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SOLUTIONS OF PERIOD FOUR FOR A
NON-LINEAR DIFFERENCE EQUATION
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(Received 22 August 1983)

Abstract

The paper extends earlier work by using the factorisation method to discuss solutions of
period four for the difference equation

x n + i=-axl+(l~ a)xn ( 0 < a < s 4 ) .

This equation was suggested by R. M. May as a simple mathematical model for the effect
of frequency-dependent selection in genetics. It is shown that for a given value of the
parameter, a, the identification of solutions of period four can be reduced to finding real
roots for a polynomial equation of degree eight. The appropriate values of xn follow from
a quartic equation. By splitting up the problem in this way it becomes relatively
straightforward to determine the critical values of a at which the various solutions of
period four first appear and to discuss the stability of these solutions. Intervals of stability
are tabulated in the paper.

1. Introduction

The present paper is an extension of an earlier one [4] in which the motivation for
the work was discussed in the first two paragraphs. This followed May [6, 7] who
linked the equation

*»+i =F(xn) = axl +(1 - a)xn (1.1)

with the phenomenon of frequency-dependent selection in population growth and
suggested that it merited further investigation. He noted that the parameter a had
to be restricted to an interval 0 < a < 4 to agree with the genetics problem and it
will be shown later that the interval 2 < a < 4 suffices for the purposes of this
paper. Similarly, we can restrict xn to the interval [-1,1].
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[21 Solutions of period four for a non-linear difference equation 147

In the papers cited above, May showed that solutions with period two are
available for a > 2, although these solutions are unstable for a > 1 + J5 . Experi-
ence with the logistic difference equation suggests that solutions with period four
should first appear at a = 1 + \/5 and this is confirmed by the discussion in this
paper. As a increases, other families of solutions of period four can be dis-
tinguished and it is of interest to determine the critical value of a and the stability
interval for each family.

If we refer to a cyclic solution with minimum period four as a C4 solution and
write (bx, b2, 63, bA) for the elements of the solution, then {-blt -b2, -b3, -bA) is
also a C4 solution because F{-bx) = - / " ( ^ I )

 = -&2> a n <l s o on- Th e existence of
these "mirror image" solutions simplifies the problem for we can assume to begin
with that a > 0, where

a = bx + b2 + b3 + bA, (1.2)

and we can include appropriate mirror image solutions later.
Iterating equation (1.1) four times gives xn+4 as a polynomial of degree 81 in xn

and hence the condition xn + 4 = xn produces a polynomial equation of degree 81.
We can write this equation as G(xn) = xn+4 - xn = 0. However this condition
includes solutions with minimum period two (C2 solutions) and the three equi-
librium solutions (Cl solutions) as special cases and these special cases contribute
a factor of degree 9 to G{xn). The remaining factor gives an equation H(xn) = 0,
where H is of degree 72 in xn. Solving this equation directly would be a
formidable proposition and the aim of the factorisation method is to split the
problem into two simpler steps. As the factorisation method has been applied in
earlier papers [2, 3,4], it will be summarised fairly briefly in this paper.

Section 2 introduces some of the notation that is used later and goes on to
discuss a special case where a full solution is possible. Section 3 lists a number of
equations which are useful in the general case and Section 4 shows how they can
be combined to give the key equation for solving the problem. Section 5 gives an
expression for the stability criterion which is then applied to the special case
mentioned in Section 2. A result for the case where a = 4 is also included.

In the factorisation method the value of a is used to identify a particular
solution and the main problem is to know which values of a are appropriate for a
given value of a. The key equation in Section 4 is an eighth degree polynomial
whose roots provide the desired values for a. The values of bi to b4 then come
from a quartic equation and Section 6 discusses the solution of this quartic. It is
essential to know when it will give real solutions for the elements and in this
problem there are special features which make it easier to decide. In effect, the
solution of the quartic is achieved by solving two separate quadratics.

Section 7 lists the numerical results that were obtained. This includes the
critical values of a at which the different families of solution appear and the
upper limits of a for stability in the cases where stable solutions occur.

https://doi.org/10.1017/S0334270000004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004410


148 A. Brown [3]

2. Introductory ideas and a special case

For a C4 solution (blt b2, b3, b4), the basic equation is that

bi+l=F{bi) = ab*+{\-a)bi, (2.1)

for / = 1, 2, 3, 4, with fc5 = bv This C4 solution contributes a factor /i(x) to
H(x), where

h(x) = (x - bJix - b2)(x - b3)(x - bA)

= x4 - ax3 + fix2 - yx + 8, (2.2)

an equation which defines a, ft, y, 8 as symmetrical functions of the b's. At most
there can be 18 factors of this type in H(x) and some of them will be related
because they correspond to mirror image solutions. If there is a distinct mirror
image solution (-bu -b2, -b3, -b4) its contribution to H(x) is a factor

h*(x) = (x + bi)(x + b2)(x + b3)(x + b4)

= x4 + ax3 + fix2 + yx + 8 (2.3)

and the factors h(x) and h*(x) combine to give

k(x) = h(x)h*(x) = (x2 - b\){x2 - b2){x2 - b2
3){x2 - bj)

= xs - Ax6 + flx4 - Cx2 + D, (2.4)

where
A = a2 - 2/8, B = p2 - lay + 28, C = y2 - 208, D *= 82. (2.5)

It turns out that at most H(x) provides eight factors of type k(x), where the
mirror image solutions are distinct, and two factors of type h(x) where the mirror
image solution is the same as the original solution.

When we say that the mirror image solution is not distinct we mean that
(-bv -b2, -b3, -b4) gives the same C4 solution as (bv b2, b3, b4), whether or not
the elements are ordered in the same way. This means that we have the same
solution if

-bl = br or -b2 = bl or -b3 = b1 or -b4 = bx. (2.6)

The first of these conditions gives the equilibrium solution bx = 0, which we can
ignore, and the second gives

It follows that 64 = F(b3) = F(bx) = b2 and thus we have a C2 solution. In the
same way, br = -b4 leads to a C2 solution, so we can ignore both of these cases.
This leaves only the case bx = -b3 and when this holds

bA = F(b3) = -Fib,) = -b2,

so we have simultaneously

^ + 6 3 = 0, b2 + b4 = 0. (2.7)
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[4] Solutions of period four for a non-linear difference equation 149

It follows that h(x) = (x - bt)(x - b2)(x + bx)(x + b2) and hence

a = 0, 0 = -b\- b\, y = 0, 5 = fcfo2, (2.8)

while the basic equations reduce to

b2 = bl{ab2+(l-a)}, (2.9)

63 = - ^ = &2{afc2
2+(l - a ) } . (2.10)

Multiplying together these equations gives

a ( l - a)P + (l - a ) 2 } .

If we assume bxb2 # 0, to avoid an equilibrium solution, we get

-1 = a2S-a(l -a)fi+(l - a)2. (2.11)

Also, if we multiply equation (2.9) by br and equation (2.10) by b2, then add, the
result is

0 = a(b{ + £2
4) +(1 - a){b\ + b\) = a{p2 - 28) - ( 1 - a)p. (2.12)

Eliminating 8 gives

0 = a2p2 - 3a(l - a)j8 + (2a2 - 4a + 4) (2.13)

and hence

= 3(1 - a) ± ]/{a2 - 2a - 7) . (2.14)

This means that the solution for /J is not real unless a 2 - 2 a - 7 s * 0 , that is
unless a > 1 + 2\/2~. Thus the critical value for this type of solution is a* = 1 +
2\/2. When a = a*, there is a single solution, with 0 = -(3\/2 )/a*, S = 3/(a*)2,
ft? - (3 + i/3)/(a*}/2),b\ = (3 - fi)/(a*j2).

For a> a*, there are two solutions, one with

= 3(1 - a) + Q, 2a28 = (a2 - 2a - 1) +( l - a)Q, (2.15)

where Q = \/(a2 - 2a - 7) , and the other with + Q replaced by -Q in equations
(2.15). It can be checked that these relationships lead to real values for bx and b2.
The stability of these solutions is discussed later, in Section 5.

It is useful to note that these are the only C4 solutions for which a = 0. If we
add the four equations (2.1) we get

« = E*m = °Lb? +(1 - a)Zb, = «E*,3 +(1 " a)a,

where the summation is over / = 1 to i = 4. Taking a > 0, we get

o = X>,3 = a3 - 2>aP + 3y

and hence

y = (o /3 ) ( l - a2 + 3)3). (2.16)
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This means that if a = 0, then y is also zero. Now a = 0 implies that bx + b3 =
-{b2 + b4) and from this

Y = bMb2 + b4) + b2b4{b, + h) = (b.b, - b2b4)(b2 + b4). (2.17)

Since Y = 0, we have b^^ — b2b4 or b2 + bA = 0. If b2 + b4 = 0, we are back to
equation (2.7) and the C4 solutions already discussed. If 6X63 = b2b4, together
with bx + b3 = -(b2 + b4), then we must have either bx = -b2, b3 = -b4 or
b\ = -b4, b} = -b2. Either case leads to a C2 or Cl solution. Thus the only C4
solutions which have a = 0 are the special cases considered above.

3. Additional relationship in the general case

The first step in the factorisation method is to obtain equations which allow /J,
Y and 5 to be evaluated for given values of a and a. The basic equations available
are equations (2.1) and in obtaining equation (2.16) we have already had an
example of how they can be used. In addition we need an equation which allows
us to find suitable values of a when a is specified. It turns out that this is a
polynomial equation of degree 8 in a2 and, for a given a, we have to determine
the positive real roots of this equation. Each root gives a value of a, which we can
take as positive, and from this we get corresponding values of /J, y, S. Finally, the
6, can be determined as the roots of

h{x) = * 4 - ax3 + fix2 - yx + 8 = 0. (3.1)
The laborious part is setting up the required relationships and the equation for a.
Once this has been done the computational work is straightforward.

Because equations (2.1) have cyclic symmetry in the elements b{, rather than
full permutational symmetry, it is convenient to subdivide /? into two parts, each
with cyclic symmetry, and also to use E as a cyclic summation symbol. We can
write

Pi = I > A = t>A + b2b3 + b4blf (3.2)

& = *y>3 + M> 4 =( l /2 )£V> 3 , (3.3)

with /? = /?! + 02. Purely algebraic expansions, without using equations (2.1),
give a number of relationships such as

a Y - 4 S - i 8 l ) 8 2 = E^22*3. (3-4)

/?2 - 2«Y + 45 - fii = Y.b\b2
2, (3.5)

3 + blblb3), (3.6)

+ b4)bl}, (3.7)

~ 28) = Z(blb2b
2

3 + b\b2b]), (3.8)
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as well as the more familiar relationships

B, (3.9)

X>4 = A2 - IB = a4 - 4a2j8 + 2j82 + 4ay - 48, (3.10)

£>J = , 4 3 - 3AB + 3C. (3.11)

If we take b2 = ab\ + (1 - a ) ^ as our paradigm for equation (2.1) we can obtain
the relationships

+(1 - «)E*i = «U 2 - 2 f i ) +(! - <*M>
(3.12)

+(l-a)j81, (3.13)

+ 2(1 - a)B2, (3.14)

+(1 ~ fl)0i, (3-15)

}2 = ^ (« 2 - 2a + 2) - 2(1 - a)Pv (3.16)

If we multiply all four of the basic equations together, we get

hb&by = (M2*3*4)n{rt>i +(1 - a)},

where Fl is used-as a cyclic product symbol. We can take b^jb^ as a nonzero
factor (to avoid the equilibrium solution bt = 0) and expand the product on the
right-hand side. This gives

1 = a4D + a3(l - a)C + o2(l - a)2B + a(l - a)3A +(1 - a)4.

(3.17)

Similarly, we can write

b* ~ b2 = (fr3 - *!>{«(&? + ^ 3 + b]) +(1 - a )} ,

*3 - *i = (*2 - bA){a{bl + ft264 + bl) +(1 - a )} .

and take b4 ¥= b2 and fe3 # fcj to avoid a C2 solution. Multiplying the equations
together and cancelling a nonzero factor (64 - b2)(b-i — b^ leaves

-1 = [a{b\ + bib3 + b\) +(1 - a)}{a{b\ + 62fe4 + bj) + ( l - a ) }

= a2(S + Zb2M + Lbiblb,) + a(l - a)(A + B2)+(l - a)2.

(3.18)

In the same way,

b4 + b2 = (&3 + fc!){a(^ - btb3 + b]) +(1 - a)}, (3.19)

&i + 63 = (b2 + bA){a{b\ - b2b4 + bj) + ( 1 - a ) } , (3.20)
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152 A. Brown [7]

and assuming (Z»x + b3)(b2 + b4) # 0 leads to

1 = a2(S + Y,b\b\ - E&x&fo) + a{\ - a){A - &) +(l - af. (3.21)

By adding equations (3.18) and (3.21)

0 = a2(S + Y.b\b\) + fl(l - a)A +(1 - a)\ (3.22)

and it follows that

-1 = a2E*i^2*3 + a{\ - a)P2. (3.23)

Other equations are available but we have enough for the moment.

4. Combining the various relationships

From equation (2.16)

3ay = a2(l - a2 + 3)5) (4.1)

and we can combine this with equations (3.4) and (3.23) to give

12a2« = a2a2(l - a2 + 30) - 3a%p2 + 3 + 3«(l - a )&. (4.2)

From equations (3.5) and (3.22),

a2(2ay - 58) = a2{p2 + 2j81j82) + a{\ - a)A +(1 - af (4.3)

and replacing ay and 8 from equations (4.1) and (4.2) leads to

fl
2(402 + -ip^2) = -(4a2 - 8o + 9) +(5a2 - 4a)o2 - a V

+ fr(8a - 8a2 + 3a2a2) + &(3a - 3a2 + 3a2a2).

(4.4)

We can obtain a second relationship between fix and /?2 by using equations (3.14)
and (3.23) in equation (3.6). This gives

1 - aft + (3a - 3a2 + a2a2)fi2. (4.5)

In the same way, combining equations (3.7), (3.13) and (3.15) leads to

a2(2j82 + 30J&) = -aa2 +(4a - 2a2 + a2a2)j8,. (4.6)

Equations (4.4), (4.5) and (4.6) provide three relationships between Pl and /?2
 s o it

should be possible to eliminate /?x and /32 and obtain an equation Unking a with a.
From the theory of resultants [1], this would lead most directly to a 7 x 7
determinant, although a smaller determinant (4 X 4) would be possible [5]. It
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would be necessary also to solve for J8J and B2 from these quadratic forms.
Instead of pursuing this approach the available equations were manipulated to
give three linear relationships between j8x and /?2, which made it easy to solve for
/?! and j82 and to write down the equation for a as a 3 X 3 determinant.

The first step was to solve for /?2, ^p2 and /?2
2 as linear functions of j8x and f}2-

This gave

2a2ff = -a2a4 +{5a2 - 3a)a2 -(4a2 - 8a + 9)

+ (4a - 6a2 + 2a2a2)j81 + (3a - 3a2 + 3a2a2)&, (4.7)

3a%P2 = a2a4 +(2a - 5a2)a2 + (4a2 - 8a + 9)

+ (4a2 - a V ) ^ +(3a2 - 3a - 3a2a2)&, (4.8)

6a2Pt = -2a2a4 +(10a2 - 4a)a2 - (8a 2 - 16a + 15)

+ (2a 2 a 2 - 3 a - 8a2)fr + ( 1 5 a - 15a2 + 9a2a2)02. (4.9)

By using these equations it was straightforward to express P2, 8, B, C, D, A2, AB
and A3 as linear functions of j8j and /?2 and thus make use of equations (3.11),
(3.12), (3.16) and (3.17). Equation (3.12) did not give any additional information,
although it served as a check. Equations (3.11) and (3.16) gave the linear equation

ft A + ftfii = *i. (410)
where

Px = 4 a 3 a 4 + ( 9 a 2 - 20a3)a2+(l6a3 - 45a2 + 9a), (4.11)

Ql = 15aV + (45a2 - 30a3)a2 + (15a3 - 45a2), (4.12)

/?! = 4a 3 a 6 +(17a 2 -24a 3 )a 4

+ (36a3 - 85a2 + 54a)a2 +(72 - 99a + 68a2 - 16a3). (4.13)

A second linear equation came from equation (3.8), where b\ and b\ can be
replaced by (l/a){b2 - (1 - a)6x} and (l/a){64 - (1 - a)b3], respectively.
This leads to the equation

flft(ft2- 28) = ft - ay + aMi- (4-14)

Some straightforward algebra, using equations (4.7) to (4.9), produced an equa-
tion

PiV + fiiQl = Rmi, (4-15)

where

P2* = 6 a V + ( 2 4 a 2 - 30a3)a2+(24a3 - 78a2 + 54a), (4.16)

Q\ = 12a3a4 +(45a2 - 30a3)a2 +(18a3 - 63a2 + 45a), (4.17)
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R*2 = 4a3a6 + (21a2 - 26a3) a4

+ (46a3 - I l i a 2 + 75a)a2 -(24a3 - 108a2 + 174a - 135).

(4.18)

In the later work, equation (4.15) was replaced by

PiPi + hQi-Ri' ( 4 1 9 )

with

P2 = Pl-P2\ Q2 = Ql-Q*2, R2 = RX-R\, (4.20)

since this gave slightly simpler terms in the linear equation.
Equation (3.17) also leads to a linear equation in y8x and f}2 but it turned out

that this was a linear combination of equations (4.10) and (4.19). It served as a
check on the coefficients in these equations and in the numerical calculations
equation (3.17) was used as a check on the values obtained for A, B, C and D.

A third linear equation was obtained by combining equations (4.8), (4.9) and
(4.19). From equations (4.8) and (4.9), we can write

6a%fi2 = S, + 71ft + VJ2, 6a202
2 = S2 + T2^ + V2p2,

where Sx, 7\, Vx, S2, T2 and V2 are functions of a and a2, and from this

(>a2R2P2 = ea^P^, + Q2P2)P2

= P^S, + TXB, + Fift) + Q2(S2 + T2PX + V2fi2).

This gives a linear equation

fiiPf + bQS-Rh (4-21)

with

Pf = P2T1 + Q2T2, QS=P2Vl + Q2V2-(>a2R2, R% = -P2S, - Q2S2.

In practice, equation (4.21) was replaced by

&P3 + 02Q3 = tf3, (4.22)

where

P3 = (2/a)P? + (5a - 3 - Saa^P^ (4.23)

with similar definitions for Q3 and Ry In more detail,

i>3 = - 1 5 a V +(30a3 - 72a2)a2 +(-15a3 + 72a2 + 243a), (4.24)

& = 3a 4 a 6 + (72a 3 -33a 4 )o 4

+ (57a4 - 144a3 + 27a2)a2 - 27a4 + 72a3 + 189a2 - 54a, (4.25)

https://doi.org/10.1017/S0334270000004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004410


[io] Solutions of period four for a non-linear difference equation 155

+ (27a3 + 60a2 + 18a)a2 - 12a3 - 21a2 + 9a + 54. (4.26)

Equations (4.10), (4.19) and (4.22) are linearly independent and the determi-

nant

P2 Q2 R

Q

(4.27)

is a polynomial of degree 8 in a2. If we put Y = act2, the equation which
determines a2 for a given valule of a can be written as M(Y, a) = 0, where

M(Y,a)=ZcnY*-", (4.28)

with

c0 = 1, cx = 21(1 - a ) , c2 = 216 - 330a + 162a2,

c3 = 1359 - 2403a + 1902a2 - 602a3,

c4 = 4617 - 10728a + 9558a2 - 5160a3 + 1173a4,

c5 = 10611 - 25839a + 27108a2 - 16740a3 + 7053a4 - 1233a5,

c6 = 18144 - 32724a + 37260a2 - 26496a3 + 13662a4 - 4710a5 + 664a6,

c-, = 7290 - 7614a + 14418a2 - 18630a3

+ 11673a4 - 4617a5 + 1224a6 - 144a7,

c8 = -37908 + 48114a - 21465a2 - 4698a3

+ 8424a4 - 2916a5 + 324a6. (4.29)

For a given value of a, the coefficients cx to c8 can be evaluated and we then want
the positive real roots of M(Y,a) = 0. For each of these roots we get a
corresponding value of a, which we can take as positive. Then y8x and /?2 can be
determined from equations (4.10) and (4.19) and /} is simply /^ + /?2. Equation
(2.16) gives y and 8 could be obtained from equation (4.2), although in practice
the equation used was

6a28 = - a V +(3a2 - a)a2 - ( 2 a 2 - 4a + 3)

+ 2a2(a2 - 1)0! +(3a - 3a2 + 3a2)j82, (4.30)

which arises from combining equations (4.2) and (4.8). A, B, C and D can then be
evaluated from equation (2.5).

https://doi.org/10.1017/S0334270000004410 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004410


156 A. Brown I n ]

5. The stability criterion

Apart from the check provided by equation (3.17), A, B, C and D are useful in
testing the local stability of a C4 solution. For local stability we must have
|5 | < 1, where

= Sla4D + 27a3(l - a)C + 9a2(l - af B + 3a(l - a)3A + (1 - a)\

(5.1)

In the special case considered in Section 2, both a and y are zero, so A = -2/8,
B = B2 + 28, C = -2B8, D = 82. In one family of solutions

2aB = 3(1 - a) + Q = Q - 3c, (5.2)

2a28 = a2 - la - 1 + (1 - a)Q = c2 - 2 - cQ, (5.3)

where c = a - 1 > 2\/2 and Q = / (a2 - 2a - 1) = / (c2 - 8). When these
values are substituted into 5 the result is

S = 10c4 - 90c2 + 81 + (54c - 6c3)Q. (5.4)

As a -» 1 + 2y/2 from above, c -» 2i/2, g -» 0 and S -» 640 - 720 + 81 = 1.
Thus we have a familiar situation, that the critical value of a corresponds to a
cycle which is at the upper limit for stability. If we form the derivative dS/dc, the
dominant term as a -» 1 + 2jl from above is 6c2(9 — c2)/Q and this tends to
+ oo as Q -» 0. For a = 4, we have c = 3, Q = 1, 5 = 81 and dS/dc = 432, so
there is a strong presumption that this family of solutions is unstable, with S > 1
for a > a* = 1 + 2v/2~. (This can be shown more rigorously, as indicated below.)

In the other family of solutions, we have to replace Q by -Q in equations (5.2),
(5.3) and (5.4). With this change, the dominant term in dS/dc also shows a
change in sign and tends to -oo as c -> 2/1 from above. On the other hand, for
a = 4 we again have S = 81 and dS/dc is now 648, which suggests that S
decreases to a minimum value between c = 2\fl and c = 3 and then increases
rapidly after the minimum. Numerical evidence confirms this and suggests that
the minimum is zero (as happened with one family of C2 solutions). To check on
this, put c = (2v^)cosh u and take u = 0 as corresponding to c = 2\fl, with
u = u0 corresponding to c = 3. Then cosh «0 = 3/(2\/2~), sinh M0 = 1/(2;/?)
and exp M0 = v/2~, with COS!I2M0 = 5/4 and sinh 2u0 = 3/4. Note that
Q = (2/2~) sinh u. Our expression for 5 in this case is

S = 10c 4 - 90c2 + 81 - ( 5 4 c - 6c3)Q, (5.5)

and in terms of u this becomes

5 = -39 - 120sinh2« - 40cosh2M + 48 sinh4M + 80cosh4M

= -39 -(80v/2)sinh(2« + M0) + 64cosh(4M + 2u0). (5.6)
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Hence

dS/du = 32cosh(2M + uo){l6sinh(2H + «0) - 5i/2 }. (5.7)

It is easy to verify that dS/du = -48 at u = 0 and dS/du = +648 at u = u0,
with a single zero between 0 and M0. This corresponds to a minimum value of S
and at this minimum

sinh(2M + M0) = (5>/2 )/(16), cosh(4M + 2M0) = 89/64,

which gives S = 0 at the minimum. The minimum occurs when c2 = (27 +
9/F7~)/8, which corresponds to a = 3.8308.

For this family of solutions there is a small range of values of a for which the
C4 solutions are stable. The upper limit occurs when S is again equal to 1, after
passing through the minimum. If we replace 2M + M0 by U in equation (5.6) we
get 5 = 1 when

0 = -40 - (80^2 ) sinht/ + 64(1 + 2 sinh2 U),

an equation whose solutions are

sinhf/ = l/(2v^2) and sinhf/ = (3v/2 ) /8 . (5.8)

The first of these corresponds to u = 0 and the second gives c2 = (13 +
3 /̂(41) }/4. If we use a** for the corresponding value of a, the stability interval is
a* < a < a**, with a* = 3.828427, a** = 3.837665.

When /J is given by equation (5.2) and 5 by equation (5.4), we can use the same
substitution, c = (2\/2 )cosh u, to discuss the change in S as u increases from 0 to
u0. In this case

5 = -39 +(80v'2)sinh(2« - M0) + 64cosh(4M - 2 H 0 ) , (5.9)

dS/du = 32cosh(2w - «0){l6sinh(2K - M0) + 5\/2 }, (5.10)

which gives dS/du > 0 for 0 < u < M0.
Another result which arises from equation (5.1) is that 5 = ± 81 for a = 4. It

was noted previously [4] that for a = 4, equation (1.1) has a general solution
xn = cos(3"4>), where x0 = cos 4>, and this leads to cyclic solutions for suitable
values of <j>. In particular, jcn+4 = xn when

(i)<?> = Mr/41, or (ii) <f> = NTT/40, (5.11)

for any integer iV. As it stands, this includes the Cl and C2 solutions as special
cases but we can pick out the independent C4 solutions by choosing suitable
values of N. For <f> = NTT/41, there are five independent solutions with a > 0 and
they can be obtained by taking N = 1,2,4,7 and 8. Each of these solutions has a
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mirror image solution, making ten distinct solutions in all. For 4> = NTT/40, there
are three independent solutions with a > 0, obtained by taking N = 1,2 and 7.
Again, each of these has a mirror image solution. The C4 solutions which have
a = 0 correspond to <J> = 4ir/A0 and <j> = 57r/40. Thus there are in all eighteen of
these trigonometric C4 solutions for a = 4, as foreshadowed in the earlier
discussion.

These trigonometric solutions were invaluable for testing the equations in
Sections 3 and 4 and for testing computer programmes in the numerical work.

If we take a = 4 and b1 = cos <f>, then

lab\ + (l - a) = 12cos2<> - 3 = 3(sin34>)/(sin</>). (5.12)

(Alternatively, equation (5.12) can be obtained by using

F'ibJ = db2/dbx = (db2/d<}>)/(db1/d<}>).)

In the same way

3abl +(1 - a) = 3(sin9</>)/(sin3<J>),

and so on, with the result that

S= 81(sin8l4>)/(sin4>). (5.13)

For <(> = NTT/40, 81</> = 2Nv + <f> and sin81</> = sin<f>, so S = +81 for <j> =
Nir/40. A similar argument gives 810 = INm — <f> and S = -81 when (/> = iW/41.
These results help to identify which families of solutions should have stability
intervals.

A result which does not arise from equation (5.1) but which relates to stability
is that for 0 < a < 2 and |JCO| < 1 all solutions of equation (1.1) converge to zero
as n -» 00. For 0 < a < 1 this global property is fairly obvious, since convergence
is from one side only. For 1 < a < 2, xn and xn+l can have opposite signs but for
0 < Kl < 1

/•„ = xn + l/*„ = ax2
n + (1 - a) = (1 + c)x2

n - c. (5.14)

As before, c = a — 1 and the restriction on a gives 0 < c < 1. It follows that

1 - rn = (1 + c)(l + x2
n) > 0,

l + rn = (l + c ) x n
2 + ( l - c ) > 0 .

Thus \rn\ < 1 and this ensures that |xn+1| < \xn\. Hence if 0 < |xo| < 1 the values
of xn either move closer to zero at each step or jump to zero and stay there.
Because of this global convergence property for 0 < a «s 2, any C4 solutions must
occur for a > 2 and the numerical work was restricted accordingly.
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6. Solution for elements of C4 cycle

Although S can be evaluated from equation (5.1) without knowing bx to b4

explicitly, it is useful to have some way of testing whether or not the values found
for a, /?!, )82, /}, y and 5 lead to a real solution for the b's. One approach to this is
to use equations (3.19) and (3.20), which can be rewritten as

(b2 + Z>4)/(
fci + h) = a{bx + b3f - 3ab1b3 + 1 - a, (6.1)

(bt + b3)/{b2 + b4) = a(b2 + b4f - 3ab2b4 + 1 - a. (6.2)

This assumes that /Sx = (b1 + b3)(b2 + b4) ¥= 0, which means that we are exclud-
ing the solutions for which a = 0 (Section 2). These cases are easy to deal with
separately.

If we assume b1 + b3 = b2 + bA ̂  0, then equations (6.1) and (6.2) give bxb3 =
b2b4 and as a result either bx = b2, with b3 = b4 or bl = b4 with b2 = bv In either
case we get an equilibrium solution. Thus we can deduce that for a C4 solution,
with a ¥* 0, bx + b3 and b2 + b4 are unequal. We shall assume that bx + b3 > b2

+ b4 for the rest of this section. Since a = (bx + b3) + (b2 + b4) and j8x = (bx +
b3)(b2 + b4), we can obtain b1 + b3 and b2 + b4 as the roots of

Z2 - aZ + /3i = 0. (6.3)

If a2 < 4/J1; this equation has complex roots and we can stop immediately. For
unequal real roots we must have a2 > 4/?! and we can write

bx + b3 = ( l /2)(o + R,), b2 + b4 = ( l /2)(a - /lx), (6.4)

where Rx = ]/(a2 - 4/}x). This means that

(&1 + fc3)
2-(Z>2 + Z>4)

2 = atf1, (6.5)

{(b, + b3)/{b2 + b4)} -{(b2 + fc4)/(*i + b3)} = aRi/h. (6.6)

If we subtract equation (6.2) from (6.1) and use equations (6.5) and (6.6)

3^(6,63 - b2b4) = {a +(l/p1))aR1. (6.7)

Taking a > 0, we get the result that

b^j > b2b4 provided a + ( l / f t ) > 0. (6.8)

This latter condition held in all the cases that were considered, so we can take
bxb3 as the larger root of the equation

Z2 - 02Z + S = Z2 -{bxb3 + b2b4)Z + bxb2b3b4 = 0. (6.9)
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The roots of this equation must be real, since bxb3 + b2b4 = P2 is real and
bxb3 - b2bA is real, from equation (6.7). Hence we can write

6^3 = (l/2)(j82 + R2), b2bA = ( l /2)(f t - R2), (6.10)

where

R2 = bxb3 - b2b4 = / ( # - 48) . (6.11)

From equation (6.7)

R2 = (aR1/3){l+(afiiy
1}. (6-12)

We can now solve for bx and b3, using bx + b3 = (l/2)(a + Ri) and bxb3 =
(l/2)(/?2 + ^2)- Iftlle roots are real and we take b1 > b3, then

b, = ( l /4) (a + R, + Dx), b3 = ( l /4)(o + Rx - Dt), (6.13)

where

D? = (a + A j 2 - 8(/82 + R2)

= 2«2 - 4/8, - 8/82 - ( 2 0 ^ / 3 ) { 1 + ( 4 / 0 ^ ) } . (6.14)

Unless D\ > 0 the roots will not be real and distinct, since D\ = 0 gives a C2
solution and D\ < 0 gives complex values. In the same way, b2 and bA are given
by (l/4)(a - Ri± D2), where

Dl = 2a2 - 4/?, - 8& +(2o/?x/3){l + ( 4 / 0 ^ ) } , (6.15)

provided D2 > 0. Thus a sufficient condition for the solution to be real is that

W = Min(a2 - 4ft, D,2, Z?2
2) > 0. (6.16)

Two minor notes are that 1 + (4/aft) is sometimes positive and sometimes
negative, so D2 — D\ is not always positive, and that the conditions bx + fc3 > b2

+ b4, with bx > b3, do not imply that bx is the largest root. However, once the
roots are known it is easy to arrange them in a suitable order.

7. Numerical results

The numerical work was carried out on a Univac 1100 computer, using double
precision. An outline of the steps involved is given at the end of Section 4 and
equations for br, b2, b3, b4 are given in Section 6. Only values of a between 2 and
4 were used. The first step was to evaluate M(Y, a) over a suitable range of values
of Y and a, to see how M(Y, a) behaved and in particular to look for zeros. It was
a surprise to find that M(Y,2) = 0 had a positive root and this root, which we
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shall call Y4, could be followed throughout the interval 2 < a < 4. Two addi-
tional roots appeared between a = 3.55 and a = 3.6 and a smaller root came in
about 3.85. Finally, four larger roots appeared, in pairs, between a = 3.95 and
a = 4.0. For a = 4, all eight roots were recorded and they agreed with the values
expected from the trigonometrical solutions. The occurrence of a single root for a
polynomial of even degree, as recorded for 2 < a < 3.55, looked a little bit
strange but in fact it was accompanied by a negative root which we can label Yv

For a = 2, Y1 was -2.68 and it increased smoothly with a, passing through zero
around a — 3.85 and being identified after that as a small positive root. We can
think of Yl and y4 as a pair of roots which occur throughout the interval [2, 4]
even although Yt is negative for part of this range and hence of no interest as far
as real C4 solutions are concerned. Indeed it turns out that the Y4 root does not
always give real solutions either and it is this property which saves us from having
C4 solutions for a < 1 + y/5~.

Apart from these families of roots, there were indications of an isolated zero at
a = 2.535, Y = 6.354. Regarded as a function of two variables, M(Y, a) has a
minimum in this area and it appeared that the minimum was zero. This was
checked more carefully and values of M were obtained which were zero to 9 or 10
decimal places. The smallest value recorded on the computer print-outs was
- 1 X 10" u for a = 2.535092575, Y = 6.3542741. As Ys equals 2.66 X 106 in this
case, the fact that all the terms cancelled to an accuracy of 10~16Y8 makes a good
case for treating the minimum as zero. For these values of a and Y, equations
(4.10), (4.19) and (4.22) gave essentially the same linear relationship between fix

and fi2, that is the ratios

P^.Q^.R,, P2:Q2:R2, P3:Q3:R3,

were the same to about eight decimal places. Because of this the usual method of
determining /?j and /82 was ruled out. Instead, equation (4.10) was used to express
/?2 as a linear function of p1 and this expression was substituted for P2

 m equation
(4.7), which gave a quadratic equation for pv The quadratic equation proved to
have complex roots and this verified that the isolated zero did not lead to a real
C4 solution.

Once the general pattern of the roots had been established, solutions were
carried out for the C4 cycle corresponding to pairs (Y, a) which gave M(Y, a) = 0.
The Y-values for a = 4 were arranged in ascending order and labelled Y01, Y02,
Yx, Y2,...,YS, where 701 = Y02 = 0, and we can use these labels to identify
corresponding families of roots. We can take Y0l to refer to solutions with a = 0
and 2afi = 3(1 - a) - Q, while YQ2 refers to solutions with a = 0 and 2a/? =
3(1 - a) + Q. From Sections 2 and 5, the Y0lsolutions are stable for a* < a <
a**, where the appropriate values for a* and a** are listed in Table 1. The Y02

solutions are unstable for a > a*.
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TABLE 1. Critical values for solutions of period four and data for solutions with a = 4.

[17]

Family of
solutions

^0,1 > *0.2

y.

y*

y^y*

Yi,Yg

a*
a"

3.828427
3.837665

3.837665
3.842116

3.547835
3.548831

3.236068
3.288032

3.967535
3.967556

3.991929
3.991938

Stable
sequence

0̂.1

n
n
n
y8

Data for solutions with a = 4

Root

>0.1
^0.2

^1

Yi
Y,

Y4

n
n̂

7

Numerical
Value

0.0
0.0

0.119006

0.513167
1.430098

1.479355

9.379146
10.0

19.486833
20.512395

<j> S

4w/40 +81
5w/40 +81

4TT/41 -81

7w/40 + 81
7w/41 -81

8w/41 -81

2ir/41 -81

297/40 +81

fr/40 + 81
TT/41 -81

For the Yx solutions, the critical value, a*, occurs when c8 = Af(0, a) = 0. For
a < a*, cs is negative and M(Y,a) has a negative root. For a > a*, cs is positive
and Y1 takes positive values. It was noted that a* is slightly less than 3.85 and this
suggests that the Yx solutions come in when the Yo 1 solutions become unstable.
For a = 3.84, the Y1 solution gave

bx = 0.520350, b2 = -0.936768, b3 = -0.496237, 64 = 0.940069,

and it will be seen that bx + b3 and b2 + b4 are both close to zero. For the Yol

solutions, bx + b3 and b2 + b4 are exactly zero, so we can guess that the Yx

solution and the 701 solution are similar. (For comparison, the 701 and Yo2

solutions for a = 3.84 are (0.511212, -0.938822, -0.511212, 0.938822) and
(0.456836, -0.931304, -0.456836, 0.931304). It will be seen that all three solutions
are similar but the Yx solution is slightly closer to the Y0l than to the y02

solution.) The numerical checks confirmed that c8 = 0 when a = 3.837665 and we
can take this as the critical value for the Yx solutions. For this critical value the
appropriate solution is the Y01 solution and this gives S = 1. As a increases, S
decreases, passes through the value -1 and becomes -81 for a = 4. The upper
limit of a for stability occurs when 5 = -1 and an appropriate value for a was
determined by interpolating from a table of values of S.

For the Y4 family of roots, the corresponding C4 solutions are complex for
a < 1 + / J . For a > 1 + /T the solutions are real, with S < 1. For a = 1 + \/5
there is a C2 solution, with bx = 1 / \fl and b2 = (1 - \/5")/(2/2) and with

{3abl +(1 - a)}{lab\ +(1 - a)} = -1 . (7.1)
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If we think of this as the limiting case of a C4 solution, with b3 -» b1 and fe4 -» b2

as a -» 1 + v7^ from above, then this limiting C4 solution has 5 = 1 and also
aft = -4, 2a2 = 4/3j + 8/J2. It follows that D\ and D2 are both zero (from
equations (6.14) and (6.15)). For a > 1 + \/5~, the C4 solutions are real, with D\
and D2 both positive. Something of this kind was to be anticipated, for equations
(2.1) imply that b2 and b4 must be real when bx and b3 are real. (Indeed as soon as
one of the elements is real the others must be real.) For a > 1 + \/5~, 5 decreases
as a increases and the limiting value of a for stability occurs when 5 = - 1 .

The Y2 and Y, roots have a maximum of M between them (for a given value of
a) and the critical value, a*, occurs when this maximum is zero and Y2, Y3

coincide. For a > a*, the C4 solutions are real, with S = 1 at a = a*. As a
increases, 5 decreases for the y3 family of solutions and there is a small interval
within which the solutions are stable. For the Y2 family of solutions, 5 increases
with a and the C4 solutions are unstable for a > a*.

For the Y5 and Y6 roots the pattern is similar. For a given value of a, there is a
minimum of M between them and the critical value occurs when the minimum is
zero. For this critical value, Y5 and Y6 coincide and 5 = 1. For larger values of a,
Y5 and Y6 are distinct and correspond to real C4 solutions. For the Y5 solutions
there is a small interval of stability but the Y6 solutions become unstable for
a> a*.

The Y-j and yg roots also come in as a pair, with a minimum of M between the
two roots. At the critical value of a, the two roots coincide and 5 = 1. Each root
leads to a real C4 solution. For the Ys solutions, 5 decreases as a increases and
there is a small stability interval. For the Y7 solutions, 5 increases with a and the
solutions are unstable.

The appropriate values of a* and a** are listed in Table 1. It will be seen that
the largest stability interval has a width of 0.052, which gives a very sharp
decrease in width compared with the largest interval for C2 solutions. The table
also gives some information for the solutions which correspond to a = 4. In
particular, there is a column to indicate the range of values of Y that is involved.
The value of 10 for Y6 is an exact result and the values for Y2 and Y7 are 10 — 3\/W
and 10 + 3/10. This means that Y - 10 and Y2 - 207 + 10 are factors of
M{Y, A) and this was verified as a check on the coefficients in M{Y, a).
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