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Abstract In the first part of the paper we prove several results on the existence of invariant closed ideals
for semigroups of bounded operators on a normed Riesz space (of dimension greater than 1) possessing
an atom. For instance, if 5 is a multiplicative semigroup of positive operators on such space that are
locally quasinilpotent at the same atom, then S has a non-trivial invariant closed ideal. Furthermore, if T
is a non-zero positive operator that is quasinilpotent at an atom and if S is a multiplicative semigroup of
positive operators such that TS ^ ST for all S G S, then S and T have a common non-trivial invariant
closed ideal. We also give a simple example of a quasinilpotent compact positive operator on the Banach
lattice l°° with no non-trivial invariant band.

The second part is devoted to the triangularizability of collections of operators on an atomic normed
Riesz space L. For a semigroup 5 of quasinilpotent, order continuous, positive, bounded operators on L
we determine a chain of invariant closed bands. If, in addition, L has order continuous norm, then this
chain is maximal in the lattice of all closed subspaces of L.
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1. Introduction and preliminaries

Invariant closed subspaces of bounded operators are among the most studied topics
in the operator theory. In the case of positive operators on Banach lattices the order
structure enable us to obtain invariant subspaces of simple geometrical forms. In [7]
Choi et al. studied invariant closed subspaces of semigroups of positive operators on
L2-spaces. The discrete part of these results motivated our investigations. On the other
hand, Abramovich et al. [2] obtained some results on existence of invariant closed sub-
spaces of an operator on an P-space (1 ^ p < oo) which commutes with some non-zero
locally quasinilpotent positive operator. In the present normed Riesz space setting, we are
extending and strengthening the results of both papers. The proofs of our results mainly
follow similar ideas that were introduced in [2,3,7]. It should be noted that Jahan-
dideh [8,9] also studied collections of positive operators. In [8] he considered the positive
commutant of a given positive operator and collections of positive operators dominated
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by a given operator. In [9, Theorem 6] he proved a special case of our Theorem 2.4, while
in the rest of [9] operators on AM-spaces are studied.

The reader is assumed familiar with the general notions on normed Riesz spaces;
see [5,10,11,15,17]. We shall recall some of the relevant facts. Let L be a real normed
Riesz space. The norm of L is said to be order continuous if ||/T|| | 0 for any downwards
directed system fT J, 0 in L (fT J. 0 means that inf{/T} = 0, and for each T\ and T^
there exists r3 such that fT3 ^ inf{/Tl, fT2})- The space L is Dedekind complete if every
non-empty subset which is bounded from above has a supremum. The cone of positive
elements of L is denoted by L+. The positive part, the negative part and the modulus
(or the absolute value) of / e L are defined by / + = sup{/, 0}, /~ = sup{—/,0} and
| / | = sup{/, — / } , respectively. A vector subspace / of L is said to be an (order) ideal if
\g\ ̂  | / | and / € / imply that g S / . An ideal / is called a band if A C / with sup A £ L
imply that sup A € /. Recall that bands are necessarily closed subspaces. Two elements
f,geL are called orthogonal or disjoint if inf{|/|, \g\} = 0. If A is a subset of L, let Ad

be the disjoint complement of A, i.e. / € Ad if and only if / is orthogonal to all elements
of A. An atom of L is a non-zero element / € L+ such that if 0 ^ g ^ / , then g = Xf for
some A 6 [0,1]. In other words, / e L+ is an atom iff the ideal (or the band) generated
by / is one dimensional. In this case the ray 1Zj := {Xf : A ^ 0} is said to be an extreme
ray. A normed Riesz space L is said to be atomic if there exists an orthogonal maximal
system of atoms {fa}aeA Q L+, that is, inf{/o, fp} = 0 if a ^ (3, and if inf{/, fa} = 0
for all a £ A, then / = 0. It is worth mentioning that every atomic normed Riesz space is
Riesz isomorphic to an order dense Riesz subspace of M.A with the coordinatewise order.

The word 'operator' will be synonymous with 'bounded linear transformation'. A sub-
set Z of L is invariant under an operator T on L if Tf € Z for all / £ Z. A subspace of L
is non-trivial if it is different from {0} and L. If C is a collection of operators on L, then a
subspace of L is said to be C-invariant whenever it is invariant under every member of C.
If this subspace is non-trivial, we also say that C has a non-trivial invariant subspace. An
operator T on L is called positive if the positive cone L+ is invariant under T. A positive
operator T on L is said to be order continuous if TfT I 0 for any downwards directed
system fT J. 0 in L. In general, the Banach algebra B(L) of all operators on L is not a
Riesz space under its canonical ordering (5 ^ T iff the operator S — T is positive). We
therefore say that an operator T on L has a modulus if the modulus |T| := sup{T, —T}
exists in B(L).

If P and Q are any sets, we adopt the (standard) convention that P C Q means
P C Q and P ^ Q. We first show the following result on the existence of closed ideals of
a normed Riesz space.

Lemma 1.1. Let I and J be closed ideals of a normed Riesz space L such that I C J
and the quotient space G = J/I is at least two dimensional. Then there exists a closed
ideal K such that I C K C J.

Proof. Denote by q the canonical (quotient) map J —» G. If we show that there
exists a non-trivial closed ideal K of G, then K = q~l(K) is a closed ideal satisfying
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the condition of the lemma. Assume on the contrary that {0} and G are the only closed
ideals of G. If g € G, then g+ = 0 or g~~ = 0. Indeed, if g+ ^ 0 and g~ =£ 0, then the
closed ideal / + ^ {0} generated by g+ is proper, since /+ C {g~}d ^ L. Thus g ^ 0 or
g < 0 for each g € G, which imply that G is totally ordered. By [15, Proposition II.3.4]
G is isomorphic to R and hence one dimensional. This contradiction completes the proof
of the lemma. D

A chain is a family of subspaces of L that is totally ordered by inclusion. A collection
C of operators on L is ideal-triangularizable, if there is a chain of C-invariant closed ideals
which is maximal in the lattice of all closed ideals of L. This notion has been introduced
in [8] as a Banach lattice analogue of the well-known concept of triangularizability (see,
for example, [12]). Recall that a collection C of operators on L is triangularizable, if there
is a chain of C-invariant closed subspaces which is maximal in the lattice of all closed
subspaces of L. Using Lemma 1.1 we prove that a maximal closed ideal chain is also a
maximal closed subspace chain.

Proposition 1.2. Let C be a chain of closed ideals ofL which is maximal in the lattice
of all closed ideals. Then C is also maximal in the lattice of all closed subpaces of L.

Proof. By [14, Lemma 4.3.1] it is enough to show that the chain C is simple, i.e. it
satisfies the following conditions:

(i) {0} eC,LeC;

(ii) if Co is a subfamily of C, then the closed subspaces

n(7 : 1 6 Co) and cl(U(J : / € Co))

are in C, where cl denotes the norm closure;

(iii) for each I EC, the quotient space I/I", where

/ - =cl(U(J: J eC,J Cl)),

is at most one dimensional. (We remark here that there is the standing hypothesis
in [14] that spaces are complete. However, it is clear from the proof of [14, Lemma
4.3.1] that the completeness is not used.)

The condition (i) is clearly satisfied. Both subspaces of the condition (ii) are closed
ideals. They therefore belong to C, since C is maximal as a chain of closed ideals. The
same fact and Lemma 1.1 imply easily that (iii) holds. This completes the proof. D

The well-known theorem [13] states that a multiplicative semigroup <S of operators on a
Banach space has a non-trivial invariant closed subspace whenever a non-zero semigroup
ideal of <S has a non-trivial invariant closed subspace. (A subset I of a semigroup S is
said to be a semigroup ideal if ST and TS belong to 1 for all S e S and Tel.) The
following is a normed Riesz space analogue of this very useful tool. It seems that this
result (in the case of Banach lattices) appeared first in [9].
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Lemma 1.3. Let S be a multiplicative semigroup of positive operators on a normed
Riesz space L. If a non-zero semigroup ideal X of S has a non-trivial invariant closed
ideal, then the semigroup S has a non-trivial invariant closed ideal as well.

Proof. Let M be a non-trivial X-invariant closed ideal. Let us show that the order
ideal TV generated by the set

{Tf:Tel,feMnL+}

is <S-invariant. To end this, pick g G N and S G S. Since g £ N, there exist A ̂  0,
operators T\, T%, ..., Tn G X and positive vectors f\, /2, . . . , fn G M such that

Then
\Sg\ ^ S\g\ ^ A(5Ti/i + • • • + STnfn).

Since X is a semigroup ideal, the operators STi, . . . , STn belong to X, so that Sg G N.
Thus the closure N of N is a closed <S-invariant ideal. Since N C M, we have N ̂  L.
So, if N ̂  {0}, we are done. Assume therefore that N = {0}. Then the closed ideal

K = {f G L : T\f\ = 0 for all T G 1}

contains M. (Observe that K is the intersection of all absolute kernels of operators of
X.) Since X is a non-zero ideal, K is not equal to L, and so it is a non-trivial closed ideal.
To show that K is also <S-invariant, Gx.fe.JK and S G S. Then for any T G X we have
0 < T\Sf\ ^ TS\f\ = 0, since TS G X. This yields 5 / G K, and completes the proof. •

We now recall a notion from the local spectral theory that was first connected with
the invariant subspace problems in [2]. An operator T on L is quasinilpotent at a vector
/o G L if the local spectral radius of T at / 0 is 0, i.e.

lim | |T n / o | | 1 / n = 0.
n—too

Throughout the rest of this section, let L be an atomic normed Riesz space and
{fa}a£A Q L+ the corresponding orthogonal maximal system of atoms. We may assume
that ||/Q|| = 1 for all a G A. We now consider positive orthomorphisms on L, since they
are needed in the last section of the paper. The first proposition is given in [15, Exer-
cise II.7.] as an exercise. Recall that a family {gT} in L order converges to g G L whenever
there exists a downwards directed system pT I 0 in L such that \gT — g\ ̂  pT for all r.

Proposition 1.4. Every f G L has a unique representation

/ = 5 ^ A a / a , AQGK,
<*eA

where the sum is the order Hmit of its finite subsums.
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Sketch of proof. Fix f E L+ and set AQ = sup{A ^ 0 : A/Q ^ / } for each a € A.
Since L is Archimedean, AQ/Q < / . If A denotes the collection of all finite subsets of A,
then the inequality gs = S a e s ^afa ^ / holds for each B G A. For the proof of this,
use the equality sup{u, v} = u + v, where u,v G L and inf{u, v} = 0. It is easily seen
that / is the supremum of the upwards directed system {<?B}BG.4, that is, each / G L+

has the desired representation. This is also true for any / G L, since f = f+ — f~ • The
uniqueness of the representation follows from the fact that {fa}aeA are orthogonal. •

Observe now that for any a G A the positive linear functional <j>a on L with norm 1 is
denned by 4>a{f) = ^a-

An operator on L is called an orthomorphism [17, p. 648] if it leaves invariant every
band in L. It follows from [17, Lemma 144.1] that a positive operator D on L is an
orthomorphism if and only if there exists a A > 0 such that D ^ XI, where I is the
identity operator on L. This implies that a positive orthomorphism on L leaves invariant
every ideal in L.

Proposition 1.5. Let L be Dedekind complete, and let T be a positive operator on
L. Then for each f G L the order limit of finite subsums of the sum

(i-i)

exists in L, and D is a positive orthomorphism on L. If, in addition, T is an orthomor-
phism, then D — T.

Proof. We may assume that / G L+. Since <pa(Tfa) ^ ||T|| for each a G A, we
conclude that each finite subsum of Df is less than or equal to ||T||/. This implies first
that Df exists, since L is Dedekind complete, and Df ^ | |r | | / , so that D is a positive
orthomorphism.

Assume that T is an orthomorphism. Since there is a A > 0 such that Tfa ^ A/Q
for all a G A, we conclude that Tfa = <j>a{Tfa)fa. Hence Tfa = Dfa for all a G A.
Consequently, D = T by [17, Corollary 140.6.(ii)]. •

Proposition 1.6. Let L be Dedekind complete, and let T be a positive operator on L.
Then T has a unique decomposition T = DT+NT, where DT is a positive orthomorphism
on L and NT is a positive operator satisfying </>Q(-Nr/a) = 0 for all a G A. Moreover, the
operators DT and NT are given by

DTf=J2^Tf^-(f)fa and NTf=Yt<f>a(TU-4>M)fa))fa (1-2)
a£A a€A

for each f G L.

Proof. The operator DT defined by (1.2) is a positive orthomorphism on L by Propo-
sition 1.5. Setting NT = T - DT the equality Tf = £ a € i 4 4>a{Tf)fa gives the second
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equality of (1.2). The operator NT is positive, because / ^ <pa(f)fa for all / S L+ and
for all a E A. Also, </>Q(A r̂/Q) = 0 for all a e A. We have therefore proved that T has the
desired decomposition. To show its uniqueness, assume that T = D\ + N\ is another such
decomposition. Since <j)a(D\fa) = (j>a{Tfa) for each a € A, we conclude that DT = D\
by putting D := DT and T := D\ in Proposition 1.5. •

If T is a positive operator on L satisfying <pa(Tfa) = 0 for all a e A, then it is obvious
that DT = 0 and NT = T. Of course, in this case we do not need the assumption that L
is Dedekind complete.

Although orthomorphisms and the above decomposition of operators on an arbitrary
Riesz space have been extensively studied (see [17] or [5]), we include here an example
for those readers that are not familiar with this topic.

Example 1.7. Let L = lp, 1 < p ^ oo. Then the sequence of standard unit vectors
{en}ngN is the corresponding orthogonal maximal system of atoms. Each positive oper-
ator T on V can be represented by a matrix [tij]fj=i, where non-negative numbers Uj
satisfy equations

Here the sum is taken as an order limit of its finite subsums. It is clear that DT is the
'diagonal part' of T, that is, the corresponding matrix of DT is a diagonal matrix with
the sequence {tu}i^ on the diagonal. The operator NT is the 'non-diagonal part' of T,
that is, its matrix has zero diagonal, while non-diagonal elements are the same as in the
matrix of T.

2. A common invariant closed ideal

Let L be a real normed Riesz space of dimension greater than 1, and let / 0 S L+ be
an atom. The band generated by /o in L is denoted by -Bo- One can show that BQ is a
projective band of L, i.e. L = Bo © B$ (see [10, Theorem 26.4, p. 147]). Therefore, for
each / € L there exist (uniquely determined) A G K and g G B$ such that / = A/o -t- g.
Let 4>o be the positive linear functional on L defined by 4>o(f) = A. Since the vectors A/o
and g are orthogonal, | / | = |A|/0 + \g\. Then |A|/o ^ | / | implies that \\<fio\\ < 1. Since
4>o(fo) = 1) w e h a v e ||</>0|| = 1.

Theorem 2.1. Let /o G L+ be an atom and let S be a multiplicative semigroup of
positive operators on L such that (f>o(Sfo) = 0 for all S G <S. Then <S has a non-trivial
invariant closed ideal. If, in addition, each member of S is order continuous, then S has
a non-trivial invariant closed band.

Proof. If 5/o = 0 for all S e S, then Bo is a non-trivial «S-invariant band. Therefore,
we have to consider the case when Sfo ^ 0 for some S £ S.
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Let / be the order ideal generated in L by the set {Sfo : S € S}, i.e. I is the
ideal of all f e L such that there exist A > 0 and Si, S2, • • •, Sn G 5 such that
I/I < A(5i + S2-\ 1- Sn)f0. We claim that / is invariant under arbitrary S e S. To
show this, pick / G /. Then | / | ^ \(SX + S2 H h 5n)/o for some A ^ 0 and Si, S2,
..., Sn € <S, and hence

| 5 / | «S 5 | / | < A(SSi + SS2 + • • • + SSn)f0.

Since S is a semigroup, we conclude that 5 / € / . Now, the closure / of / is invariant
under 5 as well, because the operator 5 is continuous. Since <f>o(Sfo) = 0, we have
Sfo G 5Q fo r a u S e S, so that {0} / J C Bo

d / L. Thus we have shown that 7 is a
non-trivial <S-invariant closed ideal, and so the proof of the first assertion is finished.

Now assume that each member of <S is order continuous. Then the band B generated
by / is non-trivial, since B C B$ ^ L. It is also invariant under each S E S. Indeed,
for each f £ B C\ L+ there exists an upwards directed system {/r} of vectors in I such
that 0 ^ /T t /• Hence 0 ^ SfT t Sf, since S is order continuous. This implies that
Sf EB. D

As a consequence we obtain the following theorem.

Theorem 2.2. Let /o S L+ be an atom and let S be a multiplicative semigroup of
positive operators on L such that each of them is quasinilpotent at /o- Then S has a
non-trivial invariant closed ideal. If, in addition, each member of S is order continuous,
then there exists a non-trivial S-invariant band.

Proof. Fix S 6 <S and set A = 4>o{Sfo)- From 5/ 0 ^ A/o we conclude that Snf0 ^
An/0 for all n G N, so that A||/0||1/n ^ | | 5 n / 0 | | 1 / n . Since 5 is quasinilpotent at f0, this
gives A = 0, and so the condition of Theorem 2.1 is satisfied. •

One may ask if we can drop the additional assumption of Theorems 2.1 and 2.2 that
each member of <S is order continuous. In the next example we construct a quasinilpotent
compact positive operator S on l°° with no non-trivial invariant band. Consequently, the
semigroup 5 generated by 5 does not have a non-trivial invariant band.

Example 2.3. Let ^ be a Banach limit on l°°. (Actually, it is enough that cj> is a
positive linear functional on Z°° such that <j>{x) = linin-joo xn for each x = (xi, x2) £3, • •.)
from the Banach subspace c of all convergent sequences of l°°.) Let

u = (1,1/2,1/4,1/8,... )€ / °° .

Define the compact positive operators K and T on l°° by

= <p(x)u and Tx = (0,xi/2,x2/4,x3/8,. . .) .

Obviously, the operator K is nilpotent of index 2. Since ||Tra|| = 2-"(n+1)/2 for all n G N,
the operator T is a quasinilpotent. Clearly, 5 = K + T is a compact positive operator
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on l°°. Since K2 = 0 and KT — 0, we have KS = 0. By a simple induction we obtain
that Sn = T " " ^ , and so | |5"| | ^ \\Tn~l\\\\S\\ for all n 6 N. It follows from this that the
operator S is quasinilpotent as well.

We now show that S has no non-trivial invariant band. Assume that a band B ^ {0}
is invariant under S. Then en G B for some n G N, where {ei}igN are the standard unit
vectors of l°°. From Sen+k = Ten+k = (l/2n+k)en+k+1, k = 0,1,2,3,. . . , we conclude
that en+fc G B for all k G N. It follows that g = YllcLo en+k G B, because g is the
supremum of the increasing sequence {gm}m^n of B defined by gm = YlT=o en+k- Since
Sg ^ /Cg = u, we have M € B (as 5 is an ideal), and so B = l°°.

In the study [1] of various extensions of de Pagter's and the Ando-Krieger results
Abramovich et al. constructed an example of quasinilpotent compact positive operator
with no non-trivial invariant band. This operator is defined on a less-known Marcinkie-
wicz function space. Therefore, the operator S of Example 2.3 seems to be a new example
of such operators, which is in addition denned on a nice atomic Banach lattice. However,
it should be noted that the operator of the example in [1] is even a nilpotent rank-one
operator.

Theorem 2.4. Let T be a non-zero positive operator on L that is quasinilpotent at
an atom /o £ L+. Let S be a multiplicative semigroup of operators such that each of
them has a modulus. If T\S\ ^ \S\T for all S € <S, then T has a non-trivial invariant
closed ideal that is also S-invariant.

Proof. Let T be a semigroup generated by T and the set {\S\ : S £ S}. Denote
by X the semigroup ideal of T generated by T. We claim that each member of I is
quasinilpotent at /0. Indeed, if U 6 I , then U < \Si\\S2\ • •-\Sp\T

k for some ifeeN,
p e N U {0}, and 5i, . . . , 5P e 5. Denoting V = \Si\\S2\ •.. ISpIT*-1 we have U < VT.
Since TV < VT by the assumption on S, an easy induction shows that Un < ynTn for
all n € N. We therefore have

\\Unfo\\ ^ \\VnTnfo\\ < \\V\\n • \\Tnf0\\

for all n, which implies that U is quasinilpotent at /o- By Theorem 2.2 the semigroup
ideal I has a non-trivial invariant closed ideal. Now Lemma 1.3 gives a non-trivial T-
invariant closed ideal / . Let us show that / is <S-invariant as well. To end this, let / € /
and S € S. Since | / | G / and \S\ G T, we conclude that | 5 | | / | G / , and finally the
inequality | 5 / | ^ \S\\f\ implies that Sf G / (as / is an order ideal). •

Corollary 2.5. Let S be an operator on L with modulus and let T be a non-zero
positive operator on L such that

(i) T\S\ ^ \S\T, and

(ii) T is quasinilpotent at an atom of L+,

then S and T have a common non-trivial invariant closed ideal.
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One can show easily that if a positive operator on an atomic Riesz normed space is
quasinilpotent at a non-zero positive vector, then it is quasinilpotent at some atom as
well. This observation together with Corollary 2.5 gives the following.

Corollary 2.6. Let S be an operator with modulus on an atomic Riesz normed space
L. If there exists a non-zero positive operator T on L such that

(i) T\S\ < |S|r, and

(ii) T is quasinilpotent at a non-zero positive vector,

then S and T have a common non-trivial invariant closed ideal.

Using the fact that every closed ideal of a Banach lattice with order continuous norm
is a band (see, for example, [17, Theorem 105.2]), the main result of [2] follows from
Corollary 2.6. In fact, we state here a slight improvement of [2, Theorem 3.1], which has
been proved in the survey paper [4].

Corollary 2.7. [2,4] Let L be an atomic Banach lattice with order continuous norm,
and let S be an operator on L with modulus. If there exists a non-zero positive operator
T on L such that

(i) T\S\ ^ \S\T, and

(ii) T is quasinilpotent at a non-zero positive vector,

then S has a non-trivial invariant band.

We shall prove next that the conclusion of Theorem 2.2 holds also for additive semi-
groups of positive operators. In the proof of this we need the following result.

Proposition 2.8. Let S be an additive semigroup of positive operators on L such
that each of them is quasinilpotent at an atom /o G L+. Then every operator in the
algebra generated by S is quasinilpotent at /o-

Proof. Let A be an operator in the algebra generated by S. Then there exist positive
integers m and p and operators Si, . . . , Sk G <S such that A = YliLi o-iM, where a, G R
and each Ai is a product of at most p (not necessarily distinct) elements of {Si,..., Sk}-
Let S = Si + ••• + Sk and T = YJp>S>. From ||(Sr)n/o|| < ll^iril^/oll it follows
that ST is quasinilpotent at /o- This implies that the operator A = Y^u=i Wi\Ai is also
quasinilpotent at /o, since A ^ o ^ J = 1 5J < aST, where a = n\ax-i^.i^.rn{\ai\}. From the
fact that \Aif\ < .4,1/1 for all / 6 L it follows easily that \Af\ ^ A\f\ for all / G L.
Hence \Anf0\ < Anf0, and so ||v4n/0|| < | | i n /o | | for all n e N. From this it follows that
A is quasinilpotent at /o as well. •

Theorem 2.9. Let <S be an additive semigroup of positive operators on L that are
quasinilpotent at an atom /o G L+. Then there exists a non-trivial S-invariant closed
ideal I. If each member of S is order continuous, then I can be chosen to be a band.
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Proof. Proposition 2.8 implies that all operators of the multiplicative semigroup T
generated by S are quasinilpotent at f0. Now apply Theorem 2.2 for the semigroup T.
For the proof of the second assertion, observe first that a product of order continuous
operators is order continuous. Hence every operator of T is order continuous, and the
second assertion of Theorem 2.2 applies. •

3. A maximal chain of common invariant bands

We first answer negatively the question posed in [8] whether every quasinilpotent positive
operator on a Banach lattice, which contains an atom, is ideal-triangularizable.

Example 3.1. Let E = Lp(F,n) (1 < p < oo), where fi is a Haar measure on the
circle group F. Schaefer [16] (see also [11, §4.2]) constructed a quasinilpotent positive
operator T on E with no non-trivial invariant closed ideal. Let L be the direct sum of
Banach lattices E and R. Then L is a Banach lattice with an atom 0© 1, and the operator
S = T © 0 is a quasinilpotent positive operator on L whose only non-trivial invariant
closed ideals are E © 0 and 0 © R. Therefore, S is not ideal-triangularizable.

From now on, let L be an atomic normed Riesz space of dimension greater than 1, and
let {fa}aeA Q L+ be the corresponding orthogonal maximal system of atoms.

Theorem 3.2. Let L be Dedekind complete, and let S be a collection of positive
operators on L with the following property: whenever there is an S 6 S such that
4>p(Nsfa) > 0 and a T 6 S such that ^(Nrfp) > 0, then there is a U e S such that
<f>-y{Nufa) > 0. Then there is a total ordering of the index set A such that 4>p(Nsfa) = 0
whenever S E S and a < /?.

Proof. Define an order on A by : a > 0 if there exists an operator S €. S such that
4>0{Nsfa) > 0. Set a ^ (3 if either a > @ or a = (3. We claim that ^ is a partial
ordering. If a > /? and j3 > a, then there are S,T € S such that <j>p(Nsfa) > 0 and
^aiNrfp) > 0- Then, by our assumption, there exists a U € <S such that 4>a(Nufa) > 0
which is impossible. This proves that ^ is antisymmetric. The same assumption also
implies that ^ is transitive. Using Zorn's lemma one can show that the partial ordering
^ can be extended to a total ordering that we denote by ^ as well. Now, if /3 > a and
<l>p(Nsfa) > 0 for some 5 € <S, then a> (3, and hence a> a which is a contradiction. D

Let ^ be a total ordering of the index set A, obtained in Theorem 3.2. Let T>(A)
be the Dedekind completion (by cuts) of the set A (see, for example, [6]). We adjoin a
smallest element and a largest element to T>(A), unless T>(A) has these elements already.
Let H be the collection of all subsets of A that have the form either {a € A : a < 6}
or {a G A : a ^ 6} for some 6 6 'D(A). Observe that H is closed under arbitrary
unions and intersections, and 0 € H, A e T-L. For any H G H let BH be the band
generated in L by the set {fQ : a € H}. (If H = 0, then BH = {0}.) Observe that
BH = n(Ker(0a) : a £ H) = n({fa}

d :a<£H). Denote C = {BH : H eH}.
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Theorem 3.3. Assume that all members of the collection S of Theorem 3.2 are order
continuous. Then the chain C consists of S-invariant bands, and it is maximal in the
lattice of all bands of L. If, in addition, L has order continuous norm, then the chain C
is even maximal in the lattice of all closed subspaces of L.

Proof. Pick H 6 U, a G H and 5 G S. Since 4>p(Nsfa) = 0 for all 0 ^ a, we have

Nsfa = Y,
0€A 0<a

so that Nsfa € BH as BH is a band. Because Dsfa G BH as well, we obtain that
Sfa = Dsfa + Nsfa € BH. Since each / G BH is an order limit of elements belonging
to the linear hull of {fa : a G H}, since 5 is order continuous and since BH is a band, we
conclude easily that BH is invariant under 5. We have therefore shown that C consists
of <S-invariant bands.

Assume now that C is not maximal in the lattice of all bands. Then there exists a band
B £ C such that C U {B} is still a chain of bands. Let Bi be the supremum of all bands
of C that are contained in B, and let B? be the innmum (intersection) of all bands of
C that contain B. Since T>(A) is Dedekind complete, the bands B\ and Bi belong to C.
From £?i C B C B2 we conclude that there exists a £ A such that fa 6 B \ B\. Let
H = {(3 G A : P < a}. Then the band BH satisfies inclusions B\ C BH C BI. Since
C U {B} is a chain of bands, we have either B± C BH C B or B C BH C ^2- IQ either
case we obtain a contradiction with the definitions of the bands B\ and Bi- Thus C is
maximal in the lattice of all bands of L.

If the norm of L is order continuous, then each closed ideal is a band (see, for example,
[17, Theorem 105.2]). Thus, the chain C is maximal in the lattice of all closed ideals of
L, and so, by Proposition 1.2, the chain C is also maximal in the lattice of all closed
subspaces of L. D

Corollary 3.4. Let L be Dedekind complete, and let S be a multiplicative semigroup
of order continuous positive operators on L. Assume that 4>a(NsNTfa) = 0 for alia G A
and for all S,T € S. Then for S the conclusions of Theorems 3.2 and 3.3 hold.

Proof. Let us show first that for any 5, T G <S we have DST = DSDT and NST =
DSNT + NSDT + NSNT- In view of the characterization of positive orthomorphisms
preceding Proposition 1.5, there exist positive numbers A and /i such that Ds ^ A/ and
DT < \il, where / denotes the identity operator on L. It follows that DSDT ^ A/j/, so
that the operator DSDT is an orthomorphism. Denoting N := DSNT + NSDT + NSNT

we have, for any a 6 A,

0 ^ <t>a(Nfa) < HaiNrfa) + n4>a{NSfa) + <f>a(NsNTfa) = 0,

which yields 4>a{Nfa) = 0. Since ST = DSDT + N, the uniqueness of the decomposition
implies that DST = DSDT and NST = N.
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We now show that S satisfies the assumption of Theorem 3.2. Suppose that a =
<t>p(Nsfa) > 0 and b = (f)-y{NTfp) > 0, so that Nsfa ^ af0 and NTfp ^ &/7. Then
Nsrfa ^ NsNrfa ^ abf-y, and hence </>7(A^sr/a) ^ ab > 0. Since <S is a semigroup, we
have ST e S, and so the proof is complete. •

Corollary 3.4 gives the following.

Corollary 3.5. Let S be a multiphcative semigroup of order continuous positive oper-
ators on L. Ifcpa(Sfa) = 0 for all a € A and for all S € S, then for S the conclusions of
Theorems 3.2 and 3.3 hold.

Proof. In this case Ns = S for all S € S. Since 5 is a semigroup, we have 4>a{STfa) =
0 for all a 6 A and for all S,T € S. Therefore, the hypothesis on the operators of
Corollary 3.4 is satisfied. The assumption of Theorems 3.2 and 3.3 and Corollary 3.4
that L is Dedekind complete is obviously used only to assure the decomposition from
Proposition 1.6. Therefore, in view of the remark following Proposition 1.6, the space L
of Corollary 3.5 is not assumed to be Dedekind complete. D

From Corollary 3.5 follows the most interesting result of this section.

Theorem 3.6. Let S be a multiplicative (respectively, an additive) semigroup of order
continuous positive operators on an atomic normed Riesz space L. Assume that all of
them are quasinilpotent at fa for each a € A. Then there is a tofcaJ ordering of the index
set A such that 4>p(Nsfa) = 0 whenever S E S and a ^ /3. Furthermore, the chain C
consists of S-invariant bands, and it is maximal in the lattice of all bands of L. If, in
addition, L has order continuous norm, then the chain C is even maximal in the lattice
of all closed subspaces of L.

Proof. As in the proof of Corollary 2.2 we show that (j)a{Sfa) = 0 for all 5 € <S and
for all a € A. If S is a multiplicative semigroup, the result follows from Corollary 3.5.

If S is an additive semigroup of positive operators, then it follows from Proposition 2.8
that every operator in the multiplicative semigroup generated by S is quasinilpotent at
fa for each a & A. Then apply what we have just proved. D

Example 2.3 implies that the assumption of the last results that operators are order
continuous can not be omitted. Also, if all members of S are order continuous and if the
norm of L is not order continuous, then C is not necessarily maximal in the lattice of all
closed subspaces of L, as the following example shows.

Example 3.7. Let S be the operator on l°° defined by

S(xi,x2,x3,...) = (x2tx3/2,x4/4,x5/8,...).

It is easily seen that S is a quasinilpotent, compact, order continuous, positive operator.
Let 5 be a semigroup generated by 5. Then (uniquely) A = N, V(A) = N U {oo}
and H = {Hn : 0 ^ n < oo}, where Hn — {1,2,3,... ,n}. Since the closed ideal
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c\(L)^=1 Bffn) = Co is not in C, the chain C is not maximal in the lattice of all closed
ideals in l°°, and hence in the lattice of all closed subspaces of L as well.

As in [3] we conclude by mentioning that all the results in this paper remain true if in
the definition of the local quasinilpotence we replace

lim | |T"/0 | r / n = 0 by liminf | |T"/0 | | 1 / n = 0.
n—>oo n—XXJ
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