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1. Introduction

1.1. Motivating example

To formulate the goal of this note, let us start with a simple setting where the main ideas
are demonstrated clearly. A (real) polynomial Pm : R

2 → R is called m-homogeneous if
Pm(λx, λy) = λmPm(x, y) for all x, y ∈ R

2, λ ∈ R and some integer m > 0.

Theorem 1.1. Let V := {Pm, Qm} be a planar m-homogeneous polynomial vector
field. Consider a differential system

ẋ = Pm(x, y), ẏ = Qm(x, y). (1.1)

Assume the field V admits exactly m + 1 non-proportional complex fixed points (xi, yi),
i = 1, . . . , m + 1 (i.e. Pm(xi, yi) = xi and Qm(xi, yi) = yi). Suppose (without loss of
generality) that the so-called characteristic polynomial

Sm+1(z) := Qm(1, z) − zPm(1, z) (1.2)

has degree m + 1.
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Then, the ‘projective’ dynamics of (1.1) depending on z(t) := y(t)/x(t) is given explic-
itly by

ż = const. × Sm+1(z)
m+1∏
i=1

(z − zi)γi , zi = yi/xi, (1.3)

where
γi = (m − 1)2/det[D(V − Id)]|x=xi, y=yi

, (1.4)

with D(·) denoting the Jacobi matrix and Id the identity operator.

It turns out that the numbers xi, yi and γi appearing in Theorem 1.1 cannot take
arbitrary values (cf. [9], where the case m = 2 was considered).

Theorem 1.2. Let xi, yi and γi, i = 1, . . . , m+1, be as in Theorem 1.1 and let m > 1.
Then, the following m + 1 identities hold:

m+1∑
i=1

γi + m − 1 = 0,

m+1∑
i=1

γix
m−j−1
i yj

i = 0, j = 0, . . . , m − 1. (1.5)

The following example illustrates Theorems 1.1 and 1.2.

Example 1.3. Consider the 2-homogeneous system

ẋ = P2(x, y) := x2 − y2, ẏ = Q2(x, y) := 2xy. (1.6)

Since (1.6) is a quadratic system in C, it admits the explicit integration

x(t) =
x0 − (x2

0 + y2
0)t

(1 − x0t)2 + y2
0t2

, y(t) =
y0

(1 − x0t)2 + y2
0t2

, (1.7)

implying the following projective dynamics

z(t) =
y0

x0 − (x2
0 + y2

0)t
, ż =

y0(x2
0 + y2

0)
(x0 − (x2

0 + y2
0)t)2

= const. × z2. (1.8)

On the other hand, the fixed points (xi, yi) for (1.6) are (1, 0), ( 1
2 , 1

2 i) and (1
2 ,− 1

2 i). Also,
S3(z) = z(1 + z2) (cf. (1.2)); therefore, z1 = 0, z2,3 = ±i. In addition, det(D(V − Id)) =
(2x − 1)2 + 4y2 and γ1 = 1, γ2,3 = −1 (cf. (1.4)). Therefore (cf. (1.8)),

ż = const. × (z − 0)1+1(z − i)1+(−1)(z + i)1+(−1) := const. × z2,

Finally, the following identities hold:

3∑
i=1

γi + m − 1 = 1 + (−1) + (−1) + 1 = 0,

3∑
i=1

γixi = 1 + (−1) 1
2 + (−1) 1

2 = 0,

3∑
i=1

γiyi = (−1) 1
2 i + (−1) − 1

2 i = 0.
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1.2. General framework behind Theorems 1.1 and 1.2

We now analyse the setting and conclusions of Theorems 1.1 and 1.2.
It follows from Theorem 1.1 that in the considered case the projective dynamics of

planar homogeneous ordinary differential equations (ODEs) is completely determined by
the invariants of exactly two types:

(a) equilibrium points zi = xi/yi of the ‘projective’ polynomial (1.2) (vector invariant);

(b) Jacobians of V at the points (xi, yi) that are fundamental quantities characterizing
the behaviour of the solutions around their singularities.

It should be pointed out that, generally speaking, there are two different sources of zeros
of (1.2), namely: fixed and equilibrium points of V . Being generic, the setting described
in Theorem 1.1 allows fixed points of V only. For the same reason, it is assumed that V

admits only finitely many fixed points and all of them are not multiple.
On the other hand, the main essence of Theorem 1.2 is as follows: the invariants in

question coming together follow a pattern consistent with a specific rule. In the invariant
theory, this fact is known as the existence of syzygy. Summing up, we arrive at the
following.

Problem 1.4. What are the n-dimensional analogues of Theorems 1.1 and 1.2 (n � 2)
covering non-generic cases?

Remark 1.5. In particular, Problem 1.4 can be regarded as a classification of singular
points of homogeneous maps (including algorithms for the ‘singularity resolution’ in the
case of multiple roots).

The goal of this paper is twofold:

(i) to prove analogues of Theorems 1.1 and 1.2 covering non-generic settings (in par-
ticular, systems with non-zero equilibria) in the two-dimensional case;

(ii) to extend Theorem 1.2 to the generic setting in the n-dimensional case (n � 2).

The results obtained are illustrated by two examples related to the explicit construc-
tion of algebraic first integrals and the existence of bounded solutions to homogeneous
systems.

1.3. Tools

The Multidimensional Residue Theory and Euler–Jacobi Formula (see, for example,
[1,6,7]) combined with Bézout’s Theorem on the number of solutions to homogeneous
polynomial systems (see, for example, [13]) are the main techniques used in this paper.

1.4. Overview

The paper is organized as follows. In § 2, we give the proofs of Theorems 1.1 and 1.2.
In § 3, we extend these theorems to cover non-generic situations. The results obtained
are applied to studying the existence of the algebraic first integral of the corresponding
m-homogeneous differential systems (see § 3.4). Section 4 is devoted to n-dimensional
generalizations. Some conjectures, links and applications are discussed in § 5.
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2. The two-dimensional case: generic situation

Proof of Theorem 1.1. Using m-homogeneity (see also (1.2)), it follows from (1.1)
that

ż = xm−1Sm+1(z). (2.1)

Hence,
z̈ = x2(m−1)Sm+1(z){(m − 1)Pm(1, z) + Sm+1(z)′

z}. (2.2)

Combining (2.1) and (2.2) yields

z̈

ż2 =
(m − 1)Pm(1, z) + Sm+1(z)′

z

Sm+1(z)
. (2.3)

Multiplying (2.3) by ż and integrating both parts with respect to t implies

ln(ż) = ln(Sm+1(z)) +
∫

(m − 1)Pm(1, z)
Sm+1(z)

dz. (2.4)

By assumption,

Sm+1(z) =
m+1∏
i=1

(z − zi), where zi �= zj if i �= j. (2.5)

Therefore,

(m − 1)Pm(1, z)
Sm+1(z)

=
m+1∑
i=1

γi

z − zi
, (2.6)

where

γi = lim
z→zi

(m − 1)Pm(1, z)(z − zi)
Sm+1(z)

, i = 1, . . . m + 1. (2.7)

Combining (2.4) with (2.5) and (2.6) yields (1.3).
Let us show that the numbers γi satisfy (1.4). We have

det[D(V ) − Id] = det

(
∂xPm(x, y) − 1 ∂yPm(x, y)

∂xQm(x, y) ∂yQm(x, y) − 1

)
. (2.8)

Using the Euler Formula for homogeneous functions, one can exclude partial differen-
tiation with respect to x in (2.8):

∂xPm(x, y) =
1
x

[mPm(x, y) − y∂yPm(x, y)], (2.9)

∂xPm(x, y)∂yQm(x, y) − ∂yPm(x, y)∂xQm(x, y)

=
m

x
[Pm(x, y)∂yQm(x, y) − Qm(x, y)∂yPm(x, y)]. (2.10)
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Combining (2.8)–(2.10) with the assumption that Pm(xi, yi) = xi and Qm(xi, yi) = yi

and using the notation zi = xi/yi, one obtains

det[D(V − Id)]|x=xi, y=yi
= m[∂yQm(xi, yi) − zi∂yPm(xi, yi)]

− 1
xi

[mPm(xi, yi) − yi∂yPm(xi, yi)] − ∂yQm(xi, yi) + 1

= (m − 1)[∂yQm(xi, yi) − zi∂yPm(xi, yi) − 1]

= (m − 1)xm−1
i [Qm(1, zi) − ziPm(1, zi)]′z

= (m − 1)xm−1
i Sm+1(zi)′

z,

i.e.

Sm+1(zi)′
z =

det[D(V − Id)]
(m − 1)xm−1

∣∣∣∣
x=xi,y=yi

. (2.11)

Finally, combining (2.11) with (2.7) and using xm−1
i Pm(1, zi) = 1, one obtains

γi =
(m − 1)Pm(1, z)

Sm+1(zi)′
z

∣∣∣∣
z=zi

=
(m − 1)2

det(D(V − Id))

∣∣∣∣
x=xi, y=yi

, (2.12)

and the proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. Take the functions

f(z) :=
(m − 1)Pm(1, z)

Sm+1(z)
, fj(z) :=

zj

Sm+1(z)
, j = 0, . . . , m − 1

(considered as functions in complex variables; (cf. (1.2))). Using the standard formula
for residue at infinity (see, for example, [11]), one obtains

Res(f(z),∞) = Res
(

−(m − 1)Pm(z, 1)
z(zQm(z, 1) − Pm(z, 1))

, 0
)

= m − 1, (2.13)

Res(fj(z),∞) = Res
(

zm−j−1

zQm(z, 1) − Pm(z, 1)
, 0

)
= 0. (2.14)

Also, by (2.11), (2.12),

Res(f(z), zi) = γi, Res(fj(z), zi) =
zj

Sm+1(z)′

∣∣∣∣
z=zi

=
γix

m−j−1yj

m − 1
. (2.15)

Combining (2.13)–(2.15) with the Global Residue Theorem (see, for example, [11]) yields
syzygies (1.5). �

3. The two-dimensional case: extensions and application

In this section, we consider planar m-homogeneous maps that can have both fixed and
equilibrium points. Clearly, if (xo, yo) is an equilibrium point of an m-homogeneous map,
then so is any point (λxo, λyo), λ ∈ R.
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3.1. Simple fixed and equilibrium points

Theorem 3.1. Using the notation of Theorem 1.1, assume that V admits exactly k

non-proportional complex fixed points (xi, yi), i = 1, . . . , k. Assume also that V admits
exactly m + 1 − k straight lines of equilibrium points y = zix, i = k + 1, . . . , m + 1.
Suppose that the polynomial Sm+1(z) (see (1.2)) has degree m + 1. Then

(i) the ‘projective’ dynamics of (1.1) depending on z(t) := y(t)/x(t) is given explicitly
by

ż = const. × Sm+1(z)
k∏

i=1

(z − zi)γi , (3.1)

where γi, i = 1, . . . , k, are defined by (1.4),

(ii) the m + 1 syzygies

k∑
i=1

γi + m − 1 = 0, (3.2)

k∑
i=1

γix
m−j−1
i yj

i +
m+1∑

i=k+1

βix
m−j−1
i yj

i = 0, 0 � j � m − 1, (3.3)

hold, where γi, i = 1, . . . , k, are defined by (1.4), and βi := 1/tr[D(V )]|x=xi, y=yi
,

i = k + 1, . . . , m + 1.

Proof. Up to slight modifications, we follow the same lines as the proof of Theorems
1.1 and 1.2.

(i) Set ω(x, y) := GCD{Pm(x, y), Qm(x, y)}. Then

{Pm(x, y), Qm(x, y)} = ω(x, y){P̃m(x, y)Q̃m(x, y)} (3.4)

with

ω(x, y) =
m+1∏

i=k+1

(y − zix). (3.5)

By assumption, (2.1)–(2.6) are still valid, while (cf. (3.4), (3.5) and (2.4)–(2.6)) (2.7)
should be replaced with

γi =

⎧⎪⎨
⎪⎩

limz→zi

(m − 1)Pm(1, z)(z − zi)
Sm+1(z)

, i = 1, . . . , k,

0, i = k + 1, . . . , m + 1.

(3.6)

Using the same argument as in the proof of Theorem 1.1, one can combine (3.6) with
(2.11) and xm−1

i Pm(1, zi) = 1, i = 1, . . . , k, to obtain (3.1).
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(ii) To prove the second part of the theorem, consider the functions

f(z) :=
(m − 1)P̃m(1, z)

Q̃m(1, z) − zP̃m(1, z)
, fj(z) :=

zj

Sm+1(z)
, j = 0, . . . , m − 1

(cf. (1.2), (3.4), (3.5)). Clearly, Res(f(z),∞), Res(fj(z),∞), as well as Res(f(z), zi) and
Res(fj(z), zi) for i = 1, . . . , k, are the same as in Theorem 1.1. At the same time,
Res(f(z), zi) and Res(fj(z), zi) for i = k + 1, . . . , m + 1 should be recalculated. We
have

Res(f(z), zi) = 0, (3.7)

Res(fj(z), zi) = lim
z→zi

zj(z − zi)
Sm+1(z)

=
zj
i

Sm+1(zi)′
z

, (3.8)

where i = k + 1, . . . , m + 1. On the other hand,

tr[D(V (x, y))] = ∂xPm(x, y) + ∂yQm(x, y)

=
m

x
Pm(x, y) − z∂yPm(x, y) + ∂yQm(x, y)

= xm−1[(m − 1)Pm(1, z) + Sm+1(zi)′
z].

Since Pm(xi, yi) = 0 for i = k + 1, . . . , m + 1, the above formula yields

Sm+1(zi)′
z = x1−m

i tr[D(V (x, y))]|x=xi, y=yi
(3.9)

(i = k + 1, . . . , m + 1). Combining (3.7)–(3.9) with formulae for Res(f,∞), Res(fj ,∞),
Res(f, xi), Res(fj , xi) for i = 1, . . . , k and using the Global Residue Theorem (see, for
example, [11]) yields statement (ii). �

3.2. Multiple roots

Suppose the polynomial (1.2) admits a root zi = yi/xi of multiplicity mi > 1. Then,
the following possibilities may occur:

(I) (xi, yi) is a fixed point of V of multiplicity mi;

(II) (xi, yi) is an equilibrium point of V of multiplicity mi;

(III) (xi, yi) is an equilibrium point of V of multiplicity < mi and, at the same time,
(xi, yi) is a fixed point of the vector field (P̃m, Q̃m) (see (3.4) and (3.5)).

The following example illustrates case (III).

Example 3.2. Let V (x, y) = (xy − y2, y2). Then, S3(z) = z3 admits the root z = 0 =
0/1 of multiplicity 3. However, (1, 0) is the equilibrium point of V of multiplicity 1 only.

In order to study the projective dynamics of system (1.1) as well as to establish the
corresponding syzygies in the presence of multiple roots of (1.2), one can follow the same
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lines as in the proof of Theorems 1.1, 1.2 and 3.1. In particular, (2.1)–(2.4) are still valid,
while the next argument essentially depends on the computation of the integral in (2.4).
This integral can be easily evaluated by combining the standard fraction decomposition
algorithm with the multiple residue formula (see, for example, [11]). However, providing
a ‘smart’ interpretation of the quantities obtained in terms of natural invariants of the
field V requires additional work. This problem is studied in detail in our forthcoming
paper [10]. We restrict ourselves below to a statement that does not need any addi-
tional explanation (see also [5], where a generalization of the Euler–Jacobi Formula was
established for double stationary points of polynomial (in general, non-homogeneous)
fields).

Proposition 3.3.

(i) Using the notation of Theorem 1.1, assume V admits exactly k non-proportional
complex fixed points (xi, yi), i = 1, . . . , k. Suppose that the characteristic poly-
nomial Sm+1(z) (see (1.2)) has degree m + 1. Assume also that all the equilibria
of V (possibly multiple) are of type (II). Then, the projective dynamics of (1.1) is
the same as in (3.1) and, in addition, syzygy (3.2) remains unchanged.

(ii) Let z = z0 be a root of the characteristic polynomial (1.2) of multiplicity k + 1.
Then, in the formula for the projective dynamics (cf. (3.1)) an additional factor

exp
[

pk(z)
(z − z0)k

]
(3.10)

appears, where pk(z) is a polynomial of degree k.

3.3. Infinitely many fixed points

Assume that in the decomposition (3.4) (see also (3.5)) one has P̃m(x, y) ≡ x and
Q̃m(x, y) ≡ y. Clearly, in this case Sm+1(z) ≡ 0. Since ω(x, y) is a polynomial of degree
at most m−1, the field V may have at most m−1 straight lines of equilibria. It remains
to observe that any other direction is generated by a fixed point of the field V that
determines the obvious dynamics of (1.1).

3.4. Application: existence of first integrals

In this subsection we apply the results obtained above to study algebraic first integrals
for planar homogeneous systems.

Definition 3.4. A polynomial F (x, y) is called a (polynomial) first integral for (1.1)
if

Pm(x, y)∂xF (x, y) + Qm(x, y)∂yF (x, y) = 0 for all (x, y) ∈ R
2. (3.11)

Combining (3.11) with (3.4) yields that, to study the existence of a polynomial first
integral, one can assume without loss of generality that the field V = (Pm, Qm) does
not have non-trivial equilibria. Also, since any polynomial is a sum of homogeneous
polynomials, without loss of generality, F in (3.11) can be assumed to be M -homogeneous
for some M .
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Theorem 3.5 (Tsygvintsev [15]). Assume the field V = (Pm, Qm) does not have
non-trivial equilibria (m > 1). Then, (1.1) admits an M -homogeneous polynomial first
integral (for some integer M) if and only if the following two conditions are satisfied:

(i) all fixed points of V are simple (in particular, the hypotheses of Theorem 1.1 are
satisfied);

(ii) all γi provided by Theorem 1.1 (see (1.4)) are negative rational numbers.

Proof. Since F is supposed to be M -homogeneous for some M , the Euler Formula
implies

Pm(x, y)
[
M

x
F (x, y) − y

x
∂yF (x, y)

]
+ Qm(x, y)∂yF (x, y) = 0,

meaning that, for some M , F must satisfy the following differential equation with respect
to z = y/x:

F ′
z(1, z)

F (1, z)
= − MPm(1, z)

Qm(1, z) − zPm(1, z)
= −MPm(1, z)

Sm+1(z)
. (3.12)

Thus, the existence of a required first integral essentially depends on the integration of
the right-hand side of (3.12).

Assume conditions (i) and (ii) are satisfied. Then, combining (i) with (3.12) and (2.6)
yields an explicit formula for F (1, z):

F (1, z) = C
m+1∏
i=1

(z − zi)Mγi/(1−m), (3.13)

depending on a parameter M � 1. Choosing an appropriate M and using (ii), the exis-
tence of a required F now follows from (3.13).

Conversely, assume that there exists a required first integral F (x, y). If (i) is not sat-
isfied, then (see Proposition 3.3 (ii)) at least one non-algebraic factor appears in F (1, z).
Also, if (i) is satisfied and (ii) is not satisfied, then, for any M , (3.13) does not allow a
polynomial first integral for (1.1). �

4. Projective dynamics in R
n

In this section, we extend Theorem 1.2 to the multidimensional case. Consider the system
of polynomial m-homogeneous ODEs:

ẋs = Ps(x), Ps(λx) = λmPs(x), s = 1, . . . , n, (4.1)

for all x = (x1, . . . , xn) ∈ R
n, λ ∈ R and some integer m > 0 (cf. (1.1)). To begin

with, we are interested in a maximal number of non-proportional fixed points of the field
V := (P1, . . . , Pn).
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4.1. Bézout’s Theorem

The following standard fact, known as Bézout’s Theorem, is a starting point for our
discussion.

Theorem 4.1. Let f1, . . . , fn be n complex polynomials of degree d1, . . . , dn in n

variables having finitely many common zeros. Then, the number N of common zeros
of f1, . . . , fn satisfies the inequality N � d1, . . . dn. The bound is attained by generic
polynomials of degree d1, . . . , dn.

Corollary 4.2. Assume Ps is as in (4.1), the system

Ps(x) = xs, s = 1, . . . n, (4.2)

has finitely many complex solutions and the number of these solutions is maximal. Denote
by M the number of pairwise non-proportional (non-zero) solutions to (4.2). Then, M =
(mn − 1)/(m − 1).

Proof. By Theorem 4.1, (4.1) and the maximality condition, there are mn simple
solutions to (4.2) (including constant multiples). Next, if p is a non-zero solution to (4.2),
then so is exp(2kπi/(m − 1))p, k = 1, . . . , m − 1, meaning that any non-zero solution
to (4.2) gives rise to a set of m − 1 proportional solutions and the result follows. �

4.2. Euler–Jacobi Formula

The following statement is a particular case of the Global Residue Theorem in the
complex projective space presented in [1] (see also [3,6,7]).

Theorem 4.3. Let F (x) = (F1(x) · · ·Fn(x)) be a polynomial complex vector field
with deg Fs = ds, s = 1, . . . , n. Denote by Sol(F ) the set of common roots of Fs, s =
1, . . . , n, and assume (cf. Theorem 4.1) that Sol(F ) contains exactly d1 · · · dn elements
(in particular, any x ∈ Sol(F ) is simple and, therefore, the Jacobian of F is non-zero for
all x ∈ Sol(F )). Then, for every complex polynomial Q with deg Q <

∑
s ds − n, one has

the following Euler–Jacobi Formula:

∑
a∈Sol(F )

Q(a)
det[D(F )]x=a

= 0, (4.3)

where D(·) denotes the Jacobi matrix.

Remark 4.4. It is easy to see that the first syzygy in (1.5) is a consequence of (4.3)
for F = V − Id and Q ≡ 1: the constant polynomial.

4.3. Syzygies in the multidimensional case

With Corollary 4.2 and Theorem 4.3 in hand, we are now in a position to generalize
Theorem 1.2 to the multidimensional case.
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Theorem 4.5. Let Ps, s = 1, . . . , n, be as in (4.1), m > 1, V = (P1, . . . , Pn). Set
F := V − Id and Sol(F ) := F−1(0). Assume Sol(F ) is finite and contains a maximal
number of elements (in particular, any x ∈ Sol(F ) is simple, the Jacobian of F is different
from zero for all x ∈ Sol(F ), and there are exactly M := (mn − 1)/(m− 1) pairwise non-
proportional (non-zero) elements ξ1, . . . , ξM in Sol(F ) (cf. Corollary 4.2)). Set

γq = (m − 1)2/det[D(F )]|x=ξq , q = 1, . . . , M

(cf. (1.4)). Then, the following syzygies between ξq and γq hold:

M∑
q=1

γq + (−1)n(m − 1) = 0, (4.4)

M∑
q=1

γqξ
α
q = 0, |α| = s(m − 1), 0 < s < n (4.5)

(here α = (α1, . . . , αn) denotes a multindex, |α| = α1 + · · ·+αn and xα = xα1
1 · · ·xαn

n for
x ∈ C

n).

Proof. As explained in the proof of Corollary 4.2, Sol(F )\{0} splits into M symmetric
groups, say, B1, . . . ,BM , and any Bq = {ξk

q } consists of the elements

ξk
q = exp

(
2kπi
m − 1

)
ξq, k = 0, . . . , m − 1, q = 1, . . . , M.

Clearly, for any representative ξq ∈ Bq,

det[D(F )]x=ξq = det[D(F )]x=ξk
q
, k = 0, . . . , m − 1. (4.6)

Also, since m > 1, one has det[D(F )]x=0 = det[D(− Id)] = (−1)n. Hence, for any
polynomial Q : C

n → C, one obtains

Q(0)
det[D(F )]x=0

= (−1)nQ(0). (4.7)

To establish (4.4), it suffices to apply Theorem 4.3 with the constant polynomial Q(x) ≡
m − 1 taking into account (4.6) and (4.7).

To establish (4.5), take a monomial Q(x) = xα. Then

m−1∑
k=1

[
exp

(
2kπi
m − 1

)
x

]α

= (m − 1)δ|α|x
α, (4.8)

where

δ|α| =

{
1, |α| ≡ 0 (mod (m − 1)),

0, |α| �≡ 0 (mod (m − 1)).

Finally, if |α| is as in (4.5), one can apply Theorem 4.3 with Q(x) = xα, and (4.5) follows
immediately from (4.7) and (4.8). �
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5. Concluding remarks

There is a vast amount of literature devoted to homogeneous polynomial differential sys-
tems and we are far from having given a full roundup of the current state of the art
in this topic. We emphasize that, to the best of our knowledge, Theorems 1.1 and 1.2
(see also Theorems 3.1 and 4.5) have not appeared before (at least, in the formulations
presented). In fact, these theorems are intimately connected to idempotents and nilpo-
tents in non-associative algebras underlying multi-linear vector fields (see [2]) and related
Peirce numbers (see [9]).

Also (cf. [4]), it is our belief that a homogeneous dynamics with complex fixed or
stationary points and complex local invariants (eigenvalues of Jacobian matrices at these
points) is behind families of decaying spirals, cycles or growing spirals, depending upon
whether the signs of real parts of such invariants are negative, zero or positive.

In addition, if for a real fixed point the corresponding invariant is also real, then the
sign of this invariant is responsible for the existence of bounded non-zero solutions to
homogeneous systems (cf. [2,8,12]). For example, consider the Lotka–Volterra equations
in R

n:

ẋi = Pi(x), Pi(x) = xi

(
xi +

∑
j �=i

aijxj

)
, i = 1, 2, . . . , n. (5.1)

By direct computation, all the basis vectors e1, e2, . . . , en are fixed points of the field
V = (P1, . . . , Pn) and any coordinate plane R[ei, ej ] generated by ei and ej is an invariant
set of (5.1). Moreover, if aij , aji �= 1 and aijaji �= 1, then V restricted to R[ei, ej ] admits
the additional fixed point

pij :=
1 − aij

1 − aijaji
ei +

1 − aji

1 − aijaji
ej .

Denote by F ij the restriction of F := V − Id to R[ei, ej ] and set

γi :=
1

det [F ij ]

∣∣∣∣
x=ei

, γj :=
1

det [F ij ]

∣∣∣∣
x=ej

, γij :=
1

det [F ij ]

∣∣∣∣
x=pij

. (5.2)

Remark 5.1. One can show (cf. [9,14]) that integral curves in R[ei, ej ] are adjoined
to the rays (generated by the fixed points) at the origin if and only if the corresponding
number in (5.2) is positive. Moreover, two rays with positive numbers (5.2) give rise to
an elliptic sector.

By straightforward computations,

γi =
1

aji − 1
, γj =

1
aij − 1

, γij =
1 − aijaji

(1 − aij)(1 − aji)
. (5.3)

Proposition 5.2. Given system (5.1), assume there exist i, j such that two of the
three numbers in (5.3) are positive. There then exists a non-zero bounded solution to (5.1)
in R[xi, xj ].
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Observe that syzygy (1.5) does not permit all the numbers in (5.3) to be positive
simultaneously. We believe that syzygies are behind any restrictions on possible global
homogeneous dynamics. In particular, the well-known classifications of phase portraits of
homogeneous systems in the two-dimensional case up to orbital topological equivalence
are fully compatible with Theorem 1.2.
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10. Y. Krasnov, A. Kononovich and G. Osharovich, On a structure of the fixed point

set of homogeneous maps, Discr. Contin. Dynam. Syst., in press.
11. A. I. Markushevich, Theory of functions of a complex variable, 2nd edn (American

Mathematical Society, Providence, RI, 2005).
12. J. Mawhin and J. R. Ward Jr, Guiding-like functions for periodic or bounded solutions

of ordinary differential equations, Discrete Contin. Dynam. Syst. 8 (2002), 39–54.
13. I. Shafarevich, Basic algebraic geometry, I (Springer, 1994).
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