be a key component of Chapter 3!

For 1 < 𝑖 ≤ 𝑛, any two translates of T ◦
𝑖 ⊂ T ◦ by elements of F either coincide or are disjoint by con-

struction. This induces a canonical closed embedding of R(F𝑖 ,Z) into R(F ,Z) (exercise). Similarly,
any two intersecting translates of Y𝑖 ⊂ Y by elements of F either coincide or have degenerate inter-
section. This also induces a canonical closed embedding R(Y𝑖 , 𝛿) ⊂ R(Y , 𝛿). Finally, the constructed
equivariant metric map 𝜋◦ induces a canonical embedding of the topological pair (R(Y , 𝛿),R(Y𝑖 , 𝛿))
into (R(F ,Z),R(F𝑖 ,Z)).

2.4.2. Intervals in limit forests
Here is an inductive description of intervals in the limit forest (Y , 𝛿) in terms of the limit forest for
[𝜏◦𝑛]. For 1 ≤ 𝑖 ≤ 𝑛, the characteristic subforest (Y𝑖 , 𝛿) of (Y , 𝛿) for F𝑖 is the limit forest for [𝜏𝑗 ]

𝑛
𝑗=𝑖 .

For 1 < 𝑖 ≤ 𝑛, let Ŷ𝑖 be the closure of Y𝑖 in (Y𝑖−1, 𝛿).
It follows from the blow-up (and collapse) description of Y𝑖−1 that its closed intervals are finite

concatenations of closed intervals in translates of Ŷ𝑖 . As shown in the previous subsection, the F𝑖-orbits
[𝑝] of points in Ŷ𝑖 \Y𝑖 are fixed by the extension of ℎ𝑘′𝑖 to Ŷ𝑖 for some 𝑘 ′ ≥ 1. As 𝑝 ∉ Y𝑖 , it has exactly
one direction 𝑑𝑝 in Ŷ𝑖 . This direction’s F𝑖-orbit [𝑑𝑝] is also fixed (setwise) by the expanding homothety
ℎ𝑘

′

𝑖 , and 𝑑𝑝 determines a singular eigenray 𝜌𝑝 ⊂ Ŷ𝑖 of [ℎ𝑘
′

𝑖 ] based at p. For any point 𝑞 ∈ Y𝑖 , the
closed interval [𝑝, 𝑞] ⊂ Ŷ𝑖 is a concatenation of an initial segment of the singular eigenray 𝜌𝑝 and a
closed interval in Y𝑖; therefore, closed intervals in Y𝑖−1 are finite concatenations of translates of closed
intervals in Y𝑖 and initial segments of singular eigenrays of [ℎ𝑘′𝑖 ] for some 𝑘 ′ ≥ 1.

LetL+
Z [𝜓𝑛] = L+[𝜏𝑛] be the k-component stable laminations for [𝜏◦𝑛] = [𝜏𝑛] and ⊕𝑘𝑗=1𝛿 𝑗 the factored

F𝑛-invariant convex metric on Y𝑛 indexed by components Λ+
𝑗 ⊂ L+

Z [𝜓𝑛]. By the inductive description
of intervals in Y and the fact ℎ𝑘𝑛 is a 𝜆𝑘 -homothety with respect to each factor 𝛿 𝑗 , we get 𝛿 𝑗 equivariantly
extends to Y; 𝛿 = ⊕𝑘𝑗=1𝛿 𝑗 is a factored F-invariant convex metric on Y; and ℎ𝑘 is a 𝜆𝑘 -homothety with
respect to each factor 𝛿 𝑗 .

The lamination L+
Z [𝜓𝑛] ⊂ R(Y𝑛, 𝛿) can be seen as a (Y , 𝛿)-lamination since R(Y𝑛, 𝛿) is a

closed subspace of R(Y , 𝛿). Note that closed edges of T𝑛 = T ◦
𝑛 are leaf segments (of L+

Z [𝜓𝑛]);
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thus, any closed interval in T ◦
𝑛 is a finite concatenation of leaf segments. As the equivariant PL-map

𝜋◦𝑛 : (T ◦
𝑛 , 𝑑

◦) → (Y𝑛, 𝛿) is surjective and isometric on leaf segments, we get the following:

Lemma 2.6. Let 𝜏𝑛 : T𝑛 → T𝑛 be an expanding irreducible train track and (Y𝑛, 𝛿) its limit forest. Any
closed interval in Y𝑛 is a finite concatenation of leaf segments of L+[𝜏𝑛].

This lemma no longer holds when 𝑛 ≥ 2 and we consider closed intervals in Ŷ𝑛. To account for this,
let nth level leaf blocks in Y be leaf segments. By the lemma, any interval of Y𝑛 is a finite concatenation
of 𝑛𝑡ℎ level leaf blocks.

Inductively define the (i−1)st level leaf blocks in Y (1 < 𝑖 ≤ 𝑛) to be the 𝑖𝑡ℎ level leaf blocks or
(translates of) closed intervals in singular eigenrays 𝜌 ⊂ Ŷ𝑖 of [ℎ𝑖]-iterates. By the earlier description
of intervals and induction hypothesis, any interval of Y𝑖−1 is a finite concatenation of (𝑖 − 1)𝑠𝑡 level leaf
blocks. The 1𝑠𝑡 level leaf blocks are simply leaf blocks of L+

Z [𝜓𝑛]. Altogether, we have a generalization
of Lemma 2.6 in terms of leaf blocks:

Lemma 2.7. Let (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 be a descending sequence of irreducible train tracks for an auto-
morphism 𝜓 : F → F and (Y , 𝛿) the corresponding limit forest. Any closed interval in Y is a finite
concatenation of leaf blocks of L+

Z [𝜓𝑛], where Z ..= F [T𝑛].

2.5. Stable laminations (2)

Fix an automorphism 𝜓 : F → F with an invariant proper free factor system Z ′. Let (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1
be a descending sequence of irreducible train tracks rel. Z ′ with 𝜆[𝜏𝑛] > 1, (Y , 𝛿) the limit forest for
[𝜏𝑖]

𝑛
𝑖=1, T ◦ an equivariant blow-up of free splittings (T𝑖)𝑛𝑖=1 with eigenmetric 𝑑◦, and Z ..= F [T ◦]. The

characteristic convex subsets of T ◦ for F𝑛 ..= F [T𝑛−1] are identified with the free splitting T𝑛.

Claim 2.8. The stable laminations L+
Z [𝜓𝑛] for [𝜓𝑛] in R(F𝑛,Z) are identified with the stable lamina-

tions L+
Z [𝜓] for [𝜓] in R(F ,Z).

Note that L+
Z [𝜓] = L+

Z [𝜓𝑛] is in the subspace R(Y𝑛, 𝛿) ⊂ R(Y , 𝛿) ⊂ R(F ,Z).

Sketch of proof. Since 𝜆[𝜏𝑖] = 1 for 𝑖 < 𝑛, no quasiperiodic line in R(F ,F𝑛) has a 𝜓𝑘∗ -attracting
neighborhood for any 𝑘 ≥ 1. Thus, any stable lamination for [𝜓] in R(F ,Z) is contained in R(F𝑛,Z)

and corresponds to a stable lamination for [𝜓𝑛]. �

We generalize Proposition 2.4 by characterizing limits of iterated turns over T ◦:

Theorem 2.9. Let 𝜓 : F → F be an automorphism with an invariant proper free factor system Z ′,
(𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible train tracks rel. Z ′ with 𝜆[𝜏𝑛] > 1, (Y , 𝛿) the
limit forest for [𝜏𝑖]

𝑛
𝑖=1, and T ◦ an equivariant blow-up of free splittings (T𝑖)𝑛𝑖=1 with eigenmetric 𝑑◦.

Choose a nondegenerate component 𝑇◦ ⊂ T ◦, corresponding components 𝐹 ⊂ F , 𝑌 ⊂ Y , and a
positive iterate 𝜓𝑘 that preserves F. Let ℎ̃ : (𝑌, 𝛿) → (𝑌, 𝛿) be the 𝜑-equivariant 𝜆-homothety, where 𝜑
is in the outer class [𝜓𝑘

��
𝐹 ] and 𝜆 ..= (𝜆[𝜏𝑛])

𝑘 . Finally, for 𝜄 = 1, 2, pick 𝑝 𝜄 ∈ 𝑇◦ and 𝑥 𝜄 ∈ 𝐹.
The point 𝑝 𝜄,𝑚 ..= 𝜑−1(𝑥 𝜄) · · · 𝜑

−𝑚(𝑥 𝜄) · 𝑝 𝜄 in (𝑇◦𝜑𝑚, 𝜆−𝑚𝑑◦) converges to ★𝜄 in (𝑌, 𝛿) as 𝑚 → ∞,
where ★𝜄 is the unique fixed point of 𝑥−1

𝜄 · ℎ̃ in the metric completion (𝑌, 𝛿).
If 𝑥−1

1 𝑥2 fixes ★1, then ★1 = ★2 and the term [𝑝1,𝑚, 𝑝2,𝑚] (𝑚 ≥ 0) of the iterated turn
(𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 ◦ has 𝑑◦-length ≤ 𝛼(𝑚) for some (degree n) polynomial 𝛼. Otherwise,★1 ≠ ★2, and
the iterated turn weakly limits to a component of L+

Z [𝜓], where Z ..= F [T ◦].

An iterated turn [𝑝1,𝑚, 𝑝2,𝑚]𝑚≥0 weakly limits to a component Λ+ ⊂ L+
Z [𝜓] if the term [𝑝1,𝑚, 𝑝2,𝑚]

contains a leaf segment of Λ+ with arbitrarily large 𝑑◦-length as 𝑚 → ∞.

Sketch of proof. Let 𝜏◦ : (𝑇◦, 𝑑◦) → (𝑇◦, 𝑑◦) be the 𝜑-equivariant 𝜆-Lipschitz topological representative
induced by the irreducible train tracks (𝜏𝑖)

𝑛
𝑖=1 and 𝜋◦ : (𝑇◦, 𝑑◦) → (𝑌, 𝛿) the equivariant metric map

constructed using 𝜏◦-iteration. Even though 𝜋◦ may fail to be a PL-map, it still has a cancellation constant

https://doi.org/10.1017/fms.2024.122 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.122


Forum of Mathematics, Sigma 25

𝐶 [𝜋◦] ≥ 0 as a limit of equivariant metric maps with uniformly bounded cancellation constants. The
proof of the first part is the same as in Proposition 2.4 using 𝜋◦, 𝜏◦ and the 𝜑-equivariant 𝜆-homothety ℎ̃.

The interval [𝑝1,𝑚, 𝑝2,𝑚] ⊂ 𝑇◦, a term in the sequence (𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 ◦ , is covered by cer-
tain 2𝑚 + 1 intervals as in the proof of Proposition 2.4. Since 𝜏◦ is induced by a descending se-
quence (𝜏𝑖)

𝑛
𝑖=1 of irreducible train tracks, the intervals [𝜏◦(𝑙−1) (𝑥1 · 𝑝1), 𝜏

◦𝑙 (𝑝1)], [𝜏◦𝑙 (𝑝1), 𝜏
◦𝑙 (𝑝2)],

and [𝜏◦𝑙 (𝑝2), 𝜏
◦(𝑙−1) (𝑥2 · 𝑝2)] are covered by 𝛼(𝑙) polynomial strata edges and leaf segments (of L+

Z [𝜓])
for some degree (𝑛 − 1) polynomial 𝛼. So the interval [𝑝1,𝑚, 𝑝2,𝑚] is covered by 𝛼(𝑚) +

∑𝑚
𝑙=1 2𝛼(𝑙)

polynomial strata edges and leaf segments (of L+
Z [𝜓]). Note that 𝛼(𝑚) +

∑𝑚
𝑙=1 2𝛼(𝑙) ≤ 𝛽(𝑚) for some

degree n polynomial 𝛽.
Assume ★1 = ★2, where ★𝜄 is the unique fixed point of ℎ̃ 𝜄 ..= 𝑥−1

𝜄 · ℎ̃ in metric completion (𝑌, 𝛿) for
𝜄 = 1, 2. The proof given in Proposition 2.4 implies there is a uniform bound on the 𝑑◦-length of leaf
segments in [𝑝1,𝑚, 𝑝2,𝑚]. Consequently, the 𝑑◦-length of [𝑝1,𝑚, 𝑝2,𝑚] is ≤ 𝛽(𝑚)𝐵 for some constant
𝐵 ≥ 1.

Assume ★1 ≠ ★2. Set 𝐿 ..= 1
2𝛿(★1, ★2) > 0; then 𝛿( ℎ̃−𝑚1 (𝜋◦(𝑝1)), ℎ̃

−𝑚
2 (𝜋◦(𝑝2))) > 𝐿 and

𝑑◦(𝑝1,𝑚, 𝑝2,𝑚) > 𝜆
𝑚𝐿 for𝑚 � 1. The contribution of polynomial strata to the 𝑑◦-length of [𝑝1,𝑚, 𝑝2,𝑚]

is at most 𝛽(𝑚)𝐵′ for some constant 𝐵′ ≥ 1; the exponential stratum edges intersecting the interval are
covered by 𝛽(𝑚) leaf segments. By the pigeonhole principle, the interval [𝑝1,𝑚, 𝑝2,𝑚], a term in the it-
erated turn (𝑝1, 𝑝2 : 𝑥1, 𝑥2; 𝜑)𝑇 ◦ , has a leaf segment of 𝑑◦-length ≥

𝜆𝑚𝐿−𝛽 (𝑚)𝐵′

𝛽 (𝑚) � 1. Quasiperiodicity
implies the iterated turn weakly limits to a component of L+

Z [𝜓]. �

Remark. The argument given in Subsection 2.2.4 applies in this general context involving a descending
sequence of irreducible train tracks; it describes how an iterated turn over F determines (nested) iterated
turns over G [Y].

As in Proposition 2.2, we can characterize the elements in F that are Y-loxodromic:

Theorem 2.10. Let 𝜓 : F → F be an automorphism with an invariant proper free factor system Z ′,
(𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible train tracks rel. Z ′ with 𝜆 ..= 𝜆[𝜏𝑛] > 1, (Y , 𝛿)
the limit forest for [𝜏𝑖]

𝑛
𝑖=1, T ◦ an equivariant blow-up of free splittings (T𝑖)𝑛𝑖=1, and Z ..= F [T ◦].

If 𝑥 ∈ F is a T ◦-loxodromic element, then the following statements are equivalent:

1. the element x is Y-loxodromic;
2. the element 𝑥 [𝜓]-grows exponentially rel. Z with rate 𝜆; and
3. the axis for the conjugacy class [𝑥] in R(F ,Z) weakly 𝜓∗-limits to L+

Z [𝜓].

The restriction of 𝜓 to the [𝜓]-invariant subgroup system G [Y] of Y-point stabilizers is polynomially
growing rel. Z with degree < 𝑛.

Sketch of proof. Set 𝜆 ..= 𝜆[𝜏𝑛], F1
..= F , and F𝑖+1

..= F [T𝑖] for 1 ≤ 𝑖 < 𝑛. Under the canonical
embedding R(F𝑖 ,Z) ⊂ R(F ,Z), we identify the stable laminations L+

Z [𝜓] and L+
Z [𝜓𝑖]. Let T ◦ be

an equivariant blow-up of free splittings (T𝑖)𝑛𝑖=1 and T ◦
𝑖 ⊂ T ◦ the characteristic convex subsets for F𝑖 .

Suppose 𝑥 ∈ F1 is a T ◦-loxodromic element. The equivalence between Conditions 1–3 is given by
Proposition 2.2 if x is conjugate to an element of F𝑛. Assume 𝑛 ≥ 2 and, up to conjugacy, 𝑥 ∈ F𝑖 is
T𝑖-loxodromic for some 𝑖 < 𝑛.

Recall that 𝜏◦ : (T ◦, 𝑑◦) → (T ◦, 𝑑◦) is a 𝜓-equivariant 𝜆-Lipschitz topological representative in-
duced by the irreducible train tracks (𝜏𝑖)

𝑛
𝑖=1, and 𝜋◦ : (T ◦, 𝑑◦) → (Y , 𝛿) is the constructed equivariant

metric map. In particular, lim sup
𝑚→∞

1
𝑚 log ‖𝜓𝑚 (𝑥)‖𝑑◦ ≤ log𝜆.

Suppose [𝜏𝑘
′

𝑖 ] (for some 𝑘 ′ ≥ 1) fixes all F𝑖-orbits of vertices and edges in T𝑖 . Let 𝑙◦ ⊂ T ◦
𝑖 be the

axis for 𝑥 ∈ F𝑖 . The axis 𝑙◦ projects to the axis l of x in T𝑖; write l as a biinfinite concatenation of edges
· · · 𝑒−1 · 𝑒0 · 𝑒1 · · · and identify 𝑒 𝑗 ⊂ T𝑖 with its lift to T ◦

𝑖 . For 𝑚 ≥ 0 and any integer j, let 𝑤 𝑗 ,𝑚 be
the closed interval in T ◦

𝑖 between (lifts of) 𝜏𝑚𝑖 (𝑒 𝑗 ) and 𝜏𝑚𝑖 (𝑒 𝑗+1); in fact, 𝑤 𝑗 ,𝑚 is in a component of
F𝑖 · T ◦

𝑖+1 ⊂ T ◦
𝑖 . Since [𝜏𝑘

′

𝑖 ] fixes the F𝑖-orbits [𝑒], [𝑒′] and the vertex of T𝑖 between them, the sequence
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(𝑤 𝑗 ,𝑚𝑘′+𝑟 )𝑚≥0, up to translation, is an iterated turn over T ◦
𝑖+1 rel. 𝜓𝑘′𝑖+1 for 0 ≤ 𝑟 < 𝑘 ′; by Theorem 2.9,

the iterated turn limits to an interval 𝑤∗
𝑗 ,𝑟 in a translate of a component of Ŷ𝑖+1 ⊂ Y𝑖 .

The intervals 𝑤 𝑗 ,𝑚, 𝑤 𝑗+1,𝑚 are always in distinct components of F𝑖 ·T ◦
𝑖+1; therefore, the limit intervals

𝑤∗
𝑗 ,𝑟 , 𝑤

∗
𝑗+1,𝑟 have degenerate intersection. By the equivariance of the limits, the union 𝑙∗ ..=

⋃
𝑗 𝑤

∗
𝑗 ,0 is

an x-invariant arc. If some limit interval 𝑤∗
𝑗 ,0 is not degenerate, then x is Y𝑖-loxodromic and 𝑙∗ is its

Y𝑖-axis; otherwise, 𝑙∗ is degenerate and x is Y𝑖-elliptic.
Case 1: x is Y𝑖-loxodromic (i.e., some limit interval 𝑤∗

𝑗 ,0 is not degenerate). By Theorem 2.9,
the iterated turn (𝑤 𝑗 ,𝑚𝑘′ )𝑚≥0 over T ◦

𝑖+1 rel. 𝜓𝑘′𝑖+1 weakly limits to a component of L+
Z [𝜓𝑖+1]. So

[𝑙◦] ∈ R(F ,Z) weakly 𝜓𝑘′∗ -limits to a component of L+
Z [𝜓]. Finally, [𝑙◦] weakly 𝜓∗-limits to L+

Z [𝜓]
since𝜓∗ acts transitively on the components ofL+

Z [𝜓]. As 𝜋◦ is an equivariant metric map, ‖ · ‖𝛿 ≤ ‖ · ‖𝑑◦

and log𝜆 ≤ lim inf
𝑚→∞

1
𝑚 log ‖𝜓𝑚(𝑥)‖𝑑◦ .

Case 2: x is Y𝑖-elliptic (i.e., each limit interval 𝑤∗
𝑗 ,0 is degenerate). By Theorem 2.9, the interval

𝑤 𝑗 ,𝑚𝑘 has 𝑑◦-length is bounded above by some degree (𝑛 − 𝑖) polynomial (in m). Thus, ‖𝜓𝑚𝑘 (𝑥)‖𝑑◦ is
bounded above by a degree (𝑛 − 𝑖) polynomial. By 𝜓-equivariance of the homothety ℎ𝑖 , the elements
𝜓(𝑥), . . . , 𝜓𝑘−1(𝑥) are Y𝑖-elliptic as well. The same argument implies ‖𝜓𝑚 (𝑥)‖𝑑◦ is bounded above by
a degree (𝑛 − 𝑖) polynomial. �

We conclude the chapter by stating the extension of Lemma 4.3 to all limit forests:

Lemma 4.5. Let 𝜓 : F → F be an automorphism, Z ′ a [𝜓]-invariant proper free factor system,
(𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible train tracks for [𝜓] rel. Z ′ with 𝜆 ..= 𝜆[𝜏𝑛] > 1,
(Y , 𝛿) the limit forest for [𝜏𝑖]𝑛𝑖=1, (Y ′, 𝛿′) a minimalF-forest with trivial arc stabilizers, andZ ..= F [T𝑛].

If Z is Y ′-elliptic and the k-component lamination L+
Z [𝜓] is in R(Y ′, 𝛿′) ⊂ R(F ,Z), then the limit

of (Y ′𝜓𝑚𝑘 , 𝜆−𝑚𝑘𝛿′)𝑚≥0 is (Y , ⊕𝑘𝑗=1𝑐 𝑗 𝛿 𝑗 ), where 𝛿 = ⊕𝑘𝑗=1 𝛿 𝑗 and 𝑐 𝑗 > 0.

Again, we postpone the proof to Section 4.2. If (𝜏′𝑖 )
𝑛′

𝑖=1 is another descending sequence for [𝜓] with
F [T ′

𝑛′ ] = Z , then its limit forest (Y ′, 𝛿′) is equivariantly homothetic to (Y , 𝛿); therefore, (Y , 𝛿) is the
limit forest for [𝜓] rel. Z (up to rescaling of 𝛿). A nondegenerate minimal very small F-forest (Y ′, 𝛿′)
is an expanding forest for [𝜓] rel. Z if

1. the F-forest (Y ′𝜓, 𝛿′) is equivariantly isometric to (Y ′, 𝑠𝛿′) for some 𝑠 > 1; and
2. the free factor system Z is Y ′-elliptic.

Corollary 2.11. Let 𝜓 : F → F be an automorphism and (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of
irreducible train tracks for [𝜓] with 𝜆[𝜏𝑛] > 1. Any expanding forests for [𝜓] rel. F [T𝑛] is the limit
forest for [𝜓] rel. F [T𝑛].

We will end the paper with a complete generalization of this corollary (Theorem 5.3).

Sketch of proof. Let (Y ′, 𝛿′) be an expanding forest for [𝜓] rel. Z ..= F [T𝑛] and 𝑥 ∈ F a Y ′-loxodromic
element. The proof is essentially the proof of Corollary 2.3 with two main changes. First, choose 𝑚 � 1
so that ‖𝜓𝑚 (𝑥)‖𝛿′ > 𝛼(𝑚) (2𝐶 [ 𝑓 ] + 𝐵′) for some polynomial 𝛼 and constant 𝐵′ ≥ 1 determined
by x; therefore, a fundamental domain of 𝜓𝑚(𝑥) acting on its axis has a leaf segment [𝑞, 𝑟] with
𝛿′( 𝑓 (𝑞), 𝑓 (𝑟)) > 2𝐶 [ 𝑓 ] by the pigeonhole principle. For the second change, we need (Y ′, 𝛿′) to have
trivial arc stabilizers in order to conclude the proof by invoking Lemma 4.5 instead of Lemma 4.3.

The minimal very smallF-forest (Y ′, 𝛿′) has finitely many orbits of branch points [11]; it decomposes
as some graph of actions whose skeleton is not degenerate in the forest if and only if the forest does
not have dense orbits [18]. Any 𝜓-equivariant homothety must be an isometry if the skeleton were
not degenerate. Since (Y ′, 𝛿′) admits a 𝜓-equivariant expanding s-homothety, the skeleton must be
degenerate and the forest has dense orbit. Very small F-forests with dense orbits have trivial arc
stabilizers [19, Lemma 4.2]. �
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For a nondegenerate minimal F-forest (Y ′, 𝛿′), the projective stabilizer Stab[Y ′, 𝛿′] is the sub-
group of automorphisms 𝜑 : F → F for which ‖𝜑(·)‖𝛿′ = 𝑠𝜑 ‖ · ‖𝛿′ for some 𝑠𝜑 > 0. The function
SF: Stab[Y ′, 𝛿′] → R>0 that maps 𝜑 ↦→ 𝑠𝜑 is a homomorphism called the stretch factor homomor-
phism – R>0 is considered multiplicatively.
Corollary 2.12. Let SF: Stab[Y ′, 𝛿′] → R>0 be the stretch factor homomorphism for some nondegen-
erate minimal very small F-forest (Y ′, 𝛿′). The image of SF is cyclic.
Proof. Suppose SF(𝜓) > 1 for some 𝜓 ∈ Stab[Y ′, 𝛿′]. Then 𝜓 is exponentially growing since any
Y ′-loxodromic element [𝜓]-grows exponentialy with rate at least SF(𝜓). Set F1

..= F , 𝜓1
..= 𝜓, and

let (Y1, 𝛿1) be the limit forest for [𝜓1] rel. some [𝜓1]-invariant proper free factor system F2. If F2 is
not Y ′-elliptic, then the restrictions 𝜓2 of 𝜓1 to F2 are in the projective stabilizer of the nondegenerate
characteristic subforest of (Y ′, 𝛿′) for F2 and have the same stretch factor SF(𝜓).

By repeatedly considering limit forests and taking restrictions, we may assume some free factor
system F𝑛 is not Y ′-elliptic while a nested proper free factor system F𝑛+1 is for some 𝑛 ≥ 1. Then
the characteristic subforest of (Y ′, 𝛿′) for the free factor system F𝑛 is an expanding forest for [𝜓𝑛] rel.
F𝑛+1. By Corollary 2.11, this subforest is equivariantly homothetic to the limit forest (Y𝑛, 𝛿𝑛) for [𝜓𝑛]
rel. F𝑛+1. In particular, SF(𝜓) is the exponential growth rate for [𝜓𝑛] rel. F𝑛+1 and is bounded away
from 1 by a uniform constant that depends only on F . Thus, the image of SF is discrete, and discrete
subgroups of R>0 are cyclic. �

3. Main constructions

The limit forest produced by our proof of Proposition 1.2 is universal for an outer automorphism and
some choice of an invariant proper free factor system (Corollary 2.11). Our goal is to remove the latter
dependence on an invariant proper free factor system.

3.1. Assembling limit hierarchies

This section first summarizes the main result of the paper’s prequel [22]. The general strategy follows
closely the construction of limit forests sketched in Section 2.4.

Fix an exponentially growing automorphism 𝜓 : F → F and set G1
..= F , 𝜓1

..= 𝜓. By our proof
of Proposition 1.2, there is a nondegenerate limit forest (Y1, 𝛿1) for [𝜓1] rel. Z1 (some proper free
factor system of G1) and a unique 𝜓1-equivariant expanding 𝜆1-homothety ℎ1 : (Y1, 𝛿1) → (Y1, 𝛿1).
Thus, Y1-loxodromic elements in F [𝜓]-grow exponentially rel. Z1 with rate 𝜆1. By Gaboriau–Levitt
index theory and 𝜓1-equivariance of 𝜏1, the nontrivial point stabilizers of Y1 determine a [𝜓1]-invariant
malnormal subgroup system G2

..= G [Y1] with strictly lower complexity than G1. The restriction of 𝜓1
to G2 determines a unique outer class of automorphisms 𝜓2 : G2 → G2.

We can repeatedly apply Proposition 1.2 to 𝜓𝑖+1 (𝑖 ≥ 1) as long as 𝜓𝑖+1 is exponentially growing.
This inductive invocation of Proposition 1.2 eventually stops since the complexity of G𝑖 is a strictly
decreasing (in i) positive integer. In the end, we have a maximal sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of nondegenerate
limit forests for [𝜓𝑖] rel. Z𝑖 each with a unique 𝜓𝑖-equivariant expanding 𝜆𝑖-homothety ℎ𝑖 on (Y𝑖 , 𝑑𝑖)
– such a maximal sequence of limit forests is a descending sequence of limit forests for [𝜓]. By
construction, an element 𝑥 ∈ F has a conjugate in G𝑛+1 if and only if 𝑥 [𝜓]-grows polynomially!

In Section 2.4, the blow-ups of free splittings (T𝑖)𝑛𝑖=1 were arbitary and done inductively upwards
(i.e., started with 𝑖 = 𝑛). We then used a limiting argument to produce the final limit forest (Y , 𝛿).
For this section, the blow-ups of limit forests (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 will not be arbitrary but will make use of the
expanding homotheties (ℎ𝑖)𝑛𝑖=1; moreover, it will be done inductively downwards (i.e., starts with 𝑖 = 1)
to produce an F-pseudoforest (T , (𝛿𝑖)𝑛𝑖=1).

Set (X (1) , 𝛿1)
..= (Y1, 𝛿1) and 𝑔 (1) ..= ℎ1. For 1 < 𝑖 ≤ 𝑛, we inductively construct the equivariant

pseudoforest blow-up (X (𝑖) , (𝛿 𝑗 )
𝑖
𝑗=1) of the F-pseudoforest (X (𝑖−1) , (𝛿 𝑗 )

𝑖−1
𝑗=1) rel. the G𝑖-forest (Y𝑖 , 𝛿𝑖)

and expanding homotheties 𝑔 (𝑖−1) and ℎ𝑖 . Here is a sketch:
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Let (Y 𝑖 , 𝛿𝑖) be the metric completion and ℎ̄𝑖 the extension to the metric completion. For 1 ≤ 𝑗 < 𝑖,
assume that (Y 𝑗 , 𝛿 𝑗 ) is equivariantly isometric to the associated G 𝑗 -forest for the G 𝑗 -invariant convex
pseudometric 𝛿 𝑗 restricted to X (𝑖−1) (G 𝑗 ), the characteristic convex subsets of X (𝑖−1) for G 𝑗 . Since the
hierarchy (𝛿 𝑗 )

𝑖−1
𝑗=1 has full support, (X (𝑖−1) (G𝑖−1), 𝛿𝑖−1) is equivariantly isometric to (Y𝑖−1, 𝛿𝑖−1), and the

nontrivial point stabilizers of X (𝑖−1) are conjugates in F of G𝑖-components. The points of X (𝑖−1) with
nontrivial stabilizers are replaced by corresponding copies of Y 𝑖-components; this produces a unique
set system X̂ (𝑖) with an F-action that is the equivariant set blow-up of X (𝑖−1) rel. Y 𝑖: it comes with an
equivariant injection 𝜄𝑖 : Y 𝑖 → X̂ (𝑖) and an equivariant surjection 𝜅𝑖 : X̂ (𝑖) → X (𝑖−1) that is a bijection
on the complement X̂ (𝑖) \F · 𝜄𝑖 (Y 𝑖). Consequently, there is a unique 𝜓-equivariant induced permutation
𝑔 (𝑖) : X̂ (𝑖) → X̂ (𝑖) induced by 𝑔 (𝑖−1) and ℎ̄𝑖 – 𝜅𝑖 semiconjugates 𝑔̂ (𝑖) to 𝑔 (𝑖−1) , while 𝜄𝑖 conjugates ℎ̄𝑖 to
the restriction 𝑔 (𝑖)

��
𝜄𝑖 (Y𝑖 )

.
There are plenty of equivariant interval functions [·, ·] (𝑖) on X̂ (𝑖) compatible with X (𝑖−1) and

Y𝑖 – compatibility means the injection 𝜄𝑖 and surjection 𝜅𝑖 map intervals to intervals. Some compatible
F-pretrees (X̂ (𝑖) , [·, ·] (𝑖) ) are real [22, Proposition IV.3], and they naturally inherit an F-invariant
hierarchy (𝛿 𝑗 )

𝑖
𝑗=1 with full support: (𝛿 𝑗 )𝑖−1

𝑗=1 is the pullback 𝜅∗𝑖 (𝛿 𝑗 )
𝑖−1
𝑗=1 and 𝛿𝑖 is the pushforward 𝜄𝑖∗𝛿𝑖

extended equivariantly to the orbitF · 𝜄𝑖 (Y 𝑖); moreover, for 1 ≤ 𝑗 ≤ 𝑖, (Y 𝑗 , 𝛿 𝑗 ) is equivariantly isometric
to the associated G 𝑗 -forest for the G 𝑗 -invariant convex pseudometric 𝛿 𝑗 restricted to X̂ (𝑖) (G 𝑗 ).

Claim [22, Theorem IV.4]. Since ℎ̄𝑖 is expanding, the permutation 𝑔 (𝑖) is a pretree-automorphism for
a unique real compatible F-pretree (X̂ (𝑖) , [·, ·] (𝑖)𝑔 ).

Remark. This is the main technical result of [22]. Its proof uses Gaboriau–Levitt’s index inequality and
the contraction mapping theorem.

We now fix the interval function [·, ·] (𝑖)𝑔 but omit it for brevity. By construction, the F-pseudoforest
(X̂ (𝑖) , (𝛿 𝑗 )

𝑖
𝑗=1) has trivial arc stabilizers, and 𝑔 (𝑖) is an expanding homothety with respect to (𝛿 𝑗 )

𝑖
𝑗=1.

Finally, let X (𝑖) ⊂ X̂ (𝑖) be the characteristic convex subsets for F and (𝛿 𝑗 )
𝑖
𝑗=1 the restriction of the

hierarchy (𝛿 𝑗 )
𝑖
𝑗=1 to X (𝑖) . Then replace the maps 𝜄𝑖 , 𝜅𝑖 and 𝑔 (𝑖) with their restrictions to X (𝑖) ; so

(X (𝑖) , (𝛿 𝑗 )
𝑖
𝑗=1) is a minimal F-pseudoforest.

At the 𝑛𝑡ℎ iteration, we have a minimal F-pseudoforest (T , (𝛿𝑖)𝑛𝑖=1)
..= (X (𝑛) , (𝛿𝑖)

𝑛
𝑖=1) with trivial

arc stabilizers, unique for the descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. The 𝜓-equivariant pretree-automorphism
ℎ ..= 𝑔 (𝑛) on (T , (𝛿𝑖)𝑛𝑖=1) is a (𝜆𝑖)

𝑛
𝑖=1-homothety, where 𝜆𝑖 > 1 is the scaling factor for the homothety

ℎ𝑖 . Lastly, an element 𝑥 ∈ F is T -elliptic if and only if x has a conjugate in G𝑛+1. The real F-pretrees
T are the limit pretrees for (Y𝑖)𝑛𝑖=1, and the F-pseudoforest (T , (𝛿𝑖)𝑛𝑖=1) is the limit pseudoforest for
(Y𝑖 , 𝛿𝑖)𝑛𝑖=1. To summarize,

Theorem 3.1 (cf. [22, Theorem III.3]). Let 𝜓 : F → F be an automorphism. Then there is

1. a minimal F-pseudoforest (T , (𝛿𝑖)𝑛𝑖=1) with trivial arc stabilizers;
2. a 𝜓-equivariant expanding homothety ℎ : (T , (𝛿𝑖)𝑛𝑖=1) → (T , (𝛿𝑖)𝑛𝑖=1); and
3. an element 𝑥 ∈ F is T -loxodromic if and only if 𝑥 [𝜓]-grows exponentially.

The real pretrees T are degenerate if and only if [𝜓] is exponentially growing.

Without metrics, there is not much one can do to compare limit pretrees. On the other hand, we do
not expect limit pseudoforests to be well-defined (even up to homothety) for a given outer automorphism
– this would be equivalent to the existence of a canonical descending sequence of limit forests. The new
idea is to pick a limit pseudoforest (T , (𝛿𝑖)𝑛𝑖=1) and normalize its hierarchy (𝛿𝑖)

𝑛
𝑖=1 using the attracting
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laminations for [𝜓]. For the normalized hierarchy, the associated top level forest will be universal; in
particular, it is independent of any choices made in its construction.

3.2. Attracting laminations

Fix an exponentially growing automorphism 𝜓 : F → F with a descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of limit
forests. Let G1 = F , G𝑖+1 = G [Y𝑖], and [𝜓𝑖] be the restriction of [𝜓] to G𝑖 for 𝑖 ≥ 1. Each limit forest
(Y𝑖 , 𝛿𝑖) has matching stable laminationsL+

Z𝑖
[𝜓𝑖] for [𝜓𝑖] rel.Z𝑖 , whereZ𝑖 is a [𝜓𝑖]-invariant proper free

factor system ofG𝑖 . By Claim 1.5,R(G𝑖 ,Z𝑖) is canonically identified with a subspace ofR(G𝑖) via a lifting
map. As G𝑖+1 is a malnormal subgroup system of G𝑖 , the space of lines R(G𝑖+1) is canonically identified
with a closed subspace of R(G𝑖) (exercise). By transitivity, R(G𝑛) ⊂ R(G𝑛−1) ⊂ · · · ⊂ R(G0) = R(F).

Consider this chain of canonical embeddings: R(G𝑖 ,Z𝑖) ⊂ R(G𝑖) ⊂ R(F). Quasiperiodicity is not
preserved by the first embedding, but a weaker form of it is. A line [𝑙] is birecurrent in an F-forest if
any closed interval 𝐼 ⊂ 𝑙 has infinitely many translates contained in both ends of l; quasiperiodic lines
are birecurrent.

An attracting lamination for [𝜓] in R(F) is the closure of a birecurrent line in R(F) with a
𝜓𝑘∗ -attracting neighborhood for some 𝑘 ≥ 1. The set of all attracting laminations for [𝜓] is canonical as
it is defined using canonical constructs: R(F) and the homeomorphism 𝜓∗ : R(F) → R(F). Note that
𝜓∗ permutes the attracting laminations for [𝜓].

Remark. This definition is from [3, Definition 3.1.5]. Shortly, we will define topmost attracting lami-
nations as done in [3, Section 6].

Lemma 3.2 (cf. [3, Lemma 3.1.4]). Let 𝑓 : (T , 𝑑) → (Y , 𝛿) be an equivariant PL-map. A line is
birecurrent in R(Y , 𝛿) if and only if it is birecurrent in R(T ). (exercise)

So leaves of L+
Z𝑖
[𝜓𝑖] are birecurrent inR(G𝑖), and hence, R(F); moreover, a 𝜓𝑘𝑖∗-attracting neighbor-

hood of a line in R(G𝑖 ,Z𝑖) will lift to a 𝜓𝑘∗ -attracting neighborhood of the same line in R(F). (exercise)
Thus, the closure in R(F) of a stable lamination for [𝜓𝑖] rel. Z𝑖 (i.e., a component of L+

Z𝑖
[𝜓𝑖]) is an

attracting lamination for [𝜓].

Lemma 3.3 (cf. [3, Lemma 3.1.10]). Let 𝜓 : F → F be an exponentially growing automorphism with
a descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of limit forests. The components of stable laminations L+

Z𝑖
[𝜓𝑖] (1 ≤

𝑖 ≤ 𝑛) determine all the attracting laminations for [𝜓].

Sketch of proof. Suppose that [𝑙] ∈ R(F) is a birecurrent line with a 𝜓𝑘∗ -attracting neighborhood for
some 𝑘 ≥ 1. If G𝑛+1 ≠ ∅, then either it consists of only cyclic components or the restriction of 𝜓𝑛 to G𝑛+1
is polynomially growing. Either way, G𝑛+1 cannot support an attracting lamination of 𝜓𝑛. Let 𝑖 ≤ 𝑛 be
the maximal index for which R(G𝑖) ⊂ R(F) contains [𝑙]. Birecurrence in R(F) and Lemma 3.2 imply
[𝑙] is birecurrent in R(G𝑖 ,Z𝑖) with a 𝜓𝑘𝑖∗-attracting neighborhood for some 𝑘 ≥ 1. Following the proof
of Claim 2.8, assume some descending chain (F𝑖, 𝑗 )𝑛𝑖𝑗=2 of proper free factor systems of F𝑖,1 ..= G𝑖 was
used to construct (Y𝑖 , 𝛿𝑖); then any birecurrent line in R(G𝑖 ,Z𝑖) with a 𝜓𝑘𝑖∗-attracting neighborhood is
in R(F𝑖,𝑛𝑖 ,Z𝑖). The proof of Lemma 2.5 (with ‘birecurrence’ in place of ‘quasiperiodicity’) implies
[𝑙] ∈ L+

Z𝑖
[𝜓𝑖]. �

The finite set of all attracting laminations for [𝜓] is canonical (by definition) and partially ordered by
inclusion; an attracting lamination for [𝜓] is topmost if it is maximal in this partial order. By Lemma 2.5,
𝜓𝑖∗ transitively permutes the components of L+

Z𝑖
[𝜓𝑖]; so the closure in R(F) of L+

Z𝑖
[𝜓𝑖] ⊂ R(G𝑖 ,Z𝑖)

is a 𝜓∗-orbit L+
𝑖 [𝜓] of attracting laminations for [𝜓]. The goal is to normalize any limit pseudoforest

(T , (𝑑𝑖)𝑛𝑖=1) so that the levels are related to the partial order of the attracting laminations.
The next proposition is a repackaging of Theorem 2.10 in the language of this chapter:

Proposition 3.4. Let 𝜓 : F → F be an exponentially growing automorphism with a limit pseudoforest
(T , (𝛿𝑖)𝑛𝑖=1).
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For a nontrivial element 𝑥 ∈ F , the following statements are equivalent:

1. the element x is T -loxodromic;
2. the element 𝑥 [𝜓]-grows exponentially; and
3. the axis for x in R(F) weakly 𝜓∗-limits to an attracting lamination.

Proof. The equivalence between Conditions 1–2 is part of Theorem 3.1. Suppose 𝑥 ∈ F is T -loxodromic
and the limit pseudoforest (T , (𝛿𝑖)𝑛𝑖=1) is constructed from the descending sequence of limit forests
(Y𝑖 , 𝛿𝑖) for 1 ≤ 𝑖 ≤ 𝑛. By construction, the element x is conjugate to a Y𝑖-loxodromic element
𝑦 ∈ G𝑖 for some 𝑖 ≤ 𝑛; in particular, x and y have the same axis in R(G𝑖) ⊂ R(F). The axis for y in
R(G𝑖 ,Z𝑖) ⊂ R(G𝑖) weakly 𝜓𝑖∗-limits to the stable laminations L+

Z𝑖
[𝜓𝑖] ⊂ R(G𝑖 ,Z𝑖) by Theorem 2.10;

therefore, the shared axis for y and x in R(F) weakly 𝜓∗-limits to the attracting laminations for [𝜓]
determined by L+

Z𝑖
[𝜓𝑖] (i.e., the closure of L+

Z𝑖
[𝜓𝑖] in R(F)).

Conversely, suppose 𝑥 ∈ F is T -elliptic. Then x is must be conjugate to a Y𝑛-elliptic element
𝑦 ∈ G𝑛. If y is conjugate to an element of Z𝑖 , then the shared axis for y and x in the closed subspace
R(Z𝑖) ⊂ R(F) cannot weakly 𝜓∗-limit to the attracting lamination for [𝜓] determined by a component
of L+

Z𝑖
[𝜓𝑖] – such an attracting lamination contains lines not in R(Z𝑖). If y is not conjugate to an

element of Z𝑖 , then the axis for y in R(G𝑖 ,Z𝑖) does not weakly 𝜓𝑖∗-limit to L+
Z𝑖
[𝜓𝑖] by Theorem 2.10;

therefore, the shared axis for y and x in R(F) cannot weakly 𝜓∗-limit to the attracting lamination for
[𝜓] determined by a component of L+

Z𝑖
[𝜓𝑖]. By Lemma 3.3, we have exhausted all possibilities when

1 ≤ 𝑖 ≤ 𝑛, and the axis for x in R(F) cannot weakly 𝜓∗-limit to an attracting lamination for [𝜓]. �

3.3. Pseudolaminations

Fix an exponentially growing automorphism 𝜓 : F → F with a descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of limit
forests, and let (T , (𝛿𝑖)𝑛𝑖=1) be the limit pseudoforest for (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. Recall that G1 = F , G𝑖+1 = G [Y𝑖],
and [𝜓𝑖] is the restriction of [𝜓] to G𝑖 for 𝑖 ≥ 1. For 1 ≤ 𝑖 ≤ 𝑛, the stable laminations L+

Z𝑖
[𝜓𝑖] are

contained in R(Y𝑖 , 𝛿𝑖) ⊂ R(G𝑖 ,Z𝑖), where Z𝑖 is some [𝜓𝑖]-invariant proper free factor system of G𝑖 .
Let T𝑖 ⊂ T be the characteristic convex subsets for G𝑖 . By construction of (T , (𝛿𝑖)𝑛𝑖=1), 𝛿𝑖 restricts to

a G𝑖-invariant convex pseudometric on T𝑖 whose associated G𝑖-forest can be equivariantly identified with
(Y𝑖 , 𝛿𝑖). Fix such an identification, and let 𝜅𝑖 : T𝑖 → Y𝑖 denote the natural equivariant collapse map.
The stable laminations L+

Z𝑖
[𝜓𝑖] are in R(Y𝑖 , 𝛿𝑖); their leaves have unique lifts (via 𝜅𝑖) to T𝑖 ⊂ T ; we call

these pseudoleaves of L+
T [𝜓𝑖]. A pseudoleaf segment of L+

T [𝜓𝑖] is a closed interval in a (representative
of a) pseudoleaf with nondegenerate 𝜅𝑖-image in Y𝑖 .

Remarkably, the pseudoleaf segments detect weak 𝜓∗-limits of elements in attracting laminations.
Let L+

𝑖 [𝜓] be the attracting laminations for [𝜓] determined by L+
Z𝑖
[𝜓𝑖] (i.e., the closure in R(F) of the

stable laminations L+
Z𝑖
[𝜓𝑖]).

Proposition 3.5. Let 𝜓 : F → F be an exponentially growing automorphism with a limit pseudoforest
(T , (𝛿𝑖)𝑛𝑖=1). For 1 ≤ 𝑗 ≤ 𝑛 and T -loxodromic 𝑥 ∈ F , the axis for x in T contains a pseudoleaf segment
of L+

T [𝜓 𝑗 ] if and only if the axis for x in R(F) weakly 𝜓∗-limits to the attracting laminations L+
𝑗 [𝜓].

Proof. Let (T , (𝛿𝑖)𝑛𝑖=1) be the limit pseudoforest for the descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of limit forests
for [𝜓]. For 𝑖 ≤ 𝑛, pick a descending sequence (𝜏𝑖, 𝑗 )

𝑛𝑖
𝑗=1 of irreducible train tracks for [𝜓𝑖] rel. Z𝑖; we

can assume 𝜏𝑖+1, 𝑗 is defined on a free splitting of Z𝑖 for some 𝑗 < 𝑛𝑖+1 since [𝜓𝑖+1] is polynomially
growing rel. Z𝑖 (Theorem 2.10). The train tracks (𝜏𝑖, 𝑗 )

𝑛𝑖
𝑗=1 induce a 𝜓𝑖-equivariant 𝜆𝑖-Lipschitz PL-

map 𝜏◦𝑖 : (T ◦
𝑖 , 𝑑

◦
𝑖 ) → (T ◦

𝑖 , 𝑑
◦
𝑖 ). Fix a metric free splitting (T ★, 𝑑★) of F that is the metric blow-up

of (T ◦
1 , 𝑑

◦
1), (T ◦

𝑖+1(Z𝑖), 𝑑◦𝑖+1) for 𝑖 < 𝑛, and some metric free splitting (T ◦
𝑛+1, 𝑑

◦
𝑛+1) of Z𝑛 whose free

factor system F [T ◦
𝑛+1] is trivial. As the G𝑖-orbit of T ◦

𝑖 (Z𝑖−1) is 𝜏◦𝑖 -invariant, the maps (𝜏◦𝑖 )
𝑛
𝑖=1 induce a

𝜓-equivariant PL-map 𝜏★ on (T ★, 𝑑★).
Let 𝑥 ∈ F be a T -loxodromic element. By construction, the element x is conjugate to aY𝑖-loxodromic

𝑦𝑖 ∈ G𝑖 for some 𝑖 ≤ 𝑛; let 𝑙◦𝑖 be the T ◦
𝑖 -axis for 𝑦𝑖 . If 𝑗 = 𝑖, then the equivalence in the proposition’s

statement follows from Theorem 2.10. For the rest of the proof, we prove the equivalence when 𝑗 > 𝑖.
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As we are going to invoke the same argument in the next proof, we mostly forget that 𝑙◦𝑖 is a T ◦
𝑖 -

axis for a Y𝑖-loxodromic element and only use the fact [𝑙◦𝑖 ] ∈ R(Y𝑖 , 𝛿𝑖) (i.e., 𝑙◦𝑖 projects to a line 𝛾𝑖
in (Y𝑖 , 𝛿𝑖)).

Suppose the T -axis for x contains a pseudoleaf segment of L+
T [𝜓 𝑗 ] for some 𝑗 > 𝑖. Then the T -

axis for 𝑦𝑖 contains a pseudoleaf segment 𝜎𝑗 of L+
T [𝜓 𝑗 ], and 𝜅𝑖 (𝜎𝑗 ) is a point ◦𝑖 ∈ 𝛾𝑖 with nontrivial

point stabilizer 𝐺◦𝑖
..= StabG𝑖 (◦𝑖). In Subsection 2.2.3, we describe how the line 𝛾𝑖 in (Y𝑖 , 𝛿𝑖) and point

◦𝑖 ∈ 𝛾𝑖 determine an algebraic iterated turn (𝜖, 𝑠−1
𝑖+1,1𝑠𝑖+1,2; 𝜑𝑖+1)G𝑖+1 . Any iterated turn (𝛽𝑖+1,𝑚)𝑚≥0 over

T ◦
𝑖+1 realizing this algebraic iterated turn limits to an interval [★𝑖+1,1, ★𝑖+1,2] in the metric completion
(Y 𝑖+1, 𝛿𝑖+1) by Theorem 2.9, and [★𝑖+1,1, ★𝑖+1,2] contains 𝜅𝑖+1(𝜎𝑗 ).

If 𝑗 = 𝑖 + 1, then [★𝑖+1,1, ★𝑖+1,2] ⊃ 𝜅𝑖+1(𝜎𝑖+1) is not degenerate and (𝛽𝑖+1,𝑚)𝑚≥0 weakly limits
to a component of L+

Z𝑖+1
[𝜓𝑖+1] by Theorem 2.9. Otherwise, for 𝑘 ≥ 𝑖 + 1, assume 𝜅𝑘 (𝜎𝑗 ) is a point

◦𝑘 in the interval [★𝑘,1, ★𝑘,2] ⊂ Y 𝑘 corresponding to the algebraic iterated turn (𝜖, 𝑠−1
𝑘,1𝑠𝑘,2; 𝜑𝑘 )G𝑘 ,

where ◦𝑘 has nontrivial stabilizer 𝐺◦𝑘 . By the discussion in Subsection 2.2.4 (and remark after Theo-
rem 2.9), the algebraic iterated turn over G𝑘 and point ◦𝑘 in [★𝑘,1, ★𝑘,2] determine an algebraic iterated
turn (𝜖, 𝑠−1

𝑘+1,1𝑠𝑘+1,2; 𝜑𝑘+1)G𝑘+1 that limits to [★𝑘+1,1, ★𝑘+1,2] ⊂ Y 𝑗 ; morevoer, [★𝑘+1,1, ★𝑘+1,2] contains
𝜅𝑘+1 (𝜎𝑗 ). By induction, [★ 𝑗 ,1, ★ 𝑗 ,2] contains 𝜅 𝑗 (𝜎𝑗 ). Since 𝜅 𝑗 (𝜎𝑗 ) is not degenerate, any realization
(𝛽 𝑗 ,𝑚)𝑚≥0 over T ◦

𝑗 of the algebraic iterated turn (𝜖, 𝑠−1
𝑗 ,1𝑠 𝑗 ,2; 𝜑 𝑗 )G 𝑗 weakly limits to a component of

L+
Z 𝑗

[𝜓 𝑗 ] by Theorem 2.9.
In either case ( 𝑗 ≥ 𝑖 + 1), any realization over T ★ of (𝜖, 𝑠−1

𝑗 ,1𝑠 𝑗 ,2; 𝜑 𝑗 )G 𝑗 weakly limits to (the closure
in R(F) of) a component of L+

Z 𝑗
[𝜓 𝑗 ] (bounded cancellation). If 𝑗 > 𝑖 + 1, any realization over T ★ of

(𝜖, 𝑠−1
𝑖+1,1𝑠𝑖+1,2; 𝜑𝑖+1)G𝑖+1 weakly limits to a component of L+

Z 𝑗
[𝜓 𝑗 ] by transitivity. Hence, the shared axis

for 𝑦𝑖 and x in R(F) weakly 𝜓∗-limits to a component of L+
Z 𝑗

[𝜓 𝑗 ]. As 𝜓 𝑗∗ : R(G 𝑗 ,Z 𝑗 ) → R(G 𝑗 ,Z 𝑗 )
acts transitively on the components of L+

Z 𝑗
[𝜓 𝑗 ], the axis for x in R(F) weakly 𝜓∗-limits to L+

𝑗 [𝜓], the
closure in R(F) of L+

Z 𝑗
[𝜓 𝑗 ].

Conversely, suppose the axis [𝑙★] for 𝑦𝑖 (and x) in R(F) weakly 𝜓∗-limits to L+
𝑗 [𝜓] for some 𝑗 > 𝑖.

Using (T ★, 𝑑★)-coordinates, the axis 𝜏★𝑚∗ (𝑙★) contains arbitrarily 𝑑◦𝑗 -long leaf segments of L+
𝑗 [𝜓] for

𝑚 � 1. So 𝜏★𝑀∗ (𝑙★) has a L+
𝑗 [𝜓]-leaf segment 𝐼★ ⊂ T ★(Z 𝑗−1) with 𝑑◦𝑗 -length 𝐿 > 𝐶 ′ ..= 2𝐶 [𝜏★]

𝜆 𝑗−1 for
𝑀 � 1. As 𝜏◦𝑗 is a train track on leaves of L+

Z 𝑗
[𝜓 𝑗 ], 𝜏★𝑚∗ (𝑙★) has a L+

𝑗 [𝜓]-leaf segment surviving from
𝐼★ with 𝑑◦𝑗 -length > 𝜆𝑀−𝑚

𝑗 (𝐿 − 𝐶 ′) for 𝑚 ≥ 𝑀 .
Let 𝜌𝑖 : (T ★(G𝑖), 𝑑★) → (T ◦

𝑖 , 𝑑
◦
𝑖 ) be an arbitrary equivariant PL-map. The 𝜌𝑖-image of

𝐼★ ⊂ 𝜏★𝑀∗ (𝑙★) is a vertex 𝑣 ∈ 𝜏◦𝑀𝑖∗ (𝑙◦𝑖 ) with nontrivial stabilizer. Since a nondegenerate part of 𝐼★

survives in 𝜓𝑚∗ (𝑙★) for all 𝑚 ≥ 𝑀 , we have 𝜏◦(𝑚−𝑀 )
𝑖 (𝑣) ∈ 𝜏◦𝑚𝑖∗ (𝑙◦𝑖 ) for all 𝑚 ≥ 𝑀 and ℎ−𝑀𝑖 (𝜋◦𝑖 (𝑣)) ∈ 𝛾𝑖

has a nontrivial stabilizer 𝐺𝑣 ..= StabG𝑖 (ℎ
−𝑀
𝑖 (𝜋◦𝑖 (𝑣))), where ℎ𝑖 is the 𝜓𝑖-equivariant 𝜆𝑖-homothety on

(Y𝑖 , 𝛿𝑖). As before, the line 𝛾𝑖 , point ℎ−𝑀𝑖 (𝜋◦𝑖 (𝑣)) ∈ 𝛾𝑖 , and equivariant PL-maps 𝜌𝑖+1, . . . , 𝜌 𝑗 deter-
mine nested iterated turns over T ◦

𝑖+1, . . . , T ◦
𝑗 limiting to intervals in Y 𝑖+1, . . . , Y 𝑗 . By the computation in

the previous paragraph and quasiperiodicity of stable laminations, the last iterated turn over T ◦
𝑗 weakly

limits to a component of L+
Z 𝑗

[𝜓 𝑗 ]. So the corresponding interval [★ 𝑗 ,1, ★ 𝑗 ,2] ⊂ Y 𝑗 is not degenerate
(Theorem 2.9), and the T -axis for 𝑦𝑖 has an intersection with T 𝑗 whose 𝜅 𝑗 -image is [★ 𝑗 ,1, ★ 𝑗 ,2]. By
the description of intervals in Y 𝑗 , [★ 𝑗 ,1, ★ 𝑗 ,2] contains a leaf segment of 𝜋◦𝑗∗(L+

Z 𝑗
[𝜓 𝑗 ]); therefore, the

T -axes of 𝑦𝑖 and x contain pseudoleaf segments of L+
T [𝜓 𝑗 ]. �

In fact, the containment relation on pseudoleaf segments detects the partial order on the set of
attracting laminations:

Claim 3.6. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, a pseudoleaf segment of L+
T [𝜓𝑖] contains a pseudoleaf segment of L+

T [𝜓 𝑗 ]
if and only if L+

𝑖 [𝜓] contains L+
𝑗 [𝜓].

We only sketch the proof as it is almost identical to the proof of Proposition 3.5.
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Sketch of proof. There is nothing to show if 𝑖 = 𝑗 . Without loss of generality, assume 𝑖 < 𝑗 ; certainly,
L+
𝑗 [𝜓] does not containL+

𝑖 [𝜓], and no pseudoleaf segment ofL+
T [𝜓 𝑗 ] can contain a pseudoleaf segment

of L+
T [𝜓𝑖]. Let [𝑙◦𝑖 ] be an eigenline in (T ◦

𝑖 , 𝑑
◦
𝑖 ) of [𝜏◦𝑘𝑖 ] for some 𝑘 ≥ 1, and 𝑙★ be the lift of 𝑙◦𝑖 to

(T ★, 𝑑★). The projection 𝛾𝑖 (of 𝑙◦𝑖 ) is a line in (Y𝑖 , 𝛿𝑖), and we denote by 𝑙𝑖 ⊂ T𝑖 its lift via 𝜅𝑖 to a
pseudoleaf of L+

T [𝜓𝑖].
Suppose the pseudoleaf 𝑙𝑖 of L+

T [𝜓𝑖] contains a pseudoleaf segment 𝜎𝑗 of L+
T [𝜓 𝑗 ]. Then 𝜅𝑖 (𝜎𝑗 ) is

a point ◦𝑖 ∈ 𝛾𝑖 with nontrivial point stabilizer 𝐺◦𝑖 . By the same argument as in the previous proof, the
line 𝑙★ in R(F) weakly 𝜓∗-limits to L+

𝑗 [𝜓]. Note that 𝜓𝑘∗ [𝑙★] = [𝑙★] in R(F) as [𝑙◦𝑖 ] is an eigenline
for [𝜏◦𝑘𝑖 ]; moreover, L+

𝑖 [𝜓] consists of the closures in R(F) of [𝑙★], . . . , 𝜓𝑘−1
∗ [𝑙★] since L+

𝑖 [𝜓] is a
𝜓∗-orbit of attracting laminations. So L+

𝑖 [𝜓] ⊃ L+
𝑗 [𝜓].

Conversely, suppose L+
𝑖 [𝜓] ⊃ L+

𝑗 [𝜓]. As L+
𝑖 [𝜓] and L+

𝑗 [𝜓] are 𝜓∗-orbits of attracting laminations,
the line 𝑙★ contains arbitrarily 𝑑◦𝑗 -long leaf segments of L+

𝑗 [𝜓]. By the same argument as in the previous
proof, the pseudoleaf 𝑙𝑖 , and hence some pseudoleaf segment of L+

T [𝜓𝑖], contains a pseudoleaf segment
of L+

T [𝜓 𝑗 ]. �

3.4. Topmost forests

Fix an exponentially growing automorphism 𝜓 : F → F with a descending sequence (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 of
limit forests, and let (T , (𝛿𝑖)𝑛𝑖=1) be the limit pseudoforest for (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. Each limit forest (Y𝑖 , 𝛿𝑖) has
stable laminations L+

Z𝑖
[𝜓𝑖] for [𝜓𝑖] rel. Z𝑖 . Let L+

T [𝜓𝑖] be the lifts to T of leaves in L+
Z𝑖
[𝜓𝑖], L+

𝑖 [𝜓]

the closure in R(F) of L+
Z𝑖
[𝜓𝑖], and {A𝑡𝑜𝑝𝑗 [𝜓𝑖]}

𝑘𝑖
𝑗=1 the subset of {L+

𝑗 [𝜓]}
𝑛
𝑗=𝑖 consisting of all topmost

attracting laminations for [𝜓𝑖]. So A𝑡𝑜𝑝𝑗 [𝜓𝑖] = L+
𝜄 (𝑖, 𝑗)

[𝜓] for some subsequence (𝜄(𝑖, 𝑗))𝑘𝑖𝑗=1 of ( 𝑗)𝑛𝑗=𝑖
with 𝜄(𝑖, 1) = 𝑖, and (𝜄(𝑖, 𝑗))𝑘𝑖𝑗=2 is a subsequence of (𝜄(𝑖 + 1, 𝑗))𝑘𝑖+1

𝑗=1 if 𝑘𝑖 ≥ 2.
For 𝑖 ≥ 1, we say the G𝑖-invariant hierarchy (𝛿 𝑗 )

𝑛
𝑗=𝑖 on the characteristic convex subsets T𝑖 ⊂ T for

G𝑖 normalizes to a factored G𝑖-invariant convex pseudometric Σ𝑘𝑖𝑗=1𝛿 𝜄 (𝑖, 𝑗) if the G 𝜄 (𝑖, 𝑗) -invariant convex
pseudometric 𝛿 𝜄 (𝑖, 𝑗) can be extended to a G𝑖-invariant convex pseudometric, also denoted 𝛿 𝜄 (𝑖, 𝑗) , on T𝑖 .
The F-invariant hierarchy (𝛿𝑖)

𝑛
𝑖=1 normalizes to 𝛿1 if (and only if) 𝑘1 = 1.

We may assume 𝑘1 ≥ 2 and the G2-invariant hierarchy (𝛿𝑖)
𝑛
𝑖=2 normalizes to ⊕

𝑘2
𝑗=1𝛿 𝜄 (2, 𝑗) . Let T̂2 be

the 𝜅1-preimage of the characteristic convex subsets Y1 (G2). Suppose F1,1
..= F , . . . , F1,𝑚 are the

proper free factor systems of F used to construct (Y1, 𝛿1) and let T1,1, . . . , T1,𝑚 be their corresponding
characteristic convex subsets in T . By Lemma 2.6, every closed interval in the characteristic convex
subsets Y1(F1,𝑚) is a finite concatenation of leaf segments of L+

Z1
[𝜓1]. Thus, every closed interval in

T1,𝑚 is a finite concatenation of pseudoleaf segments of L+
T [𝜓1] and closed intervals in F1,𝑚 · T̂2.

Fix 𝑗 ∈ {2, . . . , 𝑘1}. Since L+
1 [𝜓] does not contain L+

𝜄 (1, 𝑗) [𝜓], Claim 3.6 implies the intersection
of any pseudoleaf segment of L+

T [𝜓1] with T̂2 has 0 diameter with respect to the convex pseudometric
𝛿 𝜄 (1, 𝑗) ; we say that L+

Z1
[𝜓1] and 𝛿 𝜄 (1, 𝑗) are independent. So the intersection of any closed interval in

T1,𝑚 with F1,𝑚 · T̂2 has finitely many components that are translates of closed intervals in T̂2 with
positive 𝛿 𝜄 (1, 𝑗) -diameter. Thus 𝛿 𝜄 (1, 𝑗) can be extended to an F1,𝑚-invariant convex pseudometric on
T1,𝑚 that is mutually singular with 𝛿1. By our inductive description of intervals in Y1 (Lemma 2.7), the
convex pseudometric 𝛿 𝜄 (1, 𝑗) extends equivariantly to T as 𝜆 𝜄 (1, 𝑗) > 1.

As j was arbitrary, the F-invariant hierarchy (𝛿𝑖)
𝑛
𝑖=1 normalizes to the factored convex pseudometric

⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) , where 𝑘 ..= 𝑘1 and 𝜄( 𝑗) ..= 𝜄(1, 𝑗). Let (Y , ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) be the associated factored F-forest.
The real F-pretrees Y are minimal and have trivial arc stabilizers since the pseudometric ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗)

on T is convex. The 𝜓-equivariant (𝜆𝑖)𝑛𝑖=1-homothety h induces a 𝜓-equivariant ⊕j=1
k𝜆𝜄(j)-dilation on

(Y , ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) ): a 𝜆 𝜄 ( 𝑗) -homothety with respect to each factor 𝛿 𝜄 ( 𝑗) . By Proposition 3.5, a nontrivial
element of F is 𝛿 𝜄 ( 𝑗) -loxodromic if and only if its axis in R(F) weakly 𝜓∗-limits to A𝑡𝑜𝑝𝑗 [𝜓1] –
here, 𝛿 𝜄 ( 𝑗) -loxodromic means the element acts loxodromically on the associated F-forest for 𝛿 𝜄 ( 𝑗) .
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The factored F-forest (Y , ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) is the complete topmost limit forest for (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. Given any
subset of the 𝜓∗-orbits of topmost attracting laminations for [𝜓], then one may consider the associated
factored F-forest for the sum of corresponding pseudometrics:

Theorem 3.7. Let 𝜓 : F → F be an automorphism and {A𝑡𝑜𝑝𝑗 [𝜓]}𝑘𝑗=1 a (possibly empty) subset of
𝜓∗-orbits of topmost attracting laminations for [𝜓].

Then there is

1. a minimal factored F-forest (Y , ⊕𝑘𝑗=1𝛿 𝑗 ) with trivial arc stabilizers;
2. a unique 𝜓-equivariant expanding dilation 𝑓 : (Y , ⊕𝑘𝑗=1𝛿 𝑗 ) → (Y , ⊕𝑘𝑗=1𝛿 𝑗 ); and
3. for 1 ≤ 𝑗 ≤ 𝑘 , a nontrivial element 𝑥 ∈ F is 𝛿 𝑗 -loxodromic if and only if its axis in R(F) weakly
𝜓∗-limits to A𝑡𝑜𝑝𝑗 [𝜓].

Fix some index 𝜄( 𝑗) ≠ 1, and let X1,𝑚 be the associated F1,𝑚-forest for 𝛿1 ⊕ 𝛿 𝜄 ( 𝑗) on T1,𝑚. Two lines
in (X1,𝑚, 𝛿1 ⊕ 𝛿 𝜄 ( 𝑗) ) representing leaves in L+

Z1
[𝜓] overlap if they have a nondegenerate intersection;

overlapping generates an equivalence relation, and each overlapping class is identified with its union
in X1,𝑚. Let supp[𝜓1;Z1] denote the subgroup system corresponding to the (setwise) stabilizers of
overlapping classes 𝐿+Z1

– this subgroup system, called the lower-support of L+
Z1

[𝜓1], is [𝜓]-invariant.
The system supp[𝜓1;Z1] is not empty as there are Y1-loxodromic elements whose axis in Y∗

1 is
contained in 𝐿+Z1

. Note the number of components in supp[𝜓1;Z1] is at most the number of components
in L+

Z1
[𝜓1]. Let (X̂1,𝑚(G2), 𝛿 𝜄 ( 𝑗) ) be the closure in (X1,𝑚, 𝛿1 ⊕ 𝛿 𝜄 ( 𝑗) ) of the characteristic subforest for

G2. By Lemma 2.6 again, intervals in X1(F1,𝑛1 ) are finite concatenations of leaf segments of L+
Z1

[𝜓1]

and closed intervals in X̂1,𝑚(G2).
The overlapping classes 𝐿+Z1

and the F1,𝑚-orbits of components of X̂1,𝑚(G2) form an F1,𝑚-invariant
transverse covering of X1,𝑚 (see [14, Definition 4.6]). Let S ′ be a simplicial F1,𝑚-pretree: vertices
(‘component-vertices’) in equivariant bijective correspondence with the components of the transverse
covering (overlapping classes 𝐿+Z1

and translates of components of X̂1,𝑚(G2)); for each point in X1,𝑚
contained in exactly two components of the transverse covering, there is an edge between the corre-
sponding component-vertices; for each point contained in more than two components, there is a new
vertex (‘intersection-vertex’) and an edge connecting it to each relevant component-vertex. By the
blow-up construction, translates of components of X̂1,𝑚 (G2) either coincide or are disjoint. In partic-
ular, each intersection-vertex 𝑣 ∈ S ′ with a nontrivial stabilizer is adjacent to a unique vertex 𝑤 ∈ S ′

corresponding to a component of F1,𝑚 · X̂1,𝑚 (G2), and the stabilizer of v fixes w; therefore, we can col-
lapse all such edges [𝑣, 𝑤] to form a simplicial F1,𝑚-pretree S whose intersection-vertices have trivial
stabilizers.

TheF1,𝑚-forest (X1,𝑚, 𝛿1⊕𝛿 𝜄 ( 𝑗) ) is a graph of actions with skeletonS , and the nondegenerate ‘vertex
trees’ are the components of the transverse covering [14, Lemma 4.7]. As the𝜓1,𝑚-equivariant expanding
dilation on (X1,𝑚, 𝛿1 ⊕ 𝛿 𝜄 ( 𝑗) ) permutes the overlapping classes (and components of F1,𝑚 · X̂1,𝑚(G2)),
it induces a 𝜓1,𝑚-equivariant simplicial automorphism 𝜎 : S → S that preserves the ‘type’ of a vertex.

Let T �
1 be an equivariant blow-up of (T1, 𝑗 )

𝑚−1
𝑗=1 , S , and X1,𝑚(G2). When the metric 𝛿 𝜄 ( 𝑗) is extended

appropriately to T �
1 , the simplicial automorphisms (𝜏1, 𝑗 )

𝑚−1
𝑗=1 , 𝜎, and the homothety 𝑓2 on X1,𝑚 (G2)

induce a𝜓-equivariant𝜆 𝜄 ( 𝑗) -Lipschitz map 𝜏� : (T �
1 , 𝛿

�
𝜄 ( 𝑗)

) → (T �
1 , 𝛿

�
𝜄 ( 𝑗)

) that linearly extends 𝑓2. Using
𝜏�-iteration, we define the limit forest (X1, 𝛿 𝜄 ( 𝑗) ) for [𝜏𝑖]𝑛−1

𝑖=1 , 𝜎, and 𝑓2. Like the previous convergence
criteria, the proof of the following lemma is postponed to Section 4.3.

Lemma 4.7. Let 𝜓 : F → F be an automorphism, (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irre-
ducible train tracks for [𝜓], Z ..= F [T𝑛], G the nontrivial point stabilizer system for the limit forest for
[𝜓] rel. Z , [𝜓G] the [𝜓]-restriction to G, (YG , 𝛿) a minimal G-forest with trivial arc stabilizers such
that L+

Z [𝜓] and 𝛿 are independent, ℎG : (YG , 𝛿) → (YG , 𝛿) a 𝜓G-equivariant 𝜆-homothety, S a minimal
simplicial F [T𝑛−1]-forest that is the skeleton for the graph of actions for L+

Z [𝜓] and 𝛿, 𝜎 : S → S the
corresponding simplicial automorphism, and (X , 𝛿) the limit forest for [𝜏𝑖]

𝑛−1
𝑖=1 , 𝜎, and ℎG .
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If (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers, the characteristic subforest of (Y ′, 𝛿′)
for G is equivariantly isometric to (YG , 𝛿) and the lower-support supp[𝜓;Z] of L+

Z [𝜓] is Y ′-elliptic,
then the limit of (Y ′𝜓𝑚, 𝜆−𝑚𝛿′)𝑚≥0 is (X , 𝛿).

Fix a subset {A𝑡𝑜𝑝𝑗 [𝜓]}𝑘𝑗=1 of 𝜓∗-orbits of topmost attracting laminations for [𝜓]; a topmost forest
for [𝜓] is a factored F-forest satisfying the conclusion of Theorem 3.7 with respect to this subset.
Lemma 4.7 is enough to prove the universality of topmost forests:

Theorem 3.8. Let 𝜓 : F → F be an automorphism and {A𝑡𝑜𝑝𝑗 [𝜓]}𝑘𝑗=1 a (possibly empty) subset of
𝜓∗-orbits of topmost attracting laminations for [𝜓]. Any topmost forest for [𝜓] with respect to the given
subset has a unique equivariant dilation to any corresponding topmost limit forest for [𝜓].

Thus, the factored F-forest (Y , ⊕𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) is the complete topmost forest for [𝜓] (up to rescaling of
the factors). We omit the proof since we are about to prove something stronger in the next section (see
Theorem 3.11).

Suppose (T , (𝛿𝑖)𝑛𝑖=1) and (T ′, (𝛿𝑖)
𝑛′

𝑖=1) are two limit pseudoforests for [𝜓]. Then 𝑛 = 𝑛′ as they are
exactly the number of 𝜓∗-orbits of attracting laminations for [𝜓]. Using Theorem 3.7, the hierarchies
can be inductively normalized to (⊕

𝑘𝑖
𝑗=1𝛿𝑖, 𝑗 )

𝑑
𝑖=1 and (⊕

𝑘𝑖
𝑗=1𝛿

′
𝑖, 𝑗 )
𝑑
𝑖=1, respectively, where d is the length of

the longest chain in the partial order of attracting laminations for [𝜓] and 𝛿𝑖, 𝑗 , 𝛿′𝑖, 𝑗 are indexed by the
same 𝜓∗-orbit A𝑖, 𝑗 [𝜓] of attracting laminations. By inductively invoking Theorem 3.8 and uniqueness
of the blow-up construction, the normalized pseudoforests (T , (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )

𝑑
𝑖=1) and (T ′, (⊕𝑘𝑖𝑗=1𝛿

′
𝑖, 𝑗 )
𝑑
𝑖=1)

are in the same equivariant dilation class, and invariants of this class are invariants of [𝜓]! In particular,
T and T ′ are equivariantly pretree-isomorphic.

Corollary 3.9. Any two limit pretrees for an automorphism 𝜓 : F → F are equivariantly pretree-
isomorphic.

We can now define more invariants of an attracting lamination: let A be an attracting lamination
for [𝜓], A[𝜓] its 𝜓∗-orbit and (𝛿𝑖, 𝑗 , 𝜆𝑖, 𝑗 ) the corresponding pair of pseudometric, and stretch factor in
the normalized pseudoforest (T , (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )

𝑑
𝑖=1); then 𝜆(𝐴) ..= 𝜆𝑖, 𝑗 is a well-defined stretch factor for A.

Now let A be topmost, {B𝑖′, 𝑗′ } be the whole subset of 𝜓∗-orbits of attracting laminations not contained
in A[𝜓], and (T𝐴, (⊕𝑘𝑖

′

𝑗′=1𝛿𝑖′, 𝑗′
′)𝑑

′

𝑖′=1) the associated normalized pseudoforest. Then the upper-support
of A[𝜓] is the subgroup system of point stabilizers suppA[𝜓] ..= G [T𝐴]. Unlike the lower-support,
the upper-support is always a malnormal subgroup system of finite type. Note that components of the
lower-support are conjugate into components of the upper-support.

3.5. Dominating forests

Fix an exponentially growing automorphism 𝜓 : F → F . Let 𝐴 ⊂ R(F) be an attracting lamination for
[𝜓] and 𝜆(𝐴) its stretch factor. We say A is dominating if 𝜆(𝐴) > 𝜆(𝐴′) whenever 𝐴′ is an attracting
lamination for [𝜓] containing A and 𝐴′ ≠ 𝐴; topmost attracting laminations are vacuously dominating.
We will extend Theorem 3.7 to dominating attracting laminations by mimicking the reasoning in the
previous section, focusing only on the changes needed for dominating attracting laminations.

Let (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 be a descending sequence of limit forests for [𝜓], (L+
𝑖 [𝜓])

𝑛
𝑖=1 the correspond-

ing sequence of 𝜓∗-orbits of attracting laminations for [𝜓], (T , (𝛿𝑖)𝑛𝑖=1) the limit pseudoforest for
(Y𝑖 , 𝛿𝑖)𝑛𝑖=1, and {A𝑑𝑜𝑚𝑗 [𝜓𝑖]}

𝑘𝑖
𝑗=1 the subset of {L+

𝑗 [𝜓]}
𝑛
𝑗=𝑖 consisting of all dominating attracting lam-

inations for [𝜓𝑖] – recall that Y𝑖 are G𝑖-pretrees and [𝜓𝑖] is the restriction of [𝜓] to G𝑖 . As before,
A𝑑𝑜𝑚𝑗 [𝜓𝑖] = L+

𝜄 (𝑖, 𝑗)
[𝜓] for some subsequence (𝜄(𝑖, 𝑗))𝑘𝑖𝑗=1 of ( 𝑗)𝑛𝑗=𝑖 with 𝜄(𝑖, 1) = 𝑖.

Suppose 𝑘1 ≥ 2 and the G2-invariant hierarchy (𝛿𝑖)
𝑛
𝑖=2 normalizes to the factored G2-invariant convex

pseudometric Σ𝑘2
𝑗=1𝛿 𝜄 (2, 𝑗) on the characteristic convex subsets T2 ⊂ T for G2. Fix some 𝑗 ∈ {2, . . . , 𝑘1}.

The previous section discusses how to equivariantly extend 𝛿 𝜄 (1, 𝑗) to T when L+
1 [𝜓] does not contain
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L+
𝜄 (1, 𝑗) [𝜓]. Assume for the rest of this section that L+

𝜄 (1, 𝑗) [𝜓] ⊂ L+
1 [𝜓]; thus, 𝜆1 < 𝜆 𝜄 (1, 𝑗) as L+

𝜄 (1, 𝑗) [𝜓]

is dominating. Let (Y∗, (𝛿1, 𝛿 𝜄 (1, 𝑗) )) be the associated F-pseudoforest for the F-invariant 2-level
hierarchy (𝛿1, 𝛿 𝜄 (1, 𝑗) ) and ℎ∗ the 𝜓-equivariant pretree-automorphism on Y∗ induced by ℎ : T → T .

Let 𝜏1 : (Γ1, 𝑑1) → (Γ1, 𝑑1) be the 𝜆1-Lipschitz topological representative for 𝜓 used to construct
(Y1, 𝛿1) through iteration. Pick an equivariant blow-up Γ◦ of Γ1 rel. Y∗(Z) ⊂ Y∗, the characteristic
convex subsets for the proper free factor system Z ..= F [Γ1]. Since Z is 𝛿1-elliptic, 𝛿 𝜄 (1, 𝑗) is a metric
on Y∗(Z). The blow-up inherits an F-invariant 2-level hierarchy (𝑑1, 𝛿 𝜄 (1, 𝑗) ) with full support. As Γ1
is simplicial, this hierarchy extends to a factored F-invariant convex metric 𝑑1 ⊕ 𝛿 𝜄 (1, 𝑗) on Γ◦.

Let [𝜓Z ] be the restriction of [𝜓] to Z and ℎ∗Z the 𝜓Z -equivariant ‘restriction’ of ℎ∗ to
(Y∗(Z), 𝛿 𝜄 (1, 𝑗) ). For a parameter 𝑐 > 0, the topological representative 𝜏1 induces a 𝜓-equivariant
map 𝜏◦𝑐 on Γ◦ that extends ℎ∗Z and is linear with respect to (𝑐 𝑑1) ⊕ 𝛿 𝜄 (1, 𝑗) on edges from Γ1. If 𝑐 � 1,
then 𝜏◦𝑐 is 𝜆 𝜄 (1, 𝑗) -Lipschitz with respect to (𝑐 𝑑1) ⊕ 𝛿 𝜄 (1, 𝑗) since 𝜆1 < 𝜆 𝜄 (1, 𝑗) . Through 𝜏◦𝑐 -iteration, we
define a limit forest (Y , 𝛿 𝜄 (1, 𝑗) ) for 𝜏1 and ℎ∗Z whose characteristic subforest for Z is identified with
(Y∗(Z), 𝛿 𝜄 (1, 𝑗) ) – up to equivariant isometry, this limit forest is independent of the parameter c; more-
over, there is an induced 𝜓-equivariant 𝜆-homothety h on (Y , 𝛿 𝜄 (1, 𝑗) ) that restricts to ℎ∗Z on Y∗(Z).

We now refine this construction of a limit forest. For 𝑛 ≥ 1, set 𝑑◦𝑛 ..= 𝜆−𝑛1 𝑑1 ⊕ 𝜆−𝑛
𝜄 (1, 𝑗)𝛿 𝜄 (1, 𝑗) and

𝜏◦ ..= 𝜏◦1 . The map 𝜏◦ : (Γ◦, 𝑑◦0) → (Γ◦𝜓, 𝑑◦1) is equivariant, and (1 + 𝐷)-Lipschitz for some 𝐷 ≥ 0. In
fact, 𝜏◦ : (Γ◦, 𝑑◦𝑛) → (Γ◦𝜓, 𝑑◦𝑛+1) is (1+𝐷𝑟𝑛)-Lipschitz, where 𝑟 ..= 𝜆1𝜆

−1
𝜄 (1, 𝑗) . Set 𝑝𝑛 ..=

∏𝑛−1
𝑖=0 (1+𝐷𝑟 𝑖);

then 𝜏◦𝑛 : (Γ◦, 𝑑◦0) → (Γ◦𝜓𝑛, 𝑝−1
𝑛 𝑑

◦
𝑛) is equivariant and metric; moreover, the pullback of 𝑝−1

𝑛 𝑑
◦
𝑛 to Γ◦

along 𝜏◦𝑛 converges to anF-invariant pseudometric on Γ◦ as 𝑛→ ∞. Since |𝑟 | < 1, the sequence (𝑝𝑛)∞𝑛=1
converges, and the pullback of 𝑑◦𝑛 to Γ◦ along 𝜏◦𝑛 converges to a factored F-invariant pseudometric
𝛿◦1+𝛿

◦
𝜄 (1, 𝑗) on Γ◦. Let (Γ∗, 𝛿◦1+𝛿

◦
𝜄 (1, 𝑗) ) be the associated factored F-forest for this factored pseudometric

on Γ◦ – as L+
𝜄 (1, 𝑗) [𝜓] ⊂ L+

1 [𝜓], one can show that 𝛿◦1 and 𝛿◦
𝜄 (1, 𝑗) are not mutually singular and 𝛿◦

𝜄 (1, 𝑗)
is actually a metric on Γ∗. By construction, the characteristic subforest for Z in (Γ∗, 𝛿◦1 + 𝛿◦

𝜄 (1, 𝑗) ) is
equivariantly isometric to (Y∗(Z), 𝛿 𝜄 (1, 𝑗) ). Similarly, the F-forest (Y1, 𝛿1) is equivariantly isometric
to the associated metric space for the pseudometric 𝛿◦1 on Γ∗ or Γ◦ (Corollary 2.11).

Lemma 4.9. Let 𝜓 : F → F be an automorphism, Z a [𝜓]-invariant proper free factor system, (YZ , 𝛿)
a minimal Z-forest with trivial arc stabilizers, (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible
train tracks for [𝜓] with F [T𝑛] = Z , ℎZ : (YZ , 𝛿) → (YZ , 𝛿) a 𝜓Z -equivariant 𝜆-homothety, and
(Y , 𝛿) the limit forest for [𝜏𝑖]

𝑛
𝑖=1 and ℎZ , where 𝜆 > 𝜆[𝜏𝑛] and [𝜓Z ] is the [𝜓]-restriction to Z .

If (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers and the characteristic subforest of (Y ′, 𝛿′)
for Z is equivariantly isometric to (YZ , 𝛿), then the limit of (Y ′𝜓𝑚, 𝜆−𝑚𝛿′)𝑚≥0 is (Y , 𝛿).

Again, the proof is postponed to Section 4.4. Since the restriction of [𝜓] to G1 is polynomially
growing rel. Z , Lemma 4.9 implies the characteristic subforests (Y∗(G1), 𝛿 𝜄 (1, 𝑗) ) and (Γ∗(G1), 𝛿

◦
𝜄 (1, 𝑗) )

for G1 are equivariantly isometric. By uniqueness of the blow-up construction, Γ∗ is equivariantly
pretree-isomorphic to Y∗; through this pretree-isomorphism, we can identify 𝛿◦

𝜄 (1, 𝑗) with an extension
of 𝛿 𝜄 (1, 𝑗) to an F-invariant convex pseudometric (in fact, metric) on Y∗. Finally, we can lift 𝛿 𝜄 (1, 𝑗) to
an F-invariant convex pseudometric on T since T is an equivariant blow-up of Y∗.

As j was arbitrary, the F-invariant hierarchy (𝛿𝑖)
𝑛
𝑖=1 normalizes to the factored F-invariant convex

pseudometric Σ𝑘𝑗=1𝛿 𝜄 ( 𝑗) , where 𝑘 ..= 𝑘1 and 𝜄( 𝑗) ..= 𝜄(1, 𝑗). We call the associated factored F-forest
(Y , Σ𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) the complete dominating limit forest for (Y𝑖 , 𝛿𝑖)𝑛𝑖=1. This proves the existence part of our
main theorem:

Theorem 3.10. Let 𝜓 : F → F be an automorphism and {A𝑑𝑜𝑚𝑗 [𝜓]}𝑘𝑗=1 a (possibly empty) subset of
𝜓∗-orbits of dominating attracting laminations for [𝜓].

Then there is

1. a minimal factored F-forest (Y , Σ𝑘𝑗=1𝛿 𝑗 ) with trivial arc stabilizers;
2. a unique 𝜓-equivariant expanding dilation 𝑓 : (Y ,Σ𝑘𝑗=1𝛿 𝑗 ) → (Y , Σ𝑘𝑗=1𝛿 𝑗 ); and
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3. for 1 ≤ 𝑗 ≤ 𝑘 , a nontrivial element 𝑥 ∈ F is 𝛿 𝑗 -loxodromic if and only if its axis in R(F) weakly
𝜓∗-limits to A𝑑𝑜𝑚𝑗 [𝜓].

Fix a subset {A𝑑𝑜𝑚𝑗 [𝜓]}𝑘𝑗=1 of 𝜓∗-orbits of dominating attracting laminations for [𝜓]; a dominating
forest for [𝜓] is a factored F-forest satisfying the conclusion of the previous theorem with respect to
this subset. Finally, we prove universality:

Theorem 3.11. Let 𝜓 : F → F be an automorphism and {A𝑑𝑜𝑚𝑗 [𝜓]}𝑘𝑗=1 a (possibly empty) subset of
𝜓∗-orbits of dominating attracting laminations for [𝜓]. Any dominating forest for [𝜓] with respect to
the given subset has a unique equivariant dilation to any corresponding dominating limit forest for [𝜓].

Proof. Let (Y𝑖 , 𝛿𝑖)𝑛𝑖=1 be a descending sequence of limit forests for [𝜓], L+
Z𝑖
[𝜓𝑖] ⊂ R(G𝑖 ,Z𝑖) the stable

laminations for (Y𝑖 , 𝛿𝑖), L+
𝑖 [𝜓] the closure of L+

Z𝑖
[𝜓𝑖] in R(F), {L+

𝜄 ( 𝑗)
[𝜓]}𝑘𝑗=1 a subset of 𝜓∗-orbits

of dominating attracting laminations, (Y∗,Σ𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) the corresponding dominating limit forest for
(Y𝑖 , 𝛿𝑖)𝑛𝑖=1, and (Y ′, Σ𝑘𝑗=1𝛿 𝑗

′) a corresponding dominating forest for [𝜓]. Turn the factored metrics into
hierarchies, and consider the pseudoforests (Y∗, (𝛿 𝜄 ( 𝑗) )

𝑘
𝑗=1) and (Y ′, (𝛿 𝑗

′)𝑘𝑗=1). By Theorem 3.10(3),
𝛿 𝜄 (1) and 𝛿1

′ have the same maximal elliptic subgroup system G.
For induction, assume the G-pseudoforests (Y∗(G), (𝛿 𝜄 ( 𝑗) )𝑘𝑗=2) and (Y ′(G), (𝛿 𝑗 ′)𝑘𝑗=2) are equivari-

antly homothetic. By uniqueness of the blow-up construction, it is enough to show that the associated
F-forests for 𝛿 𝜄 (1) and 𝛿1

′ (on Y∗ and Y ′, respectively) are equivariantly homothetic. So we may assume
𝑘 = 1 for the rest of the proof. If 𝜄(1) = 1, then (Y∗, 𝛿 𝜄 (1) ) and (Y ′, 𝛿1

′) are equivariantly homothetic
by Lemma 4.5. Otherwise, 𝜄(1) > 1 and, for induction on complexity, we assume (Y∗(G2), 𝛿 𝜄 (1) ) and
(Y ′(G2), 𝛿1

′) are equivariantly homothetic. Either 1) L+
𝜄 (1) [𝜓] ⊂ L+

1 [𝜓] and 𝜆1 < 𝜆 𝜄 (1) since L+
𝜄 (1) [𝜓]

is dominating; or 2) the lower-support supp[𝜓1;Z1] of L+
Z1

[𝜓1] is elliptic in Y∗ and Y ′ by Theorem
3.10(3). The F-forests (Y∗, 𝛿 𝜄 (1) ) and (Y ′, 𝛿1

′) are equivariantly homothetic by Lemmas 4.9 and 4.7,
respectively, and we are done. �

Thus, the factored F-forest (Y ,Σ𝑘𝑗=1𝛿 𝜄 ( 𝑗) ) is the complete dominating forest for [𝜓].

4. Convergence criteria

This chapter adapts then extends Section 7 of Levitt–Lustig’s paper [19]; they, in turn, gave complete
details for the proof sketched by Bestvina–Feighn–Handel in [2, Lemma 3.4].

4.1. Proof of Lemma 4.3

Fix an automorphism 𝜓 : F → F with an expanding irreducible train track 𝜏 : T → T . Let 𝜆 ..= 𝜆[𝜏],
(Y𝜏 , 𝑑∞) be the limit forest for [𝜏], 𝜋 : (T , 𝑑𝜏) → (Y𝜏 , 𝑑∞) the constructed equivariant metric PL-map,
L+[𝜏] ⊂ R(T ) the stable lamination for [𝜏], and 𝑘 ≥ 1 the number of components of L+[𝜏]. Suppose
𝑓 : (T , 𝑑𝜏) → (Y , 𝛿) is an equivariant PL-map and L+[𝜏] is in the canonically embedded subspace
R(Y , 𝛿) ⊂ R(T ).

Claim 4.1 (cf. [19, Lemma 7.1]). There is a sequence 𝑐( 𝑓 ) of positive constants 𝑐𝑖 indexed by the
components Λ+

𝑖 ⊂ L+[𝜏] such that

lim
𝑚→∞

𝜆−𝑚𝑘𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝)), 𝑓 (𝜏𝑚𝑘 (𝑞))) = 𝑐𝑖 𝑑∞(𝜋(𝑝), 𝜋(𝑞))

for any leaf segment [𝑝, 𝑞] of Λ+
𝑖 .

Any two equivariant PL-maps 𝑓 , 𝑔 : (T , 𝑑𝜏) → (Y , 𝛿) are a bounded 𝛿-distance apart, and
𝑐( 𝑓 ) = 𝑐(𝑔). So we can define 𝑐(Y , 𝛿) ..= 𝑐( 𝑓 ); note that 𝑐(Y , 𝑠 𝛿) = 𝑠 𝑐(Y , 𝛿) for 𝑠 > 0. Without
loss of generality, rescale the metric 𝛿 so that f is an equivariant metric PL-map.
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Proof. Let 𝜈𝑅 ..= 𝜈𝑅 [𝜏] (resp. 𝜈𝐿 ..= 𝜈𝐿 [𝜏]) be the unique positive right (resp. left) eigenvector for the
irreducible transition matrix 𝐴 ..= 𝐴[𝜏] whose sum of entries is 1 (resp. dot product 〈𝜈𝐿 , 𝜈𝑅〉 = 𝑘).
Suppose [𝑝, 𝑞] is a leaf segment (of a component Λ+

𝑖 ⊂ L+[𝜏]) with endpoints at vertices of T and let
𝑣 ..= 𝑣 [𝑝, 𝑞] be the vector counting the occurrences of [𝑒] in [𝑝, 𝑞]: [𝑒] is an F-orbit of edges in T ; the
entries of 𝑣 = (𝑣𝑒) are indexed by the F-orbits [𝑒]; and 𝑣𝑒 is the number of translates of e in [𝑝, 𝑞].
The train track property gives us 𝑣 (𝑚) ..= 𝑣 [𝜏𝑚 (𝑝), 𝜏𝑚(𝑞)] = 𝐴𝑚𝑣. Then, as [𝑝, 𝑞] is a leaf segment, the
positive entries of 𝑣 (𝑚𝑘) are indexed in the same block B𝑖 = B(Λ+

𝑖 ) for all 𝑚 ≥ 0. By Perron’s theorem,
if [𝑒] is in the block B𝑖 , then

lim
𝑚→∞

𝑣 (𝑚𝑘)𝑒

𝜆𝑚𝑘 〈𝜈𝐿 , 𝑣〉
= 𝜈𝑅𝑒 .

For small 𝜖 > 0, fix 𝑚 𝜖 � 1 such that 𝛿𝑒 (𝑚 𝜖 ) ..= 𝛿( 𝑓 (𝜏𝑚𝜖 𝑘 (𝑝𝑒)), 𝑓 (𝜏
𝑚𝜖 𝑘 (𝑞𝑒))) > 𝜖−1𝐶 [ 𝑓 ]

for every edge 𝑒 = [𝑝𝑒, 𝑞𝑒] in T – we need the assumption L+[𝜏] ⊂ R(Y , 𝛿) for this. The interval
[𝜏 (𝑚𝜖 +𝑚)𝑘 (𝑝), 𝜏 (𝑚𝜖 +𝑚)𝑘 (𝑞)] is a union of 𝑣 (𝑚𝑘)𝑒 -many translates of 𝜏𝑚𝜖 𝑘 (𝑒), as [𝑒] ranges over all the
orbits of edges in T . In Y , we get

∑
[𝑒] ⊂T

𝑣 (𝑚𝑘)𝑒 (𝛿𝑒 (𝑚 𝜖 ) − 2𝐶 [ 𝑓 ]) ≤ 𝛿( 𝑓 (𝜏 (𝑚𝜖 +𝑚)𝑘 (𝑝)), 𝑓 (𝜏 (𝑚𝜖 +𝑚)𝑘 (𝑞))) ≤
∑

[𝑒] ⊂T
𝑣 (𝑚𝑘)𝑒 𝛿𝑒 (𝑚 𝜖 ).

Divide by 𝜆 (𝑚𝜖 +𝑚)𝑘𝑑∞(𝜋(𝑝), 𝜋(𝑞)) = 𝜆 (𝑚𝜖 +𝑚)𝑘 〈𝜈𝐿 , 𝑣〉, and let 𝑚 → ∞:

(1 − 2𝜖)
∑

[𝑒] ∈B𝑖

𝜈𝑅𝑒
𝛿𝑒 (𝑚 𝜖 )

𝜆𝑚𝜖 𝑘
≤ lim inf
𝑚→∞

𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝)), 𝑓 (𝜏𝑚𝑘 (𝑞)))

𝜆𝑚𝑘𝑑∞(𝜋(𝑝), 𝜋(𝑞))

≤ lim sup
𝑚→∞

𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝)), 𝑓 (𝜏𝑚𝑘 (𝑞)))

𝜆𝑚𝑘𝑑∞(𝜋(𝑝), 𝜋(𝑞))
≤

∑
[𝑒] ∈B𝑖

𝜈𝑅𝑒
𝛿𝑒 (𝑚 𝜖 )

𝜆𝑚𝜖 𝑘
.

Since f is a metric map, we have 𝜆−𝑚𝜖 𝑘𝛿𝑒 (𝑚 𝜖 ) ≤ 𝜈𝐿𝑒 . So the lim inf and lim sup above are real and
equal, and they depend only on the block B𝑖 for Λ+

𝑖 .
If 𝜖 is small, then 𝜖−1𝐶 [ 𝑓 ] > 2𝐶 [ 𝑓 ] + 𝐿 for some 𝐿 > 0; by bounded cancellation,

𝑐𝑖 ..= lim
𝑚→∞

𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝)), 𝑓 (𝜏𝑚𝑘 (𝑞)))

𝜆𝑚𝑘𝑑∞(𝜋(𝑝), 𝜋(𝑞))
≥ lim
𝑚→∞

‖𝑣 (𝑚𝑘) ‖1𝐿

𝜆 (𝑚𝜖 +𝑚)𝑘 〈𝜈𝐿 , 𝑣〉
≥
𝜈𝑅𝑒 𝐿

𝜆𝑚𝜖 𝑘
> 0,

where ‖𝑣 (𝑚) ‖1 is the sum of the entries in 𝑣 (𝑚) and [𝑒] is in the same block as [𝑝, 𝑞].
We now relax the restriction that [𝑝, 𝑞] is an edge-path (i.e, 𝑝, 𝑞 need not be vertices). For 𝑚 ≥ 0,

let [𝑝𝑚, 𝑞𝑚] be the shortest edge-path containing [𝜏𝑚𝑘 (𝑝), 𝜏𝑚𝑘 (𝑞)]; for 𝑚, 𝑚′ ≥ 0,

𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝𝑚′ )), 𝑓 (𝜏𝑚𝑘 (𝑞𝑚′ ))) − 𝜆𝑚𝑘2
𝜆𝑚𝑘 (𝑑∞(𝜋(𝑝𝑚′ ), 𝜋(𝑞𝑚′ )) + 2)

≤
𝛿( 𝑓 (𝜏 (𝑚+𝑚

′)𝑘 (𝑝)), 𝑓 (𝜏 (𝑚+𝑚
′)𝑘 (𝑞)))

𝜆 (𝑚+𝑚′)𝑘𝑑∞(𝜋(𝑝), 𝜋(𝑞))

≤
𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝𝑚′ )), 𝑓 (𝜏𝑚𝑘 (𝑞𝑚′ ))) + 𝜆𝑚𝑘2

𝜆𝑚𝑘 (𝑑∞(𝜋(𝑝𝑚′ ), 𝜋(𝑞𝑚′ )) − 2)
.

Both upper and lower bounds converge to 𝑐𝑖 as 𝑚′, 𝑚 → ∞: [𝑝𝑚′ , 𝑞𝑚′ ] is a leaf segment with endpoints
at vertices of T , so

lim
𝑚′→∞

lim
𝑚→∞

𝛿( 𝑓 (𝜏𝑚𝑘 (𝑝𝑚′ )), 𝑓 (𝜏𝑚𝑘 (𝑞𝑚′ ))) ∓ 𝜆𝑚𝑘2
𝜆𝑚𝑘 (𝑑∞(𝜋(𝑝𝑚′ ), 𝜋(𝑞𝑚′ )) ± 2)

= lim
𝑚′→∞

𝑐𝑖 𝑑∞(𝜋(𝑝𝑚′ ), 𝜋(𝑞𝑚′ )) ∓ 2
𝑑∞(𝜋(𝑝𝑚′ ), 𝜋(𝑞𝑚′ )) ± 2

= 𝑐𝑖 . �
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The next step is extending the claim to all intervals [𝑝, 𝑞] ⊂ T . Set (𝑐𝑖)
𝑘
𝑖=1

..= 𝑐(Y , 𝛿) and let
𝑑∞ = ⊕𝑘𝑖=1𝑑

(𝑖)
∞ be the factorization indexed by the components Λ+

𝑖 ⊂ L+[𝜏]. For convenience, replace
𝜓 with its iterate 𝜓𝑘 , 𝜏 with 𝜏𝑘 , and 𝜆 with 𝜆𝑘 .

Claim 4.2 (cf. [19, Lemma 7.2]). For any 𝑝1, 𝑝2 ∈ T ,

lim
𝑚→∞

𝜆−𝑚𝛿( 𝑓 (𝜏𝑚(𝑝1)), 𝑓 (𝜏
𝑚(𝑝2))) =

𝑘∑
𝑖=1
𝑐𝑖 𝑑

(𝑖)
∞ (𝜋(𝑝1), 𝜋(𝑝2)).

Proof. Let [𝑝1, 𝑝2] be an interval in T and 𝑁 (𝑝1, 𝑝2) the number of vertices in (𝑝1, 𝑝2). Suppose
𝜋(𝑝1) = 𝜋(𝑝2) (i.e., 𝑑∞(𝜋(𝑝1), 𝜋(𝑝2)) = 0). Since f is a metric map, we get

0 ≤ 𝜆−𝑚𝛿( 𝑓 (𝜏𝑚(𝑝1)), 𝑓 (𝜏
𝑚(𝑝2))) ≤ 𝜆

−𝑚𝑑𝜏 (𝜏
𝑚 (𝑝1), 𝜏

𝑚(𝑝2)),

and the limit of the middle term (as 𝑚 → ∞) is 0. So we may assume 𝑑∞(𝜋(𝑝1), 𝜋(𝑝2)) > 0. For
a given 𝑚′ ≥ 0, let [𝜏𝑚′

(𝑝1), 𝜏
𝑚′
(𝑝2)] be a concatenation of 𝑁 ′ + 1 leaf segments [𝑞 𝑗 , 𝑞 𝑗+1]

𝑁 ′

𝑗=0 (of
Λ+
𝑖 ( 𝑗)

⊂ L+[𝜏]) for some nonegative 𝑁 ′ ≤ 𝑁 (𝑝1, 𝑝2) and 𝑖( 𝑗) ∈ {1, . . . , 𝑘}, where 𝑞0 = 𝜏𝑚
′
(𝑝1) and

𝑞𝑁 ′+1 = 𝜏𝑚
′
(𝑝2). Then, by Claim 4.1,

lim sup
𝑚→∞

𝛿( 𝑓 (𝜏𝑚+𝑚
′
(𝑝1)), 𝑓 (𝜏

𝑚+𝑚′
(𝑝2)))

𝜆𝑚
≤ lim
𝑚→∞

𝑁 ′∑
𝑗=0

𝛿( 𝑓 (𝜏𝑚(𝑞 𝑗 )), 𝑓 (𝜏
𝑚(𝑞 𝑗+1)))

𝜆𝑚

=
𝑁 ′∑
𝑗=0
𝑐𝑖 ( 𝑗)𝑑∞(𝜋(𝑞 𝑗 ), 𝜋(𝑞 𝑗+1)) =

𝑘∑
𝑖=1
𝑐𝑖𝑑

(𝑖)
𝜏 (𝜏𝑚

′

(𝑝1), 𝜏
𝑚′

(𝑝2)),

where the last equality comes from 𝑑∞(𝜋(𝑞 𝑗 ), 𝜋(𝑞 𝑗+1)) = 𝑑 (𝑖 ( 𝑗))𝜏 (𝑞 𝑗 , 𝑞 𝑗+1) since [𝑞 𝑗 , 𝑞 𝑗+1] is a leaf
segment. Divide by 𝜆𝑚′ , let 𝑚′ → ∞, and invoke the definition of 𝑑 (𝑖)∞ to get

lim sup
𝑚+𝑚′→∞

𝛿( 𝑓 (𝜏𝑚+𝑚
′
(𝑝1)), 𝑓 (𝜏

𝑚+𝑚′
(𝑝2)))

𝜆𝑚+𝑚′ ≤

𝑘∑
𝑖=1
𝑐𝑖𝑑

(𝑖)
∞ (𝜋(𝑝1), 𝜋(𝑝2)).

Using bounded cancellation, we get a lower bound:

𝛿( 𝑓 (𝜏𝑚+𝑚
′

(𝑝1)), 𝑓 (𝜏
𝑚+𝑚′

(𝑝2))) ≥

𝑁 ′∑
𝑗=0
𝛿( 𝑓 (𝜏𝑚(𝑞 𝑗 )), 𝑓 (𝜏

𝑚(𝑞 𝑗+1))) − 2𝑁 ′𝐶 [ 𝑓 ],

which, after dividing by 𝜆𝑚+𝑚′ and letting 𝑚 → ∞ then 𝑚′ → ∞, leads to

lim inf
𝑚+𝑚′→∞

𝛿( 𝑓 (𝜏𝑚+𝑚
′
(𝑝1)), 𝑓 (𝜏

𝑚+𝑚′
(𝑝2)))

𝜆𝑚+𝑚′ ≥

𝑘∑
𝑖=1
𝑐𝑖𝑑

(𝑖)
∞ (𝜋(𝑝1), 𝜋(𝑝2)). �

Like in our construction of limit forests (Section 2.1), let 𝛿∗𝑚 be the pullback of 𝜆−𝑚𝛿 via 𝑓 ◦ 𝜏𝑚 for
𝑚 ≥ 0. Then 𝛿∗𝑚 is an F-invariant pseudometric on T whose associated metric space is equivariantly
isometric to (Y𝜓𝑚, 𝜆−𝑚𝛿). By Claim 4.2, the (pointwise) limit lim

𝑚→∞
𝛿∗𝑚 is the pullback of ⊕𝑘𝑖=1𝑐𝑖 𝑑

(𝑖)
∞

via 𝜋. In other words, the sequence (Y𝜓𝑚, 𝜆−𝑚𝛿)𝑚≥0 converges to (Y𝜏 , ⊕𝑘𝑖=1𝑐𝑖 𝑑
(𝑖)
∞ ) and we are done.

Lemma 4.3 (cf. [2, Lemma 3.4]). Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding
irreducible train track for 𝜓, (Y𝜏 , 𝑑∞) the limit forest for [𝜏], and 𝜆 ..= 𝜆[𝜏].
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If (T , 𝑑𝜏) → (Y , 𝛿) is an equivariant PL-map and the k-component lamination L+[𝜏] is in
R(Y , 𝛿) ⊂ R(T ), then the sequence (Y𝜓𝑚𝑘 , 𝜆−𝑚𝑘𝛿)𝑚≥0 converges to (Y𝜏 , ⊕𝑘𝑖=1𝑐𝑖 𝑑

(𝑖)
∞ ), where 𝑑∞ =

⊕𝑘𝑖=1 𝑑
(𝑖)
∞ and 𝑐𝑖 > 0.

4.2. Proof of Lemma 4.5

Fix an automorphism 𝜓 : F → F with an invariant proper free factor system Z ′ and a descending
sequence of irreducible train tracks (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 rel.Z ′ with 𝜆 ..= 𝜆[𝜏𝑛] > 1. LetL+

Z [𝜓] ⊂ R(F ,Z)

be the k-component stable laminations for [𝜓] rel. Z ..= F [T ◦], T ◦ an equivariant blow-up of the free
splittings (T𝑖)𝑛𝑖=1, 𝜏◦ : T ◦ → T ◦ a topological representative for [𝜓] induced by [𝜏𝑖]

𝑛
𝑖=1, 𝑑◦ an F-

invariant convex metric on T ◦ that extends 𝑑𝑛 on T𝑛 such that 𝜏◦ is 𝜆-Lipschitz on (T ◦, 𝑑◦), and
𝜋◦ : (T ◦, 𝑑◦) → (Y , 𝛿) the equivariant metric map to a limit forest constructed using 𝜏◦-iteration. We
denote by 𝑑𝑛 again the F-invariant convex pseudometric on T ◦ that extends 𝑑𝑛 on T𝑛. Recall that the
components Λ+

𝑗 ⊂ L+
Z [𝜓] index the factorizations 𝑑𝑛 = ⊕𝑘𝑗=1𝑑

( 𝑗)
𝑛 and 𝛿 = ⊕𝑘𝑗=1𝛿 𝑗 . For convenience, set

F1
..= F and F𝑖+1

..= F [T𝑖], and then replace 𝜓 with 𝜓𝑘 , 𝜏◦ with 𝜏◦𝑘 , and 𝜆 with 𝜆𝑘 .
Suppose (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers, Z is Y ′-elliptic, and L+

Z [𝜓]
is in R(Y ′, 𝛿′) ⊂ R(F ,Z). Let (Y𝑛 ′, 𝛿′) be the characteristic subforest of (Y ′, 𝛿′) for F𝑛 and
𝑓𝑛 : (T𝑛, 𝑑𝑛) → (Y𝑛 ′, 𝛿′) an equivariant PL-map. Extend 𝑓𝑛 to an equivariant PL-map 𝑓 : (T ◦, 𝑑◦) →
(Y ′, 𝛿′). By Claim 4.1, we can set (𝑐 𝑗 )𝑘𝑗=1

..= 𝑐(Y𝑛 ′, 𝛿′) > 0.

Claim 4.4. For any 𝑝1, 𝑝2 ∈ T ◦,

lim
𝑚→∞

𝜆−𝑚𝛿′( 𝑓 (𝜏◦𝑚(𝑝1)), 𝑓 (𝜏
◦𝑚(𝑝2))) =

𝑘∑
𝑗=1
𝑐 𝑗 𝛿 𝑗 (𝜋

◦(𝑝1), 𝜋
◦(𝑝2)).

Proof. Let [𝑝1, 𝑝2] be an interval in T ◦ and assume 𝛿(𝜋◦(𝑝1), 𝜋
◦(𝑝2)) > 0 without loss of generality.

Given Claim 4.2, we may assume 𝑛 ≥ 2. For𝑚′ ≥ 0, the interval [𝜏◦𝑚′
(𝑝1), 𝜏

◦𝑚′
(𝑝2)] is a concatenation

of 𝛼(𝑚′) segments that are in F · T𝑛 or edges from T𝑖 (𝑖 > 1), where 𝛼(𝑚′) is bounded by a polynomial
in 𝑚′ of degree ≤ 𝑛 − 2. Set M to be the length of the longest edge from T𝑖 (𝑖 > 1) in (T ◦, 𝑑◦).
For 𝑚′ � 0, let [𝑞𝑚′,𝑙 , 𝑞𝑚′,𝑙+1]

𝑁 (𝑚′)

𝑙=0 be the nondegenerate (F · T𝑛)-segments. As 𝜏◦ and f are 𝜆- and
L-Lipschitz, respectively,

𝛿′( 𝑓 (𝜏◦(𝑚+𝑚
′) (𝑝1)), 𝑓 (𝜏

◦(𝑚+𝑚′) (𝑝2))

≤

𝑁 (𝑚′)∑
𝑙=0

𝛿′( 𝑓𝑛 (𝜏
𝑚
𝑛 (𝑞𝑚′,𝑙)), 𝑓𝑛 (𝜏

𝑚
𝑛 (𝑞𝑚′,𝑙+1))) + 𝛼(𝑚

′)𝜆𝑚𝐿𝑀.

Divide by 𝜆𝑚+𝑚′ , let 𝑚 → ∞. Then let 𝑚′ → ∞, and invoke Claim 4.2 and definition of 𝛿 𝑗 :

lim sup
𝑚+𝑚′→∞

𝛿′( 𝑓 (𝜏◦(𝑚+𝑚
′) (𝑝1)), 𝑓 (𝜏

◦𝑚+𝑚′
(𝑝2)))

𝜆𝑚+𝑚′

≤ lim
𝑚′→∞

𝑁 (𝑚′)∑
𝑙=0

𝑘∑
𝑗=1

𝑐 𝑗𝛿 𝑗 (𝜋
◦(𝑞𝑚′,𝑙), 𝜋

◦(𝑞𝑚′,𝑙+1))

𝜆𝑚′

≤ lim
𝑚′→∞

𝑘∑
𝑗=1

𝑐 𝑗𝑑
( 𝑗)
𝑛 (𝜏◦𝑚

′
(𝑝1), 𝜏

◦𝑚′
(𝑝2))

𝜆𝑚
′ =

𝑘∑
𝑗=1
𝑐 𝑗𝛿 𝑗 (𝜋

◦(𝑝1), 𝜋
◦(𝑝2)),

using the fact 𝜋◦ is a metric map. The intervals [𝜋◦(𝑞𝑚′,𝑙), 𝜋
◦(𝑞𝑚′,𝑙+1)] contribute at least

𝜆𝑚
′

𝛿 𝑗 (𝜋
◦(𝑝1), 𝜋

◦(𝑝2)) − 𝛼(𝑚
′) (𝑀 + 2𝐶 [𝜋◦])
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to the 𝛿 𝑗 -length of [𝜋◦(𝜏◦𝑚′
(𝑝1)), 𝜋

◦(𝜏◦𝑚
′
(𝑝2))]. As before, bounded cancellation gives us

𝛿′( 𝑓 (𝜏◦(𝑚+𝑚
′) (𝑝1)), 𝑓 (𝜏

◦(𝑚+𝑚′) (𝑝2)))

≥

𝑁 (𝑚′)∑
𝑙=0

𝛿′( 𝑓𝑛 (𝜏
𝑚
𝑛 (𝑞𝑚′,𝑙)), 𝑓𝑛 (𝜏

𝑚
𝑛 (𝑞𝑚′,𝑙+1))) − 2𝛼(𝑚′)𝐶 [ 𝑓 ] .

Divide by 𝜆𝑚+𝑚′ and let 𝑚 → ∞. Then letting 𝑚′ → ∞ yields

lim inf
𝑚+𝑚′→∞

𝛿′( 𝑓 (𝜏◦(𝑚+𝑚
′) (𝑝1)), 𝑓 (𝜏

◦𝑚+𝑚′
(𝑝2)))

𝜆𝑚+𝑚
′

≥ lim
𝑚′→∞

𝑘∑
𝑗=1
𝑐 𝑗

𝑁 (𝑚′)∑
𝑙=0

𝛿 𝑗 (𝜋
◦(𝑞𝑚′,𝑙), 𝜋

◦(𝑞𝑚′,𝑙+1))

𝜆𝑚′ ≥

𝑘∑
𝑗=1
𝑐 𝑗𝛿 𝑗 (𝜋

◦(𝑝1), 𝜋
◦(𝑝2)),

where the last inequality comes from the contribution inequality above. �

The rest of the argument is the same as in the previous section. Let 𝛿∗𝑚 be pullback of 𝜆−𝑚𝛿′ via
𝑓 ◦ 𝜏◦𝑚 for 𝑚 ≥ 0. By Claim 4.4, the limit lim

𝑚→∞
𝛿∗𝑚 is the pullback of ⊕𝑘𝑗=1𝑐 𝑗 𝛿 𝑗 via 𝜋◦ and we are done:

Lemma 4.5. Let 𝜓 : F → F be an automorphism, Z ′ a [𝜓]-invariant proper free factor system,
(𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible train tracks for [𝜓] rel. Z ′ with 𝜆 ..= 𝜆[𝜏𝑛] > 1,
(Y , 𝛿) the limit forest for [𝜏𝑖]𝑛𝑖=1, (Y ′, 𝛿′) a minimalF-forest with trivial arc stabilizers, andZ ..= F [T𝑛].

If Z is Y ′-elliptic and the k-component lamination L+
Z [𝜓] is in R(Y ′, 𝛿′) ⊂ R(F ,Z), then the limit

of (Y ′𝜓𝑚𝑘 , 𝜆−𝑚𝑘𝛿′)𝑚≥0 is (Y , ⊕𝑘𝑗=1𝑐 𝑗 𝛿 𝑗 ), where 𝛿 = ⊕𝑘𝑗=1 𝛿 𝑗 and 𝑐 𝑗 > 0.

4.3. Sketch of Lemma 4.7

Fix an automorphism 𝜓 : F → F . Let (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 be a descending sequence of irreducible train
tracks for [𝜓], Z ..= F [T𝑛], L+

Z [𝜓] the stable lamination for [𝜓] in R(F ,Z), (Y1, 𝛿1) the limit forest
for [𝜓] rel. Z , G ..= G [Y1], [𝜓G] the restriction of [𝜓] to G, (YG , 𝛿) a minimal G-forest with trivial
arc stabilizers, and ℎG : (YG , 𝛿) → (YG , 𝛿) a 𝜓G-equivariant 𝜆-homothety. Construct the equivariant
psuedoforest blow-up (Y∗

1 , (𝛿1, 𝛿)) of (Y1, 𝛿1) rel. (YG , 𝛿) and expanding homotheties representing [𝜓]
and [𝜓G]. For this section, we will assume L+

Z [𝜓] and 𝛿 are independent: the pseudoleaf segments for
L+
Z [𝜓] in Y∗

1 have 0 𝛿-diameter intersections with YG . Set F𝑛 ..= F [T𝑛−1] and [𝜓𝑛] to be the restriction
of [𝜓] to F𝑛; the characteristic convex subset Y∗

1 (F𝑛) ⊂ Y∗
1 has a graph of actions decomposition with

vertex forests ŶG and the overlapping classes for L+
Z [𝜓].

Let the minimal simplicial F𝑛-forest S be the skeleton for the graph of actions for L+
Z [𝜓] and 𝛿.

By construction, there is a 𝜓𝑛-equivariant simplicial automorphism 𝜎 : S → S . The lower-support
supp[𝜓;Z] of L+

Z [𝜓] is given by stabilizers of vertices in S corresponding to overlapping classes.
Construct the equivariant blow-up T � of (T𝑖), S and YG ; then extend the metric 𝛿 to an F-invariant
convex metric 𝑑 ⊕ 𝛿 on T � so that the 𝜓-equivariant map 𝜏�𝑐 : (T �, (𝑐 𝑑) ⊕ 𝛿) → (T �, (𝑐 𝑑) ⊕ 𝛿) induced
by [𝜏𝑖]

𝑛−1
𝑖=1 , 𝜎 and linearly extending ℎG is 𝜆-Lipschitz for any parameter 𝑐 � 1. Let 𝑑�𝑐 ..= (𝑐 𝑑) ⊕ 𝛿.

For 𝑐 � 1, construct using 𝜏�𝑐 -iteration an equivariant metric surjection 𝜋�𝑐 : (T �, 𝑑�𝑐) → (X , 𝛿) that
extends the identification of (YG , 𝛿) and semiconjugates 𝜏�𝑐 to a 𝜓-equivariant 𝜆-homothety on (X , 𝛿).

Suppose (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers and whose characteristic subforest
for G is equivariantly isometric to (YG , 𝛿). So if we also assume supp[𝜓;Z] is Y ′-elliptic, then there
is an equivariant map 𝑓𝑐 : (T �, 𝑑�𝑐) → (Y ′, 𝛿′) that linearly extends the identification of (YG , 𝛿); this
is necessarily a Lipschitz map. Pick any free splitting T of F with trivial F [T ]. Then any equivariant
PL-map T → T � is surjective (by minimality) and composes with 𝑓𝑐 to give (up to an equivariant
homotopy rel. the vertices) an equivariant PL-map with a cancellation constant. So 𝑓𝑐 must have a
cancellation constant. The proof of the next claim is a variation of Claim 4.4’s proof:
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Claim 4.6. For any 𝑝1, 𝑝2 ∈ T �,

lim
𝑚→∞

𝜆−𝑚𝛿′( 𝑓𝑐 (𝜏
�𝑚
𝑐 (𝑝1)), 𝑓𝑐 (𝜏

�𝑚
𝑐 (𝑝2))) = 𝛿(𝜋

�
𝑐 (𝑝1), 𝜋

�
𝑐 (𝑝2)).

Sketch of proof. For 𝑚′ ≥ 0, the interval [𝜏◦𝑚′

𝑐 (𝑝1), 𝜏
◦𝑚′

𝑐 (𝑝2)] is a concatenation of 𝛼(𝑚′) segments
that are in the orbit of YG or edges from T𝑖 (𝑖 ≥ 1), where 𝛼(𝑚′) is bounded by a polynomial in 𝑚′ of
degree ≤ 𝑛 − 1. With an almost identical argument, invoke the definition of 𝜋◦𝑐 to conclude

lim
𝑚+𝑚′→∞

𝛿′( 𝑓𝑐 (𝜏
◦(𝑚+𝑚′)
𝑐 (𝑝1)), 𝑓𝑐 (𝜏

◦𝑚+𝑚′

𝑐 (𝑝2)))

𝜆𝑚+𝑚′ = 𝛿(𝜋◦𝑐 (𝑝1), 𝜋
◦
𝑐 (𝑝2)).

The setup is simpler as 𝜏◦𝑐 (resp. 𝑓𝑐) is a 𝜆-homothety (resp. isometry) on (YZ , 𝛿). �

As in the previous section, we have proven the following:

Lemma 4.7. Let 𝜓 : F → F be an automorphism, (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irre-
ducible train tracks for [𝜓], Z ..= F [T𝑛], G the nontrivial point stabilizer system for the limit forest for
[𝜓] rel. Z , [𝜓G] the [𝜓]-restriction to G, (YG , 𝛿) a minimal G-forest with trivial arc stabilizers such
that L+

Z [𝜓] and 𝛿 are independent, ℎG : (YG , 𝛿) → (YG , 𝛿) a 𝜓G-equivariant 𝜆-homothety, S a minimal
simplicial F [T𝑛−1]-forest that is the skeleton for the graph of actions for L+

Z [𝜓] and 𝛿, 𝜎 : S → S the
corresponding simplicial automorphism, and (X , 𝛿) the limit forest for [𝜏𝑖]

𝑛−1
𝑖=1 , 𝜎, and ℎG .

If (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers, the characteristic subforest of (Y ′, 𝛿′)
for G is equivariantly isometric to (YG , 𝛿), and the lower-support supp[𝜓;Z] of L+

Z [𝜓] is Y ′-elliptic,
then the limit of (Y ′𝜓𝑚, 𝜆−𝑚𝛿′)𝑚≥0 is (X , 𝛿).

4.4. Sketch of Lemma 4.9

Fix an automorphism 𝜓 : F → F with an invariant proper free factor system Z and a minimal Z-forest
(YZ , 𝛿) with trivial arc stabilizers. Let (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 be a descending sequence of irreducible train
tracks for [𝜓] with F [T𝑛] = Z , 𝑑𝑛 the eigenmetric on T𝑛 for [𝜏𝑛], and ℎZ : (YZ , 𝛿) → (YZ , 𝛿) a
𝜓Z -equivariant 𝜆-homothety, where 𝜆 > 𝜆[𝜏𝑛] and [𝜓Z ] is the [𝜓]-restriction to Z . Set F1

..= F and
F𝑖+1

..= F [T𝑖].
Choose an arbitrary equivariant iterated blow-up T ∗ of (T𝑖)𝑛𝑖=1 and let 𝜏∗ : T ∗ → T ∗ be the 𝜓-

equivariant topological representative induced by (𝜏𝑖)
𝑛
𝑖=1. Extend the metric 𝑑𝑛 on T𝑛 to an F-invariant

convex metric 𝑑∗ on T ∗ so that 𝜏∗ : (T ∗, 𝑑∗) → (T ∗, 𝑑∗) is 𝜆[𝜏𝑛]-Lipschitz. Finally, choose an arbitrary
equivariant metric blow-up (T ◦, 𝑑∗ ⊕ 𝛿) of (T ∗, 𝑑∗) rel. (YZ , 𝛿). For a parameter 𝑐 > 0, the topological
representative 𝜏∗ induces a 𝜓-equivariant map 𝜏◦𝑐 on T ◦ that linearly extends the 𝜆-homothety ℎZ with
respect to the metric 𝑑◦𝑐 ..= (𝑐 𝑑∗) ⊕ 𝛿. As 𝜆 > 𝜆[𝜏𝑛], the map 𝜏◦𝑐 is 𝜆-Lipschitz with respect to 𝑑◦𝑐
for 𝑐 � 1. Let (Y , 𝛿) be the limit forest for [𝜏◦𝑐 ] and 𝜋◦𝑐 : (T ◦, 𝑑◦𝑐) → (Y , 𝛿) the equivariant metric
surjection constructed through 𝜏◦-iteration.

Suppose (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers and whose characteristic subforest
for Z is equivariantly isometric to (YZ , 𝛿). Let 𝑓𝑐 : (T ◦, 𝑑◦𝑐) → (Y ′, 𝛿′) be an equivariant map that
linearly extends the identification of (YZ , 𝛿).

Claim 4.8. For any 𝑝1, 𝑝2 ∈ T ◦,

lim
𝑚→∞

𝜆−𝑚𝛿′( 𝑓𝑐 (𝜏
◦𝑚
𝑐 (𝑝1)), 𝑓𝑐 (𝜏

◦𝑚
𝑐 (𝑝2))) = 𝛿(𝜋

◦
𝑐 (𝑝1), 𝜋

◦
𝑐 (𝑝2)).

Sketch of proof. For𝑚′ ≥ 0, the interval [𝜏◦𝑚′

𝑐 (𝑝1), 𝜏
◦𝑚′

𝑐 (𝑝2)] is a concatenation of 𝛽(𝑚′) segments that
are in the orbit of YZ or edges from T𝑖 (𝑖 ≥ 1), where 𝛽(𝑚′) has exponential growth rate 𝜆[𝜏𝑛] < 𝜆.
Proceed just as in the proof of Claim 4.6. �
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Altogether, we have proven the following:
Lemma 4.9. Let 𝜓 : F → F be an automorphism, Z a [𝜓]-invariant proper free factor system, (YZ , 𝛿)
a minimal Z-forest with trivial arc stabilizers, (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1 a descending sequence of irreducible
train tracks for [𝜓] with F [T𝑛] = Z , ℎZ : (YZ , 𝛿) → (YZ , 𝛿) a 𝜓Z -equivariant 𝜆-homothety, and
(Y , 𝛿) the limit forest for [𝜏𝑖]

𝑛
𝑖=1 and ℎZ , where 𝜆 > 𝜆[𝜏𝑛] and [𝜓Z ] is the [𝜓]-restriction to Z .

If (Y ′, 𝛿′) is a minimal F-forest with trivial arc stabilizers and the characteristic subforest of (Y ′, 𝛿′)
for Z is equivariantly isometric to (YZ , 𝛿), then the limit of (Y ′𝜓𝑚, 𝜆−𝑚𝛿′)𝑚≥0 is (Y , 𝛿).

5. Expanding forests

We finally characterize the expanding forests for an automorphism 𝜓 : F → F – that is, minimal very
small F-forests that admit 𝜓-equivariant expanding homotheties. By the last paragraph in the proof of
Corollary 2.11, expanding forests have trivial arc stabilizers. We start with a criterion of nonconvergence
that complements Lemmas 4.7 and 4.9.

5.1. Nonconvergence criterion

Fix an automorphism 𝜓 : F → F with an invariant proper free factor system Z and a minimal Z-forest
(YZ , 𝛿) with trivial arc stabilizers. Let 𝜏 : T → T be an expanding irreducible train track for [𝜓]
with F [T ] = Z , 𝑑𝜏 the eigenmetric on T for [𝜏], L+

Z [𝜓] the stable lamination for [𝜓] in R(F ,Z),
(Y𝜏 , 𝑑∞) the limit forest for [𝜓] rel. Z , and ℎZ : (YZ , 𝛿) → (YZ , 𝛿) a 𝜓Z -equivariant 𝜆-homothety,
where 1 < 𝜆 ≤ 𝜆[𝜏] and [𝜓Z ] is the restriction of [𝜓] to Z .

Set G ..= G [Y𝜏], and denote the restriction of [𝜓] to G by [𝜓G]. Since [𝜓G] is polynomially growing
rel. Z , we can equivariantly include (YZ , 𝛿) in a minimal G-forest (YG , 𝛿) with trivial arc stabilizers
and extend ℎZ to a 𝜓G-equivariant 𝜆-homothety ℎG : (YG , 𝛿) → (YG , 𝛿). Construct the equivariant
psuedoforest blow-up (Y∗, (𝑑∞, 𝛿)) of (Y𝜏 , 𝑑∞) rel. (YG , 𝛿) and the expanding homotheties representing
[𝜓] and [𝜓G]. Finally, suppose L+

Z [𝜓] and 𝛿 are dependent (i.e., the pseudoleaf segments for L+
Z [𝜓]

in Y∗ have some positive 𝛿-diameter intersections with YG). We are essentially in the case not covered
by Lemmas 4.7 and 4.9.

Choose an iterate [𝜏𝑘 ] that maps all F-orbits of branches in T to [𝜏𝑘 ]-fixed orbits. Pick a branch
𝑒+ in T ; suppose its basepoint 𝑝 ∈ T is a vertex with a nontrivial stabilizer. Without loss of generality,
assume 𝜏𝑘 (𝑒+) = 𝑒+. Use the contraction mapping theorem to decide how to equivariantly attach 𝜏𝑘 (𝑒+)
to F · YZ ; then equivariantly attach 𝑒+ to the same point. Now suppose the basepoint p has a trivial
stabilizer but 𝜏𝑘 (𝑝) has a nontrivial one. Then there are finitely many directions 𝑒+1 , . . . , 𝑒

+
𝑙 at p. We have

described how to attach their images 𝜏𝑘 (𝑒1), . . . , 𝜏
𝑘 (𝑒𝑙) to the F-orbit of YZ ; let 𝐶𝑝 ⊂ F · YZ be the

convex hull of these attaching points. Equivariantly replace 𝑝 ∈ T with a copy of (𝐶𝑝 , 𝜆−𝑘𝛿) and attach
𝑒+𝑗 to the copy of the attaching point for its 𝜏𝑘 -image. Finally, if 𝜏𝑘 (𝑝) has a trivial stabilizer, then there
is nothing to do. As [𝑒+] ranges over all F-orbits of branches in T , this defines a preferred equivariant
metric blow-up (T ◦, 𝑑𝜏 ⊕ 𝛿) of (T , 𝑑𝜏) rel. (YZ , 𝛿). The train track 𝜏 induces a 𝜓-equivariant map
𝜏◦ : (T ◦, 𝑑𝜏 ⊕ 𝛿) → (T ◦, 𝑑𝜏 ⊕ 𝛿) that linearly extends the homothety ℎZ . The preferred construction
guarantees 𝜏◦ is a train track in a sense: 𝜏◦𝑚 is injective on the edges from T for all 𝑚 ≥ 1.

Suppose (Y , 𝛿) is a minimal F-forest with trivial arc stabilizers and whose characteristic subforest
for Z is equivariantly isometric to (YZ , 𝛿).
Claim 5.1. For some element x in F , 𝜆−𝑚‖𝜓𝑚(𝑥)‖𝛿 → ∞ as 𝑚 → ∞.
Sketch of proof. A long leaf segment in T contains at least three (unoriented) translates 𝑥𝑖 · 𝑒 (1 ≤ 𝑖 ≤ 3)
of an edge e. So 𝑥 ..= 𝑥−1

𝑖 𝑥𝑖+1 is T -loxodromic for some 𝑖 (mod 3). Choose a fundamental domain
[𝑝, 𝑞] of x acting on its axis that is a leaf segment with endpoints at vertices. Set 𝑑◦ ..= 𝑑𝜏 ⊕ 𝛿, and let
𝑓 : (T ◦, 𝑑◦) → (Y , 𝛿) be an equivariant map that linearly extends the identification of (YZ , 𝛿).

The assumption that L+
Z [𝜓] and 𝛿 were dependent implies the 𝜏◦-image of some edge e from T

has a nondegenerate intersection with F · YZ . Fix 𝑚′ � 1 so that, for some 𝐿 > 0, 𝜏◦𝑚′
(𝑒) ∩ F · YZ
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has a component with 𝛿-length ≥ 2𝐶 [ 𝑓 ] + 𝐿 for all edges from T . For 𝑚 ≥ 0, let 𝛽(𝑚) be the
number of edges from T in [𝜏◦𝑚(𝑝), 𝜏◦𝑚(𝑞)]; note that 𝛽(𝑚) grows exponentially in m with rate
𝜆[𝜏] – the growth of [𝜓] rel. Z . By the train track property of 𝜏◦ and bounded cancellation for f,
𝜆−𝑚‖𝜓𝑚+𝑚

′
(𝑥)‖𝛿 ≥

∑𝑚
𝑖=0 𝛽(𝑖)𝜆

−𝑖𝐿 tends to infinity as 𝑚 → ∞ since 𝜆 ≤ 𝜆[𝜏]. �

Thus, there is no 𝜓-equivariant homothety of (Y , 𝛿):
Lemma 5.2. Let 𝜓 : F → F be an automorphism, 𝜏 : T → T an expanding irreducible train track
for [𝜓], Z ..= F [T ], and (Y , 𝛿) an expanding forest for [𝜓] with stretch factor 𝜆. If L+

Z [𝜓] and 𝛿 are
dependent, then 𝜆 > 𝜆[𝜏].

5.2. Expanding is dominating

Fix an automorphism 𝜓 : F → F and an expanding forest (Y , 𝛿) for [𝜓]. Our remaining goal is to
generalize Corollary 2.11: (Y , 𝛿) must be some dominating forest for [𝜓].

Let 𝜏 : T → T be an expanding irreducible train track for [𝜓], Z ..= F [T ], L+
Z [𝜓] the stable

lamination for [𝜓] in R(F ,Z), (Y𝜏 , 𝑑∞) the limit forest for [𝜓] rel. Z , and G ..= G [Y𝜏].
For induction, assume the characteristic subforest of (Y , 𝛿) for G is equivariantly isometric to the

dominating forest for the restriction [𝜓G] (of [𝜓] to G) with respect to some orbits {A𝑑𝑜𝑚𝑖 [𝜓G]}
𝑘
𝑖=1 with

the same stretch factor 𝜆 > 1; denote the subforest by (YG , 𝛿). Suppose L+
Z [𝜓] and 𝛿 are dependent.

By Lemma 5.2, 𝜆 > 𝜆[𝜏] and each A𝑑𝑜𝑚𝑖 [𝜓G] is actually a 𝜓∗-orbit A𝑑𝑜𝑚𝑖 [𝜓] of dominating attracting
laminations for [𝜓]. By Lemma 4.9, (Y , 𝛿) is equivariantly isometric to the dominating forest for [𝜓]
with respect to {A𝑑𝑜𝑚𝑖 [𝜓]}𝑘𝑖=1.

We may now assume L+
Z [𝜓] and 𝛿 are independent. So A𝑑𝑜𝑚𝑖 [𝜓G] is a 𝜓∗-orbit A𝑑𝑜𝑚𝑖 [𝜓] of

dominating attracting laminations for [𝜓]. LetA𝑑𝑜𝑚0 [𝜓] ⊂ R(F) be the closure ofL+
Z [𝜓] and (Y∗, 𝑑∞⊕

𝛿) the unique equivariant metric blow-up of (Y𝜏 , 𝑑∞) rel. (YG , 𝛿) that admits a 𝜓-equivariant expanding
dilation. By construction, the blow-up is equivariantly isometric to the dominating forest for [𝜓] with
respect to {A𝑑𝑜𝑚𝑖 [𝜓]}𝑘𝑖=0. Recall that independence of L+

Z [𝜓] and 𝛿 implies Y∗ is a graph of actions
with vertex forests coming from ŶG and overlapping classes for L+

Z [𝜓] – these are G- and supp[𝜓;Z]-
forests, respectively; let S be the skeleton for this graph of actions.

If the lower-support supp[𝜓;Z] is Y-elliptic, then (Y , 𝛿) is equivariantly isometric to the associated
F-forest for 𝛿 on Y by Lemma 4.7; in particular, (Y , 𝛿) is equivariantly isometric to the dominating
forest for [𝜓] with respect to {A𝑑𝑜𝑚𝑖 [𝜓]}𝑘𝑖=1. Otherwise, supp[𝜓;Z] is not Y-elliptic. Let T ′ ⊂ T
be the characteristic convex subset for the upper-support suppL+[𝜓] of L+[𝜓] (defined at the end
of Section 3.4) and [𝜓 ′] the restriction of [𝜓] to the upper-support. Independence of L+

Z [𝜓] and 𝛿
implies Z ′ ..= F [T ′] is Y-elliptic. So the characteristic subforests of (Y , 𝛿) and (Y𝜏 , 𝑑∞) for the upper-
support suppL+[𝜓] are expanding forests for [𝜓 ′] rel. Z ′; by Corollary 2.11, they are equivariantly
homothetic and 𝜆[𝜏] = 𝜆. Thus, the characteristic subforests of (Y , 𝛿) and (Y𝜏 , 𝑐 𝑑∞) for supp[𝜓;Z]

are equivariantly isometric for some 𝑐 > 0. A minor modification of Lemma 4.7 implies (Y , 𝛿) is
equivariantly isometric to (Y∗, 𝑐 𝑑∞ ⊕ 𝛿) – details are left to the reader; therefore, (Y , 𝛿) is equivariantly
isometric to the dominating forest for [𝜓] with respect to {A𝑑𝑜𝑚𝑖 [𝜓]}𝑘𝑖=0.

Generally, [𝜓] has a descending sequence of irreducible train tracks (𝜏𝑖 : T𝑖 → T𝑖)𝑛𝑖=1. If (Y , 𝛿) is
degenerate, then there is nothing to show. Otherwise, the 𝜓-expanding homothety on (Y , 𝛿) implies
𝜆[𝜏𝑛] > 1. Set F1

..= F and F𝑖+1
..= F [T𝑖]. The preceding discussion proves that the characteristic

subforest of (Y , 𝛿) for F𝑛 is equivariantly isometric to some dominating forest for the restriction [𝜓𝑛].
Lemma 4.9 implies (Y , 𝛿) is equivariantly isometric to some dominating forest for [𝜓]. Conversely, it
follows from Theorem 3.10(2) that the dominating forest for [𝜓] with respect to a subset of 𝜓∗-orbits of
dominating attracting laminations with the same stretch factor is an expanding forest for [𝜓]:

Theorem 5.3. An F-forest (Y , 𝛿) is an expanding forest for an automorphism 𝜓 : F → F if and only
if it is equivariantly isometric to the dominating forest for [𝜓] with respect to a subset of 𝜓∗-orbits of
dominating attracting laminations with the same stretch factor.
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A. Recognizing and centralizing atoroidal automorphisms

For a given outer automorphism, restrict it to point stabilizers of a complete topmost tree and inductively
construct the descending sequence of complete topmost forests. The blow-up construction applied to
this descending sequence produces the universal topmost pseudotree (whose underlying pretree is the
limit pretree). For an application of this universal construction, we prove a recognition theorem for
atoroidal outer automorphisms.

Corollary A.1. If [𝜙] and [𝜓] are atoroidal outer automorphisms of F with the same universal topmost
pseudotree, and the pseudotree admits a 𝜙𝜓−1-equivariant isometry fixing each orbit of branches, then
[𝜙] = [𝜓].

The hypothesis is akin to assuming two pseudo-Anosov mapping classes have the same stable
measured foliation, stretch factor, and action on singular leaves.

Proof. Let (𝑇, (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )
𝑛
𝑖=1) be the universal topmost pseudotree for [𝜙], [𝜓] and denote by 𝜄 the

𝜙𝜓−1-equivariant isometry on (𝑇, (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )
𝑛
𝑖=1) that fixes each orbit of branches. Choose 𝜙′ ∈ [𝜙]

such that the 𝜙′𝜓−1-equivariant isometry 𝜄′ on (𝑇, (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )
𝑛
𝑖=1) fixes a branch point. The F-action on

the limit pretree T is free since [𝜙] is atoroidal. Adapting Kapovich–Lustig’s Proposition 4.1 in [17] to
pseudotrees, we conclude 𝜄′ fixes all points of T (i.e., 𝜄′ is the identity map on T and 𝜙′ = 𝜓); therefore,
[𝜙] = [𝜓]. �

We call this a recognition theorem because it lists a set of dynamical invariants (universal topmost
pseudotree, stretch factors of the factored pseudometrics, and action on orbits of branches) that determine
an atoroidal outer automorphism. Feighn–Handel’s recognition theorem [9, Theorem 5.3] gives related
dynamical invariants (attracting laminations, their stretch factors, non-repelling fixed points at infinity
and twist coordinates) that determine a forward rotationless outer automorphisms; their theorem can
also be extended to all atoroidal outer automorphisms as in our corollary.

A minor change introducing twist coordinates extends our corollary (or Feighn–Handel’s recognition
theorem) to outer automorphisms whose limit pretrees have cyclic point stabilizers. With more care,
the corollary should generalize to outer automorphisms whose restrictions to the point stabilizers of
limit pretrees is linearly growing – linearly growing automorphisms have canonical representatives [5].
Generalizing to all outer automorphisms would require having canonical nondegenerate representatives
for all polynomially growing automorphisms.

Corollary A.2. If 𝜙 : 𝐹 → 𝐹 is an atoroidal automorphism, then the centralizer of [𝜙] in the outer
automorphism group Out(𝐹) is virtually a free abelian group with rank at most the number of [𝜙]-orbits
of attracting laminations for [𝜙].

Feighn–Handel do not explicitly state this corollary, but it follows from [8, Lemma 5.5]. Bestvina–
Feighn–Handel previously proved that centralizers of fully irreducible outer automorphisms are virtually
cyclic [2, Theorem 2.14]. In the first version of this paper, we claimed Corollary A.2 as a new result,
and a referee told us the corollary follows from Feighn–Handel’s work on CT maps. Our new proof uses
the universal topmost pseudotree.

Proof. Let (𝑇, (⊕𝑘𝑖𝑗=1𝛿𝑖, 𝑗 )
𝑛
𝑖=1) be the universal topmost pseudotree for [𝜙], 𝐶 [𝜙] the centralizer for [𝜙]

in Out(𝐹), and 𝑘 ..=
∑𝑛
𝑖=1 𝑘𝑖 . Replace 𝐶 [𝜙] with a finite index subgroup and assume it acts trivially

on the attracting laminations for [𝜙]. If [𝜙′] ∈ 𝐶 [𝜙], then the universal pseudotree supports a 𝜙′-
equivariant dilation by uniqueness of the pseudotree for [𝜙]. Thus, we can define a group homomorphism
ℓ : 𝐶 [𝜙] → R

𝑘
>0 that maps [𝜙′] to (𝜆′𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘𝑖). The image of 𝐶 [𝜙] under each

coordinate projection ℓ𝑖, 𝑗 of ℓ is a cyclic subgroup of R>0 by Corollary 2.12.
By index theory, we can replace 𝐶 [𝜙] with a finite index subgroup again and assume it fixes the

orbits of branches in T. As the F-action on T is free, the kernel ker(ℓ) is trivial – see Proposition 4.2 in
[17]. So 𝐶 [𝜙] is free abelian with rank ≤ 𝑘 . �
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Again, the corollary can be adapted to work for outer automorphisms whose limit pretrees have
cyclic point stabilizers. Yassine Guerch recently gave another proof of this more general statement using
different methods [13, Theorem 5.3]. With more care, our work or Feighn–Handel’s can combine with
Andrew–Martino’s paper [1, Theorem 1.5] to characterize the centralizer of an outer automorphism
whose restriction to point stabilizers of limit pretrees is linearly growing.

We think it is open whether arbitrary centralizers are finitely generated. For a complete description
of arbitrary centralizers, one needs canonical nondegenerate representatives for polynomially growing
automorphisms. Presumably, a polynomially growing automorphism of degree 𝑑 ≥ 2 has a canonical
fixed free splitting whose loxodromics are exactly the elements that grow with degree d.
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