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KERNEL SYSTEMS ON FINITE GROUPS

PAUL LESCOT

Abstract. We introduce a notion of kernel systems on finite groups: roughly
speaking, a kernel system on the finite group G consists in the data of a pseudo-
Frobenius kernel in each maximal solvable subgroup of G, subject to certain
natural conditions. In particular, each finite C'A-group can be equipped with
a canonical kernel system. We succeed in determining all finite groups with
kernel system that also possess a Hall p’-subgroup for some prime factor p
of their order; this generalizes a previous result of ours (Communications in
Algebra 18(3), 1990, pp. 833-838). Remarkable is the fact that we make no a
priori abelianness hypothesis on the Sylow subgroups.

§0. Introduction

In this paper, we shall define a new class of finite groups, that contains
the class of C'A-groups, and shall derive (§1) its basic properties. Then,
CN*-groups will be defined via an extra hypothesis, and studied(§2). In
the case (§3) that there also exists a solvable p’-Hall subgroup of the C' N*-
group G (for some prime p € 7(G)), we shall obtain a generalization of the
main Theorem of [4].

This work was inspired by the conditions stated in p. ix of [1]. T am also
much indebted to John Thompson for many enlightening comments on [4],
in particular those contained in [6].

The notations are mostly standard; for G a group and A C G, we
denote

AP = AN (G\{1});

for (z,y) e G x G
y' =y

and, for AC G and z € G:

AT ={y"ly € A}.
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MS(G) denotes the set of maximal solvable subgroups of G. A finite group
G will be termed CA (resp. CN, CS) if, for each € GF, the centralizer
Cg () is abelian (resp. nilpotent, solvable).

§1. Definition and first properties of kernel systems

DEFINITION 1.1. By a kernel system on the finite group G we shall
mean an application

F o M My = F(M)
from MS(G) to P(G) such that, for each M € MS(G):

(1) My is a normal subgroup of M,
(2) Vae M\ My Chp(a)={1}, and
(3) Vge G\ M MynM§ ={1}.

On every finite group can be defined a trivial kernel system by :
VM € MS(G) My = {1}.
More interesting is:

LEMMA 1.2. If G is a CA-group, then G possesses a canonical kernel
system.

Proof. Let G be a C'A-group; if G is solvable then MS(G) = {G}, and
(see for example Theorem 1.3 of [4]) G is either abelian or a Frobenius group
with an abelian kernel (let it be A) that is also a maximal abelian subgroup
of G, and a cyclic complement. In the first case, Gy = G is suitable; in the
second case, Go = A works, thanks to Lemma 1.2 of [4].

We may therefore assume that G is not solvable; hence it is (non-
abelian) simple by the result of [7], p.416. It now follows from Theorem 1.4
of [4] that the elements of MS(G) are exactly the Ng(A), for A a maximal
abelian subgroup of G; setting (Ng(A))o = A for all such A yields the
result, again thanks to Lemma 1.2 of [4]. 0

By a K S-group we shall mean a pair (G, F), with G a finite group and
F a kernel system on G. If F is clear from (or fixed in) the context, we
shall term G itself a K.S-group. In particular, if G is a C'A-group, it will
be considered as a KS-group via the canonical kernel system defined in the
proof of Lemma 1.2.

In the following three lemmas, let G be a K S-group.
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LEMMA 1.3. Let M € MS(G), and let x € Mg; then Cq(z) C M.

Proof. If a € Cg(x), then 1 # z = x* € My N M§, whence a € M by
(3). If @ would belong to M \ My, then (2) would yield x € Cyy,(a) = {1},
a contradiction. Therefore a € M. []

COROLLARY 1.4. For each M € MS(G), My is a Hall subgroup of G
(and hence of M).

Proof. This follows immediately from Lemma 1.3 by using Lemma 1.1
of [4]. U

ProrosiTION 1.5. ([1], p.x) If M € MS(G) and My # M, then My
s nilpotent.

M
Proof. Assume My # M, and let g € W(ﬁ); then Corollary 1.4 yields
0

that M is a q/—group. Let x € M have order ¢; then x ¢ My, whence
Cup(z) = {1} by (2). Therefore My has a fixed-point-free automorphism of
order 1 or ¢ (induced by conjugation by z), hence is nilpotent by [5], 12.6.13,
p.354 (we do not need Thompson’s Theorem here because we already know
that My C M is solvable). 0

§2. CN*-groups

DEFINITION 2.1. A K S-group will be termed a C' N*-group if it satis-
fies:

(5) For all M € MS(G) , % is a nonidentity cyclic group.
PRrROPOSITION 2.2. ([1], p-x) Let G be a KS-group such that (5) holds
and either:
(i) (4) holds (i.e. G is a C N*-group)
or
(ii) G is a CS-group.
Then G is a CN-group.
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Proof. Let z € G!.

In case (i) « belongs to Mg for some M € MS(G), by (4). By Lemma
1.3, Ca(z) € My. But My is nilpotent according to Proposition 1.5 and (5),
hence so is Cg(x).

In case (ii), Cg(z) is solvable, hence C(z) € M for some M € MS(G).
Clearly z € M*; if z € Mg, then Cg(z) C My is nilpotent, as above. If
z € M\ My then

Cola) N My = gy () = {1}

M
because of (2), thus Cg(x) is isomorphic to a subgroup of [T hence is

cyclic and a fortiori nilpotent. 0

LEMMA 2.3. Let G be a CN*-group,let ¢ € 7(G), and let Q € Syly(G);
then Ng(Q) € MS(G) and Q is the unique Sylow g-subgroup of Na(Q)o.

Proof. @ # {1}, therefore by (4) one can find M € MS(G) such that

QN My # {1} ;

let x € QN My, x # 1. Then, for any y € Z(Q), one has 1 # = = a¥ €
MoN M, whence y € M by (3), that is Z(Q) C QN M. Let then u € Z(Q),
u # 1 be fixed; if u € M\ My, then x € Q N My C Cp(u) = {1}, a
contradiction. Therefore u € Mg, whence @ C Cg(u) € My by Lemma
1.3. Hence @ is a Sylow g-subgroup of My ; according to Proposition 1.5,
Q = Oy4(My) < M, whence M C Ng(Q).

Let now y € Ng(Q); then 1 # Q = QY C My N Mg, whence y € M
by(3). Therefore Ng(Q) C M, and Ng(Q) = M € MS(G). The last part
of the statement has already been proved. 0

PRrOPOSITION 2.4. Let G be a CN*-group, and let M and N be two
nonconjugate mazimal solvable subgroups of G; then (|Mo|, |No|) = 1.

Proof. If not, let ¢ € w(G) divide both |Mp| and |Ny|, and let @1 and
@2 be Sylow g-subgroups of, respectively, My and Ny. )1 is contained in a
Sylow g-subgroup @ of G, and )2 in a conjugate Q% of @ ; obviously :

{1} #Q1=QN My, and:

{1} # Q2 = Q" N No.
By the reasoning in the proof of Lemma 2.3, M = Ng(Q) and N = Ng(Q%),
whence N = M*. []
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LEMMA 2.5. Let G be a CN*-group, and let M € MS(G) with My #
1; then:

(i) M = Ng(My), and:
(ii) For each x € G with (M™)o # {1}, one has:
(M*)o = Mg .-
Proof.
(i) By (1), M C Ng(Mp); let g € Ng(Mp). Then
{1} # My = M = My 0 MY

whence g € M by (3) and Ng(Mp) € M : we have shown that M =
Ne(Mo).

ii) Let Q be a Sylow g-subgroup of M¥, Q@ # 1; then, according to Lemma
(ii) y g 0 g
2.3 and its proof,

(+) M = Na(Q* ") = (Na(Q))*
If Q& (M%), let u € Q\ (M?®)o; then:
Z(Q) N (QN (M)g) = Z(Q) N (M®)g C Cpgey, (u) = {1}

by (2). But @ N (M*)g < Q N M* = @, hence Q N (M*)y = {1}.
Therefore @ and (M®)g are both, according to (*), normal subgroups
of M*, thus they centralize one another; let 1 # y € Q. Then

(M*)o = Clar=), (y) = {1}

by (2), a contradiction. Therefore @@ C (M?¥)g; it follows that M C
(M?®)o. Applying the same reasoning to M? and z~! in place of M
and z yields (M®)o)*"" C (M®)* ) = My, i.e. (M*)g C M¥ and
(M*)o = Mg 0

-1

Important is:

PROPOSITION 2.6. Let G be a nonsolvable CA-group; then G is a
CN*-group.

Proof. This follows, again, from Theorem 1.4 in [4]. U
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§3. The factorizability hypothesis and the main theorem
In this paragraph, we shall assume the following hypothesis:

(H). G is a nonsolvable CN*-group, p € w(G),and H is a solvable
Hall p’-subgroup of G.

Let P be a Sylow p-subgroup of G, and let p" = |P]|.
LEMMA 3.1. Cg(P) = Z(P)

Proof. By a well-known consequence of Burnside’s p-nilpotence crite-
rion,

Ca(P) = Z(P)x D
where D is a p’-group. Therefore
PCa(P) = PZ(P)D = PD =P x D
(because D C C(P)), and

PxD=(PxD)NnG
— (P x D)NPH
= P[(P x D) N H]
= P(DnNH) (because H is a p’-group)
=Px(DNH)

whence D = DN H:
DCH.

The same reasoning applies to each P*(z € G), D being replaced by D¥;
therefore
N=<D*lzx e G>CH.

Let us assume D # {1}; then N is a nonidentity solvable normal p’-
subgroup of G. Let N; be a minimal normal subgroup of G contained in
N ; then N; is an elementary abelian g-group for some prime ¢ # p. Let
Q@ be a Sylow ¢-subgroup of G that contains N;; then @@ C M, for some
M € MS(G), by Lemma 2.3 (in fact M = Ng(Q)). It follows that, for each
xeG:

{1}7éN1:NfQQﬂQ‘”§MoﬂM5”

whence z € M. Therefore G = M is solvable, a contradiction. Thus D = {1}
and Cq(P) = Z(P) x D = Z(P). [

https://doi.org/10.1017/50027763000007911 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000007911

KERNEL SYSTEMS ON FINITE GROUPS 77

COROLLARY 3.2. Ng(P) € MS(G) and P = Ng(P)o.

Proof. By Lemma 2.3, Ng(P) € MS(G) and P is the unique Sylow
p-subgroup of the nilpotent group (Ng(P))o; therefore P C Ng(P)y C
PCq(P) = P, whence P = (Ng(P))o. U

LEMMA 3.3. H is not nilpotent and Hy # {1}.
Proof. 1f H were nilpotent, G = PH would be the product of two finite
nilpotent groups, hence solvable by a result of Kegel ([3],Satz 2), which is

not the case. Therefore H is not nilpotent ; but A is cyclic, hence nilpotent.
0

H
Thus H and o are not isomorphic, thence Hy # {1}. [
0

PRrOPOSITION 3.4. H € MS(G); H and Ng(P) are not conjugate in
G.

Proof. Let M € MS(G) contain H ; if p would divide |Mp|, then for
some z € G one would have P* N My # {1}, whence M = Ng(P”) by the
proof of Lemma 2.3. But then M would contain P*H = G, contradicting
the nonsolvability of G. Therefore My is a p’-group. Let © € M be such

M
that zM, generate U if p would divide the order of z, then some power
0

x¥ #£ 1 of 2 would be a p-element, hence belong to some conjugate PY of
P, and one would have :

z € Cg(a¥) € Ng(PY)g = PY
by Lemma 1.3 applied to 2* and Ng(PY), and Corollary 3.2 applied to PY.

Therefore = would be a p-element and A a p-group. But
0

HM,  H
My — HN My

M
is a p’-subgroup of A therefore it would be trivial and H C My would
0
be nilpotent, in contradiction with Lemma 3.3. We have shown that x is
M
a p’-element, hence thatﬁ is a p/-group ; therefore so is M, whence | M|

divides |G|, = |H| and
H =M e MS(G).
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The second assertion is obvious (and has, in fact, been incidentally proved
above). U

Remark. This reasoning is adapted from the proof of Step 4 of [4] in
an unpublished preliminary version of that paper.

H
Proposition 3.4 and (5) yield that T is cyclic; let h € H be such that
0

H

hH, generate T By (5), h # 1; (4) implies the existence of N € MS(G)
0
such that h € Ng.

LEMMA 3.5. N is not conjugate to either H or Ng(P).

Proof. If N = Ng(P)* = Ng(P?), then Ny = P* by Corollary 3.2
applied to P*, whence 1 # h € P* N H, a patent contradiction. If N = H?,
then Hy # {1} by Lemma 3.3 and (H")o = Ny 2 h # 1, and Lemma 2.5
yields Hf = (H")g = Np, whence 1 # h € Hf, i.e. h e Hjy. Therefore
w(h) = w(h* )| |Ho|, and

H H
7] = @) | (171 1Ho)

H

which is 1 by Corollary 1.4, thus = {1}, again contradicting Lemma
0

3.3. 0

PROPOSITION 3.6. Let M € MS(G) with My # {1}; then M is con-
jugate to N, H or Ng(P).

Proof. Let ¢ be a prime divisor of |My|; if ¢ = p, then, for some
y € G, PY N My # {1}, and it appears from the proof of Lemma 2.3 that
M = Ng(PY) = (Ng(P))Y. If ¢ # p, then

H
G|, = |H| =|—||Hop|-
011Gl = H| = |5 | Ho

If now q | |Ho|, then (|Hol,|Mo|) # 1, therefore M is conjugate to H by
H
Proposition 2.4. We are left with the case ¢ | | | that is ¢ | w(hHp) ; but

then ¢ | w(h) | |No|, whence (|Nol, |Mo|) # 1, and now M is conjugate to
N. i
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COROLLARY 3.7.
Gl <1+|G: Na(P)[(IP| =1) +|G : H|(|[Ho| = 1) + |G : N|(|No| — 1).
Proof. By (4), one has

Gt = U Mg ;
MeMS(GQ)

if M € MS(G) is such that Mg # (), then, by Proposition 3.6, M = A” for
some = € G and some A € {Ng(P),H,N}. Thus Ag # {1} and My # {1};
Lemma 2.5 now shows that My = Af, whence ]Mg\ = |Ap| — 1. But the
total number of conjugates of Ay is |G : Ng(Ap)| = |G : A|, also by Lemma
2.5. 0

From now on, we shall follow very closely the reasoning of [4], pages
836-837.

LEMMA 3.8. |G : Ng(P)| =14 \p"™, for some X > 1.

Proof. Let Q = PY # P be a conjugate of P, and let M = Ng(P) (€
MS(G)). If PNQ # {1} then

{1} #PnNPYC Myn MY

whence, by (3), y € M = Ng(P) and Q = PY = P, a contradiction.
Therefore P N Q = {1} for any Sylow p-subgroup @ of G distinct from P.
The congruence

|G : Na(P)| = 1[p"]

now follows by a well-known refinement of Sylow’s Theorem (see [5], 6.5.3,
p.147). If X\ were equal to 0, then G would equal Ng(P) and hence be
solvable, an absurdity. []

LEMMA 3.9. |No| = |H : Hy|.
Proof. |Np| divides

|G| = |P||H]
= | P||Hol[H : Hol
= [(NG(P))o||Hol[H : Ho -
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By Proposition 2.4 and Lemma 3.5, | Ny| is prime to |(Ng(P))o| and to |Hp|,
therefore it divides |H : Hy.

Conversely |H : Hy| = w(hHp) divides w(h) = | < h > |, that divides
|No|; thus |H : Ho| = | No|. O

H
Let us write k = |Hpl|, a = |Np| = \F] = w(hHy), 06 = |[Ng(P) : P| =
0
INg(P)|, « =|N : Ng|; by (5),  >2 and 6 > 2. Corollary 3.7 gives us:
Pk

prha <141 +0")0" - 1) +p"(k=1) +=—=(a - 1)

:p"(l-l-)\(p"—1)-1—/6—1-1—2(&—1)),

1.€.:
1 k
ka(l—=)<k+Ap"—1)——
CL( a)_ + (p ) Oé’
whence : )
kla—1(1 = =) <A@" —1).
But 2 k
p"ka a
14+ A" =|G: Ng(P)| = = —
P =G Na(P) = BT = 5
thus :
ka 1
(%) ?—k(a—l)(l——)21+)\p”—)\(p”—1):1+)\22'
«

LEMMA 3.10. 6 = 2.

Proof. If 6 > 3 then (xx) yields:

ka 1
— —klea—1)(1—-—=)>2
L ka- (1 -2) 22,
whence : L )

_a_k(a— ) >2, i€
3 2

k

6(3—a)>2,
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whence a < 3. But then a = 2 and |Np| = 2. Let Ny = {1,y}; it follows
from Lemma 1.3 that:

N = Ng(No) € Ce(y) € No,
whence N = Ny, contradicting (5). [
LEMMA 3.11. a = 2.

Proof. If o > 3, then:

ka _ ka
2 6
1
>2+k(la—1)(1—-—)
«
1
22+k(a—1)(1—§)
2
> gk(a—l),
whence :
4(a —1) < 3a,
1.€.:
a < 4,
that is:
a€{1,2,3}.

But then |Ng| < 3; let Ng =<y >. Again Cg(Np) = Cg(y) € Ny, and:
a=|N: No| <|Nag(No) : Ca(No)| < |Aut(Ng)| < 2,
a contradiction. Therefore oo = 2. []

PROPOSITION 3.12. If (M, M') € MS(G)? and M} N M(;ﬁ # 0, then
M=M.

Proof. From My M, # {1} follows (|Mo|,| M) # 1, therefore Propo-
sition 2.4 implies that M and M’ are conjugate. Let M = M¥; as Mg #0

and M,* # 0, M = MZ by Lemma 2.5. Then
Mo N MZ = My My # {1}

whence & € M by (3) and M' = M* = M. U
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LEMMA 3.13.
|G| =1+|G: Na(P)|(|IP| - 1)+ |G : H|(|Ho| — 1) + |G : N|(|No| — 1).

Proof. One applies the same reasoning as for Corollary 3.7, using

Proposition 3.12 and (4). U
k
ProrosiTION 3.14. 5= 1+ A, pis odd and p" — a divides p™ — 1.
Proof. By Lemma 3.10, § = 2, whence
ka  ka
1+ =—=—.
LA S

Lemma 3.13 now gives,by using the equality a = 2 (Lemma 3.11):

k 1
pka =1+ ?“(p” —1)+p"(k = 1)+ 5p"k(a— 1)

1.€.:
ka 1
0=1—-— "(k—1)— =p"k
2+p( ) 5P
or
k T T
(1% %) SO - =1
Thus:
kn_ka_ o
op Ty TP T
As .
a
14+ X" = —
+ AP 5
one has:
(I+A)pt=p"—1+1+ A"
ko ko ke
TP Ty Ty
_ ko
—2177
1.€.: .
—=1+);
2 A

in particular, k is even, therefore p # 2 because p 1 k. ( % *) now becomes:
pr=1=Q0+XNp" —a),

whence p" —a | p" — 1. 0
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COROLLARY 3.15. a=p" —2 and k =p" — 1.

Proof. N acts on the set {2 of the conjugates of Ny. If Nj € Q and
NoNNg(NF) # {1}, then (cf. Lemma 2.5) NgN N* # {1}. But Ny is a Hall
subgroup of N (Corollary 1.4), whence No N N§j # {1} ; therefore (by (3))
x € N and Nj = Np.

Any orbit of Ny on Q , other than {Ny}, has therefore length |Ny|,
whence

€2 = L[| Noll,
that is:
|G = N| = 1[[No|]

(we have used the fact that
9] = |G : Ng(No)| = |G = N|).

Thus: nk n
p b
— —1l==——-1=9p"(1 — 1.
al~— 5 P (1+A)

But p” —1 = (1+X)(p" —a) (see the proof of Proposition 3.14), therefore a
divides 1+ \p™, hence a divides p™ —2. If a # p"™ —2, then a < %(p”—2), that
isp”—a > %(p”—l—Q) > %(p” —1) and Proposition 3.14 gives p" —a = p™ —1,
i.e. a = 1, a contradiction. Thus a = p™ — 2; but now :

k ka k
2(19 ) 5 + Ap +(2 )P

whence k = p™ — 1. []
THEOREM 3.16. Under hypothesis (H), one of the following holds:
(i) pis a Fermat prime (p = 22" +1) for somem > 1, and G =~ SLy(Fyom )
(ii) p=3 and G ~ SLy(Fg).
In both cases, H is the normalizer of a Sylow 2-subgroup of G.

Proof. |Hp| = k is even (Proposition 3.14), therefore Hy contains an
element t of order 2; by Lemma 1.3, C(t) C Hy, therefore the number of
conjugates of ¢t under H is:

|H:Cu(t)|=|H:Cq(t)|>|H:Ho|=a=p"—2=k—1=|Hpg| - 1.
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Therefore Hy = {1} U {t*|z € H} only has elements of order 1 or 2, i.e. is
a nontrivial elementary abelian 2-group ; by Lemma 1.3 it is the centralizer
of each of its nonidentity elements, and by Corollary 1.4 it is a Sylow 2-
subgroup of G. It follows readily that every element of G has order 2 or
an odd number; as in [4], p.837, one finishes the proof using [2] and the
fact that G is not solvable (the case of the Brauer-Suzuki-Wall that we
use should actually be called Burnside’s Theorem, a fact of which I was
unfortunately unaware while writing [4]). The last assertion follows from
Lemma 2.5: H = Ng(Hy). [

§4. Corollaries and remarks

COROLLARY 4.1. Let G be a (non-abelian) simple C A-group contain-
ing a solvable Hall p’-subgroup for some prime p dividing its orderi,; then
either p = 3 and G is isomorphic to SLo(Fg), or p is a Fermat prime other
than 3 and G is isomorphic to SLy(F,_1).

Remark. This is the main Theorem of [4].

Proof. By Proposition 2.6, G satisfies hypothesis (), and one may
therefore apply Theorem 3.16. b

The original motivation for this paper was:

COROLLARY 4.2. If G is a minimal counterexample to the Feit-
Thompson Theorem that satisfies the conditions listed on p.ix of [1], then
there is no prime p € w(G) such that G possess a p'-Hall subgroup.

Proof.  Our conditions (1) to (5) clearly follow from the conditions
listed on p.ix of [1]; if G would have a Hall p’-subgroup H, then H would
be solvable(by the minimality of G), and hypothesis (H) would be satisfied :
Theorem 3.16 would apply. But all the groups that appear in the conclusion
of this Theorem have even order. []
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