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ABSTRACT

We present a quantitative isolation property of the lifts of properly immersed geodesic
planes in the frame bundle of a geometrically finite hyperbolic 3-manifold. Our estimates
are polynomials in the tight areas and Bowen—Margulis—Sullivan densities of geodesic
planes, with degree given by the modified critical exponents.
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1. Introduction

Let H? denote the hyperbolic 3-space, and let G := PSLy(C), which can be identified with the
group Isom™ (H?) of all orientation preserving isometries of H3. Any complete orientable hyper-
bolic 3-manifold can be presented as a quotient M = I'\H?® where T is a torsion-free discrete
subgroup of G. An oriented geodesic plane in M is the image of a totally geodesic immersion of
the hyperbolic plane H? C H? equipped with an orientation under the quotient map H? — T'\H?.
In this paper, all geodesic planes are assumed to be oriented. Set X := I'\G. Via the identifica-
tion of X with the oriented frame bundle FM, a geodesic plane in M arises as the image of a
unique PSLg(R)-orbit under the base point projection map

7: X~FM — M.

Moreover, a properly immersed geodesic plane in M corresponds to a closed PSLo(RR)-orbit
in X.

Setting H := PSLs(R), the main goal of this paper is to obtain a quantitative isolation result
for closed H-orbits in X when I is a geometrically finite group. Fix a left invariant Riemannian
metric on G, which projects to the hyperbolic metric on H?3. This induces the distance d on X so
that the canonical projection G — X is a local isometry. We use this Riemannian structure on
G to define the volume of a closed H-orbit in X. For a closed subset S C X and € > 0, B(S,¢)
denotes the e-neighborhood of S.

The case when M is compact

We first state the result for compact hyperbolic 3-manifolds. In this case, Ratner [Rat91] and
Shah [Sha91] independently showed that every H-orbit is either compact or dense in X. Moreover,
there are only countably many compact H-orbits in X. Mozes and Shah [MS95] proved that an
infinite sequence of compact H-orbits becomes equidistributed in X. Our questions concern the
following quantitative isolation property: for given compact H-orbits Y and Z in X,

(1) How close can Y approach Z?
(2) Given € > 0, what portion of Y enters into the e-neighborhood of Z7

It turns out that volumes of compact orbits are the only complexity which measures their
quantitative isolation property. The following theorem was proved by Margulis in an unpublished
note.

THEOREM 1.1 (Margulis). Let I' be a cocompact lattice in G. For every 1/3 <s <1, the
following hold for any compact H-orbits Y # Z in X.

(1) We have
d(Y,Z) > o745 - Vol(Y) V5 Vol(z)~V/*

where ay = (1/(1 — 5))1/(1=9),
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(2) Forall0<e <1,
my (Y NB(Z,¢)) < at-e*-Vol(Z)

where my denotes the H-invariant probability measure on Y.

In both statements, the implied constants depend only on the injectivity radius of T\G (see (A.9)
and (A.10) for more details).

Remark 1.2. (1) By recent work [MM22, BFMS21], there may be infinitely many compact
H-orbits only when I' is an arithmetic lattice.

(2) Theorem 1.1 for some exponent s is proved in [EMV09, Lemma 10.3]. The proof
in [EMVO09] is based on the effective ergodic theorem which relies on the arithmeticity of I" via
uniform spectral gap on compact H-orbits; the exponent s obtained in their approach however
is much smaller than 1.

(3) Margulis’ proof does not rely on the arithmeticity of I' and is based on the construction
of a certain function on Y which measures the distance d(y, Z) for y € Y (cf. (1.14)). A similar
function appeared first in the work of Eskin, Mozes and Margulis in the study of a quantitative
version of the Oppenheim conjecture [EMM98], and later in several other works (e.g. [EM04,
BQ12, EMM15]).

General geometrically finite case
We now consider a general hyperbolic 3-manifold M = I'\H3. Denote by A C OH? the limit set
of I' and by core M the convex core of M, i.e.

core M =T\ hullA C M

where hull A C H? denotes the convex hull of A. In the rest of the introduction, we assume that
M is geometrically finite, that is, the unit neighborhood of core M has finite volume.

Let Y C X be a closed H-orbit and Sy = Ay \H? be the associated hyperbolic surface, where
Ay < H is the stabilizer in H of a point in Y. We assume that Y is non-elementary, that is, Ay
is not virtually cyclic; otherwise, we cannot expect an isolation phenomenon for Y, as there is a
continuous family of parallel elementary closed H-orbits in general when M is of infinite volume.
It is known that Sy is always geometrically finite [OS13, Theorem 4.7].

Let 0 < §(Y) < 1 denote the critical exponent of Sy, i.e. the abscissa of the convergence of
the series Zye Ay e54(07(9)) for some o € H2. We define the following modified critical exponent

of Y:
5y = {5(Y) if Sy has no cusp, (13)

26(Y) —1 otherwise;

note that 0 < dy < 40(Y) <1, and dy = 1 if and only if Sy has finite area.

In generalizing Theorem 1.1(1), we first observe that the distance d(Y, Z) between two closed
H-orbits Y, Z may be zero, e.g. if they both have cusps going into the same cuspidal end of X.
To remedy this issue, we use the thick—thin decomposition of core M. For p € M, we denote by
inj p the injectivity radius at p. For all € > 0, the e-thick part

(core M) := {p € core M :injp > &} (1.4)

is compact, and for all sufficiently small € > 0, the e-thin part given by core M — (core M), is
contained in finitely many disjoint cuspidal ends, i.e. images of horoballs in T\H?. Let Xo C X
denote the renormalized frame bundle RFM (see (2.1)). Using the fact that the projection of Xg
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is contained in core M under 7, we define the e-thick part of Xy as follows:
X :={z € Xo: m(x) € (core M).}.
The following theorem extends Theorem 1.1 to all geometrically finite hyperbolic manifolds.

THEOREM 1.5. Let M be a geometrically finite hyperbolic 3-manifold. Let Y # Z be non-
elementary closed H-orbits in X, and denote by my the probability Bowen—Margulis—Sullivan
measure on Y. For every dy /3 < s < dy the following hold.

(1) For all 0 < e < 1, we have

1/s
dY N X2, Z) > ayls - [ X 1.6
( e Z) > oy area; Z (16)
where:
e vy = mingeynx. my(By(y,e)) where By (y,¢) is the e-ball around y in the induced
metric on Y;
e area; Z denotes the tight area of Sz relative to M (Definition 1.7);
1/(6y —

o ay = (sY/(éy — S)) /(Bv=s)

(2) Forall0 < e < 1,

where sy is the shadow constant of Y (Definition 1.8).

my (Y NB(Z,¢)) < ay-e - area; Z.

In both statements, the implied constants and * depend only on T'.

Remark. (1) We give a proof of a more general version of Theorem 1.5(1) where Z is allowed to
be equal to Y (see Corollary 10.5 for a precise statement).

(2) When X has finite volume, we have dy =1 and my is H-invariant so that vy, <
£3Vol(Y)~!. Moreover, the tight area area; Z and the shadow constant sy are simply the usual
area of Sz and a fixed constant (in fact, the constant can be taken to be 2) respectively. There-
fore Theorem 1.5 recovers Theorem 1.1. Moreover, the exponent x depends only on G as well;
this follows since the proofs of Theorem 9.18 and theorems in § 10, of which Theorem 1.5 is a
special case, show that * depends only on sy, py and dy, which are all absolute constants in the
finite volume case.

We now give definitions of the tight area area; Z and the shadow constant sy for a general
geometrically finite case; these are new geometric invariants introduced in this paper.

DEFINITION 1.7 (Tight area of S). For a properly immersed geodesic plane S of M, the tight-
area of S relative to M is given by

area(S) := area(S NN (core M))

where N (core M) = {p € M : d(p,q) < inj(q) for some ¢q € core M} is the tight neighborhood of
core M.

We show that area;(.9) is finite in Theorem 3.3, by proving that S NN (core M) is contained
in the union of a bounded neighborhood of core (S) and finitely many cusp-like regions (see
Figure 1). We remark that the area of the intersection S N B(core M, 1) is not finite in general.

DEFINITION 1.8 (Shadow constant of Y). For a closed H-orbit Y in X, let Ay C 0H? denote
the limit set of Ay, {v,:p € H?} the Patterson-Sullivan density for Ay, and B,(£,¢) the
e-neighborhood of ¢ € OH? with respect to the Gromov metric at p. The shadow constant of
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FIGURE 1. SN N(core M).

Y is defined as follows:

B 1/6y
Sy = sup “p(By(6.)) 5o
cehy peleAy]0<e<1/2 € - Vp(Bp(€, 1/2))1/%Y

where [, Ay ]| is the union of all geodesics connecting £ to a point in Ay.

(1.9)

We show that sy < co in Theorem 4.8.

Remark 1.10. If Y is convex cocompact, then for all 0 <e <1, we have vy, =< el+20v with
the implied constant depending on Y. When Y has a cusp, Sullivan’s shadow lemma (cf.
Proposition 4.11) implies that lim._.,glogvy/loge does not exist.

A hyperbolic 3-manifold M is called convex cocompact acylindrical if core M is a compact
manifold with no essential discs or cylinders which are not boundary parallel. For such a manifold,
there exists a uniform positive lower bound for §(Y") = dy for all non-elementary closed H-orbits
Y [MMOL17]; therefore the dependence of dy can be removed in Theorem 1.5 if one is content
with taking some s which works uniformly for all such orbits.

Examples of X with infinitely many closed H-orbits are provided by the following theorem
which can be deduced from [MMO17, MMO22, BO22].

THEOREM 1.11. Let My be an arithmetic hyperbolic 3-manifold with a properly immersed
geodesic plane. Any geometrically finite acylindrical hyperbolic 3-manifold M which covers M
contains infinitely many non-elementary properly immersed geodesic planes.

It is easy to construct examples of M satisfying the hypothesis of this theorem. For instance, if
My is an arithmetic hyperbolic 3-manifold with a properly embedded compact geodesic plane P,
My is covered by a geometrically finite acylindrical manifold M whose convex core has boundary
isometric to P.

Finally, we mention the following application of Theorem 1.5 in view of recent interests in
related counting problems [CMN22].

COROLLARY 1.12. Let Vol(M) < oo, and let N (T) denote the number of properly immersed
totally geodesic planes P in M of area at most T. Then for any 1/2 < s < 1, we have

N(T) <, TO/)=1 forall T > 1;
see Corollary 10.7 for a detailed information on the dependence of the implied constant.

We remark that when Vol(M) < oo, the heuristics suggest s = dim G/H = 3 in Theorem 1.5
and hence N (T) < T in Corollary 1.12. Indeed, when I" = PSLa(Z[i]), the asymptotic N (T') ~
¢+ T, as suggested in [Sar05], has been obtained by Jung [Jun19] based on subtle number theoretic
arguments.
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FIGURE 2. Iz(y).

Remark 1.13. We can also obtain an estimate for A/(T) for a general geometrically finite hyper-
bolic manifold. By [MMO17, BO22], if Vol(M) = oo, there are only finitely many properly
immersed geodesic planes of finite area (note that they are necessarily contained in the con-
vex core of M); hence supp N (T') < co. We also obtain that there exists Ny > 1 (depending only
on G) such that for any 1/2 < s < 1, we have

N(T) < Vol(unit-nbd of core M) z—:]@[NOTG/S_l

where the implied constant depends only on s (see Remark 10.11 for details). Note that this
kind of upper bound is meaningful despite the finiteness result mentioned above, as the implied
constant is independent of M.

Discussion on proofs

We discuss some of the main ingredients of the proof of Theorem 1.5. First consider the case when
X =T\G is compact (the account below deviates slightly from Margulis’ original argument).
Let ex be the minimum injectivity radius of points in X. The Lie algebra of G decomposes as
sla(R) @ islo(R). Hence, for each y € Y, the set

Iz(y) :={veislh(R): 0 < ||v] <ex, yexp(v) € Z}

keeps track of all points of Z N B(y,ex) in the direction transversal to H (see Figure 2).
Therefore, the following function fs : ¥ — [2,00) (0 < s < 1) encodes the information on the
distance d(y, Z):

fy) = {zvemw ol if Zz(y) # 0. 114)

s .
€y otherwise.

A function of this type is referred to as a Margulis function in the literature.
The proof of Theorem 1.1 is based on the following fact: the average of f, is controlled by
the volume of Z, i.e.

my (fs) <s Vol(2). (1.15)
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We prove the estimate in (1.15) using the following super-harmonicity type inequality: for
any 1/3 < s < 1, there exist t = t;, > 0 and b = bs > 1 such that for all y € Y,

Aifs(y) < 5fs(y) +bVol(Z) (1.16)

where (A fs)(y) = fol fs(yuray) dr, u, = (}q (1)), and a; = (etéz 63/2).

The proof of (1.16) is based on the inequality (A.1), which is essentially a lemma in linear
algebra. We refer to Appendix A, where a more or less complete proof of Theorem 1.1 is given.

For a general geometrically finite hyperbolic manifold, many changes are required, and several
technical difficulties arise. In general, there is no positive lower bound for the injectivity radius
on X, and the shadow constant of Y appears in the linear algebra lemma (Lemma 5.6). These
facts force us to incorporate the height of y as well as the shadow constant of Y in the definition
of the Margulis function (see Definition 9.1). The correct substitutes for the volume measures
on Y and Z turn out to be the Bowen—Margulis—Sullivan probability measure my and the tight
area of Z respectively.

It is more common in the existing literature on the subject to define the operator A; using
averages over large spheres in H2. Our operator A;, however, is defined using averages over
expanding horocyclic pieces; this choice is more amenable to the change of variables and iteration
arguments for Patterson—Sullivan measures. Indeed, for a locally bounded Borel function f on
Y N Xg and for any y € Y N X,

1 1
mmwz%mmuﬁﬂwmww>

where fi, is the Patterson-Sullivan measure on yU (see (4.2)).

When X is compact and hence my is H-invariant, (1.15) follows by simply integrating
(1.16) with respect to my. In general, we resort to Lemma 7.3, the proof of which is based on
an iterated version of (1.16) for A, n € N, for some ¢y > 0, as well as on the fact that the
Bowen-Margulis—Sullivan measure my is ay,-ergodic.

In fact, the main technical result of this paper can be summarized as follows.

PROPOSITION 1.17. Let T be a geometrically finite subgroup of G. Let Y # Z be non-elementary
closed H-orbits in X = T'\G, and set Y :=Y N Xy. For any dy /3 < s < 0y, there exist ts > 0
and a locally bounded Borel function Fy : Yy — (0,00) with the following properties.

(1) For all y € Yy,

d(y, 2)"" < sy Fi(y).

(2) For ally € Yp and n > 1,

1

(Ant. ) () < 5 Faly) + b, arean(S7)

(3) There exists 1 < o < sy such that for ally € Yy and for all h € H with ||h|| > 2 and yh € Y,
o~ Fy(y) < Fi(yh) < oFy(y).

Finally we mention that the reason that we can take the exponent s arbitrarily close to dy
lies in the two ingredients of our proof: first, the linear algebra lemma (Lemma 5.6) is obtained
for all 6y /3 < s < dy; and second, for any y € Y N Xy, we can find |r| < 1 so that yu, € Xy and
the height of yu, can be lowered to be O(1) by the geodesic flow of time comparable to the
logarithmic height of y; see Lemma 8.4 for the precise statement.
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Organization

We end this introduction with an outline of the paper. In §2, we fix some notation and conventions
to be used throughout the paper. In § 3, we show the finiteness of the tight area of a properly
immersed geodesic plane. In §4, we show the finiteness of the shadow constant of a closed
H-orbit. In §5, we prove a lemma from linear algebra; this lemma is a key ingredient to prove
a local version of our main inequality. Section 6 is devoted to the study of the height function
in Xo. In §7, the definition of the Markov operator and a basic property of this operator are
discussed. In §8, we prove the return lemma, and use it to obtain a uniform control on the
number of sheets of Z in a neighborhood of y. In §9, we construct the desired Margulis function
and prove the main inequalities. In §10, we give a proof of Theorem 1.5. In Appendix A, we
provide a proof of Theorem 1.1.

2. Notation and preliminaries

In this section, we review some definitions and introduce notation which will be used throughout
the paper.

We set G = PSLy(C) ~ Isom™ (H?), and H = PSLy(R). We fix H? C H? with an orientation
so that {g € G : g(H?) = H?} = H. Let A denote the following one-parameter subgroup of G:

t/2
A:{at: (60 62/2> :tER}.

Set Kg = PSU(2) and My the centralizer of A in K. We fix a point o € H? C H? and a unit
tangent vector v, € TO(]HI3) so that their stabilizer subgroups are Ko and M respectively. The
isometric action of G on H® induces identifications G/Ko = H?, G/My = T* H?, and G = FH3
where T! H? and FH?® denote, respectively, the unit tangent bundle and the oriented frame bundle
over H3. Note also that H N Kq = PSO(2) and that H (o) = H?2.

The right translation action of A on G induces the geodesic/frame flow on T H? and FH?,
respectively. Let v € OH? denote the forward and backward end points of the geodesic given
by v,. For g € G, we define

gF = g(vE) € OH>.
Let I' < G be a discrete torsion-free subgroup. We set
M:=T\H® and X:=T\G~FM.

We denote by 7 : X — M the base point projection map. Denote by A = A(T") the limit set of T".
The convex core of M is given by core M = I'\hull(A). Let X denote the renormalized frame
bundle RFM, i.e.

Xo=1{[g] € X : g* € A}, (2.1)

that is, X is the union of all the A-orbits whose projections to M stay inside core M. We remark
that Xy does not surject onto core M in general.

In the whole paper, we assume that I is geometrically finite, that is, the unit neighborhood of
core M has finite volume. This is equivalent to the condition that A is the union of the radial limit
points and bounded parabolic limit points: A = Ayaq | App (cf. [Bow93, MT98]). A point £ € A is
called radial if the projection of a geodesic ray toward to ¢ accumulates on M = I'\H3, parabolic
if it is fixed by a parabolic element of I', and bounded parabolic if it is parabolic and Stabp(§)
acts co-compactly on A — {£}. In particular, for I' geometrically finite, the set of parabolic limit
points A, is equal to App. For £ € Ay, the rank of the free abelian subgroup Stabr(§) is referred
to as the rank of &.
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A geometrically finite group I' is called conver cocompact if core M is compact, or
equivalently, if A = Apaq.
We denote by N the expanding horospherical subgroup of G for the action of A:

== (0 Vsvec),

For £ € Ay, a horoball 65 C G based at £ is of the form
be(T) = GNA (oo, 1Ko for some T > 1, (2.2)

where g € G is such that g~ = § and A(_ 7] = {ar : —co <t < —T'}. Its image 65(0) in H? is
called a horoball in 11-]13 based at §. By a horoball h¢ in X and in M, we mean their respective
images of horoballs he and bhe(o) in X and M under the corresponding projection maps.

Thick—thin decomposition of X

We fix a Riemannian metric d on G which induces the hyperbolic metric on H3. By abuse of
notation, we use d to denote the distance function on X induced by d, as well as on M. For a
subset S C # and € > 0, Ba (S, ¢) denotes the set {z € & : d(z,S) < e}. When & is a subgroup of
G and S = {e}, we simply write Bg(g) instead of Bg(S,e). When there is no room for confusion
for the ambient space #, we omit the subscript #.

For p € M, we denote by injp the injectivity radius at p € M, that is: the supremum r > 0
such that the projection map H® — M = I'\H? is injective on the ball Bys(p,r) where § € H?
is such that p = [p] =pI'. For S C M and e > 0, we call the subsets {p € S :inj(p) > e} and
{p € S :inj(p) < €} the e-thick part and the e-thin part of S respectively.

As M is geometrically finite, core M is contained in a union of its e-thick part (core M),
and finitely many disjoint horoballs for all small € > 0 (cf. [MT98]). If p = gusa_to is contained
in a horoball he = gNA(_o _7)(0), then inj(p) =< e~t for all t > T, this is a standard fact see,
e.g. [KO21, Proposition 5.1].

Let epr > 0 be the supremum of € with respect to which such a decomposition of core M
holds. We call the ep7-thick part of core M the compact core of M, and denote by M.

For x = [g] € X, we denote by inj(z) the injectivity radius of 7(z) € M. For € > 0, we set

X :={z € Xo :inj(z) > €}.
We set ex = epr/2; note that Xo — X, is either empty or is contained in a union of horoballs

in X.

Convention

By an absolute constant, we mean a constant which depends at most on G and I". We will use
the notation A < B when the ratio between the two lies in [C~1, C] for some absolute constant
C > 1. We write A < B* (respectively A < B*, A < xB) to mean that A < CB¥ (respectively
C'BLE<A<CBY A<C- B) for some absolute constants C' > 0 and L > 0.

3. Tight area of a properly immersed geodesic plane

In this section, we show that the tight area of a properly immersed geodesic plane of M is finite.
For a closed subset Q) C M, we define the tight neighborhood of Q by

N(Q) :={p € M : d(p,q) <inj(q) for some ¢ € Q}.

We are mainly interested in the tight neighborhood of core M. If M is convex cocompact,
N (core M) is compact. In order to describe the shape of A/(core M) in the presence of cusps, fix
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Ficgure 3. Chimney.

a set &1,...,& of I'-representatives of Ay, cf. [MT98]. Then core M is contained in the union of
My and a disjoint union (J he, of horoballs based at the &;s.

Consider the upper half-space model H? = {(z1,z2,y) : y > 0} = R? x R+, and let 0o € A,,.
Let p : H® — M denote the canonical projection map. As oo is a bounded parabolic fixed point,
there exists a bounded rectangle, say, I C R? and 7 > 0 (depending on oo) such that:

(1) p(I x {y > r}) D N(hoo Ncore M); and
(2) p(I x{r}) C B(Mcpi, R)

where R depends only on M. We call this set € := I x {y > r} a chimney for oo (cf. Figure 3).
Note that increasing R if necessary, we have

N (core M) € B(Mept, R) U ( U p(%)>, (3.1)

1<i<e
where €, is a chimney for &;.
DEFINITION 3.2. For a properly immersed geodesic plane S of M, we define the tight-area of S
relative to M as follows:
areay(S) := area(S NN (core M)).

THEOREM 3.3. For a properly immersed non-elementary geodesic plane S of M, we have
1 < areay(S) < oo,
where the implied multiplicative constant depends only on M.

Proof. Since no horoball can contain a complete geodesic, it follows that .S intersects the compact
core Mcpi. Therefore,

area; S > 4 sinh?(ey /2),

as S N Mcpt, contains a hyperbolic disk of radius ex (see §2). This implies the lower bound.

We now turn to the proof of the upper bound. We use the notation in (3.1). Fix a geodesic
plane P C H? which covers S and let A = Stabp(P). Fix a Dirichlet domain D in P for the
action of A. As A\P is geometrically finite, the Dirichlet domain is a finite sided polygon;
hence, D Nhull(A) has finite area, and the set D — hull(A) is a disjoint union of finitely many
flares, where a flare is a region bounded by three geodesics as shown in Figure 4. Fixing a flare
F C D —hull(A), it suffices to show that {z € F : p(x) € N(core M)} has finite area. As S is
properly immersed, the set {x € F': d(p(x), Mcpt) < R} is bounded. Therefore, fixing a chimney
C¢, as above, it suffices to show that the set {x € F': p(x) € €, } = FFNT'¢, has finite area.
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FIGURE 4. Flare F' and F..

Without loss of generality, we may assume & = co. We will denote by OF the intersection
of the closure of F' and P, and let F. C F denote the e-neighborhood of OF in the Euclidean
metric in the unit disc model of P (cf. Figure 4).

Fix €9 > 0 so that

F.o,N{z € D :d(p(z), Mcpt) < R} = 0; (3.4)

such g exists, as S is a proper immersion. Writing €, = I X {y > r} as above, let Hy, :=
R? x {y > r}, and set I, := Stabp(00).
We claim that

#{PVHOO : FE()/Z NY€x # (Z)} < Q. (3.5)

Suppose not. Since I'Hy is closed in the space of all horoballs in H?, there exists a sequence of
distinct ;(c0) € T'(c0) such that I /o N 7€ # 0 and the size of the horoballs ; Ho, goes to 0
in the Euclidean metric in the ball model of H®. Note that if oo has rank 2, then T'oo (I x {r}) =
R? x {r} and that if co has rank 1, then T'o(I x {r}) contains a region between two parallel
horocycles in R? x {r}. Since P N7;€s # 0, it follows that P N ~;(Teo(I x {r})) # 0. Moreover,
if 4 is large enough so that the Euclidean size of v;H is smaller than £p/2, the condition
Fy 2 N7i€s # 0 implies that Foy N7;(T'eo(I x {r})) # 0. This yields a contradiction to (3.4)
since p(I x {r}) is contained in the R-neighborhood of Mcp, proving the claim.

By Claim 3.5, it is now enough to show that, fixing a horoball yH.,, the intersection
F., N7 T'sxw€x has finite area. Suppose that F,, N 7I'sc€s is unbounded in P; otherwise the
claim is clear. Without loss of generality, we may assume vy = e, by replacing P by v~ !P if
necessary. If co ¢ 9P, then F,, NI'xwCs, being contained in PN Hy, is a bounded subset of
P, which contradicts our supposition. Therefore, oo € P. Then, as F;, NI'sc€s C F, N Hy is
unbounded, we have oo € OF. Since F' is a flare, it follows that oo is not a limit point for A.
This implies that the rank of oo in A is 1 [OS13, Lemma 6.2]. Therefore I'n o€ is contained
in a subset of the form T x {y > r} where T is a strip between two parallel lines Lq, Ly in R2.
Since oo is not a limit point for A, the vertical plane P is not parallel to the L;. Therefore, the
intersection Fy, N I'sc€o0, being a subset of P N (T' x {y > r}), is contained in a cusp-like region,
isometric to {(x,y) € H? : y > r} and x is also bounded from above and below (recall that P is
not parallel to the L;). This finishes the proof. O

The proof of the above theorem demonstrates that the portion of S, especially of the flares
of S, staying in the tight neighborhood of core M can go to infinity only in cusp-like shapes,
by visiting the chimneys of horoballs of core M (Figure 1). This is not true any more if we
replace the tight neighborhood of core M by the unit neighborhood of core M. More precisely if
A contains a parabolic limit point of rank one which is not stabilized by any element of m(.5),
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then some region of S with infinite area can stay inside the unit neighborhood of core M. This
situation may be compared to the presence of divergent geodesics in finite area setting.

4. Shadow constants

In this section, fixing a closed non-elementary H-orbit Y in X, we recall the definition of
Patterson-Sullivan measures f, on horocycles in Y, and relate its density with the shadow
constant sy, which we show is a finite number.

Set Ay := Staby(yo) to be the stabilizer of a point yy € Y'; note that despite the notation,
Ay is uniquely determined up to a conjugation by an element of H. As I' is geometrically finite
and Y = Huyjp is a closed orbit, the subgroup Ay is a geometrically finite subgroup of H, [OS13,
Theorem 4.7]. We denote by Ay C OH? the limit set of Ay. Let 0 < §(Y) < 1 denote the critical
exponent of Ay, or equivalently, the Hausdorff dimension of Ay.

We denote by {v, = vy, : p € H?} the Patterson—Sullivan density for Ay, normalized so that
|| = 1. This means that the collection {v,} consists of Borel measures on Ay satisfying that
for all v € Ay, p,q € H?, € € Ay,

dVslp oy —8(V)Be(r(0) ) Wy ¢y — o=30")ean)
i, &) =e and dup(ﬁ) =e€

where (3¢(-,-) denotes the Busemann function. In what follows we will refer to the first identity
above as I'-conformality of {v},}.

As Ay is geometrically finite, there exists a unique Patterson—Sullivan density up to a
constant multiple.

PS-measures on U-orbits

Set
U::{urz(l O):TGR}:NQH
r 1

which is the expanding horocylic subgroup of H. Using the parametrization r — w,, we may
identify U with R. Note that for all r,t € R,

A_tUrQt = Ugetp-.

For any h € H, the restriction of the visual map g — ¢* is a diffeomorphism between hU
and OH? — {h~}. Using this diffeomorphism, we can define a measure i on hU:

d,uhU(huT) = eé(Y)ﬂ(hur)*'(p’huT(p)) dyp(hur)""; (4.1)

this is independent of the choice of p € H?. We simply write djuy,(r) for dupy(hu,). Note that
these measures depend on the U-orbits but not on the individual points. By the Ay-invariance
and the conformal property of the PS-density, we have

dpn(0) = dpyn(0) (4.2)
for any v € Ay and for any bounded Borel set O C R; therefore 1,(O) is well defined for y €
Ay \H.

For any y € Ay \H and any ¢t € R, we have
py([—ese']) = Ve, ([=1,1)), (4.3)
Set
Yy :={[h] € Ay\H : h* € Ay} (4.4)
499

https://doi.org/10.1112/S0010437X22007928 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007928

A. MoHAMMADI AND H. OH
where h* = limy_, 4o hat(0).

Shadow constant
As in the introduction, we define the modified critical exponent of Y:

~Je(Y) if Y is convex cocompact,
"~ |26(Y) =1 otherwise.

If Y has a cusp, then 6(Y) > 1/2, and hence 0 < dy < §(Y) < 1.

Define
-r,Tr 1/8y
oy = sup py([=77]) o (4.6)
yeYp,0<r<2 T - fy([—1,1])1/0Y

the range 0 < r < 2 is motivated by our applications later; see e.g. (7.13).
Recall the shadow constant sy = supg.<i/9 sy (€) in (1.8) where

1/6
sy(e) == sup VP(Bp(gag)) /o 7
cey peltay] € - Vp(Bp(€,1/2))/0¥
where [£,Ay] is the union of all geodesics connecting £ to a point in Ay, and Bp(§,-) is as
in (4.10).
The rest of this section is devoted to the proof of the following theorem using a uniform
version of Sullivan’s shadow lemma.

(4.7)

THEOREM 4.8. We have
Sy X py < 00.
In principle, this definition of sy involves making a choice of Ay = Stabg(yo), i.e. the choice
of yg € Y, as Ay is the limit set of Ay. However, we observe the following.

LEMMA 4.9. The constant sy is independent of the choice of yg € Y.

Proof. Let y = yoh™! € Y for h € H. Define s} similar to sy using A}, = Stabg(y) = hAyh™*
and put 1/1’) := huvp—1, for each p € H2. If £ € Ay, then
d((hyh=1) /! d((h7y)svp—1
AOI) gy — ALUD)
Yp

dh*ljh—lp

B d’y*yh_lp
duh_lp

3]
_ o0 ()T D) = 8(Y)Bre(hy h () ).

Since the limit set of Al is given by hAy, this implies that the family {1/}’0 :p € H?} is the
Patterson—Sullivan density for A},. Now for any 0 < ¢ <1 and £ € Ay, we have

V;Lp(Bhp(h’EaE)) = h*yp(Bhp(hé.aE)) = Vp(h_lBhp(hé.vg)) = Vp(Bp(évs))'
It follows that sy = s\, . O

Shadow lemma
Consider the associated hyperbolic plane and its convex core:

Sy := Ay\H? and core(Sy):= Ay\ hull(Ay).

We denote by Cy the compact core of Sy, defined as the minimal connected surface whose
complement in core(Sy) is a union of disjoint cusps. If Sy is convex cocompact, then Cy = Sy-.
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Let
dy := max{1,diam(Cy)}.

We can write core (Sy) as the disjoint union of the compact core Cy := Cy and finitely many
cusps, say, C1, ..., Cp,. Fix a Dirichlet domain Fy C H? for Ay containing the base point o. For
each C;, 0 < i < m, choose the lift C; C Fy N hull(Ay) so that Ay\AyC C;. In particular,
8(70 intersects C; in an interval for i > 1. Let & € Ay be the base point of the horodisc Cj, i.e. & =
9C; N OH?. Let F;, C OH? — {¢;} be a minimal closed interval so that Ay — {&} C Staba,. (&) F, -

For p € H?, let d, denote the Gromov distance on OH?: for & #n € OH?,

dp(§,m) = e~ (Be(P,a)+8y(pa)) /2

where ¢ is any point on the geodesic connecting ¢ and 7. The diameter of (OH?, d,,) is equal to 1.
For any h € H, we have d,(&,n) = dp,) (h(€), h(n)). For £ € OH?, and r > 0, set

By(&,7) = {n € OH* : dy(n, &) <1} (4.10)

as was defined in the introduction. Also, denote by V (p, &, r) the set of all n € OH? such that the
distance between p and the orthogonal projection of 7 onto the geodesic [p, €) is at least r. Note
that

ot
V Y Y t y T 57
see ([Sch04, Lemma 2.5] and the discussion following that lemma). Therefore,

V(p,§,r+1) C Bp(§,e”") C V(p,&r—1) forallr>1.

The following is a uniform version of Sullivan’s shadow lemma [Sul84]. The proof of this
proposition is similar to the proof of [Sch04, Theorem 3.2]; since the dependence on the multi-
plicative constant is important to us, we give a sketch of the proof while making the dependence
of constants explicit.

PROPOSITION 4.11. There exists a constant ¢ =< e*¥ such that for all £ € Ay, p € Cy, and t > 0,
c L. ,/p(F&)5Ye—5(Y)t+(1—5(Y))d($tAy(p)) < v, (V(p, & 1))
<ec- ,/p(pgt)6—5(Y)t+(1—5(Y))d(£z,Ay(p))
where:

e {&t} is the unit speed geodesic ray [p,§) so that d(p, &) = t;
o Fy, = OH? if & € Ay Cy, and Fe, = Fe, if & € AyC; for 1 <i<m;
o by = lnffrIEAY’qGCO vg(Bq(n, e ™).

Proof. Let p, £ € Ay and & be as in the statement. By the 0(Y)-conformality of the PS density,
we have

VP(V(pa fa t)) = e_é(Y)tl/& (V(pa ga t))

Therefore it suffices to show
ve, (V(p,€,)) < vp(Fy,) - e(1=0(Y))d(&:,Ay (p))
while making the dependence of the implied constant explicit.
CLAIM A. If& € AyCy, then

e 0y ler}\f vp(B(n, e~ )) < V&(V(p,g,t)) < e(S(Y)dy|yp| (4.12)
neiy

where the implied constants are absolute.
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First note that this implies the claim in the proposition if & € Ay Cy. Indeed d(&, Ay (p)) <
dy and Ft, = OH? in this case. Moreover, by (4.12), we have

e By e S0 < 1 (V(p, €,1)) = e Xty (V(p, €, 1)) < e e 00

where we also used |v,| = e*® (recall that p € Cp). Thus the claim in the proposition follows in
this case.

We now turn to the proof of Claim A. As & € Ay Cy, there exists v € Ay such that
d(&,vp) < dy. Hence

e Wy (V(p,&,1) < vap(V(D,6:) = vp(V(y ',y 1))
< SNy (V(p, €, t)).

The upper bound in (4.12) follows from the first inequality, while the lower bound follows
from the second inequality; indeed

V(y ) = VI(r i, v, 0)
and the latter contains B,(y~1¢,e~4), since d(p,y~1&) < dy and dy > 1.

CLAIM B. Let £ be a parabolic limit point in Ay. Assume that for some i > 1, & € C; for all
large t.

We claim

ve,(V(p, €, 1)) = vp(Fp) - eI 00N Ay (p))rdy) (4.13)

and
Ve (OB = V(. €,1)) = vy(Fp) - (1700 NAEav 02 (414

where here and in what follows implied constants are of the form e**% unless otherwise is stated
explicitly.
Let s; > 0 be such that &, € 0C;. Then for all ¢t > s;,

|d(&, Ay (p)) — (t = si)| < dy-
Hence for (4.13), it suffices to show
ve,(V(p, €,t)) = 0050y, (), (4.15)
Note that if we set Ay ¢ = Staba, (§),
Ve, (V(p,€,1)) = ) Ve, (1F).
VEAyY ¢, YFeNV (p,,t) 0

Let Fg denote the image of F¢ on the horocycle based at { passing through p via the inverse
of the visual map. Since p € Cy, there exists v € Ay¢ so that 'ng is contained in the closure
of Cy. Hence,

diam F{ < dy = max{l, diam(Cp)}.
We now apply [Sch04, Lemma 2.9] with K = F{ and let K3 be as in [Sch04]. By the definition of

K3 given in the proof of [Sch04, Lemma 2.9], we have K3 < diam F, g* where the implied constant
is absolute. Thus, in view of [Sch04, Lemma 2.9], if v € Ay is so that vF: NV (p,&,t) # 0, then
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d(p,~yp) > 2t — kdy, where k is absolute. In consequence,
Vgt(V(p,f,t)) = Z Vrft(’yFﬁ)

where the implied constant is absolute.
Now we use the fact that if d(p, yp) > 2t, then for all n € Fp,

18, (7161, &) — d(p,vp) + 2t| < diam F}* < dy
3
(cf. proof of [Sch04, Lemma 2.9]). Since

ve,(VFe) = / dvg, = / &%) dye, (1),
gad; Fe

and vg, (F¢) = e 90y, (Fy), we deduce, with multiplicative constant =< e?(¥)dv

> ve,(VFe) =< > BO=3()dwP)y, (Fr)
V€AY ¢,d(p,yp)>2t YEAY¢,d(p,yp) =2t
= v, (F)ed Ot > e~ 0(V)d(pp)
YEAY¢,d(p,yp) =2t
= vy (Fe)elI 00"

using a,, 1= #{v € Ay¢ :n < d(p,yp) <n+ 1} < e™? in the last estimate. This proves (4.13).
The estimate (4.14) follows similarly now using

ve, (OH? — V(p, £,1)) =< > ve(yF)
V€AY ¢,d(p,yp) <2t

and zfﬁo ane YN = o(1-20(Y))t,

Note that when £ is a parabolic limit point, (4.13) holds with multiplicative constant =< e*dy
(see the proof of [Sch04, Proposition 3.4]).

As for the remaining case, i.e. £ is a radial limit point but & € Ay C; for some i, one can prove
that (4.13) holds with multiplicative constant =< e*¥ (see the proof of [Sch04, Lemma 3.6]). [

PROPOSITION 4.16. Fixp =py € C’o. There exists Ry = e*® such that for all y € Yy, we have
Ry By eA0ONACy WD, | < 1y, ([-1,1]) < Ry eI0EdCY m@)y, |
where 7 denotes the base point projection Ay\H = T'(Sy) — Sy.

Proof. The following argument is a slight modification of the proof of [MS14, Proposition 5.1].
Since the map y — f1,[—1,1] is continuous on Yy and {[h] € Yy : A~ is a radial limit point of Ay}
is dense in Y, it suffices to prove the claim for y = [h], assuming that h~ is a radial limit point
for Ay.

Recall that p,([—1,1]) = ey, ([~ e7?]) for all t €R. Let t >0 be the minimal
number so that 7(ya_;) € Cy; this exists as A~ is a radial limit point. Then

d(7(y), Cy) < d(w(y), 7(ya—)) < dy +d(w(y), Cy). (4.17)
Set & = ha_¢(0). Then

Hya_ [_e_tv e_t] = Vg (V (& h+7 t)
(cf. [Sch04, Lemma 4.4]).
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Since ya_; € Cy, Fg, = OH2. So vg, (Fy,) = |vg,| < |vp| up to a multiplicative constant e*dv

Therefore, for some implied constant =< e*% | we have
5Y€—5(Y)t+(1—5(Y))d(7r(y)77r(ya7t))|,/p’ < v, (V (&, Kt 1)
—5(V)t4+(1-5(Y))

<e D () w{a )|y, |

This estimate and (4.17), therefore, imply that
ﬁye(l—é(Y))d(ﬂ(y)Cy)’Vp’ < py([-1,1) < 6(1—5(Y))d(7r(y)70y)‘yp‘

with the implied constant = e*%

, proving the claim. ]
We use the following result, essentially obtained by Schapira and Maucourant [Sul84, MS14].

COROLLARY 4.18. Fix p > 0. Then for all 0 < € < p,

. )
By < sup o

where Ry is as in Proposition 4.16.

< maX{Lpz} ) R%/ ’ /8}71 < o0,

Proof. By (4.3), we have p,([—¢,¢]) = 86(Y)Mya_log5([—1, 1]). Hence the case when Y is convex
cocompact follows from Proposition 4.16.

Now suppose that Y has a cusp. Let y € Yy. Using the triangle inequality, we get that
d(m(ya—10ge), Cy) — d(n(y), Cy) < |loge|. Therefore, by Proposition 4.16, we have

Hya,logs([_lal]) BY (1 —6(Y))(d(m(ya—10g¢),Cy)—d(m(y),Cy))
My([_la 1])

. R Byt ifp<e <,
RZ Byt -l if e > 1.

As a consequence, we have

(=) {R%-ﬂ;l if0<e<l,

e20M) =1y, ([-1,1]) — R?/ . ﬁ;l p? ifp>land1<e<p.

Recall from (4.5) that dy = §(Y) when Y is cocompact and dy = 26(Y) — 1 otherwise. The above
thus establishes the upper bound.

By choosing y € Yy such that d(7(ya_1i0gc), Cy) — d(7(y),Cy) = |loge|, we get the lower
bound. 0

Theorem 4.8 follows from the following proposition.
ProrosiTIiON 4.19. We have:

(1) for any 0 <& < 1/2,0 <sy(e) < oo;
(2) sy xpy < B*dY/‘SYﬂ;l/(sY'

Proof. Let y € Yy and h € H be so that y = [h]. Fix 0 < r < 2. Recall

T S(Y)B, 4 (h(0),hus(o
py([=7,7]) :/ e g (o) s 0)) duh(o)(hu;).

Since |3+ (h(0), huy(0))| < d(0, u,(0)), we have

—5(Y)8, .+ (h(o)hur(0) _

with the implied constant independent of all 0 < r < 2.
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Since do(u,", e™) = dp o) ((hur)™, hT) where e is the identity (recall that v = e™), we have

-1
[2) B [2) h—i-,CT)) < BRE) < o <B o <h+7cr>)
Vh( )( h( )( N py([=7,7]) < V(o) | Bho) NiEwT

for some ¢ > 1 independent of r and h.
This implies that

py([—e/c e/ €]) < Vno)(Buo)(h T, €)) < py([=Ce, de])
as well as
py([—e/c e/c]) V(o) (Bh(oy (AT, €)) py([—ce, de])
e iy ([='/2,¢/2]) T e ) (Broy(ht,1/2)) e py([-1/(2¢),1/(2¢)])

where ¢ > 1 is independent of 0 < & < 1/2 and h € H.
First note that by Corollary 4.18, we have

py([=1/(2¢), 1/ Q2N]) = py[=1,1] <o py([=¢'/2, ¢ /2]).
Similarly, using Corollary 4.18, for any 0 < & < 1/2, we have

py([—e/c e/c]) <o py[—de, de] <o py([—ce, ce]);

the choice of the constant 4 here is motivated by the definitions of py and sy in (4.6) and (4.7),
respectively.

Altogether we conclude that

Vn(o)(Bry(h"5€))  _ py([—4e, 4e])
€Y Un(o)(Bn(o)(h*,1/2)) ~ (4€)% py([—1,1])

Taking supremum over 0 < ¢ < 1/2 and h € H with h* € Ay, we conclude that sy =< py.

The last claim follows from Corollary 4.18. ([

5. Linear algebra lemma

The goal of this section is to prove the linear algebra lemma (Lemma 5.6) and its slight variant
(Lemma 5.13).
In this section, it is more convenient to identify G' as SO(Q)° for the quadratic form

2 2
Q(x1, x2, 23, 14) = 22174 — 5 — X3.

As Q has signature (1,3), PSLy(C) ~ SO(Q)° as real Lie groups. We consider the standard
representation of G on the space R* of row vectors and denote the Euclidean norm on R* by
|| - ||. We have

H = Stabg(eg) o~ 80(172)07

A = {a; = diag(e!,1,1,e7") : t e R} < H,

1 000
r 1.0 0
U=q9w=1 0 01 0
r 0 1

r2/2

Set
V :=Re; ® Rey ® Rey.
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Then the restriction of the standard representation of G to H induces a representation of H on
V', which is isomorphic to the adjoint representation of H on its Lie algebra sly(R); in particular,
it is irreducible.
Note that for each ¢t > 0, Res = {v € V : va; = v}, Re; is the subspace of all vectors with
eigenvalues > 1, and Rey is the subspace of all vectors with eigenvalues < 1.
Let p: V — Re; @ Res and pt : V — Rey denote the natural projections. Writing v = vieq +
v9eg + vgeq, a direct computation yields that for any r € R,
2 2
vgr vgr
p(vu,) = (Ul + vor + 42>€1 + (v2 +vyr)es and  pT(vu,) = <v1 + vor + 42> er. (5.1)
For a unit vector v € V and € > 0, define
D(v,e) = {r € [-1,1] : |lp(vu,)|| < e},

Dt (v,e) = {r € [-1,1] : |]pT (vu,)| < e}

LEMMA 5.2. For all 0 < € < 1/2 and a unit vector v € V, we have
U(D(v,e)) < e and (D% (v,e)) < e'/?
where ¢ denotes the Lebesgue measure on R.

Proof. Since we are allowed to choose the implied constant in the statement, it suffices to prove
the lemma for 0 < & < 0.01.

Writing v = vieq + voeg + v4e4, we have
2

(D(v,¢e)) < Z{r €[-1,1] : |vg + var + % < e and |vg + vgr| < 5}.

If |vg] > 0.01, then
U(D(v,e)) < {re[-1,1] : |va+ var| < e} < 200e.

If |vg| < 0.01 but 0.1 < |vg| < 1, then for r € [—1, 1], we have |va + var| > 0.09, and hence for
all £ < 0.01,

U(D(v,e)) <t{re[-1,1] : |va+var| < e} =0.

Now consider the case when |vs| < 0.01 and |va| < 0.1. Then, since ||v|| = 1, we get that |v;| > 0.7.
Hence for all r € [—~1,1], |v1 + vor + v47r2/2| > 0.5. In consequence, for all £ < 1/2,

U(D(v,e)) < {re[-1,1] : vy +vor + v47‘2/2] <e} =0,

proving the estimate on D(v,e). To estimate D% (v,e), observe that p*(vu,) = (vi + vor +
v4r?/2)e1 is a polynomial map of degree at most 2. Moreover, since ||v|| = 1, we have

max{|v1], |va, [va]} > 1.

Therefore, sup,¢_y 1) [[p" (vur)|| > 1. The claim about D*(v,e) now follows using Lagrange’s
interpolation; see [BG73| for a more general statement. O

For the rest of this section, we fix a closed non-elementary H-orbit Y.

LEMMA 5.3. There exists an absolute constant by > 0 for which the following holds: for any
y € Yyand 0 < e <1, we have

sup 1uy(D(v,€)) < bopdY €% puy ([~1,1]), (5.4)
veV,|v||=
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and

sup 11y (DF (v, €)) < bopl¥ €% /2, ([-1,1)) (5.5)
veV,||v||=1

where py is given as in (4.6).
Proof. By (5.1), each set D(v,e) and D" (v,e) consists of at most two intervals. By Lemma 5.2,

D(v,e) (respectively Dt (v,e)) may be covered by < 1 many intervals of length ¢ (respec-
tively £!/2). Therefore (5.4) (respectively (5.5)) follows from the definition of py-. O

We use Lemma 5.3 to prove the following lemma which will be crucial in what follows.

LEMMA 5.6 (Linear algebra lemma). For any dy /3 < s < dy, 1 <p <2, andt > 0, we have

1 /p 1 p(;Ye—@y—S)t/ll

() < b0 (57)

sup
yEYp,veV,||v]|=1 My([_/% ,0]) —p HUUT‘atHS

where by > 2 is an absolute constant.

Proof. We first claim that it suffices to prove the claim for p = 1. Indeed, let t, =t —logp
and let y, =ya_1o5p, and for every v eV, let v, =va_iog,. Recall also that p,[—r,r]=
SR g, =T/P>7/p) and that Yj is A-invariant. Thus,

1 /ﬂ L ) 1 /P 1 e
11y (1) = 11y (7
1y ([, p]) J—p llougal|s 1y ([=p. p]) J—p va_10g pp-1,as,[|°

1 1 1
_ (YY) -5
= p” v, || / < dpiy, (1)
PNy, (1,1]) S [[ohupag, |5

where v, = v,/[v,||.

Since ||v,||7* =< 1 (with absolute implied constants for 1 < p < 2) and Yj is A-invariant, it
thus suffices to prove the lemma for p = 1.
Fix 0 < s < dy and t > 0. We observe that for all » € R,

lvuraell = Ip(vuy)| and  [lvurac]l > €|lp* (vur)|l. (5.8)

For simplicity, set 8, := 1/u,([—1,1]). The inequality (5.4) and the first estimate in (5.8)
imply that for any 0 < € < 1 and any unit vector v € V', we have

—s 7 g —s
ﬁy/ [vurag]|~dpy(r) < bopy ™ €% - (¢/2)
reD(v,e)—D(v,e/2)

< QBopf,Y g s,

We write D(v,e) = Uy D(v,€/2%) — D(v,e/2"1). Now applying the above estimate for each
/2% and summing up the geometric series, we get that for any 0 < ¢ < 1,

— 2[;0p6Y€6Y75
s 2bopy €7 ©
By /TGD(M) lvurag||™* dpy(r) < T (5.9)

Moreover, using (5.5) and the first estimate in (5.8) again, for any x > 0, we have

By / lvupar ]|~ dpy (r) < 2bop§Y K7 /27, (5.10)
reéD*(v,k)—D(v,e)

Finally, the definition of D (v, %) and the second estimate in (5.8) imply

ﬁy/ lvurag|| = duy (r) < K 5e =" (5.11)
re[—1,1]—D*(v,k)
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Combining (5.9), (5.10), and (5.11) and using the inequality 1/(1 —2-0v=%)) < 2/(5y — s), we
deduce that for any 0 < e,k < 1,
! 2bopyY
ﬂy/ lvurae]| =% dpy (r) < LPY(E‘SYﬂ + KOV /2e75 4 K %e").
—1 (SY — S
Let e = e t/4 and k = £2. As dy /3 < s < dy, we have e~5/2 < e(s=0v)/4 This yields
! 6bop3Y
ﬁy/ |vurag]|~* d/‘y(’“) < S0Py '6_(6Y_S)t/47
-1 (Sy — S

as we claimed. O

We will extend the upper bound in Lemma 5.6 to all unit vectors v € e; G, based on the fact
that the vectors in e;G are projectively away from the H-invariant point corresponding to Res.

LEMMA 5.12. There exists an absolute constant by > 1 such that for any vector v € e1G C R4,
[[v]l < baflva ]
where v, is the projection of v € R* to V = Re; @ Rey ® Rey.

Proof. Since Q(e1) = 0 and G = SO(Q)°, we have Q(e1g) = 0 for every g € G. Since Q(ez) = —1,
the set {||v||"'v:v € e1G} is a compact subset of the unit sphere in R* not containing +e3.
Therefore there exists an absolute constant 0 < 1 < 1 such that if we write v = v; + res € e1G,
then |r| < n||v]|. Therefore |Jv1||* = [|v||*> — r? > (1 — n?)||v||?>. Hence it suffices to set by = (1 —
n?) 12, 0

LEMMA 5.13 (Linear algebra lemma II). For any dy /3 < s < dy, 1 < p <2, andt > 0, we have

1 /p 1 p(syYe*(ﬁyfs)t/éL
- Oy — )

where by > 2 and by > 1 are absolute constants as in Lemmas 5.6 and 5.12 respectively.

sup
yeYoweerGi|lol|=1 Hy([=ps p1) J—p llvurac®

Proof. Let v € e1G be a unit vector, and write v = vy + v1 where vy € Res and v; € V. Since ej
is H-invariant, we have vh = vg + v1h € Reg @ V for all h € H. Therefore,

) s [ )
py([=p,p]) J=, llvura|® py([=p,p]) J=, llv1urae®
boplY ¢~ (v ~)t/4
(0y — )
boby P6YY e*(éyfs)t/ll
- (Oy —s)

|lvi||™* by Lemma 5.6

|lv|”* by Lemma 5.12. O

6. Height function w

In this section we define the height function w : Xy — (0, 00) and show that w(x) is comparable
to the reciprocal of the injectivity radius at x.
For this purpose, we continue to realize G as SO(Q)° acting on R* by the standard
representation, as in §5. Observe that Q(e;) = 0 and the stabilizer of e; in G is equal to MyN.
Fixing a set of I'-representatives &1,...,&s in Ayp, choose elements g; € G so that g, = ¢
and Helgi_lH = 1; this is possible since {g € G : g~ =¢;} is a conjugate of AMyN.
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Set
v; == e1g; " € e1G. (6.1)

Note that
Stabg (&) = giA]WONgZ-_1 and Stabg(v;) = giMoNgi_l.

By Witt’s theorem, we have that for each i,
{v e R* — {0} : Q(v) = 0} = v;G ~ g;MyNg; '\G.

LEMMA 6.2. For each 1 <i </, the orbit v;I" is a closed (and hence discrete) subset of R%.

Proof. The condition & € App implies that I'\['g;MoN is a closed subset of X. Equivalently,
Lg;MoN as well as I'g;MoNg,; 1'is closed in G. Therefore, its inverse g; MoN g; T is a closed
subset of G. In consequence, v;I' C R? is a closed subset of v;G = {v € R* — {0} : Q(v) = 0}.

It remains to show that v;I" does not accumulate on 0. Suppose on the contrary that there
exists an infinite sequence v;7y, converging to 0 for some 7, € I'. Using the Iwasawa decomposition
G = ¢;NAK,, we may write v, = g;ngas, k¢ with ny € N,t, € R and k, € Ky. Since

vive = e'(erke),

the assumption that v;y, — 0 implies that t, — —oo.

On the other hand, as & € App, Stabr(&) =1'N giAMgNg;1 contains a parabolic element,
say, v # e. Note that ng := g; 1/g; is then an element of N and hence a unipotent element, as
any parabolic element of AMyN belongs to N in the group G ~ PSLy(C). Now observe that, as
N is abelian,

v, e =k ay, (ng g Y gine)ag ke = Kk Ha—g,noar, ).

Since t, — —oo, the sequence a_;,npa;, converges to e. Since {k;l} is a bounded sequence,
it follows that, up to passing to a subsequence, 7, 14/~, is an infinite sequence converging to e,
contradicting the discreteness of T O

DEFINITION 6.3 (Height function). Define the height function w : X — [2,00) by
w(x) = fg?%cgwl(x)

where
wi(x) = malgc{2, ||vwg||_1} for any g € G with z = [g];
NE
this is well-defined by Lemma 6.2.
If T has no parabolic elements, we define w(z) = 2 for all z € Xj.

By the definition of e x, Xy is contained in the union of X, and U§:1f) j where b is a horoball
based at ¢;.

Fix Tj > 0 so that h; = [gj]NA(_OO’_Tj}KO.

Set 6]' = ngA(—oo,—Tj}KO'
The following is an immediate consequence of the thick—thin decomposition of M.

LEMMA 6.4. Iff)iﬂ vhi # 0 for some1 < i,j < fand~ €T, theni = j, v € Stabg(&;) = Stab b;,
and hence b; = ~b;.
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LEMMA 6.5. For all1 <i,j5 < /¢ and v € I such that Sj £ b,

inf [lv;vh|l > no (6.6)
q€eh;

where 1) = minj<,,<¢ e~ Tm

Proof. Let g € h; and v € I. Using G = g;NAKy, write vq = gjuask € gjNAKo. Then |lv;vq|l =
e®. Hence if |[vjyq|l < mo, then s < —Tj. So vq € b;. Therefore h; Nh; # 0. By Lemma 6.4,
b; =i O

PROPOSITION 6.7. There is an absolute constant o > 2 such that for all x € Xy,
1
% “inj(z) <w(z)™' < % -inj(x). (6.8)
Proof. Fixing 1 < j < {, it suffices to show the claim for all x € Xo Nb;.
Let g € giua_tk € b; be so that x = [g], where ua_tk € NA_ o 1, Ko.

Note that

wi(z) ! < Jluig|l = llerg; H(giua—ik)|| = |lerua—ik| = e".

In view of the definition of w and wj;, this together with Lemma 6.5 implies that

w(r) = wi(z) = €.

Since inj(x) < e, this finishes proof. O

7. Markov operators

In this section we define a Markov operator A; and prove Proposition 7.5 which relates the
average my (F) of a locally bounded, log-continuous, Borel function F' on Y{ with a super-
harmonic type inequality for A;F. This proposition will serve as a main tool in our approach to
prove Theorem 1.5.

Fix a closed non-elementary H-orbit Y in X.

Bowen—Margulis—Sullivan measure my
We denote by my the Bowen-Margulis-Sullivan probability measure on Ay \H = T!(Sy), which
is the unique probability measure of maximal entropy (that is 6(Y)) for the geodesic flow. We
will also use the same notation my to denote the push-forward of the measure to Y via the
map Stabg (yo)\H — Y given by [h] — yoh. Considered as a measure on Y, my is well defined,
independent of the choice of yp € Y.

Recall the definition of Y} in (4.4); note that Yy = supp my. In the following, all of our Borel
functions are assumed to be defined everywhere in their domains. By a locally bounded function,
we mean a function which is bounded on every compact subset.

DEFINITION 7.1 (Markov operator). Let ¢t € R and p > 0. For a locally bounded Borel function
¥ : Yy — R, we define

A = 1 g d 7.2
(At 0) = s / e d ). (7.2)

We set A := Ay 1.

Note that A; ;1 is a locally bounded Borel function on Yy. Although lim,, o0 Apt(¥) = my ()
for any ¢ € C.(Yp) and any ¢ > 0 [OS13], the Margulis function F we will be constructing is not
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a continuous function on Yj, and hence we cannot use such an equidistribution statement to
control my (F'). We will use the following lemma instead.

LEMMA 7.3. Let F': Yy — [2,00) be a locally bounded Borel function. Assume that there exist
some t > 0 and D > 0 such that

limsup A F(y) < D forall y €Y. (7.4)

n—o0

Then
my (F) < 8D.

Proof. For every k > 2, let Fy : Yy — [2,00) be given by

Fi(y) := min{F(y), k}.

As Fj, is bounded, it belongs to L' (Yy, my ). Since the action of A is mixing for my by the work
of Babillot [Bab02], we have my is as-ergodic for each ¢ # 0. Hence, by the Birkhoff ergodic
theorem, for my a.e. y € Y, we have

N

) 1

]\}E)HOONZ:IFk(yam) = /Fk dmy .
n=

Therefore, using Egorov’s theorem, for every ¢ > 0, there exist N; > 1 and a measurable subset
Y! C Yy with my (Y?) > 1 — &2 such that for every y € Y/ and all N > N., we have

1 Y 1
N;Fk(yam) > 2/Fk dmy.

Now by the maximal ergodic theorem [Lin06, Appendix A.1], if € is small enough, there exists a
measurable subset Y. C Y with m(Yz) > 1 — £ so that for all y € Y., we have

lr € 1,1 yur € Y/} > Ly (1-1,1)).
Altogether, if y € Yz and N > N, we have

1« 1 1N X
il AnFy:/ Fr(yurans) d 7«>/de‘
N; i) py([—1,1]) _1N; i t) dpiy () 1 | Fedmy

Fix y € Y.. By the hypothesis (7.4), there exists ng = no(y) such that for all n > ng, we have
Therefore, we deduce that for all sufficiently large N > 1,

1 1 (& a kno  2D(N —ng)
4/Fk dmy < N<;Aka(y> + > Aka@)) <t

n=ng+1

By sending N — oo, we get that for all k& > 2,
/F;,C dmy < 8D.

Since {F} : k = 3,4, ..} is an increasing sequence of positive functions converging to F' point-
wise, the monotone convergence theorem implies

/dey = klim Fi.dmy < 8D

as we claimed. OJ

511

https://doi.org/10.1112/S0010437X22007928 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007928

A. MoHAMMADI AND H. OH

We remark that in [EMMO98], the Markov operator A; was defined using the integral over
the translates SO(2)at, whereas we use the integral over the translates Uj_, ,ja: of a horocyclic
piece. The proof of the following proposition, which is an analogue of [EMM98, § 5.3], is the main
reason for our digression from their definition, as the handling of the PS-measure on U is more
manageable than that of the PS-measure on SO(2) in performing change of variables.

PROPOSITION 7.5. Let F :Yy— [2,00) be a locally bounded Borel function satisfying the
following properties.

(a) There exists o > 2 such that for all h € By (2) and y € Yy,
o 'F(y) < F(yh) < oF(y).

(b) There exist t > 2 and Dy > 0 such that for all y € Yy and 1 < p < 2,

1
AepF(y) < P - F'(y) + Do,
8opy

where py is as in (4.6).
Then
my (F) < 64DgpYY .
In view of Lemma 7.3, Proposition 7.5 is an immediate consequence of the following.

PROPOSITION 7.6. Let F' be as in Proposition 7.5. Then for all y € Yy and n > 1, we have
1 5
AntE'(y) < 57 F(y) +8Dopy” . (7.7)
Proof. The main step of the proof is the following estimate.

CrLAM. For any 1 < p < %, y € Yy and n € N, we have

~

A(n+1)t,pF(y) < %Ant,ere_mF(y) +D (78)

where D := 4D0p§;/Y; recall that e™™ < 1/2.
Let us first assume this claim and prove the proposition. We observe:
o Y et <1/2 (ast > 2);
o (80p§}’)_1 <1/2; and
e Dy < D.

Using the assumption (b) of Proposition 7.5 with p, =1+ Z?;ll et (n >2), we deduce that
for any n > 2,

1 A 1 1
AP () < s A F) + D(l N )

2 n—2
< 1 8 5Y *1F D D 1 ]. ]_
_W((apy) (y) + Do) + R ="
1 R
< g F(y) +2D (7.9)

which establishes the proposition.
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We now prove the claim (7.8). For y € Y and p > 0, set
by(p) = iy([=p.pl) and by = by(1).

To ease the notation, we prove (7.8) with p = 1; the proof in general is similar. By assumption

(a) and (b) of Proposition 7.5, we have

CcCoOo 1
AF(y) < coF(y) + Do < (g [ F) duy<r>) Dy

y J-1
where ¢y = (80p§§)’)_1.
Set pp, := e " Let {[rj — pn,7j + pn] : j € J} be a covering of

[—1,1] N supp(uy)

with r; € [—1,1] Nsupp(py) and with multiplicity bounded by 2. For each j € J, let z; :=

Then
D b (on) =Y iy = pus 7 + pal) < 2b,(2).
J j

Moreover, we get

1

1
Ay F (y) = / F(yuramr1ye) divy (1)

b,
1
bf ZJUT n+1)t) d,uzj( )

1
-+ / F(2janttyenay) dyis, ().

We now make the change of variables s = re”t. In view of (7.12), we have

1 b..(pn)
A(n+1)tF( ) FZ b]

Zj(lnz

Applying (7.10) with the base point z;a,:, we get from the above that
1

1 b..(pn)coo
M) < 5. 3022 / F(zants) iy an, (5)

Zjant -1
1
+ g, 2t
J

By (7.11), we have (1/by) >, bz, (pn)Do < D.

1
/ F(Zjantusat) d/'I’Zjant (5)
—1

(7.10)

Yur,

(7.11)

(7.12)

(7.13)

Therefore, reversing the change of variable, i.e. now letting r = e s, we get from (7.13) the

following:

1 .
A1y Fy) < g Zcoa/ F(zjurang) dp; (r) + D

IN

2cp0 [1Tm -
0 / F(yurant) dpy () + D
7(1+pn)

2coob (1 +p ) A
= S A, F () + D,
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Since
g e B
we get
A1) F(y) < 5An 149, F () + D.
The proof is complete. l

8. Return lemma and number of nearby sheets

We fix closed non-elementary H-orbits Y and Z in X. Since Z is closed, a fixed ball around
y € Yy intersects only finitely many sheets of Z (see Figure 2). The aim of this section is to
show that the number of sheets of Z in B(y,inj(y)) is controlled by the tight area of Sz with a
multiplicative constant depending on py and dy.

The main ingredient is a return lemma which says that for any y € Y, there exists some
point in {yu, € Yy : r € [-1,1]} whose minimum return time to a fixed compact subset under
the geodesic flow is comparable to log(w(y)) (see Lemma 8.4).

Return lemma
We use the notation of §6.

Recall that Lie(G) = isla(R) @ sl (R). We define a norm || - || on Lie(G) using an inner prod-
uct with respect to which sla(R) and islo(R) are orthogonal to each other. Given a vector
w € Lie(G), we write

w = iIlm(w) + Re(w) € isla(R) @ sla(R).

Since the exponential map Lie(G) — G defines a local diffeomorphism, there exists an absolute
constant c¢; > 2 satisfying the following two properties.

(1) For all z € X, and all w = ilm(w) + Re(w) € Lie(G) with ||w| < max(1,ex),
el < d(, 3 exp(iTm(w)) exp(Re(w))) < e ]| (5.1)
(2) If d(z,2') < ex/c1, then 2’ = x exp(ilm(w)) exp(Re(w)) for some w € Lie(G).
We choose an absolute constant dx > 24 so that
Xey C{z € Xo:w(z) <dx}.
Let Dy := D1(Y) be given by

b
D, = 6104<61 + dx> (8.2)
KTo

where k is defined by Z)gpg,ym‘sY/Q =1/2,0<mp<1lisasin (6.6), «>11isasin (6.8), and ¢ is
as in (8.1). We note that by increasing by if necessary, we may and will assume that x € (0, 1).

Moreover, we put 19 = % when Y is convex cocompact.
Define

Ky ={yeYy:w(y) < Di/(c1a)}. (8.3)

Note that X., NYy C Ky.
The choices of the above parameters are motivated by our applications in the following
lemmas. Indeed the choice of & is used in (8.6). The multiplicative parameter c;c, which features
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in the definitions of Dy and Ky, is tailored so that we may utilize Lemma 8.10 in the proof of
Lemma 8.13.

LEMMA 8.4 (Return lemma). For every y € Yj, there exists some |r| <1 so that yura_s € Ky
where t = log(now(y)/6).

Proof. Let y € Yy — Ky. By the definition of w, there exist 1 <i < ¢ and g € b; so that y = [g]
and

see § 6 for the notation. Set v := v;g. Then

17 = wi(y) = w(y).

Let us write v = w + seg where w € V and s € R. Recall from Lemma 5.12 that there exists
by > 1 so that

lv

lwll = b7 o]l (8.5)

Let £ > 0 be as used in (8.2). Then (5.5) implies that

(0 (%) ) < gL, (5.6)

Therefore, there exists r € supp(py) N ([—1,1] — DT (w/||wl],x)). This means that yu, € Yy,
moreover, we have, using (8.5),

I (vur) || = llp™ (wur) || > £llw]| = Kby o]
Set t := log(now(y)/6). Then

—1 now(y) B
wby vl - 6 = Kby Hlvlle” < Jlp™ (vuy)ay |

now (y)
6 )

< foura]| < flourle’ < 2|v]l -

where we use ||vu,|| < 2[jv|| in the last inequality.
Hence, using the fact that w(y) = ||v]| 71,

Kby "o
6

This in particular implies that gura; € h;. By Lemma 6.5, whenever v €' and 1 < j < /£ satisfy
that b; # vbh;, we have

0
< Jowar] = [ogurar] < .

lvjvgurad|| > no;

note that ¢ = j is allowed.
This and the above upper bound thus imply

wlyurar) = |lvigura|| "
Therefore,
6b1
w(yurar) < — < Dyi/(c1a)
KMo
proving the claim. O
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Number of nearby sheets
Recalling that sl3(C) = sla(R) @ isla(R), we set V = isla(R) and consider the action of H on
V via the adjoint representation; so v-h = h~'vh for v € V and h € H. We use the relation
g(expv)h = ghexp(v - h) which is valid for all g € G,v € V,h € H.

If D > /2 for o as in Proposition 6.7, then D~lw(y)~ < $inj(y).

DEFINITION 8.7. For y € Yy and D > «/2, we define
Iz(y, D) ={v eV —{0} : |jv] < D~ 'w(y) ™", yexp(v) € Z}. (8.8)

Since V is the orthogonal complement to Lie(H ), the set Iz(y, D) can be understood as the
number of sheets of Z in the ball around y of radius D~ 'w(y)~!.

It turns out that #1z(y, D) can be controlled in terms of the tight area of Sz, uniformly
over all y € Yy for an appropriate D > 1.

Notation 8.9. We set
Tz = area;(Syz).

Theorem 3.3 shows that 1 < 77 < oo where the implied constant depends only on M.
We begin with the following lemma.

LEMMA 8.10. With ¢; > 2 and o > 2 given respectively in (8.1) and (6.7), we have that for all
y € Yo,

#1,(y, cra) < w(y)>rz. (8.11)

Proof. Let ¢; > 1 and « be the absolute constants given in (8.1) and (6.7) respectively. It follows
that for any y € Yy and v € Iz(y, ),

d(y, yexp(v) < erllv]l < er(cre)™ - w(y) ™ < 5 - inj(y). (8.12)
It follows that for each wv € Iz(y,c1), inj(yexpv) > inj(y)/2. Hence the balls
Bz (yexpv,inj(y)/2), v € Iz(y, cir) are disjoint from each other, and hence

#17(y,a) - Vol(Bg(e,inj(y)/2)) = VOI{U Bz(yexpv,inj(y)/2) : v € Iz(y,a)}.

On the other hand, if we set p, := min{1,inj(y)/2}, then

w<{U Bz(yexpu,py):v € IZ(y,cla)}> C Sz NN (core (M)).

Therefore

#17(y,c1a) < Vol(Bpy (e, py))_1 Ty K ,0;372 < w(y)’rz;

we have used that 27 (coshr — 1) > 73 for all 7 > 0 and Proposition 6.7 respectively in the last
two estimates. O

Let D; be as in (8.2). By the choice of k, we have D; < p? (see the discussion
following (8.2)).

LEMMA 8.13 (Number of sheets). For Dy = D1(Y) < p% as in (8.2), we have

sup #1z(y, D1) < co - py - 72
yeYD

where cg > 2 is an absolute constant.
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Proof. Let Ky be as in (8.3):
Ky ={y € Yo : w(y) < (c10)"'D1}.
If y € Ky, then, by Lemma 8.10,
#17(y, D1) < #1z(y, c10) < Ditz < pyz.

Now suppose that y € Yy — Ky. By Lemma 8.4, there exist || < 1 and ¢t = log(no - w(y)/6), where
0 <no <1lisasin (6.6), such that

yurar € Ky

We claim that if v € Iz(y, D1), then v(urat) € Iz(yuras, c1cr). Firstly, note that, plugging
t = log(no - w(y)/6) and using 0 < n < 1,

3now(y) ||v]| -

[vo(uras)l| < 3e'l|v]| = 6

w(y) - [vll-
Hence for v € Iz(y, D), as w(y)||v|]| < D;%,
lo(urar)ll < wy) - o]l < DT < (cr0) ™ wlyurar) ™.

where we used the fact that (c1a) 1Dy > w(yu,az).

Since y(expv)ura; = (yura;) exp(v(urar)) € Z, this implies that v(urar) € Iz(yura, cia).
Therefore the map v +— v(uya;) is an injective map from Iz(y,D;) into Iz(yura,cic).
Consequently,

#17(y, D1) < #1z(yurar, cre) < py - 72.

This finishes the proof. (|

9. Margulis function: construction and estimate

Throughout this section, we fix closed non-elementary H-orbits Y, Z in X and

0
?Y§S<5y.

In this section, we define a family of Margulis functions Fs x = F§ y,z, A > 1 and show that
the hypothesis of Proposition 7.5 is satisfied for a certain choice of A\, which we will denote by As.
As a consequence, we will get an estimate on my (Fj »,) in Theorem 9.18.

We set

Iz(y) == {v eV —{0} : |vll < Di'w(y) ™", yexp(v) € Z}
for D1 > 1 as given in Lemma 8.13.
DEFINITION 9.1 (Margulis function).

(1) Define fs := fs,Y,Z 1Yy — (O, OO) by
fly) = {ngz(y) o]~ if Iz(y) #0.

w(y)® otherwise.
(2) For A > 1, define Fs \ = F; \y,z : Yo — (0,00) as follows:
Foa(y) = fs(y) + Aw(y)”. (9:2)
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Note that for all y € Yj

w(y)® < fily) < oo (9-3)
Since Y and Z are closed orbits, both f; and F, ) are locally bounded. Moreover, they are
also Borel functions. Indeed, w® is continuous on Yy, and fs is continuous on the open subset
{y € Yo : Iz(y) # 0} as well as on its complement.
In this section, we specify choices of parameters ¢, and As so that the average A;, Fj », satisfies
the hypothesis of Proposition 7.5 with controlled size of the additive term (Lemma 9.14).

Notation 9.4 (Parameters).
(1) For 0 < ¢ < 1, define (¢, s) > 0 by
bobyplY =By —9)e:s)/4
(Oy — )

where by and b; are given in Lemma 5.13.
(2) For 0 < c< 1 andt >0, define A(t,c,s) > 0 by

=C

2ts

Aty e, s) = (2COD1p§5/TZ) ¢
where ¢p is given by (8.13).

As it is evident from the above, the definition of t(c, s) is motivated by the linear algebra
Lemma 5.13. Indeed, for any vector v € e1G and t > t(c, s), we have

1 /p 1 _
sup dpy(r) < cflv]| 7" (9.5)
1<p<2 ty[—ps p S, lloura]s 7

The choice of A(t,c,s) is to control the additive difference between f,(yu,a;) and
> vely(y) lvuras]|~* uniformly over all r € [1,1] such that yu, € Yo, so that we will get

At, ;, S)Cw(y)s

Atfs(y) <c- fs(y) +
(see Lemma 9.11, (9.15) and (9.16)).
Markov operator for the height function

In this subsection, we use notation from § 6.
It will be convenient to introduce the following notation.

Notation 9.6. Let Q C G be a compact subset.
(1) Let dg > 1 be the infimum of all d > 1 such that for all g € Q and v € R%,
d7Hol| < llvgll < dlfo]|- (9.7)

Note that dg < maxgeq ||g||, up to an absolute multiplicative constant.
(2) We also define cg > 1 to be the infimum of all ¢ > 1 such that for any « € Xy, g € Q with
xg € Xo, and for all 1 <i </

¢ twi(z) < wi(zg) < cwi(x). (9.8)
We note that cg =< maxgeq ||g|| up to an absolute multiplicative constant.

LEMMA 9.9. For any 0 < ¢ < 1/2 andt > t(c, s), there exists Dy < €2 so that for all y € Yy and
l<p<2,

At pw(y)® < c-w(y)® + Da.
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Proof. Let t > t(c,s). We compare w(yura;) and w(y) for r € [—2,2]. Setting
Q = {aru, : |r| <2,|7] < t},

we have c¢g =< €.

Let 19 be as in Lemma 6.5. Fix 0 < nx < min{ex,no} so that

nx <ex and n;(lz sup  w(y).
yGXeXﬂYo

We consider two cases.
Case 1: w(y) < 2cq/nx. In this case, for h € Q with yh € Yy,
w(yh) < 2023/77)(-
Hence, the claim in this case follows if we choose Dy = 2022 /nx =< e,
Case 2: w(y) > 2cg/nx. By the definition of w, there exists 1 < ¢ < £ such that
w;i(y) > 2cg/nx, and hence y € b;.
By the definition of cq, see (9.8), we have
wi(yh) > 2/nx, and hence yh € b;

for all h € @ with yh € Yp. Choose go € G so that y = [go]. In view of Lemma 6.5, see in par-
ticular (6.6), and since nx < 1o there exists v € I' such that simultaneously for all h € @) with
yh € Yo,

w(yh) = wi(yh) = |lvivgoh| .

Since v; = e1g; ' € e1G (see (6.1)), we may apply Lemma 5.13 (linear algebra lemma II) and

deduce
1 P 1
Aupe(y)® = / dny (7)
g wy([=p,p)) J-p llviyuracl|s
boby p(;Ye*((;ny)t/éL B

< A~ < e- s

— (5Y _ 8) ”U17” SC W(y) )
in the last inequality we used the fact that ¢ > t(c, s). The proof is now complete. ]

Log-continuity of Fy x
The following log-continuity lemma with a control on the multiplicative constant o is the first
hypothesis in Proposition 7.5.

LEMMA 9.10 (Log-continuity lemma). There exists 2 < o < p§- so that the following holds: for
every \ > Tz, we have

UﬁlFS,A(y) < FS,A(yh) < oFs (v)

for all y € Yy and all h € By (2) so that yh € Yj.

Let cg be as in Lemma 8.13. Recall from Theorem 3.3 that 77 > 53(, replacing cg by its
multiple (which we continue to denote by ¢p) if necessary we assume that corz > 1.
We first obtain the following estimate for f on nearby points.
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LEmMA 9.11. Let Q C H be a compact subset. For any y € Yy and h € () such that yh € Yy,
we have

fs(yh) < Z [oh|| =% + (cocodqD1pyT7)w(y)®
v€lzZ(y)
where c¢q is as above and the sum is understood as 0 when Iz(y) = 0.

Proof. Let y € Yy and h € Q with yh € Yy. If Iz(yh) = 0, then by (9.8), we have
fs(yh) = w(yh)® < cqu(y)”®

proving the claim; recall that co7z > 1.
Now suppose that Iz(yh) # (. Setting

e := (doDiw(y)) ™",

we write

fstyly= > el > ol (9.12)

velz (yh),|lvl|<e v€lz(yh),||v]|>e
Since #1z(yh) < cop$- 7z by Lemma 8.13, we have
S ol < (wp$rz)e ™t < (codDipyTz)w(y)°. (9.13)
vElz(yh),||v||=e

Thus, if there is no v € Iz(yh) with ||v|| < ¢, then the lemma follows from (9.12).
If v € Iz(yh) satisfies ||v]| < e, then

loh™ || < dge = Dy 'w(y) ™
in particular, vh~! € Iz(y). Therefore, by setting v’ = vh~!,

)R [ - NN [0 1

velz(yh),|lv]|<e v'elz(y)
Together with (9.13), this finishes the proof. O

Proof of Lemma 9.10. Since By (2)~! = Bg(2), it suffices to show the inequality <. By
Lemma 9.11, applied with Q = By(2), c:=cp,(2) and d := dp, (2), we have that for all h €
By (1) with yh € Yy, we have

fswh) < > |loh| ™ + (cocdD1p§rz)w(y)®
velz(y)

<d > |joll”* + coedDip§rrw(y),
velz(y)

where we have used the definition of d.
Recall from Theorem 3.3 that E?X <77 < Xand that D1 <« p%.
If Iz(y) =0, then

Fya(yh) < pyrzw(y)® + dw(y)® < pyiw(y)®
<PV (fsy) + Aw()®) < pY-Foa(y)-
If I7(y) # 0, then
Foa(yh) < d- fs(y) + cocdD1pymzw(y)® + Aw(yh)®
< [fsy) + PV Aw(y)® < pYFoa(y)-
This finishes the upper bound. The lower bound can be obtained similarly. O
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Main inequality
We will apply the following lemma to obtain the second hypothesis of Proposition 7.5 for ¢ :=
(BopdY )t < 1/2.
LEMMA 9.14 (Main inequality). Let 0 < ¢ < 1/2. For t > t(c¢/2,s) and A = A(t,c,s), we have
the following: for any y € Yy and 1 < p < 2, we have

At,st,)\(y) < CFS,)\(y) + ADs
where Dy < €% is as in Lemma 9.9.

Proof. The following argument is based on comparing the values of fs(yu,a;) and fs(y) for
r € [—2,2] such that yu,a; € Y.

Let Q := {a;u, : |r| < 2,|7| <t}. Then

co=e' and dgx=e'
where ¢ and dg are as in (9.6). Hence, by Lemma 9.11, we have that for any |r| < 2 such that
Yurag € }/07
fs(yuray) < Z |vurar]| = + coD1p$ 7w (y)* e (9.15)
vElZ(y)

where ¢y is as in Lemma 9.11.

By averaging (9.15) over [—p, p] with respect to p,, and applying (9.5), we get

At,pfs (Z/) <ec- fs(y) +coDy pg}/TZw(y)sths

Ew(y)s. (9.16)

Sc'fs(y)+ 2

Then by Lemma 9.9 and (9.16), we have
At pFsa(y) = A pfs(y) + Arprw(y)®

<o fuly) + Duly) + Duwly)® +AD,
=c- Fs\(y) + ADo. O
By Theorem 4.8, we have sy =< py. For the sake of simplicity of notation, we put
oy < sy >1/(5Y—S) _ ( Py )1/(5Y_3)‘ 0.17)
’ oy — 8 oy — 8

We are now in a position to apply Proposition 7.5 to get the following estimate.
THEOREM 9.18 (Margulis function on average). There exists As > 1 such that
my (Fs ) < 05,72

Proof. Let 1 <o < p be given by Lemma 9.10. Let c¢:= (8ap§}’)*1 <1/2, ts:=1t(c,s) and
As i= A(ts, ¢, 5) be given by (9.4). Then in view of Lemmas 9.10 and 9.14, F; ), satisfies the
conditions of Proposition 7.5 with t = t5 and Dy = \sDs, where Dy < e?*s is given in Lemma 9.9.

Therefore
my (Fyx,) < 64Asp3Y Dy. (9.19)
Since
20y \4 * 2tss
by —s)ts _ (Saboblpy ) Py — (2¢0 D18 e
e Gy —s) < p— and A = (2c0D1py77) —
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we get
AP D2 < pyettery < af 7.

Combining this with (9.19) finishes the proof. O

10. Quantitative isolation of a closed orbit

In this section, we deduce Theorem 1.5 from Theorem 9.18. Let Y, Z be non-elementary closed
H-orbits in X. We allow the case Y = Z as well. Let dy /3 < s < Jy.

Recall the definitions of fs = fs v,z and F, x = F ) y,z from Definition 9.1. Let A\; be given
by Theorem 9.18. Using the log-continuity lemma for F; y, (Lemma 9.10), we first deduce the
following estimate.

ProOPOSITION 10.1. For any 0 < € < ex and y € Yo N X, we have
Ot;—’sTZ
mY(B(y7 5)) '

Proof. Let y € YoN X.. Then inj(y) > ¢ and hence yBy(e) = B(y,e). For all h € By(ex),
Fix (y) < 0F; 5, (yh) for some constant o < p$ by Lemma 9.10. By applying Theorem 9.18,

fsy,z(y) < Foa(y) <

we get,
Fup(y) < L2xeuBn(e) Forl0) dme(®) o my(Fup,) 0%z 0
e my (B(y,¢€)) — my(B(y,e)) — my(B(y,e))
Recall from (6.8) that for all z € X,
1
5= - inj(e) w(@) ! < 3 - inj(o). (10.2)

Using the next lemma, we will be able to use the estimate for fsy,z obtained in
Proposition 10.1 to deduce a lower bound for d(y, Z).

LEMMA 10.3.
(1) Lety € Yy and z € Z — By (y,inj(y)). If d(y, z) < (1/2ac1D1) inj(y), then
d(y,2)"" < c1fsy,z(y)

where ¢; > 1 is as in (8.1).
(2) IfY # Z, then for any y € Yy,

d(y, Z)"* < py fov,z(y).

Proof. As Z is closed and d(y,z) < (1/2ac;D1)inj(y) < %inj(y), the hypothesis z € Z —
By (y,inj(y)) and the choice of ¢; implies that z is of the form yexp(v)exp(v') with v €
islo(R) — {0} and v’ € slp(R).

In particular yexp(v) = zexp(—v’) € Z. Moreover, by (8.1),

loll < [l + '] < exd(y, z) < D7 inj(y)/(2a) < (Drw(y)) ™
It follows that v € Iz(y, D1). Therefore
d(y, )™ < cillol| 7 < eallol| ™ < e fi(y), (10.4)

proving (1).
We now turn to the proof of (2); suppose thus that Y # Z. Then there exists z € Z such that
d(y,Z) = d(y, z). In view of (1), it suffices to consider the case when d(y, z) > (1/2ac1 D7) inj(y).
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Since s < 1, w(y)® < fs(y), and Dy < p?., we get
d(y, 2)~* < 2ac1 Dy inj(y)~* < 201 Diw(y)® < pi- fov.z(y)
where we also used (10.2). The proof is complete. O
Theorem 1.5(1) is a special case of the following theorem.

THEOREM 10.5 (Isolation in distance). For any 0 < e <ex, y € YoNX,, and z € Z, at least
one of the following holds:

(1) S By(y,E) = yBH(€,€); or

(2) d(y,z) > Oz;z/smy(B(y,5))1/87'2_1/5, where ay is as given in (9.17).

Proof. As y € X., inj(y) >e. Suppose that z ¢ By(y,e). We first observe that since
my (B(y,e))'/* < & and py? > a;*s/s, we have

) —%/s 1
Saci Dy > py e > ay my (B(y,¢)) /s,

Therefore, if d(y, z) > (1/2ac1D1)e, then (2) holds in view of the fact that 77 > 5_2)(.

If d(y,z) < (1/2ac1D1)e < (1/2ac1D1)inj(y), then by Lemma 10.3, d(y,2)™* < c1fs(y).
Hence applying Proposition 10.1, we conclude

a§7STZ
my (B(y,e))
which finishes the proof in this case as well. (|

dy,z)° <cfsy) <a

The following theorem is Theorem 1.5(2).
THEOREM 10.6 (Isolation in measure). Let 0 < e <ex. Let Y # Z. We have
my{y €Y :d(y, Z) < e} < ay (77¢°
Proof. Let \s be given by Theorem 9.18. By Lemma 10.3(2),
d(y, Z)"" < cfsyz(y) < C- Fyp,(y)

for some 1 < C < p.
For 0 < € < ey, if we set

Qe = {y € Yo: Fon,(y) > C7'e ™"},
then {y € Yy : d(y, Z) < e} C .. On the other hand, we have
C_1€_Smy(95) < / F a, dmy < my (Fsy,)-

Since my (Fs»,) < oy, ;77 by Theorem 9.18, we get that
my{y € Yy : d(y,Z) < e} < my () < oy 7z¢”. O

Proof of Proposition 1.17. Let Fy = Fs ), be as in Theorem 9.18. Then Fj satisfies (1) in the
proposition by Lemma 10.3. It satisfies (3) by Lemma 9.10.

Moreover, in view of Lemmas 9.10 and 9.14, F satisfies the conditions of Proposition 7.5.
Hence, by Proposition 7.6, it also satisfies (2) in the proposition. O

We remark that in both Theorems 10.5 and 10.6, the exponents x depend only on G, and
the implied constants are respectively of the form cs)]\g and ¢! z-:)_{N for some ¢ <1 and N > 1
both depending only on G.
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Number of properly immersed geodesic planes
When Vol(M) < oo, we record the following corollary of Theorem 10.5. Let N (T') denote the
number of properly immersed totally geodesic planes P in M of area at most T.

We deduce the following upper bound from Theorem 10.5 using the pigeonhole principle.

COROLLARY 10.7. Let Vol(M) < oo. There exists N > 1 (depending only on G) such that for
any 1/2 < s < 1, we have

N(T) < Vol(M)e N T6/571

where the implied constant depends only on s.

Proof. We begin by recalling that ays = a, := (1/(1 — s))/(=%) for any closed H-orbit Y in X
when Vol(M) < co.

We obtain an upper bound for the number of closed H-orbits in X which yields the above
result. The proof is based on applying Theorem 10.5.

If X is compact, let p = 0.1ex. If X is not compact, then the quantitative non-divergence of
the action of U on X implies that there exists p > 0 so that for all x € X such that zU is not
compact,

1

Tﬁ{t €0,T):zur e X — X,} <0.01
for all sufficiently large T > 1, e.g. see [DM91]. Moreover, p can be taken to be =< 5')“( for some
k> 1.

Since (Y, my) is U-ergodic by the Moore’s ergodicity theorem for every closed orbit Y = zH,
the Birkhoff ergodic theorem says that for my a.e. y € Y,

1
lim —{t € [0,T]: yur € X — X} = my (X — X,,)

T—o0

where ¢ denotes the Lebesgue measure on R; therefore
my (X — X,) < 0.01. (10.8)
For every S > 0 put
Y(S) :={zH : xH is closed and S/2 < Vol(zH) < S}.
In view of the above choice of p, we have Vol(zH) > p® > 1 for every closed orbit xH. Let

no = |3logy(p)], and for every T' > 1, let np = [logy T']. Then we have

nr
{zH : xH is closed and vol(zH) < T} C Uy(Zk).

no

Let n =< p be so that the map g — zg is injective for all z € X, and all
g € Box(n) = exp(Bisi,(r)(0,1)) exp(Bsiy(r) (0,1))-
Fix some 1/2 < s < 1 and some z € X. We claim that

# (connected components of Y2k n z.Box(n)) < a}2/590k/s (10.9)

where the implied constant depends on p.
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For any connected component C' of Y(2¥) N z.Box(n), there exists some v € isly(R) so that

C = zexp(v) exp(Byp,(r)(0,7))-

Let us write C = C,. Now in view of Theorem 10.5, for every two connected components C, #
Cy, we have

o — 0| >, ag /527 2k/s. (10.10)

Because dim(t) = 3, the cardinality of an a; 3025

al?/s96k/s , where the implied constant depends only on the choice of norm. The claim in (10.9)
thus follows from (10.10).

Let {zj.Box(n) 1<5< R} be a covering of X, with sets of the form z.Box(n); we may find
such a covering with R = O(Vol(X)n~%) the implied constant is absolute (see also the definition
of ¢1 in (8.1)). Then we compute

-separated set in Bi,(r)(0,7) 18 <

N(2F) < 27FF1 Z vol(zH) by the definition of Y(2%)
Y(2F)

M
<27"y > vol(G,) by (10.8)

Jj=1CyCz;.Box(n)

R
< a2/ " gbk/sh by (10.9)
j=1
< Vol(X)ak2/398k/s=k since R = O(Vol(X));

in the above we also used the fact that vol(C,) <, 1.
Since p < 1 can be taken < elj(, we conclude that for some absolute constant N1, No > 1 and

c=c(s) > 1,
nr
N(T) < e Vol(X)p~Nral?/s Y~ 26K/s7k < ¢ Vol (X)e N210/s7!
k=ngo
which implies the claim (note here that Vol(X) = Vol(M), since I' is torsion-free.) O

Remark 10.11. Let Nas(T) be the number of properly immersed geodesic planes of area at most
T in a general geometrically finite manifold M = I'\H3. If Y is a closed H-orbit Y of finite
area in I'\G, then py =< sy = 2, 7y = Vol(Y’) and the non-divergence of the U-action as given in
[BZ17, Theorem 1.1] implies that (10.8) also holds in this setting.

In view of these, the proof of Corollary 10.7 works in the same way for the following: there
exists N > 1 (depending only on G) such that for any 1/2 < s < 1, we have

N (T) < Vol(unit-nbd of core M) ey N T

where the implied constant depends only on s.
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Appendix A. Proof of Theorem 1.1 in the compact case

In this section we present the proof of Theorem 1.1 when X is compact. As was mentioned in
the introduction, this case is due to G. Margulis.

Let Y # Z be two closed H-orbits in X = I'\G. Recall ex = min,cx inj(x) where inj(z) is
the injectivity radius measured in I'\H?.

Fix 0 < s < 1, and define fs: Y — [2,00) as follows: for any y € Y,

Js(y) = {ZUEI%) loll™=if Iz (y) # 0,

£x otherwise,
where
Iz(y) ={veiskh(R):0<|v|| <ex, yexp(v) € Z}.
Define Fy = Fyy,z : Y — (0,00) as follows:

Fy(y) = fs(y) + Vol(Z)e”.

Note that in the case at hand, F§ is a bounded Borel function on Y. We also note that in the
case at hand w, as defined in (6.3), is a bounded function on X (recall that w = 2 in this case),
and hence F, here and F; ), that we considered in the proof of Theorem 1.5 are essentially the
same functions in this case.

We use the following special case of Lemma 5.6: for any v € islp(R) with |[v]| =1,1/3 <s < 1

and t > 0, we have
1 —1)t/4
d (s=1)t/
/ R pa— (A1)
o |lvural® 1—s
where vh = Ad(h)(v) for all h € H.
Remark A.2. It is worth noting that the symmetric interval [—1, 1] was used in Lemma 5.6. We

remark that this is necessary in the infinite volume setting; indeed the half interval [0, 1] may
even be a null set for y, for some y; see (4.1) for the notation.

For a locally bounded function ¥ on Y and ¢ > 0, define

1
Ab(y) = /O blyuar) dr fory €Y. (A.3)

PROPOSITION A.4. Let 1/3 < s < 1. There exists t = t(s) > 0 such that for ally € Y,
AFy(y) < 3F3(y) + cexag Vol(2) (A-5)
where ag = (1 — s)~/(=%) and ¢ > 1 is an absolute constant.
Proof. Tt suffices to show that A fs(y) < % fs(y) + a2 Vol(2).
Let by be as in (A.1), and let ¢ = t(s) be given by the equation
els—1)t/4
1-s
We compare fs(yura;) and fs(y) for r € [0,1]. Let C; < e’ be large enough so that [[vh| <
Ciljv] for all v € isl3(R) and all

bo =1/2.

h e {aru, :|r| <1,|7| <t}

Let v € Iz(yurar) be so that |v|| <ex/Ci. Then [jva_ju_,|| < ex; in particular, va_u_, €
Iz(y).
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In the following, if Iz(-) = (), the sum is interpreted as to equal to e*. In view of the above
observation and the definition of fs, we have

fs(yurar) = Z [oll™*

vElz (yurat)

= > Joll =% + > [of|~*
velz(yurar),||v||<ex /C1 velz(yurar),||v]|>ex /C1

< Y owa| 7+ > Gl (A.6)
vElZ(y) vElz (yurat),||v||>ex/Ci

Moreover, note that #I(y) < e5°Vol(Z) (see the proof of Lemma 8.13). Hence,
Dl < Ciex'Vol(Z) < ete* Vol (Z). (A.7)
[ol>ex/C1
We now average (A.6) over [0,1]. Then using (A.7) and (A.1) we get
Acfs(y) < 3fs(y) + O(e*Vol(Z)).

As (1 — 5)71/(1=9) < 5t/4 this proves (A.5). O

Let my be the H-invariant probability measure on Y.
COROLLARY A.8. We have

my (Fs) < cexatVol(Z)

where ¢ > 1 is an absolute constant.

Proof. Since my is an H-invariant probability measure, my (A fs) = my (fs). Hence the claim
follows by integrating (A.5) with respect to my-. O

Proof of Theorem 1.1. There exists ¢ > 0 such that for any h € By(ex) and y € Y, Fs(y) <
oFs(yh) (cf. Lemma 9.10); By(ex) denotes the € x-ball centered at the identity in H.

Hence, using Corollary A.8, we deduce
[y (ex) Fs(yh) dmy (yh)

my (B(y,ex))

fs(y) < Fs(y) <

o - my (Fy)

4 -7
~ m << aSEX VOI(Y) VOI(Z)

with an absolute implied constant. Since d(y, Z)™* < ¢1fs(y) for an absolute constant ¢; > 1
(see (10.4)), we have

d(y, Z) > a; Y5 Vol(2) /s Vol (V) ~1/5. (A.9)
This shows Theorem 1.1(1). By Corollary A.8 and the Chebyshev inequality, we get
my{y €Y :d(y, Z) <e} <my{y €Y : Fi(y) > ¢ 'e°} < crmy (Fy)e”.

Therefore
my{y €Y :d(y, Z) < e} < cree®etalt Vol(Z), (A.10)

which implies Theorem 1.1(2). O
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