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In this experimental and numerical study, we revisit the question of the onset of
the elastic regime in viscoelastic pinch-off. This is relevant to all modern filament
thinning techniques, which aim to measure the extensional properties of low-viscosity
polymer solutions. Examples are the slow retraction method (SRM) for capillary breakup
extensional rheometry (CaBER), or the dripping method, in which a drop detaches from a
nozzle. As part of these techniques, a stable liquid bridge is brought slowly to its stability
threshold, where capillary-driven thinning starts. This thinning slows down dramatically
at a critical radius h1, marking the onset of the elasto-capillary regime, characterised by a
filament of nearly uniform radius. While a theoretical scaling exists for this transition in
the case of the classical step-strain CaBER protocol, where polymer chains stretch without
relaxing during the fast plate separation, we show that this theory is not necessarily valid
for a slow protocol such as the SRM. In that case, polymer chains start stretching (beyond
their equilibrium coiled configuration) only when the bridge thinning rate becomes
comparable to the inverse of their relaxation time. We derive a universal scaling for
h1, valid for both low- and high-viscosity polymer solutions. This scaling is validated
by CaBER experiments with a slow plate separation protocol using different polymer
solutions, plate diameters and sample volumes, as well as by numerical simulations using
the FENE-P model.
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1. Introduction

The elasticity of a polymer solution can be probed by stretching a drop between one’s
thumb and index finger, resulting in the formation of a filament with a persistence time
that is linked to the relaxation time of the solution. Such filaments are observable in many
industrial free-surface flows such as spraying (Keshavarz et al. 2015, 2016; Gaillard, Sijs
& Bonn 2022) and inkjet printing (Christanti & Walker 2002; Sen et al. 2021), where long
polymer molecules can be added to a Newtonian solvent to achieve a specific flow property,
as well as in ejecta produced when coughing and sneezing (Scharfman et al. 2016; Gidreta
& Kim 2023). The capillary-driven thinning dynamics of these filaments is the basis
of numerous rheometry techniques dedicated to low-viscosity fluids, for which other
techniques such as rheometric melt elongation (Meissner’s RME) and filament stretching
extensional rheometry (FiSER) are not applicable. These techniques include capillary
breakup extensional rheometry (CaBER), where a droplet is confined between two plates
that are separated beyond the range of stable liquid bridges (Bazilevsky et al. 1997; Stelter
et al. 2000; Anna & McKinley 2001), the dripping technique where a droplet detaches
from a nozzle (Amarouchene et al. 2001; Tirtaatmadja, McKinley & Cooper-White 2006;
Rajesh, Thiévenaz & Sauret 2022), and dripping-onto-substrate (DoS), where a solid
substrate is brought into contact with a drop hanging steadily from a nozzle (Dinic,
Jimenez & Sharma 2017). All these techniques aim to creae a viscoelastic filament by
triggering the pinching of a liquid column via the Rayleigh–Plateau instability.

Viscoelastic filaments are found to thin exponentially over time for a wide range of
polymer-solvent systems and polymer concentrations (dilute and semi-dilute), consistent
with the Oldroyd-B model, which predicts

h = h1 exp
(

− t − t1
3τ

)
, (1.1)

where h is the (minimum) filament radius, and τ is the relaxation time of the polymer
solution, the longest one for a multimode model (Entov & Hinch 1997; Anna & McKinley
2001). This regime corresponds to an elasto-capillary balance where the elastic stress
arising from the stretching of polymer chains balances the driving capillary pressure.
Experimentally, starting from an equilibrium situation where polymers are relaxed (no
pre-stress), this elastic regime can be observed only once polymers have been sufficiently
stretched to overcome inertia and/or viscosity, which occurs at a time t1 and at a filament
radius h1 = h(t1) marked by a sudden deceleration of the thinning dynamics.

The amount of stretching of polymer chains at times t < t1 is set by the strength of the
extensional flow in the pinching region. In the limit case where the thinning dynamics
at times t < t1 (before elasticity balances capillarity) is much faster than the solution’s
relaxation time – i.e. where polymer chains deform by the same amount as the surrounding
solvent itself without relaxing – Clasen et al. (2006a) showed that the Oldroyd-B model
leads to

h1 =
(

Gh4
0

2γ

)1/3

, (1.2)

where γ is the surface tension, G is the elastic modulus and h0 is the radius of the ‘initial’
liquid column before the onset of thinning, i.e. when the fluid is still at rest. This formula
was first derived by Bazilevsky et al. (1997) and differs by a factor 21/3 from the formula
proposed by Entov & Hinch (1997), who did not treat the tension in the filament properly.

This ‘relaxation-free’ scenario leading to (1.2) corresponds to the step-strain CaBER
protocol where the plates are separated so fast that polymer chains stretch without
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Onset of the elastic regime in viscoelastic pinch-off

having time to relax as the liquid bridge, connecting the two plates, stretches axially.
In this step-strain protocol, the plates are separated exponentially over time to create an
extensional flow with a constant extension rate ε̇0 that, to ensure that polymer relaxation
is negligible, must be larger that the coil–stretch transition value 1/2τ (Miller, Clasen &
Rothstein 2009). This corresponds to Weissenberg number Wi0 = ε̇0τ > 1/2. Once the
plates have reached their final separation distance LF, the unstable liquid bridge between
the two plates continues to thin, this time under the action of capillarity, until the elastic
regime starts at a bridge/filament (minimum) radius h1. Miller et al. (2009) showed that,
consistent with (1.2), h1 does not depend on LF for polymer solutions. However, we could
not find experimental studies where h1 was reported and tested against (1.2) for different
plate diameters and initial gaps, which set the radius h0 of the initial (unloaded) fluid
sample, or for different polymer solutions.

This step-strain CaBER protocol is, however, not recommended for low-viscosity
polymer solutions since a fast plate separation leads to inertio-capillary oscillations of
the end drops that hinder the measurement of the relaxation time (Rodd et al. 2005).
Alternative protocols consist in reaching the threshold of the Rayleigh–Plateau instability
slowly, e.g. by separating the plates at a constant low velocity in CaBER (slow retraction
method or SRM) (Campo-Deano & Clasen 2010). In that case, the initially stable liquid
bridge connecting the two end-plates becomes unstable at a critical plate separation
distance, corresponding to a minimum bridge radius h0, and thins further under the action
of capillarity. This is similar to the dripping method where the bridge connecting a droplet
to a nozzle, from which liquid is infused at a low flow rate, becomes unstable at a critical
droplet weight (Rajesh et al. 2022).

In such slow protocols, (1.2) may not be valid if the time taken by the bridge to thin from
its initial (minimum) radius h0 to the radius h1 (marking the onset of the elastic regime)
is longer than the liquid’s relaxation time τ , as was already noticed by Bazilevsky et al.
(1997). In that case, polymer chains may indeed remain in a coiled state for a significant
time, starting to stretch only when the bridge’s thinning rate becomes comparable to
1/τ . This led Campo-Deano & Clasen (2010) to derive an alternative formula for h1 for
their slow retraction CaBER method that, to the best of our knowledge, has never been
tested experimentally. In this formula, h1 is independent of h0, in sharp contrast with
(1.2), which predicts h1 ∝ h4/3

0 . In a more recent experimental work from Rajesh et al.
(2022), the authors proposed an empirical scaling h1 ∝ R0.66

n in dripping experiments with
low-viscosity polymer solutions, where Rn is the nozzle radius, but they did not provide a
theoretical explanation for their findings.

In such slow protocols, (1.2) is expected to be valid only if the time taken by the liquid
bridge to thin from h0 to h1 is much shorter than the liquid’s relaxation time, in which
case polymer chains stretch without having time to relax. This time is expected to scale
as the characteristic time scale of the capillary-driven bridge thinning dynamics derived
from linear stability theory, namely, the Rayleigh (inertio-capillary) time scale (Wagner
et al. 2005)

τR = (ρh3
0/γ )1/2, (1.3)

or the visco-capillary time scale

τvisc = η0h0/γ, (1.4)

depending on the Ohnesorge number

Oh = η0√
ργ h0

= τvisc

τR
, (1.5)
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A. Gaillard and others

where ρ and η0 are the liquid density and total (zero-shear) viscosity, respectively. In other
words, if we define a Deborah number

De = τ/τR (1.6)

based on the Rayleigh time scale, then (1.2) is expected to be valid for De � 1 in the
inviscid case (Oh � 1), and for De/Oh = τ/τvisc � 1 in the viscous case (Oh � 1),
which is the limit considered in most analytical studies (Clasen et al. 2006a).

In this study, we aim to expand our current understanding of the transition radius
h1 (marking the onset of the elastic regime) to cases where polymer relaxation is not
negligible during the capillary-driven thinning of the liquid bridge. This discussion follows
up on our previous paper, where h1 was observed to increase linearly with h0 for different
liquids for a slow plate separation CaBER protocol (Gaillard et al. 2024), a scaling that
differs from the h1 ∝ h4/3

0 prediction of (1.2). Materials and methods are presented in § 2,
and experimental results are presented in § 3. Theoretical expressions for h1 are derived
and tested experimentally and numerically using the Oldroyd-B model in § 4, and the
FENE-P model in § 5.

2. Materials and methods

The liquids, their shear rheology and the experimental set-up and protocol are presented
in §§ 2.1, 2.2 and 2.3, respectively. The equations and numerical methods are presented in
§ 2.4.

2.1. Liquids
Three of the polymer solutions used in the present study are the same as in our
previous paper (Gaillard et al. 2024) and have comparable ‘relaxation times’ or, more
precisely, comparable filament thinning rates. Two of them are solutions of poly(ethylene
oxide) (PEO) of molecular weight Mw = 4 × 106 g mol−1 (PEO-4M), one in water with
concentration 500 ppm, referred to as PEOaq, and one in a ∼260 times more viscous
solvent with concentration 25 ppm, referred to as PEOvisc. The third solution is a 1000 ppm
solution of poly(acrylamide/sodium acrylate) (HPAM) [70 : 30] of molecular weight
Mw = 18 × 106 g mol−1 in water with 1 wt% NaCl to screen electrostatic interactions
and make polymer chains flexible instead of semi-rigid. Both polymers were provided
by Polysciences (ref. 04030 for PEO and 18522 for HPAM). The solvent of the PEOvisc
solution is a Newtonian 30 wt% aqueous solution of poly(ethylene glycol) (PEG) with
molecular weight 20 000 g mol−1 (PEG-20K). After slowly injecting the polymer powder
into a vortex generated by a magnetic stirrer, solutions were homogenised using a
mechanical stirrer at low rotation speed for approximately 16 h. For the PEOvisc solution,
PEG was added after mixing PEO with water. Additional solutions of PEO-4M in water
were prepared from dilution of a 10 000 ppm stock solution with concentrations ranging
between 5 and 10 000 ppm to investigate the influence of polymer concentration.

2.2. Shear rheology
The shear viscosity η and first normal stress difference N1 of polymer solutions were
measured at the temperature of CaBER experiments, typically 20 ◦C, with an MRC-302
rheometer from Anton Paar equipped with a cone plate geometry (diameter 50 mm, angle
1◦, and truncation gap 53 μm) and are shown in figure 1. To measure N1, we follow
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Figure 1. (a) Shear viscosity η and (b) first normal stress difference N1 of the different polymer solutions
against the shear rate γ̇ .

a step-by-step protocol similar to Casanellas et al. (2016) in order to circumvent the
instrumental drift of the normal force. This protocol consists of applying steps of constant
shear rate followed by steps of zero shear, and subtracting the two raw N1 plateau values.
The contribution of inertia to the normal force is corrected for by the rheometer (Macosko
1994). We find that the PEOvisc solution is a Boger fluid with a constant shear viscosity,
while the HPAM solution is shear-thinning, as well as the aqueous PEO solutions when
concentrations are larger than 250 ppm. For shear-thinning solutions, the shear viscosity
is fitted with the Carreau–Yasuda formula

η(γ̇ ) = η0
(
1 + (γ̇ /γ̇c)

a1
)(n−1)/a1 , (2.1)

where η0 is the zero-shear viscosity, n is the shear-thinning exponent, and γ̇c is the shear
rate marking the onset of shear thinning, with a1 (typically 2) encoding the sharpness
of the transition towards the shear-thinning regime. The polymer contribution to the
shear viscosity ηp = η0 − ηs increases linearly with polymer concentration c in the dilute
regime, and follows ηp = ηs[η]c, where, for the PEO solutions in water, we find an
intrinsic viscosity [η] = 2.87 m3 kg−1. Using the expression of Graessley (1980) gives
a critical overlap concentration c∗ = 0.77/[η] = 0.268 kg m−3 (268 ppm), consistent with
the onset of shear thinning expected at c > c∗. For the PEOvisc solution, where only one
concentration (25 ppm) was tested, assuming that the solution is dilute to calculate [η] and
c∗ using the same formulas leads to a larger critical overlap concentration c∗ = 1400 ppm,
probably due to differences in polymer–solvent interactions (PEO in water versus PEO in
PEG solution). The first normal stress difference is fitted by a power law

N1 = Ψ1γ̇
α1, (2.2)

where we find α1 = 2 below c∗, and α1 < 2 above c∗, for aqueous PEO solutions, and
α1 < 2 for the PEOvisc and HPAM solutions. All fitting parameters are reported in table 1
for the PEO solutions of different concentrations in water, and in table 2 for the PEOaq,
PEOvisc and HPAM solutions. We also report the density ρ and surface tension γ measured
with a pendant drop method and, when known, the ratio c/c∗. Note that PEO addition
reduces the surface tension of water since PEO is known to adsorb at the air/water interface
(Gilányi et al. 2006). Surface tensions reported in tables 1 and 2 are the equilibrium ones.
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c γ c/c∗ η0 ηp n 1/γ̇c α1 Ψ1
(ppm) (mN m−1) (mPa s) (mPa s) (s) (Pa sα1 )

5 72.0 0.019 0.93 0.013 1 — — —
10 72.0 0.037 0.940 0.02 1 — — —
25 63.4 0.093 0.985 0.065 1 — — —
50 62.8 0.19 1.04 0.12 1 — — —
100 63.0 0.37 1.19 0.27 0.98 0.023 2 1.2 × 10−6

250 63.0 0.93 1.75 0.83 0.95 0.054 2 1.2 × 10−5

500 62.5 1.9 3.00 2.08 0.95 0.12 1.15 5.9 × 10−3

1000 62.5 3.7 6.3 5.38 0.86 0.14 1.10 2.0 × 10−2

2500 62.5 9.3 45 44 0.73 0.62 0.98 1.1 × 10−1

10 000 62.3 37 15 400 15 400 0.48 34 0.79 4.7 × 100

Table 1. Concentration c, reduced concentration c/c∗, surface tension γ and shear rheological properties (from
(2.1) and (2.2)) of aqueous PEO-4M solutions prepared from dilution of the same 10 000 ppm stock solution.
Here, ηp = η0 − ηs is the polymer contribution to the shear viscosity. The density and solvent viscosity are
ρ = 998 kg m−3 and ηs = 0.92 mPa s. The 500 ppm solution in this table is referred to as PEOaq,1 in the text.
For the 5 ppm solution, η0 is too close to ηs to estimate ηp, and we therefore use ηp = ηs[η]c with the intrinsic
viscosity [η] extracted from the linear fit of ηp(c) for c < c∗.

Name ρ γ ηs c c/c∗ η0 ηp n 1/γ̇c α1 Ψ1 τm
(kg m−3) (mN m−1) (mPa s) (ppm) (mPa s) (mPa s) (ms) (Pa sα1 ) (ms)

PEOaq,2 998 62.5 0.92 500 1.9 3.3 2.08 0.93 120 1.2 9.9 × 10−3 240
PEOvisc,2 1048 56.0 245 25 0.018 248 3.3 1 — 1.6 5.8 × 10−3 110
HPAM 998 72.0 0.92 1000 — 15 14 0.78 410 1.7 9.0 × 10−3 100

Table 2. Properties of the polymer solutions used for plate diameters 2R0 up to 25 mm in CaBER
measurements. Here, ρ is the density, and γ is the surface tension. See the caption of table 1 for the definition
of the shear properties. Also, τm is the maximum CaBER relaxation time measured for the largest plates; see
figure 4(a). The PEOvisc,1 and PEOvisc,2 solutions have the same shear viscosity to within less than 5 %.

We must mention here that two different PEOaq solutions and two different PEOvisc
solutions have been used in this study, with differences in rheological properties in each
case, caused by slightly different preparation protocols for a given recipe (e.g. a slightly
different agitation time). The PEOaq,1 solution is prepared from dilution of the same stock
solution as the other aqueous PEO solutions in table 1. The PEOaq,2 solution featured in
table 2 exhibits a 10 % larger shear viscosity and approximately 2.5 times larger values
of N1, as shown in figure 1. The PEOvisc,1 and PEOvisc,2 solutions have the same shear
viscosity to within less than 5 %, and only the latter one is presented in figure 1 and
in table 2. As explained in § 2.3, the PEOaq,1 and PEOvisc,1 solutions were tested with
(CaBER) plate diameters less than 7 mm, varying the (non-dimensional) drop volume for
each plate, whereas the PEOaq,2 and PEOvisc,2 solutions were used for plate diameters up
to 25 mm with a single (non-dimensional) drop volume for each plate.

2.3. Experimental set-up and slow stepwise CaBER protocol
The CaBER set-up and slow stepwise plate separation protocol described here are the
same as in our previous paper (Gaillard et al. 2024). A droplet of volume V is placed
on a horizontal plate of radius R0, and the motor-controlled top plate of same radius
is first moved down until it is fully wetted by the liquid, i.e. until the liquid bridge
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Figure 2. (a) Time evolution of the minimum bridge/filament radius h in our slow stepwise plate separation
protocol for the PEOaq,1 solution for plate diameter 2R0 = 3.5 mm and a sample volume V∗ = V/R3

0 ≈ 2.4.
Inset images correspond to a stable liquid bridge (left) and a thinning filament (right) of the same liquid, with
2R0 = 7 mm and V∗ ≈ 2.4. (b) Last stable bridge radius h0 against the plate radius R0: for 2R0 between 2 and
7 mm, and for each plate, V∗ ≈ 1.3, 2.4 and 3.2 for the PEOaq,1 and PEOvisc,1 solutions; and for 2R0 between
2 and 25 mm, and a single volume (V∗ ≈ 2.4 for the smallest plates, and V∗ ≈ 0.88 for the largest plates)
for the PEOaq,2, PEOvisc,2 and HPAM solutions. Inset images correspond to stable liquid bridges (h ≥ h0) for
2R0 = 2 mm (left, PEOaq,1 solution with V∗ ≈ 2.4) and 2R0 = 20 mm (right, HPAM solution with V∗ ≈ 1.0),
the right-hand inset being taken from a phone camera because the lens of the set-up camera (used to take the
other inset pictures) did not have a large enough field of view.

between the plates has a quasi-cylindrical shape. The top plate is then moved up slowly (at
approximately 0.5 mm s−1) and stopped at a plate separation distance Lp where the liquid
bridge is still stable, as in the left-hand inset image of figure 2(a), but close to the bridge
instability threshold. Then, instead of moving the top plate at a constant (lower) velocity,
i.e. as in the SRM (Campo-Deano & Clasen 2010), we move it by 10 μm Lp-increment
steps, waiting approximately one second between each step (longer than the solution’s
relaxation time), which is long enough to ensure that polymers are at equilibrium (no
pre-stress) before each new step. At a certain step, the bridge becomes unstable (due to the
Rayleigh–Plateau instability) and collapses under the action of surface tension, transiently
leading to the formation of a nearly cylindrical filament that is the signature of viscoelastic
pinch-off, as shown in the right-hand inset image of figure 2(a). We stop moving the top
plate once we reach the step at which the bride collapses. The plate separation distance
hence remains constant during the capillary thinning of the bridge/filament.

The process is recorded by a high-magnification objective mounted on a high-speed
camera (Phantom TMX 7510), and images are analysed by a Python code. A typical time
evolution of the minimum bridge/filament radius is shown in figure 2(a). Throughout the
paper, we use the term ‘bridge’ for times t < t1 before the onset of the elastic regime,
and the term ‘filament’ during the elastic regime (t ≥ t1). This radius, measured at the
thinnest point along the bridge/filament profile (see left-hand inset image in figure 2a) and
labelled ‘hmin’ by many authors, is simply referred to as h in the rest of the paper. Note that
each step can trigger small inertio-capillary oscillations that increase in intensity as the
Rayleigh–Plateau instability threshold is approached; see figure 2(a), where oscillations
vanish after approximately 0.2 s for the PEOaq,1 solution. The purpose of this step-by-step
plate separation protocol is to identify the last stable liquid bridge configuration and to
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extract the value of its (minimum) radius h0. Since steps are small, h0 can be considered
to be the initial bridge radius at the onset of capillary thinning. Our image resolution is up
to 1 pixel per micrometre for the smallest drops, corresponding to the smallest plates, and
our time resolution is 15 000 images per second to capture the fast bridge collapse from
radius h0 to the radius h1 marking the onset of the elastic regime; see figure 2(a).

The liquid bridge becomes unstable at a critical plate separation distance Lp =
L∗

p marking the Rayleigh–Plateau instability threshold. The critical aspect ratio Λ∗ =
L∗

p/(2R0) depends on the liquid volume V and on the Bond number Bo = ρgR2
0/γ , where g

is the gravitational acceleration (Slobozhanin & Perales 1993; Montanero & Ponce-Torres
2020). In our experiments, we vary the plate diameter 2R0 between 2 and 25 mm, as well
as the non-dimensional sample volume

V∗ = V/R3
0. (2.3)

Note that using R3
0 as a reference volume is an arbitrary choice. Other authors often use

the volume πR2
0L∗

p between the plates. As shown in figure 2(b), the last stable bridge
radius increases approximately linearly with the plate radius, i.e. h0 ∝ R0 with a prefactor
that increases with V∗, with no strong dependence on the liquid used since they all have
comparable surface tensions. Typically, h0/R0 ranges between 0.24 and 0.35 for V∗ ≈ 1.3
and 3.2, respectively.

The size difference between the top and bottom end drops, visible in the inset images
of figures 2(a,b), stems from Bond numbers Bo = ρgR2

0/γ increasing from 0.16 to 25 as
the plate size increases (Pingulkar, Peixinho & Crumeyrolle 2021). The ‘filament’ Bond
number Bof = ρgLf h1/γ , however, comparing the typical capillary pressure γ /h1 in the
filament to the hydrostatic pressure ρgLf over the filament length Lf , is only up to 0.1
for the largest plate, indicating that the thinning dynamics is not driven by gravity. The
filament length Lf , shown in the right-hand inset image of figure 2(a), is discussed in the
Appendix.

The aluminium plates are plasma-treated before each measurement to increase their
hydrophilicity and hence prevent dewetting of the top plate. However, dewetting could
not be avoided for plate diameters 2R0 ≥ 10 mm, as shown in the right-hand inset image
of figure 2(b), featuring a stable liquid bridge (h ≥ h0) where the top end drop does not
fully cover the top plate for 2R0 = 20 mm. Perhaps surprisingly, h0 does not saturate at
2R0 ≥ 10 mm in spite of this lack of full coverage; see figure 2(b). For such large plates,
the top end drop is not necessarily at the centre of the top plate since the two plates are not
perfectly parallel. Note that because of the plasma treatment, there is always a thin film
covering the top plate.

All experiments are carried out at a high relative humidity (>80 %) ensured by placing
the CaBER set-up in a box with wet paper tissues. We checked that repeating an
experiment several times over the course of 10 min does not lead to any monotonic increase
or decrease of the filament thinning rate (defined as 1/3τe; see § 3) over time, beyond small
variations of less than 5 %, suggesting that both evaporation and polymer degradation
(which may occur during bridge/filament thinning) are negligible.

2.4. Equations and numerical methods
The numerical simulations discussed in §§ 4 and 5 are performed using the FENE-P
model, which aims to describe the stretching and finite extensibility of polymer chains. We
consider a cylindrical axisymmetric (r, z) coordinate system aligned with the vertical axis
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Onset of the elastic regime in viscoelastic pinch-off

of the liquid bridge. In the simulations, we integrate the mass and momentum conservation
equations of general form

∇ · v = 0, (2.4)

ρ
Dv

Dt
= −∇p + ∇ · σ , (2.5)

where ρ, v = vr(r, z, t) er + vz(r, z, t) ez and p(r, z, t) are the density, velocity and
(reduced) pressure fields (accounting for gravity), respectively, and D/Dt is the material
derivative. These equations are completed with the constitutive relationships for the stress
tensor σ = σ s + σ p, where

σ s = ηs
(∇v + (∇v)T) (2.6)

is the contribution of the solvent of viscosity ηs, and σ p is the polymer contribution. In the
FENE-P model (Snoeijer et al. 2020), this contribution is calculated as

σ p = ηp

τ
( f A − I), f = 1

1 − tr(A)/L2 , (2.7a,b)

where ηp is the polymer contribution to the zero-shear viscosity η0 = ηs + ηp, τ represents
the relaxation time, and L2 denotes the finite extensibility limit, with I the identity matrix.
The conformation tensor A is calculated from the nonlinear relaxation law

DA

Dt
− [

(∇v)T · A + A · ∇v
] = −1

τ
( f A − I). (2.8)

The free-surface location is defined by the equation r = h(z, t). The boundary conditions
at that surface are

∂h
∂t

+ hzw − u = 0, (2.9)

−p + gz − hhzz − 1 − h2
z

h(1 + h2
z )

3/2 + n · σ · n = 0, (2.10)

t · σ · n = 0, (2.11)

where hz ≡ ∂h/∂z, hzz ≡ ∂2h/∂z2, g is the gravitational acceleration, n is the unit outward
normal vector, and t is the unit vector tangential to the free-surface meridians. Equation
(2.9) is the kinematic compatibility condition, while (2.10) and (2.11) express the balance
of normal and tangential stresses, respectively. The anchorage condition h = R0 is set
at z = 0 and z = Lp, where Lp is the plate separation distance. The no-slip boundary
condition is imposed at the solid surfaces in contact with the liquid. The liquid volume
V of the initial configuration is prescribed (and conserved), namely,

π

∫ Lp

0
h2 dz = V. (2.12)

We start the simulation from a liquid bridge at equilibrium with a plate separation
distance Lp just below (very close to) the critical one. The breakup process is triggered by
applying a very small gravitational force perturbation. We refer to the minimum radius of
the (stable) liquid bridge just before the perturbation is applied as h0 due to the similarities
with the experimental stepwise plate separation protocol described in § 2.3.
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A. Gaillard and others

A numerical simulation is fully determined by five quantities: the Ohnesorge number,
the Deborah number, the non-dimensional sample volume V∗ = V/R3

0, the finite
extensibility parameter L2, and the viscosity ratio

S = ηs/η0. (2.13)

While equations are non-dimensionalised using R0 and (ρR3
0/γ )1/2 as the characteristic

length and time scales, in §§ 4 and 5 we refer only to values involving h0 since, as we will
show in § 3.1, it is h0 (not R0) that is the most relevant length scale of the problem. In
particular, we refer to the Rayleigh and viscous time scales, and Ohnesorge and Deborah
numbers defined in (1.3)–(1.6).

Simulations are performed in the absence of gravity where the threshold of the
Rayleigh–Plateau instability – and therefore the shape of the initial bridge of minimum
radius h0 from which simulations start – is determined solely by V∗. In §§ 4 and 5, instead
of referring to V∗, we refer to the value of h0/R0, since in experiments h0/R0 is set not only
by V∗ but also by the Bond number. We recall that in experiments, h0/R0 ranges between
0.24 and 0.35 for V∗ ≈ 1.3 and 3.2, respectively; see figure 2(b).

The model was solved with a variation of the method described in Herrada & Montanero
(2016). The physical domain occupied by the liquid is mapped onto a rectangular domain
through a coordinate transformation. Each variable, and its spatial and temporal derivatives
appearing in the transformed equations, was written as a single symbolic vector. Then we
used a symbolic toolbox to calculate the analytical Jacobians of all the equations with
respect to the symbolic vector. Using these analytical Jacobians, we generated functions
that could be evaluated in the iterations at each point of the discretised numerical domains.

The transformed spatial domain is discretised using nη = 11 Chebyshev spectral
collocation points in the transformed radial direction η of the domain. We used nξ = 501
equally spaced collocation points in the transformed axial direction ξ . The axial direction
was discretised using second finite differences. Second-order backward finite differences
were used to discretise the time domain. We used an automatic variable time step based on
the norm of the difference between the solution calculated with a first-order approximation
and that obtained from the second-order procedure. The nonlinear system of discretised
equations was solved at each time step using the Newton method. The method is fully
implicit.

3. Experimental results

In this experimental section, we investigate the roles of the plate radius and sample volume
in § 3.1, and of the polymer concentration in § 3.2 on the pinch-off dynamics.

3.1. Influence of the plate radius and sample volume
Image sequences of the pinch-off dynamics are shown in figures 3(a) and 3(b) for
the PEOaq,1 solution (500 ppm PEO-4M in water) and the PEOvisc,1 solution (25 ppm
PEO-4M in a ∼ 260 more viscous solvent), respectively, illustrating the transition from a
bridge shape in the Newtonian regime to a filament shape in the elastic regime. For the
PEOaq,1 solution, the filament is initially cylindrical until localised pinching is observed
near one of the end drops (see frame 6 in figure 3a), followed by its destabilisation into a
succession of beads connected by thin filaments (which are below our spatial resolution),
a phenomenon usually referred to as ‘blistering’ instability (Sattler, Wagner & Eggers
2008; Sattler et al. 2012; Eggers 2014; Semakov et al. 2015) (see frames 7 and 8). For
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Figure 3. (a,b) Image sequences of the bridge/filament for the (a) PEOaq,1 and (b) PEOvisc,1 solutions
tested with plate diameter 2R0 = 5 mm and sample volume V∗ ≈ 2.4. (c–f ) Time evolution of the minimum
bridge/filament radius h in (c,e) semi-log and (d, f ) lin–lin, for plate diameters 2R0 between 2 and 7 mm, and
fixed V∗ ≈ 2.4, for the (c,d) PEOaq,1 and (e, f ) PEOvisc,1 solutions, and for their respective solvents (smaller
data points), compared with (3.1) and (3.2), where tc is the solvent breakup time. Times with labels 1–7 and
2–5 in (c,e), respectively, for 2R0 = 5 mm, correspond to the snapshots in (a,b).

the PEOvisc,1 solution, local pinching occurs very close to breakup, and no blistering
is observed. In this paper, we refer to the minimum bridge/filament radius h, which
therefore corresponds to the pinched region if localised pinching occurs. On another note,
inertio-capillary oscillations of the top and bottom end drops lead to oscillations of the
filament length for the PEOaq,1 solution (see frames 3–6 in figure 3a). These oscillations
are absent for the PEOvisc,1 solution due to viscous damping. Note that oscillations do not
lead to significant oscillations of the filament radius, implying that when the length of the
filament increases, new filament is being created from the liquid in the end drops.
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Time evolutions of the minimum bridge/filament radius h are shown in figures 3(c–f )
for four plate diameters between 2 and 7 mm, and a fixed non-dimensional sample volume
V∗ ≈ 2.4 for the PEOaq,1 solution (figures 3c,d) and the PEOvisc,1 solution (figures 3e, f )
in semi-log (figures 3c,e) and lin–lin (figures 3d, f ), the latter focusing on the transition
to the elastic regime. The smaller data points correspond to the solvent alone for three
of the same plate diameters, and in each case, the same V∗ (to within experimental
reproducibility). The time reference tc corresponds to the critical time at which the bridge
of solvent alone breaks up. For polymer solutions, since tc cannot be determined, curves
are shifted along the time axis until overlapping their corresponding solvent curves. The
good overlap between polymer solutions and their solvent at all times t < t1 (before
the transition to the elastic regime) confirms that polymers do not affect the pinch-off
dynamics in the (hence rightfully called) Newtonian regime. For the PEOvisc,1 solution,
where, as is about to be discussed, capillarity is balanced by viscosity in the Newtonian
regime, this solution–solvent overlap is consistent with the low polymer contribution to
the total shear viscosity (ηp/η0 = 0.013). The least good solution–solvent overlaps are
explained by experimental differences in V∗.

All curves corresponding to Newtonian solvents in figures 3(d, f ) overlap close to
breakup, indicating a self-similar thinning regime where the initial condition, set by R0
and V∗, is forgotten. Such overlap is also observed for droplets of different volumes for
a given plate radius. For the water solvent in figure 3(d), the self-similar regime is well
captured by the inertio-capillary thinning law

h = A
(

γ

ρ

)1/3

(tc − t)2/3, (3.1)

with a prefactor A = 0.47 that is consistent with the experimental and numerical results
of Deblais et al. (2018). For the ∼ 260 times more viscous solvent in figure 3( f ), the
self-similar regime is well captured by the visco-capillary thinning law (Papageorgiou
1995; McKinley & Tripathi 2000)

h = 0.0709
γ

η0
(tc − t). (3.2)

This is consistent with the fact that the Ohnesorge number Oh = η0/
√

ργ h0 (see (1.5)) is
up to 0.02 for PEOaq, and up to 0.1 for HPAM (for the smallest plate diameter where h0 is
lowest), i.e. Oh � 1, and ranges between 1.0 and 2.0 for the PEOvisc,1 solution in the range
of plate diameters considered in figure 3. In spite of the moderate Ohnesorge numbers in
the latter case, we do not observe a clear transition to the inertio-visco-capillary thinning
law h = 0.0304(γ /η0)(tc − t) (Eggers 1993, 1997; Li & Sprittles 2016; Verbeke et al.
2020) that describes the behaviour of Newtonian fluids close to breakup; see figure 3(d).

Interestingly, the transition to the elastic regime occurs at approximately the time at
which the self-similar Newtonian regime is reached in figures 3(d, f ) – slightly after for the
PEOaq,1 solution, and slightly before for the PEOvisc,1 solution. However, in both cases,
the transition radius h1 = h(t1) increases with the plate diameter 2R0, which indicates that
polymers already started to deform significantly before the self-similar regime. Indeed,
if polymers started to deform only within the self-similar regime where the thinning
dynamics no longer depends on R0 or V∗, then the amount of polymer deformation would
be independent of the initial condition, leading to a transition radius h1 that would not
depend on R0 or V∗, as we discuss further in § 4.3.

After the filament formation, the thinning rate |ḣ/h| is initially fairly constant, indicating
an exponential decay, and increases close to breakup in a so-called ‘terminal regime’
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Figure 4. (a) Effective extensional relaxation time τe and (b) transition radius h1 against the last stable bridge
radius h0 for different plate radii R0 and sample volumes V∗ for all polymer solutions. For the PEOaq,1 and
PEOvisc,1 solutions, three points of the same colour correspond to the same R0 and three different V∗ ≈ 1.3,
2.4 and 3.2.

where authors argue that polymer chains approach full extension and a Newtonian-like
high-viscosity dynamics is recovered (Anna & McKinley 2001; Stelter et al. 2002;
Campo-Deano & Clasen 2010; Dinic & Sharma 2019). The (constant) filament thinning
rate measured during the exponential part of the elastic regime is found to decrease with
increasing plate diameter; see figures 3(c,e). This is inconsistent with the Oldroyd-B
model, which predicts |ḣ/h| = 1/3τ (see (1.1)), where τ is the (longest) relaxation time
of the polymer solution, which is a fluid property, independent of the size of the system.
As we show in our previous paper (Gaillard et al. 2024), this surprising dependence on
the system size is also observed for the classical step-strain plate separation protocol of
a commercial CaBER rheometer as well as for DoS and dripping (Rajesh et al. 2022)
experiments. We show that this is not caused by artefacts such as solvent evaporation or
polymer degradation, suggesting that the liquid does not change when being tested with
different plate diameters. To discuss this geometry-dependent filament thinning rate, we
define an apparent (or effective) relaxation time τe such that |ḣ/h| = 1/3τe during the
exponential part of the elastic regime.

The apparent relaxation time τe and the transition radius h1 are plotted against h0 in
figure 4 for different polymer solutions, plate diameters 2R0 and non-dimensional sample
volumes V∗. The fact that data corresponding to different values of R0 and V∗ collapse
on a single curve for both the PEOaq,1 and PEOvisc,1 solutions suggests that h0, which is
an increasing function of both R0 and V∗ (see figure 2b), is the only relevant geometrical
parameter of the problem. This is the reason why we chose h0 at the relevant length scale
for non-dimensional numbers such as the Ohnesorge and Deborah numbers in (1.5) and
(1.6). This is in agreement with the idea that the thinning dynamics is influenced only
by extensional flow in the bridge/filament, while the top and bottom end droplets act as
passive liquid reservoirs.

We find that τe seems to saturate towards a maximum value τm at large h0; see
figure 4(a). The estimated values of τm are reported in table 2 for the PEOaq,2, PEOvisc,2
and HPAM solutions for which plate diameters up to 25 mm were used, well beyond typical
CaBER plate sizes, which was needed to observe the saturation of τe. In our previous paper
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(Gaillard et al. 2024), we explored the possibility that τm could be the ‘real’ relaxation time
of the solution, invoking finite extensibility effects described by the FENE-P model to
explain thinning rates larger than 1/3τm for low h0. We concluded that this was a possible
explanation only for the PEOvisc,2 solution, not for the PEOaq,2 and HPAM solutions,
suggesting that the FENE-P model misses some important features of polymer dynamics
in extensional flows.

The first transition radius h1 increases approximately linearly with h0 for all liquids;
see figure 4(b). This is in contradiction with the scaling h1 ∝ h4/3

0 expected from the
Oldroyd-B model when assuming that polymer relaxation is negligible during the time
needed for the bridge to thin from h0 to h1; see (1.2). Since h0 ∝ R0 for a fixed V∗

(see figure 2b), this implies that h1 ∝ R0, different from the scaling h1 ∝ R0.66
n observed

experimentally by Rajesh et al. (2022) in the analogous problem of a drop falling from
a nozzle of radius Rn. This is surprising since Rn should play the same role as the plate
radius R0 in CaBER.

Note that the PEOaq,2 and PEOvisc,2 solutions are slightly more elastic than the PEOaq,1
and PEOvisc,1 solutions, since they exhibit larger apparent relaxation times; see figure 4(a).
However, these differences are barely visible in figure 4(b) since the values of h1 are almost
the same, suggesting that the dependence of h1 on τe is relatively weak, as we now confirm
by varying the polymer concentration.

3.2. Influence of the polymer concentration
Figure 5 shows the time evolution of the minimum bridge/filament radius for the aqueous
PEO solutions of table 1 of various PEO concentrations, water solvent included, that were
tested for a fixed plate diameter 2R0 = 3.5 mm and sample volume V∗ ≈ 2.4, in semi-log
(figure 5a) and in lin–lin focusing on the transition to the elastic regime (figure 5b). As
in figure 3, the time tc at which the solvent breaks is chosen as the time reference, and
curves corresponding to polymer solutions are shifted along the time axis to maximise the
overlap with the solvent for t < t1. This overlap is very good up to 2500 ppm (dilute and
unentangled semi-dilute solution), small deviations being attributable to slightly different
sample volumes. For 10 000 ppm (entangled semi-dilute solution), however, the bridge
dynamics prior to the exponential regime is radically different from the pure solvent case,
indicating that elasticity is not negligible even before the exponential regime is reached.

The apparent relaxation time τe and the transition radius h1 are plotted in figure 6 as
functions of the polymer concentration c for the aqueous PEO solutions of table 1. Since
these solutions were tested for a fixed plate diameter 2R0 = 3.5 mm and sample volume
V∗ ≈ 2.4, the initial bridge radius h0 ≈ 460 μm, also plotted in figure 6(b), is the same for
each solution. For the 500 ppm solution, labelled PEOaq,1 – which was tested for four
plate diameters from 2 to 7 mm, and in each case with three different volumes – the
corresponding values of τe, h0 and h1 are also included in figure 6 to illustrate how data for
a given concentration can shift as h0 is varied. Although the plate diameters used for the
PEOaq,1 solution were not large enough to estimate the high-h0 limit value of τe, τm, the
value estimated for the slightly more elastic PEOaq,2 solution (see figure 4(a) and table 2),
is shown in figure 6(a) for c = 500 ppm.

We find a weak dependence h1 ∝ c0.16 for dilute and semi-dilute solutions (see
figure 6b), consistent with Rajesh et al. (2022), who found h1 ∝ c0.15 in the analogous
problem of a drop falling from a nozzle. We find a power law τe ∝ c0.85 for the apparent
relaxation time in figure 6(a), consistent with the wide range of exponents, typically
between 0.6 and 1, reported by other authors in CaBER (Bazilevsky et al. 1997; Clasen
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Figure 5. Time evolution of the minimum bridge/filament radius h in (a) lin–log and (b) lin–lin focusing on the
transition, for PEO-4M solutions of different concentrations in water, for a fixed plate diameter 2R0 = 3.5 mm
and sample volume V∗ ≈ 2.4. The time tc is the time at which the bridge would break up for the solvent alone,
here water.
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Figure 6. (a) Relaxation times and (b) transition radius h1 and last stable bridge radius h0 against polymer
concentration for PEO-4M solutions of different concentrations in water. The data of (b) and the effective
CaBER relaxation time τe in (a) correspond to a fixed plate diameter 2R0 = 3.5 mm and sample volume V∗ ≈
2.4, except for the 500 ppm solution, where data corresponding to different 2R0 (between 2 and 7 mm) and
V∗ are shown. In (a), we also plot the relaxation time 1/γ̇c and Ψ1/2ηp inferred from shear rheology, as well
as the Zimm relaxation time τZ . We also show the maximum CaBER relaxation time τm (high-h0 limit of τe)
measured for the (500 ppm) PEOaq,2 solution (which is slightly more elastic than the PEOaq,1 solution from
which the other 500 ppm data points are taken; see figure 4a). Error bars are shown in (a) but are smaller than
markers for τe.

et al. 2006b; Zell et al. 2010) and pendant drop experiments (Tirtaatmadja et al. 2006;
Rajesh et al. 2022). Note that this exponent is expected to be a function of the solvent
quality (Clasen et al. 2006b) and that its potential dependence on h0 is not investigated in
the present work. From these scalings, we deduce a weak dependence of h1 ∝ τ 0.19

e on the
apparent relaxation time.
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The apparent CaBER relaxation time τe in figure 6(a) is compared to values estimated
from shear rheology, i.e. 1/γ̇c, which is estimated from shear viscosity curves featuring
shear thinning, which excludes low concentrations, and Ψ1/2ηp, which is estimated from
the first normal stress difference for the only two measurable solutions exhibiting a
quadratic scaling N1 ∝ γ̇ 2. We observe that 1/γ̇c follows a power law with an exponent
close to the one found for τe. Additionally, we find that τe is larger than Ψ1/2ηp in
figure 6(a) for this specific plate radius, and would hence be even larger in the high-h0
limit τm. Hence even for dilute solutions exhibiting weak shear thinning and quadratic
normal stresses, for which the Oldroyd-B model could describe the shear rheology, there
is no quantitative agreement between the relaxation time measured from normal stresses
and that from filament thinning rheometry. This impossibility to quantitatively describe
both shear and elongation properties with the Oldroyd-B model has also been reported
by Zell et al. (2010), who dedicated a paper specifically to the link between τe and Ψ1.
In a recent perspective paper, Boyko & Stone (2024) suggest that the reason why elastic
dumbbell models such as Oldroyd-B and FENE-P cannot quantitatively predict both shear
and elongation properties of polymer solutions is because these models assume that, as in
elongation flows, polymer chains approach full extension in strong shear flows (τ γ̇ � 1),
while experimentally, chains have been observed to extend only partially in strong shear
flows due to their tumbling motion (Smith, Babcock & Chu 1999). The authors hence
suggest that flows with both shear and elongational components should be described using
more complex models such as the FENE-PTML model (Phan-Thien, Manero & Leal
1984), which captures this partial extension under shear. In this paper, we consider only
filament thinning elongational flows for which Oldroyd-B and FENE-P are suitable model
candidates.

As shown in figure 6(a), the apparent CaBER relaxation time τe increases in the dilute
regime c < c∗. Moreover, for the most dilute solutions, τe is less than the Zimm relaxation
time calculated using (Clasen et al. 2006b)

τZ = 1
ζ(3ν)

[η]Mwηs

NakBT
, (3.3)

where Na is the Avogadro number, kB is the Boltzmann constant, T is the temperature, ζ

is the Riemann zeta function, and ν is the solvent quality exponent. We used ν = 0.55
between theta and good solvent to find τZ = 2.0 ms. Similar results were reported by
Clasen et al. (2006b), who argue that the increase of τe in the dilute regime is caused by a
self-concentration effect where chains start to interact while unravelling well beyond their
equilibrium size in strong extensional flows. This was later rationalised by Prabhakar et al.
(2016), who argue that the Zimm relaxation time is relevant only close to equilibrium, even
for dilute solutions, and is not expected to accurately describe the relaxation behaviour
of polymer chains in strong extensional flows such as in filament thinning. Clasen et al.
(2006b) and Prabhakar et al. (2016), who considered only cases where inertia was
negligible in the Newtonian regime, also show that values τe < τZ arise at low polymer
concentration where elasticity is too weak to fully overcome the solvent viscosity in the
elastic regime. This effect should, however, be negligible for the aqueous PEO solutions of
figure 6(a) since it is inertia (and not the solvent viscosity) that dominates in the Newtonian
regime (see figure 5b). We show in § 5 that values τe < τZ at low concentrations are
consistent with polymer chains approaching their finite extensibility limit at the onset of
the elastic regime (as anticipated by Campo-Deano & Clasen 2010), a case where (1.1) is
no longer valid, and filament thinning rates |ḣ/h| > 1/3τ are to be expected, as we show
in our previous paper (Gaillard et al. 2024).
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Onset of the elastic regime in viscoelastic pinch-off

4. Oldroyd-B prediction for h1

In order to rationalise the experimental findings of § 3, we need to expand the
polymer-relaxation-free theory leading to (1.2) for h1 to cases where polymer relaxation is
not negligible in the Newtonian regime. A generalised theoretical expression for h1 based
on the Oldroyd-B model is first derived in § 4.1. This expression is then tested against
experimental results in § 4.2, before we use numerical simulations in § 4.3 to validate the
theory and further explore the role of non-negligible polymer relaxation on h1.

4.1. Theory
The filament radius h1 = h(t1) marks the transition between the Newtonian regime (t <

t1), where the driving capillary force is balanced by inertia and/or viscosity, and the elastic
regime (t > t1), where capillarity is balanced by elastic stresses arising from the stretching
of polymer chains. If inertia is negligible, then slender filament theory predicts that the
total (unknown) tensile force T is constant along the liquid column (bridge or filament)
(Eggers 1997; Clasen et al. 2006a), which, neglecting gravity and axial curvature effects,
results in the zero-dimensional force balance equation (Clasen et al. 2006b)

(2X − 1)
γ

h
= 3ηsε̇ + σp,zz − σp,rr, (4.1)

for a column of radius h. The driving capillary pressure γ /h is balanced by the normal
stress difference σzz − σrr, which is the sum of the solvent viscous stress 3ηsε̇ and the
polymeric stress σp,zz − σp,rr, where ε̇ = −2ḣ/h is the extension rate, the dot standing
for d/dt, and z is the direction of the flow. The ratio X = T/2πγ h may vary over
time, approaching X = 0.7127 for a Newtonian fluid (McKinley & Tripathi 2000), hence
recovering (3.2) close to breakup, and approaching X = 3/2 in the elastic regime for
an Oldroyd-B fluid (Eggers, Herrada & Snoeijer 2020) (and not X = 1 as originally
proposed in Entov & Hinch 1997). When inertia is not negligible, Tirtaatmadja et al.
(2006) suggested adding a term of the form 1

2ρḣ2 to (4.1), from which the inertio-capillary
scaling of (3.1) is recovered. In the elastic regime (t > t1), assuming that inertia and/or
solvent viscosity has become negligible, and assuming that the axial stress dominates the
radial stress, i.e. |σp,rr| � |σp,zz|, the force balance equation reduces to

(2X − 1)
γ

h
= σp,zz. (4.2)

The elastic regime starts when the polymeric axial stress σp,zz – which increases
over time in the Newtonian regime as polymer chains are progressively stretched by the
extensional flow in the thinning bridge – becomes of the order of the capillary pressure,
say, when it is equal to fraction p of the capillary pressure (Campo-Deano & Clasen
(2010) chose p = 1/2). We hence get that pγ /h1 = σp,zz(t = t1) where, for simplicity,
the prefactor 2X − 1 of order unity has been included in the prefactor p. To estimate h1,
we hence need to choose a constitutive equation to express the polymeric stress. Since our
main goal is to understand the effect of polymer relaxation during the Newtonian regime
on h1, which, when negligible, leads to (1.2) for a single-mode Oldroyd-B fluid, we choose
to use this model for simplicity. Indeed, although we know that the Oldroyd-B model is
unable to capture the system-size dependence of the apparent relaxation time τe discussed
in our previous paper (Gaillard et al. 2024) (see also figures 3 and 4a), it is not yet clear
whether or not it is able capture h1. Finite extensibility effects on h1 will be discussed in
§ 5 using the FENE-P model.
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For an Oldroyd-B fluid with elastic modulus G, we have σp,zz = G(Azz − 1), where Azz is
the normal part of the conformation tensor A that follows (see (2.8) and Wagner, Bourouiba
& McKinley 2015)

Ȧzz − 2ε̇Azz = −Azz − 1
τ

, (4.3)

where τ is the relaxation time. Since we are interested in the location of highest polymer
extensions along the bridge, we use the expression of the extension rate ε̇ = −2ḣ/h at the
thinnest point to obtain

Ȧzz + 4ḣ
h

Azz = −Azz − 1
τ

. (4.4)

Some (as yet unknown) time after the onset of capillary thinning of the liquid bridge,
polymer chains will have stretched well beyond their equilibrium size, i.e. Azz � 1, so that
the right-hand side of (4.4) reduces to −Azz/τ , at which point (4.4) can be integrated into

Azzh4 ∝ e−t/τ , (4.5)

with an (as yet unknown) constant prefactor. Polymer chains are expected to remain close
to their equilibrium coiled size (Azz close to 1) until the extension rate in the thinning
bridge approaches the coil–stretch transition value 1/2τ predicted by the Oldroyd-B
model. Beyond this point, following Clasen et al. (2009) and Campo-Deano & Clasen
(2010), we assume that polymer chains unravel with negligible relaxation, i.e. that
the right-hand side of (4.4) becomes negligible so that Azzh4 becomes constant. More
precisely,

Azzh4 = H4, (4.6)

where H is the (as yet unknown) bridge radius at which relaxation becomes negligible,
which should correspond to the coil–stretch transition point at which Azz starts to become
significantly larger than 1. In particular, at the transition to the elastic regime at time t = t1,

A1 = (H/h1)
4, (4.7)

where A1 = Azz(t1) quantifies the amount of polymer stretching at the onset of the elastic
regime. Since pγ /h1 = σp,zz(t1) = GA1, we finally get that

h1 =
(

GH4

pγ

)1/3

, (4.8)

which is different from (1.2). Indeed, while it is assumed that H = h0 in the
polymer-relaxation-free theory leading to (1.2), this is actually true only in the limit where
polymer relaxation is negligible throughout the whole Newtonian regime so that Azzh4

is constant and equal to h4
0 since Azz = 1 at the onset of capillary thinning, assuming no

pre-stress. In other words, in the limit where H = h0, the coil–stretch transition starts
at the onset of capillary thinning, which is expected to be true only if the relaxation
time τ is much larger than the time taken by the liquid bridge to thin from h0 to
h1. For completeness, in the elastic regime (t ≥ t1), combining (4.5) and (4.2) with
pγ /h1 = GA1 leads to the exponential scalings h = h1 exp (−(t − t1)/3τ) in (1.1) and
Azz = A1 exp ((t − t1)/3τ).
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Onset of the elastic regime in viscoelastic pinch-off

4.2. Experiments
We can now test the generalised expression (4.8) for h1 against the experimental results
of § 3. In order to do so, we first need to compute H from the time-evolution of Azz.
Note that we do not experimentally measure the extension of polymer chains, unlike
Ingremeau & Kellay (2013), who confirmed the transition from a coiled to a stretched
state in viscoelastic pinch-off using fluorescently labelled DNA. Rather, since our goal is to
test a specific constitutive equation, here Oldroyd-B, we calculate its prediction for Azz(t)
using (4.4), where the extension rate ε̇ = −2ḣ/h is taken from experimental values of
h(t). In other words, we calculate the prediction of the model for the experimental history
of extension rates in the bridge/filament. In particular, we do not assume large polymer
extension (Azz �� 1) since the point at which Azz starts to become significantly larger than 1
is precisely what sets H. Equation (4.4) can in fact be integrated, as shown by Bazilevsky,
Entov & Rozhkov (2001), introducing a function y(t) such that Azz = y exp (−t/τ)/h4,
which leads to ẏ = h4 exp (t/τ)/τ , yielding

Azz = e−t/τ

h4

(
h4

0 et0/τ + 1
τ

∫ t

t0
h4(t′) et′/τ dt′

)
, (4.9)

where the initial time t0 corresponds to the onset of capillary thinning, i.e. h(t0) = h0
and Azz(t0) = 1 (no pre-stress). Since the h(t) history is set by the experimental data,
the only adjustable parameter of (4.9) is the relaxation time τ . In the following, we use
either the apparent (τe) or the maximum (τm) relaxation time measured experimentally
(see figure 4a) to calculate Azz since we still do not know which is the ‘true’ one, if any.

Values of Azz(t) computed from (4.9) using the experimental values of h(t) with
relaxation time τ = τm are shown in figure 7(a) for the PEOaq,2 solution, and in figure 7(b)
for the PEOvisc,2 solution, for plate diameters 2R0 between 2 and 20 mm. The experimental
values of h(t) are shown on the left-hand y-axis, and the time reference t1 corresponds
to the onset of the elastic regime. We find that the amount of polymer extension A1 =
Azz(t1) at the onset of the elastic regime is fairly independent of the initial condition for
the PEOaq,2, while for the PEOvisc,2 solution, A1 decreases as h0(R0, V∗) increases, as
mentioned in our previous paper (Gaillard et al. 2024), and as we are about to discuss here
in more depth. In any case, we find that Azz always increases as 1/h4 in the Newtonian
regime close enough to the transition to the elastic regime. More specifically, values of Azz
are well captured by (H/h)4 using H as a fitting parameter for each data set (close to t1),
from which H is estimated; see figure 7.

Values of H calculated using τ = τm, named H(τm), are plotted against h0 in figure 8(a)
for the PEOaq,2, PEOvisc,2 and HPAM solutions, which are the only solutions for which
sufficiently large plate diameters were used to estimate the maximum relaxation time τm
(the high-h0 limit of τe; see figure 4a). For the PEOaq,2 and HPAM solutions, we find that
H is essentially equal to h0 at low h0, and that H/h0 decreases as h0 increases, down to
0.73 for the largest plate diameter. In contrast, for the PEOvisc,2 solution, the ratio H/h0
takes significantly smaller values, decreasing from 0.56 to 0.40 as h0 increases. This is
why the (H/h)4 fit for Azz is fairly good throughout the whole Newtonian regime for the
PEOaq,2 solution in figure 7(a), while it is valid only within a small time window close
to the transition to the elastic regime for the PEOvisc,2 solution in figure 7(b). Indeed, if
H = h0, then the (H/h)4 fit for Azz is even valid at the onset of capillary thinning where
h = h0 and Azz = 1.

Figure 8(a) hence suggests that although all three solutions have comparable relaxation
times (see figure 4a), the thinning dynamics in the Newtonian regime is such that polymer
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Figure 7. Time evolution of the experimental minimum bridge/filament radius h and of Azz, calculated from the
Oldroyd-B prediction (4.9) using the experimental values of h(t) with the choice of relaxation time τ = τm (see
figure 4a), for plate diameters 2R0 = 2, 5, 10 and 25 mm for the (a) PEOaq,2 and (b) PEOvisc,2 solutions. Time
t1 marks the onset of the elastic regime, with h1 = h(t1) and A1 = Azz(t1). Values of Azz in the Newtonian
regime (t < t1) are compared to (H/h)4 (see (4.6)), where H is used as a fitting parameter to optimise the
agreement close to t1.
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using (a) the maximum relaxation time τ = τm or (b) the effective relaxation time τ = τe, for different polymer
solutions and initial bridge radii h0(R0, V∗), plotted against h0. The line H = h0 is shown in both plots.

chains stretch almost without relaxing in the Newtonian regime for the low solvent
viscosity solutions (PEOaq,2 and HPAM), while relaxation is not negligible for the high
solvent viscosity (PEOvisc,2) solution. This is because the Newtonian thinning dynamics is
slower for the most viscous solution; see e.g. figure 7, where, for 2R0 = 2 mm, the bridge
takes only approximately 6 ms to thin from h0 to h1 for the PEOaq,2 solution, much less
than τm (chains do not have enough time to relax), while it takes approximately 900 ms
for the PEOvisc,2, much more than τm (not visible in figure 7(b), where we focus on times
close to t1). The fact that H/h0 increases as h0 increases can therefore be interpreted by a
longer time to thin from h0 to h1 as h0 increases, consistent with the fact that the Rayleigh
and viscous time scales τR = (ρh3

0/γ )1/2 and τvisc = η0h0/γ both increase with h0.
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Onset of the elastic regime in viscoelastic pinch-off

The dependence of H on h0 and on the solvent viscosity explains why, in figure 7 and in
our previous paper (Gaillard et al. 2024), A1 is independent of h0 for low solvent viscosity
solutions (PEOaq,2 and HPAM), while A1 decreases as h0 increases for the high solvent
viscosity solution (PEOvisc,2). For the former, where H is close to h0 (negligible polymer
relaxation in the Newtonian regime), A1 = (H/h1)

4 (see (4.7)) is close to (h0/h1)
4, which

is fairly constant since h1 ∝ h0 according to figure 4(b). For the latter, however, where
H ∝ h0.74

0 in our range of h0 according to figure 8(a), we get A1 = (H/h1)
4 ∝ h−1.04

0 .
In figure 8(b), we plot the values of H, named H(τe), calculated using the apparent

relaxation time τ = τe when computing Azz from (4.9) (instead of its large-h0 limit τm in
figure 8a). All polymer solutions are now featured since τe is measured for any experiment
from an exponential fit of h(t) in the exponential part of the elastic regime (see figure 3),
i.e. the PEOaq,2, PEOvisc,2 and HPAM solutions, as in figure 8(a), but also the PEOaq,1
and PEOvisc,1 solutions, where three different non-dimensional sample volumes V∗ were
tested for each of the four smallest plate diameters, as well as the PEO solutions in water
with various polymer concentrations (table 1), which were tested for a single (R0, V∗)
set corresponding to h0 ≈ 460 μm. The data corresponding to the PEO solutions with
different polymer concentrations c show how, for a given flow history in the Newtonian
regime (same h(t) curves for t < t1 for all concentrations; see figure 5), H increases with
c via the increase in the relaxation time (here τ = τe), reaching the upper limit value h0
at large τ . This is because for large τ values, polymer relaxation is negligible throughout
the whole Newtonian regime, while for low τ values, Azz remains equal to 1 for most of
the Newtonian regime, increasing only when ε̇ is finally of the order of 1/2τ close to the
transition to the elastic regime.

Now that we know the value of H, we can test the validity of (4.8) for the filament
radius h1 at the onset of the elastic regime. The value of the elastic modulus, G = ηp/τ in
the Oldroyd-B model, is, however, not uniquely defined, since while ηp = η0 − ηs can be
calculated unambiguously from the shear rheology, the relaxation time τ could be either
the apparent one τe or the maximum one τm, since we do not know yet which one is the
‘true’ one, if any. We hence need to test for both. To this end, we define

GH = γ h3
1/H4, (4.10)

where h1 is the value measured experimentally, which should be GH = G/p according to
(4.8).

In figure 9(a), GH is plotted against G for the choice of relaxation time τ = τm for
the PEOaq,2, PEOvisc,2 and HPAM solutions, which are the only solutions for which
sufficiently large plate diameters were used to estimate τm. More precisely, values of
GH(τm) calculated from H(τm) are plotted against G(τm) = ηp/τm, which takes a unique
value for each solution since the relaxation time is unique. We find that values of GH(τm)

are, however, not unique for the PEOaq,2 and HPAM solutions, and monotonically decrease
as h0 increases. For the PEOvisc,2 solution, however, values of GH vary between 0.11 and
0.23 without clear monotonic trend as h0 increases. This is because, since h1 ∝ h0 and
H ∝ hkH

0 in the range of h0 values investigated, with kH ≤ 1 (see figures 4b and 8a),
GH ∝ h3

1/H4 ∝ h3−4kH
0 , which means that GH is expected to be independent of h0 only

for kH = 0.75, very close to the value 0.74 found for the PEOvisc,2 solution in figure 8(a).
This suggests that the prediction of (4.8) for the choice τ = τm is potentially valid for only
one of our three solutions, the most dilute and viscous one.

By contrast, as shown in figure 9(b), when choosing τe instead of τm for the relaxation
time to calculate GH(τe) from H(τe) and G(τe) = ηp/τe, data points fall on a single curve
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Figure 9. Values of GH defined in (4.10) against the elastic modulus G = ηp/τ , where H and G are calculated
from (a) the maximum relaxation time τ = τm or (b) the effective relaxation time τ = τe, for various polymer
solutions and initial bridge radii h0(R0, V∗). Values of h1 are those measured experimentally. In (b), for the
aqueous PEO solutions of different concentrations (see table 1), we show the effect replacing τe by the Zimm
relaxation time τZ when calculating G and H for the lowest concentrations c = 5 and 10 ppm, which exhibit
values of τe < τZ ; see figure 6(a). The line GH = 3.7G is shown in both plots.

for all three solutions (PEOaq,2, PEOvisc,2 and HPAM) as well as for the PEOaq,1 and
PEOvisc,1 solutions (for which V∗ is varied for the four smallest plate diameters), and
we find the linear relationship GH = G/p predicted by (4.8) with p ≈ 0.27. It is quite
remarkable that the Oldroyd-B model, derived for ideal dilute chains, is able to capture the
transition to the elastic regime for solutions that are as diverse in terms of solvent viscosity,
concentration and, potentially, solvent quality exponents.

Strong deviations from the GH = 3.7G line can be observed in figure 9(b) at low
polymer concentrations for the data corresponding to the PEO solutions with various
polymer concentrations. This data set can be broken down into three subsets: for typically
c < 100 ppm, GH decreases sharply with concentration, while is it almost constant for
100 ppm ≤ c < 2500 ppm, and increases sharply with concentration for c ≥ 2500 ppm.
These trends can be explained by the fact that GH ∝ h3

1/H4, where h1 increases very
slowly with concentration as h1 ∝ c0.16 for c < 2500 ppm, and increases sharply for higher
concentrations (see figure 6b), while H increases sharply with concentration for typically
c < 100 ppm, becoming almost constant and equal to h0 for larger concentrations (see
figure 8b). These strong deviations from the GH = 3.7G line observed at low polymer
concentrations in figure 9(b) could be partially explained by the fact that apparent
relaxation times (measured from exponential fitting of h(t)) are less than the Zimm
relaxation time τZ = 2 ms for c = 5 and 10 ppm (see figure 6a). In figure 9(b), we show
the effect of choosing τ = τZ instead of τe as the relaxation time for c = 5 and 10 ppm,
which changes the value of both GH via H(τ ), and G = ηp/τ . We find that this correction
leads to data points significantly closer to the GH = 3.7G line, mainly stemming from
values of H larger than in figure 8(b), although one order of magnitude deviation from the
GH = 3.7G line remains. We show in § 5 that finite extensibility effects can explain this
deviation (i.e. values of h1 higher than the Oldroyd-B prediction) as well as the values of
τe < τZ for low polymer concentrations.

The large deviation from the GH = 3.7G line for the entangled 10 000 ppm solution in
figure 9(b) (the only solution for which polymers affect the thinning dynamics even before
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Onset of the elastic regime in viscoelastic pinch-off

the exponential regime; see figure 5) is probably due to the fact that such solutions cannot
be described by non-interacting polymer theories such as Oldroyd-B.

In conclusion, when polymer relaxation is not negligible in the Newtonian regime
(t < t1), (1.2) should be replaced by (4.8), which gives h1 ∝ H4/3 where H ≤ h0. In
our experiments, the power-law dependence of H on h0 (see figure 8) leads to the fairly
proportional relationship between h1 and h0 observed in figure 4(b), differences in slopes
among different liquids stemming from differences in elastic moduli G. Now that we have
established that it is H (and not h0) that sets the transition to the elastic regime, we discuss
in § 4.3 how it scales with the parameters of the problem, using numerical simulations to
cover a wide range of parameters.

4.3. Simulations
To further investigate the effect of polymer relaxation on the transition radius h1 marking
the onset of the elastic regime, we now consider numerical simulations using the
Oldroyd-B model (L2 = +∞) with a single relaxation time τ (finite extensibility effects
will be discussed in § 5). In this paper, numerical simulations are not directly compared to
experiments but are rather used to validate theoretical expressions that are then compared
with experiments (see our previous paper for direct experiment–simulation comparisons;
Gaillard et al. 2024).

In order to capture h1, we first need to capture the critical bridge radius H at which
polymer relaxation (the right-hand side of (4.3) or (2.8)) becomes negligible in the
Newtonian regime (t < t1). The bridge radius H marks the onset of the coil–stretch
transition at which polymer chains start to extend significantly beyond their equilibrium
shape, i.e. at which Azz starts becoming significantly larger than 1; see § 4.1. We already
know that H → h0 in the limit where the relaxation time τ is so large that polymer
relaxation is always negligible in the Newtonian regime, a limit where (4.8) reduces to the
classical formula (1.2). The goal of this subsection is therefore to expand our knowledge
to cases where relaxation is not negligible in the Newtonian regime using the Oldroyd-B
model.

Figure 10 shows the numerical time evolution of the non-dimensional minimum
bridge/filament radius h/h0 for a fixed Ohnesorge number Oh = 2.07, viscosity ratio
S = 0.988 and h0/R0 = 0.23, with three Deborah numbers De spanning four orders of
magnitude (see (1.5), (1.6) and (2.13) for definitions). We consider only the value of Azz
at this minimum-radius position along the bridge/filament since this is where polymer
chains are the most stretched. This maximum value, simply denoted Azz from now on, is
plotted in figure 10 on the right-hand y-axis. Note that all h/h0 curves are identical in
the Newtonian regime, diverging only at the transition to the elastic regime at different
radii h1. The time reference tc corresponds to the time at which the bridge would break if
this transition did not occur. This is highlighted by the fact that the self-similar viscous
thinning law (3.2), which becomes h/h0 = 0.0709(tc − t)/(Oh τR) with our choice of
non-dimensionalisation, and which is plotted in figure 10, fits numerical results close to
the transition. Note that simulations could often not be continued long after the transition.

Figure 10 shows how, for a given flow history in the Newtonian regime, polymer
chains start stretching at different times depending on the Deborah number. For De � 1,
relaxation is always negligible in the Newtonian regime, and Azz therefore increases as
(H/h)4 where H = h0; see the discussion in § 4.1. For De � 1, however, the flow becomes
strong enough to start stretching polymers (beyond their equilibrium shape) only at small
bridge radii where the thinning dynamics has become self-similar and, for Oh � 1, follows
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Figure 10. Numerical time evolution of the non-dimensional (minimum) bridge/filament radius h/h0 and
of the (maximum) polymer extension Azz for Oh = 2.07, S = 0.988 and h0/R0 = 0.23, and three different
Deborah numbers. Values of Azz are compared with (H/h)4 close to the onset of the elastic regime, where
H is used as a fitting parameter. The self-similar viscous regime of (3.2), or equivalently h/h0 = 0.0709(tc −
t)/(Oh τR), is also plotted, where tc is the time at which the filament would break if the transition to an elastic
regime, at h = h1, did not occur.

(3.2). In that case, Azz = 1 for most of the Newtonian regime, increasing only close to the
transition to the elastic regime, following Azz = (H/h)4 where H � h0 is the characteristic
bridge radius at which Azz starts increasing. Values of H are estimated by fitting Azz
with (H/h)4, using H as a fitting parameter (see figure 10), as was done in figure 7 for
experimental results.

Values of H/h0 are plotted against the Deborah number in figure 11(a) for Ohnesorge
numbers between 0.2 and 20. The low-De behaviour corresponds to cases where polymers
start stretching only within the self-similar regime where the thinning dynamics follows a
scaling of the form h = B(tc − t)β , with B ∼ (γ /ρ)1/3 and β = 2/3 in the inviscid limit
(Oh � 1; see (3.1)), and B ∼ γ /η0 and β = 1 in the viscous limit (Oh � 1; see (3.2)). The
coil–stretch transition occurs when the extension rate ε̇ = −2ḣ/h = 2β/(tc − t) becomes
of the order of 1/τ , i.e. at a time tH = tc − 2βτ . Therefore, the bridge radius H = h(tH)

marking the onset of the coil–stretch transition scales as

H ∼ (γ τ 2/ρ)1/3 ⇔ H/h0 ∼ De2/3 (4.11)

in the inviscid limit (Oh � 1), as first derived by Campo-Deano & Clasen (2010), or as

H ∼ γ τ/η0 ⇔ H/h0 ∼ De/Oh = τ/τvisc (4.12)

in the viscous limit (Oh � 1). The scaling of (4.12) is shown in figure 11(a) with
a prefactor 0.2, and shows good agreement with the values of H for the two largest
Ohnesorge numbers. Unfortunately, no simulations could be performed for Oh � 1 to test
(4.11). Note that in this peculiar limit where polymer chains start stretching only within the
self-similar thinning regime, H – and therefore h1 given by (4.8) – does not depend on h0
and is therefore independent of the size of the system, in sharp contrast with the high-De
limit, where H = h0 and therefore h1 ∝ h4/3

0 ; see (1.2). In fact, inserting (4.11) or (4.12)
into (4.8) gives

h1 ∼ (G(γ τ 8/ρ4)1/3)1/3 (4.13)
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Figure 11. Numerical values of H/h0 against (a) the Deborah number De = τ/τR based on the
inertio-capillary time scale τR, and (b) the general Deborah number DeN = τ/τN based on the general time
scale τN = τR(1 + αOh) with α = 4.3, for various parameters (the same in (a) and (b)). Dots (•) correspond
to h0/R0 = 0.23 and S = 0.988, with Oh = 0.207 (blue) Oh = 2.07 (purple) and Oh = 20.7 (red), and De
ranging between 8.92 × 10−2 and 8.92 × 103 (last De excluded for the largest Oh). Triangles (�) correspond
to h0/R0 = 0.23 with De = 8.92 × 10−2 (yellow) and De = 8.92 × 101 (green), varying both S (between 0.1
and 0.988) and Oh while keeping S Oh constant and equal to 9.88. Stars (�) correspond to h0/R0 = 0.362 with
Oh = 16.6 and S = 0.988, and De ranging between 4.59 × 10−2 and 8.92 × 103.

in the inviscid limit (Oh � 1), or

h1 ∼ (Gγ 3τ 4/η4
0)

1/3 (4.14)

in the viscous limit (Oh � 1).
In the high-De limit, H/h0 → 1 since polymer relaxation becomes negligible even at the

onset of capillary thinning where h = h0. However, while all curves in figure 11(a) have
the same shape, the Deborah number at which H/h0 reaches 1 depends on the Ohnesorge
number. This is because we chose to express the Deborah number as De = τ/τR, where
τR = (ρh3

0/γ )1/2 is the inertio-capillary time scale, which is not relevant for the moderate
to large Ohnesorge number featured in figure 11(a). The relevant time scale for the
thinning dynamics at large Oh is τvisc = Oh τR = η0h0/γ , and we would hence expect that
H/h0 = O(1) not when τ/τR = O(1) but when τ/τvisc(= De/Oh) = O(1). In figure 11(b),
we show that values of H/h0 indeed rescale on a single curve when plotted against a
generalised Deborah number DeN = τ/τN , where τN , defined as

τN = τR(1 + α Oh), (4.15)

is an empirical attempt at expressing the general time scale of the thinning dynamics in
the Newtonian regime for any Oh, connecting the low- and high-Oh scalings τR and τvisc,
where α = 4.3 is a fitting parameter. This scaling ensures that H/h0 = O(1) when DeN =
O(1) for any Ohnesorge number. However, according to (4.11) and (4.12), we expect
different scalings for DeN � 1, namely, H/h0 ∼ De2/3

N for Oh � 1 and H/h0 ∼ DeN for
Oh � 1.

So far, we have varied De and Oh for a fixed viscosity ratio S = 0.988 and a fixed sample
volume characterised by a fixed value of h0/R0 = 0.23. In order to further investigate
the generality of the H/h0 dependence on DeN identified in figure 11(b), we therefore
performed additional simulations. Two sets of simulations were performed for De = 0.089
and 89.2, respectively, keeping h0/R0 = 0.23, where both S and Oh were varied while
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Figure 12. Numerical (non-dimensional) transition radius h1/h0 against (a) the Deborah number De = τ/τR,
and (b) (H/h0)

4/3((1 − S) Oh/De)1/3. The dash-dotted line in (b) is the line of equation y = 0.854x. The
legend and range of parameters (Oh, De, S and h0/R0) are the same as in figure 11.

keeping S Oh = ηs/
√

ργ h0 constant and equal to 9.88. In each case, S is varied between
0.1 and 0.988, where the total (constant shear) viscosity η0 = ηs + ηp is respectively
dominated by the polymer and by the solvent contribution. All these additional data points
in figure 11(a) rescale on the same curve identified in figure 11(b). This is because all
these cases correspond to Oh � 1, where τvisc = η0h0/γ is the relevant time scale of the
thinning dynamics in the Newtonian regime (and not ηsh0/γ , for example), regardless of
the value of S.

Additionally, a set of simulations was performed for a larger (non-dimensional) sample
volume corresponding to h0/R0 = 0.36, varying De for fixed Oh = 16.6 and S = 0.988.
These additional data points in figure 11(a) also rescale on the same curve identified in
figure 11(b). This is because h0 is the relevant length scale of the problem and sets τN (see
(4.15)), in agreement with our experimental results, which show that h1 increases when
increasing the sample volume for a given plate diameter due to the increase in h0 (see
figure 4b).

We can finally test the prediction of (4.8) for the transition radius h1 between the
Newtonian and elastic regimes, which in non-dimensional terms reads

h1

h0
=
(

H
h0

)4/3 [
(1 − S) Oh

p De

]1/3

. (4.16)

Figure 12(a) shows that h1/h0, which is estimated from the numerical h/h0 curves for
the same sets of parameters as in figure 11, does not monotonically increase or decrease
with De. This is because at low De (more specifically at low DeN = τ/τN ; see figure 11),
H/h0 ∝ De for Oh � 1 according to (4.12), implying that h1/h0 ∝ De according to
(4.16), while at high DeN , H/h0 = 1, implying that h1/h0 ∝ De−1/3 according to (4.16).
We find that all values of h1/h0 indeed rescale on a single master curve when potted
against (H/h0)

4/3((1 − S) Oh/De)1/3 in figure 12(b), where we find that the value of p
in (4.16) should be p ≈ 1.6. Note that the value of p depends on the exact definition
of h1, since the transition between the Newtonian and elastic regimes is not necessarily
sharp.
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Onset of the elastic regime in viscoelastic pinch-off

The validation of (4.16) proves that while (1.2) is valid for a fast plate separation
protocol, relaxation of polymer chains must be taken into account to allow for values of
H < h0 for a slow plate separation protocol. It also proves that when we are interested in
the minimum bridge/filament radius and maximum polymer extension at that point, the
full two-dimensional problem can be reduced to a simple force balance equation such as
(4.1) (which strictly applies only to a cylindrical thread) without losing predictive power,
since (4.16) (or equivalently, (4.8)) is based on (4.1).

5. FENE-P prediction for h1

We now consider how finite extensibility effects, described by the FENE-P model, can
affect the transition radius h1 = h(t1) at the onset of the elastic regime. We first derive a
theoretical model validated by numerical simulations in § 5.1, before using it in § 5.2 to
explain some of the discrepancies discussed in § 4.2 between the Oldroyd-B theory and
experiments.

5.1. Simulations and theory
Figure 13(a) shows how, for fixed Oh, De, S and h0/R0, decreasing L2 leads to an increase
in h1. This can be seen as counterintuitive since a decrease in L2 implies that chains are
shorter and therefore less elastic, which should imply a delayed transition to the elastic
regime (smaller h1). As we discuss in § 6, this apparent contradiction is resolved by
considering that shorter chains have shorter relaxation times, leading to smaller values
of H and therefore of h1, which is not taken into account in the simulations of figure 13(a),
where the Deborah number is kept constant.

Note that in figure 13(a), the thinning rate |ḣ/h| in the elastic regime (t > t1) is larger
than 1/3τ for the lowest L2 values, while for the largest L2 values, the elastic regime
initially follows (1.1). This is because polymer chains are already close to being fully
extended at the onset of the elastic regime for the lowest L2 values, as discussed in our
previous paper (Gaillard et al. 2024), where we explored the possibility of invoking this
effect to explain variations of the apparent relaxation time τe (see e.g. figures 3c,e).

The reason why h1 increases as L2 decreases for a fixed De is because the elastic stress
σp,zz ≈ Gf Azz (assuming Azz � 1 at the transition; see (2.7a,b)) increases faster during the
Newtonian regime (t < t1) as L2 decreases. This is because f ≈ 1/(1 − Azz/L2) (assuming
Azz � 1 > Arr) diverges as Azz approaches L2 to model the stiffening of polymer chains
as they approach full extension. Formally, assuming that the transition occurs when the
elastic stress reaches a fraction p of the capillary pressure, i.e. when σp,zz = pγ /h (where
the (2X − 1) prefactor is integrated into p; see § 4.1), we get

p
γ

h1
= G

A1

1 − A1/L2 , (5.1)

where h1 = h(t1) and A1 = Azz(t1) are the values at the transition. We assume that the
bridge radius H marking the onset of the coil–stretch transition is unaffected by finite
extensibility effects since Azz is still close to 1 at the onset of this coil-stretch transition, i.e.
f ≈ 1. Assuming that relaxation becomes negligible between the onset of the coil–stretch
transition and the onset of the elastic regime, i.e. for h1 < h < H, we use Azz = (H/h)4

(see (4.6)), from which we get A1 = (H/h1)
4. Injecting this scaling into (5.1) leads to a
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Figure 13. (a) Numerical time evolution of h/h0 using the FENE-P model with L2 ranging between 102 and
107, as well as L2 = +∞ (Oldroyd-B limit), for fixed Oh = 2.07, De = 44.6, S = 0.988 and h0/R0 = 0.23.
The inset is a zoomed version for a better visualisation of the transition to the elastic regime at h = h1.
Simulations start at t = 0 used as the time reference. (b) Values of Y − 1 against ϕ (see (5.2a–c)) (where
Y = h1/h1,OB, for h1,OB the Oldroyd-B limit of h1) for L2 ranging between 102 and 108, with Oh = 0.207, 2.07
and 20.7, and fixed values De = 44.6, S = 0.988 and h0/R0 = 0.23. Values are compared with the analytical
solution of (5.2a–c) and with the limit scalings of (5.4).

polynomial equation for h1 in the form

h1 = h1,OB × Y(ϕ), Y(Y3 − 1) = ϕ, ϕ = A1,OB

L2 , (5.2a–c)

where

h1,OB =
(

GH4

pγ

)1/3

and A1,OB =
(

H
h1,OB

)4

(5.3a,b)

are the values of h1 and A1 predicted in the Oldroyd-B limit L2 = +∞ (ϕ = 0); see (4.8)
for h1,OB. The two limit scalings of (5.2a–c) corresponding to weak (ϕ � 1) and strong
(ϕ � 1) finite extensibility effects are

Y =
{

1 + ϕ/3, for ϕ � 1,

ϕ1/4, for ϕ � 1.
(5.4)

In the weak limit (ϕ � 1), polymer chains are still far from full extension at the onset of
the elastic regime, while in the strong limit (ϕ � 1), the transition occurs significantly
sooner than the Oldroyd-B prediction due to the fact that polymer chains have almost
already reached full extension at the transition. Indeed, in the strong limit, the transition
occurs when Azz = (H/h)4 becomes of the order of L2, leading to

h1 ∼ H
L1/2 , (5.5)

which is equivalent to (5.4) for ϕ � 1.
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Values of Y estimated from numerical simulations using the FENE-P model are plotted
against ϕ in figure 13(b) for three different Ohnesorge numbers, varying L2 between 102

and 108 in each case, while keeping De, S and h0/R0 constant, using an extra Oldroyd-B
simulation as a reference to get h1,OB. We find that all data points collapse on a single
curve corresponding to the solution of (5.2a–c). In particular, no prefactor is required
in the ϕ � 1 limit. Note that we choose to plot Y − 1 instead of Y in order to better
visualise the ϕ � 1 regime. Note that the values of H/h0, estimated for each simulation
as in figure 10, are found not to depend on L2, and take values between 1 and 0.36 for the
data of figure 13(b). Equations (5.2a–c) therefore generalise (1.2) to cases where both finite
extensibility effects and polymer relaxation effects are not negligible. In § 5.2, we apply
this updated theory to rationalise some of the discrepancies discussed in § 4.2 between the
Oldroyd-B theory and experiments.

5.2. Experiments
Experimentally, cases where both polymer relaxation and finite extensibility effects are
expected to play a role correspond to low polymer concentrations c. Indeed, as c decreases,
the transition to the elastic regime is delayed (i.e. h1 decreases; see figures 5b and 6b)
and polymer chains are therefore expected to be increasingly stretched at the onset of the
elastic regime, assuming that their relaxation time becomes equal to the Zimm relaxation
time τZ , which is independent of polymer concentration c (see (3.3)). Polymer chains
should therefore ultimately approach full extension (at the onset of the elastic regime)
below a critical concentration clow introduced by Campo-Deano & Clasen (2010). For
c < clow, the elasto-capillary balance leading to the exponential decay of (1.1) is therefore
no longer valid since A1 ∼ L2, leading to filament thinning rates |ḣ/h| > 1/3τ , as shown
numerically in figure 13(a) and discussed in our previous paper (Gaillard et al. 2024). This
would explain why fitting the elastic regime (t > t1) with a exponential leads to apparent
relaxation times τe that are smaller than τZ , as reported in figure 6(a) for aqueous PEO-4M
solutions of concentrations c ≤ 10 ppm. This would also explain why, as discussed in
§ 4.2 (see triangle symbols in figure 9b), transition radii h1 measured for low polymer
concentrations cannot be captured by the Oldroyd-B prediction even when replacing values
of τe < τZ by τZ .

This idea is tested in figure 14, where experimentally measured values of h1 (h1,exp) are
plotted against the FENE-P theoretical prediction h1,th = h1,OB × Y(ϕ) (see (5.2a–c) and
(5.3a,b)) for all polymer solutions and initial bridge radii. We choose L2 = ∞ (Y = 1)
and τ = τe as model parameters for data points corresponding to the PEOaq (1 and 2,
500 ppm PEO-4M solution in water), PEOvisc (1 and 2, 25 ppm PEO-4M solution in
a more viscous solvent) and HPAM solutions, since we already know from figure 9(b)
that these h1 values are consistent with the Oldroyd-B prediction of (4.8) (we choose
p = 0.27 to match the prefactor found in figure 9b). The experimentally measured values
of h1 corresponding to aqueous PEO-4M solutions of various concentrations in figure 14
(orange triangle symbols) are higher than the Oldroyd-B prediction at low concentrations,
as we saw in figure 9(b), where replacing values of τe < τZ by τZ was found to be
insufficient to explain the discrepancy. The blue triangle symbols in figure 14 show
that this discrepancy can be rationalised using the FENE-P model, where we chose a
value L2 = 1 × 104 that is sufficiently small to allow for values of Y sufficiently larger
than 1 (i.e. polymer chains close to being fully extended at the onset of the elastic
regime) to ‘fill the remaining gap’, while using τ = max(τe, τZ) at the model relaxation
time.
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Figure 14. Experimentally measured h1 values (h1,exp) against the FENE-P theoretical prediction h1,th =
h1,OB × Y(ϕ) (see (5.2a–c) and (5.3a,b)) for various polymer solutions and initial bridge radii. Values of the
FENE-P model parameters τ and L2 are indicated in the legends (ηp values are the ones from shear rheology).
The discrepancy between experiments and the Oldroyd-B prediction for h1 at low polymer concentration can
be rationalised by finite extensibility effects; see main text.

This value L2 = 1 × 104 has the same order of magnitude as the value expected from
the microscopic formula (Clasen et al. 2006b)

L2 = 3

[
j sin2(θ/2) Mw

C∞ Mu

]2(1−ν)

, (5.6)

which gives L2 between 1.6 × 104 and 1.3 × 105 for PEO of molecular weight Mw = 4 ×
106 g mol−1, for solvent quality exponents ν between 3/5 (good solvent) and 1/2 (theta
solvent), where Mu is the monomer molecular weight, θ = 109◦ is the C-C bond angle, j =
3 is the number of bonds of a monomer, and C∞ = 4.8 is the characteristic ratio (Brandrup
& Immergut 1999). Assuming that ν is between 1/2 and 3/5, the discrepancy can be
explained by a value Mw less than 4 × 106 g mol−1 stemming from polymer degradation
during mixing when preparing the stock solution. Note that choosing L2 = 1 × 104 leads
to values of Y close to 1 (up to 1.18) for the PEOaq (1 and 2), PEOvisc (1 and 2) and HPAM
solutions, consistent with the agreement between experiments and the Oldroyd-B theory
for these solutions in figure 14, as shown by the small difference between the L2 = ∞
(orange) and L2 = 1 × 104 (blue) triangle symbols for c = 500 ppm, which corresponds
to the PEOaq,1 solution.

6. Conclusions and discussions

We have shown experimentally that the classical formula (1.2) for the bridge/filament
radius h1 marking the onset of the elastic regime does not hold for slow filament thinning
techniques such as CaBER with a slow plate separation protocol. This is because, unlike
what is assumed to derive (1.2), polymer chains do not necessarily start stretching (beyond
their equilibrium coiled configuration) at the threshold of the Rayleigh–Plateau instability
(with minimum bridge radius h0), but do so only when the bridge thinning rate becomes
comparable to the inverse of their relaxation time. This leads to the generalised formula
(4.8) with a scaling h1 ∝ H4/3, where H is the bridge radius marking the onset of
the coil–stretch transition in the Newtonian regime. This formula reconciles the large
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relaxation time limit H = h0, where (1.2) is recovered, with the low relaxation time limit
anticipated by Campo-Deano & Clasen (2010), where polymer chains start stretching
only when the bridge thinning dynamics has become self-similar, in which case H (and
therefore h1) becomes independent of h0 (see (4.11)–(4.14)). Our generalised formula has
been validated experimentally in § 4.2 for different polymer solutions (PEO, HPAM) and
solvent viscosities (covering both inertio- and visco-capillary thinning dynamics in the
Newtonian regime), and for a wide range of plate diameters and sample volumes. This
generalised formula is in principle valid for any pinch-off experiment, e.g. dripping or DoS
experiments, provided that polymer chains are relaxed at the onset of capillary thinning
(no pre-stress). This universality comes from the fact that H is an intrinsic length scale of
the problem that transcends the particularities of the protocol used to perform a pinch-off
experiment, unlike the last stable bridge radius h0, which is defined only for our particular
protocol. Understanding how H scales with the parameters of the problem is therefore
crucial in order to predict h1, and the discussion of § 4.3 on the dependence of H/h0 on
the Deborah and Ohnesorge numbers is applicable only to our specific protocol.

The Oldroyd-B formula (4.8) was extended to finitely extensible polymer chains using
a FENE-P description. This updated theory, accounting for both polymer relaxation and
finite extensibility, was found to be able to rationalise the discrepancies observed for the
lowest PEO concentrations between the Oldroyd-B theory and experimental values of
h1. This is consistent with the fact that apparent relaxation times τe less than the Zimm
relaxation time τZ were measured at these low concentrations, an anomaly also reported
by Campo-Deano & Clasen (2010) that stems from polymer chains being close to full
extension at the onset of the elastic regime, a case where (1.1) is no longer valid and
thinning rates |ḣ/h| > 1/3τ are observed, as we discuss in our previous paper (Gaillard
et al. 2023). The polymer concentration clow below which chains are close to full extension
at the onset of the elastic regime (A1 ∼ L2) corresponds to ϕ = 1 (see (5.2a–c)), which
gives an elastic modulus Glow = pγ /HL3/2 that can be converted into a concentration
using G = cNAkBT/Mw (Campo-Deano & Clasen 2010). This expression generalises the
expression of Campo-Deano & Clasen (2010) (who considered the limiting case of low
relaxation times and low solvent viscosities) to any Deborah and Ohnesorge numbers since
H is a function of these numbers.

The Oldroyd-B formula (4.8) solves an apparent paradox of (1.2) that predicts that the
transition to the elastic regime occurs sooner as polymer chains get shorter for a fixed
(mass) concentration. Indeed, (1.2) predicts h1 ∝ G1/3, where the elastic modulus scales
with molecular weight as G ∝ M−1

w (Clasen et al. 2006b), yielding h1 ∝ M−1/3
w , which

increases as Mw decreases. This is counterintuitive since shorter chains should imply
lower elasticity and therefore a delayed transition, h1 approaching 0 as polymer chains
approach monomer size. This apparent paradox is solved by realising that shorter chains
have a shorter (Zimm) relaxation time since τZ ∝ M3ν

w (Clasen et al. 2006b), where ν is
the solvent quality exponent, implying that H (see (4.8)) should start decreasing as Mw
decreases for sufficiently low Deborah numbers (see figure 11). In the low-relaxation-time
(equivalently low-Mw) limit where polymer chains start stretching only when the bridge
thinning dynamics has become self-similar, we get h1 ∝ M(8ν−1)/3

w for Oh � 1, and
h1 ∝ M(12ν−1)/3

w for Oh � 1, according to (4.13) and (4.14), both exponents being positive
for any ν between 1/2 (theta solvent) and 3/5 (good solvent), which solves the apparent
paradox. This remains true even in the limit where polymer chains are almost fully
extended at the onset of the elastic regime since (5.5) predicts h1 ∝ M(5ν−1)/2

w for Oh � 1,
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and h1 ∝ M(7ν−1)/2
w for Oh � 1, according to (4.11) and (4.12) for H, using L ∝ M1−ν

w (see
(5.6)).

Our work suggests that a FENE-P description is sufficient to predict the transition
radius h1 to the elastic regime provided that the apparent relaxation time τe, measured
from an exponential fit of h(t) in the elastic regime, is chosen as ‘the’ relaxation time of
the polymer solution or, more precisely, max(τe, τZ) (see § 5.2). However, the surprising
increase of τe with h0 (see figure 4a) cannot be rationalised using a FENE-P description,
as detailed in our previous paper (Gaillard et al. 2024), where we chose the high-h0 limit
of τe, named τm, as ‘the’ relaxation time. The results of this study allow us to further
comment on whether it is τe or τm that should be considered as the ‘true’ relaxation time,
if any. Indeed, we saw in § 4.2 that using τm as ‘the’ relaxation time instead of τe works
only for the PEOvisc solution, i.e. the most dilute one in the most viscous solvent. This
would suggest that it is τe (and not τm) that is the ‘true’ relaxation time since it can be
used to predict h1 for any solution. However, if τe really measures the ‘true’ relaxation,
then it implies that some rheological property of a polymer solution somehow ‘changes’
when being tested with a different system size (plate diameter and sample volume) via a
mechanism that we could not identify and which is unlikely to be evaporation or polymer
degradation (Gaillard et al. 2024). Another possibility is that the solution in fact does
not change, meaning that the system-size dependence of τe is not an artefact, in which
case it would be only by coincidence that we could successfully capture experimental
values of h1 using τe. This would imply that the Oldroyd-B and FENE-P models miss
some important features of polymer dynamics in extensional flows, strengthening the
already established need for better constitutive equations. Future works will determine if
more sophisticated models such as conformation-dependent drag models, accounting for
the action of both chain stretching and intermolecular hydrodynamic interactions on the
friction coefficient (Prabhakar et al. 2016, 2017), are able to rationalise our experimental
results on the system-size dependence of both τe and h1.

Funding. M.A.H. acknowledges funding from the Spanish Ministry of Economy, Industry and
Competitiveness under grant PID2022-140951O.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
A. Gaillard https://orcid.org/0000-0003-1775-2682;
M.A. Herrada https://orcid.org/0000-0003-0388-8001;
A. Deblais https://orcid.org/0000-0002-3574-2480;
J. Eggers https://orcid.org/0000-0002-0011-5575;
D. Bonn https://orcid.org/0000-0001-8925-1997.

Appendix. Filament length Lf

The filament length Lf , introduced in the right-hand inset of figure 2(a), is plotted in
figure 15 against the initial bridge radius h0 for all polymer solutions, plate diameters
2R0, and (non-dimensional) sample volumes V∗ considered in this study. All data points
collapse on a single curve, indicating that Lf does not depend on rheological properties.
This is particularly true for data points corresponding to different PEO concentrations
in water where, since h0 is kept constant by keeping the same plate diameter and sample
volume, the filament length also remains constant. This is easily understood by considering
that the filament length actually corresponds to the distance between the top and bottom
end drops after pinch-off (i.e. after rupture of the filament), which should be the same
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Figure 15. Filament length Lf against the initial bridge radius h0 for all polymer solutions, plate diameters
and sample volumes. The inset shows a sketch of the top and bottom end drops after pinch-off.

regardless of the bulk mechanical properties of the liquid (as long as the plates are
separated slowly). This distance can be expressed as Lf = L∗

p − Lt − Lb, where L∗
p is the

final plate separation distance, Lt is the distance between the top plate and the bottom of
the top end drop, and Lb (≥ Lt due to gravity) is the distance between the bottom plate
and the top of the bottom end drop; see the inset of figure 15. Note that our protocol is
such that L∗

p is the critical plate separation distance at which the bridge becomes unstable
to the Rayleigh–Plateau instability. All these quantities should indeed be functions only
of the Bond number Bo = ρgR2

0/γ , of V∗, and of the contact angle of the liquid with the
plates. We find that Lf ≈ 2.1h0 for plates of diameters typically 2R0 ≤ 7 mm, while lower
Lf values are observed for larger plates. This might be caused by the dewetting of the top
plate which, as discussed in § 2.3, could not be avoided for such large plates in spite of the
plasma treatment, hence resulting in a smaller ‘effective’ top plate, which might result in
values of L∗

p lower than expected. The scatter in data points for these large plates might
hence be due to differences in the amount of dewetting.
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