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SOME CONSEQUENCES OF MARTIN’S AXIOM AND THE
NEGATION OF THE CONTINUUM HYPOTHESIS

JUICHI SHINODA®

§0. W. Sierpisnki [3] demonstrated 82 propositions, called C,—C,,
with the aid of the continuum hypothesis. D. A. Martin and R. M. Solovay
remarked in [2] that 48 of these propositions followed from Martin’s axiom
(MA), 23 were refuted by MA + 2% > W, and three were independent
of MA + 2% > \R,. But the relation of the remaining eight propositions
to MA + 2% > 3R, has been unsettled.

In this paper, we shall show at least five of them (C,, C,;, Cq,, Cq, and C,)
are also refuted by MA + 2% > \R,.

The following table gives the relation of C,—Cg, to MA + 2% > \R,.

0 1 2 3 4 5 6 7 8 9

X @) O O O X O X X

10 X X X xX* O X O O O O

20 O O O O O O X X X X

30 O O X X X O O O O O

40 O O O O O O O ? ? O

50 X X A O O O O O O O

60 O X ¥ X * O O X X X X X

70 x* O O O O O O X A X
80 ? A O

By O, we denote the propositions following from MA, by X the propo-
sitions refuted by MA + 2% > W, by A the propositions independent
of MA + 2* >\, and by ? the propositions whose relation to MA +
2% > W, we do not know about at present.

Let & = (P, <) be a partially ordered set. A subset X of P is said
to be dense in & if, for every p e P, there is ¢e X such that p <q. If
F is a collection of dense subsets of P, a subset G of P is said to be
an & -generic filter on & if G has the following properties:
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(1) if p,qeP, pecG and ¢ < p, then ¢ G;

(2) if p,qe G, then there is e G such that p < r and q < r;

@B if Xe&F, then XN G=+0.
If p,qe P, then p and q are said to be compatible if there is r ¢ P such
that p < and ¢ <7r. & is said to have the countable chain condition
if every collection of pairwise incompatible elements of P is countable.

Martin’s axiom (MA) is the following statement:

If 2 = (P, <> is a partially ordered set having the countable chain
condition and & is a collection of dense open subsets of P of cardinality
< 2% then there exists an % -generic filter on 2.

§1. In this section, we shall show C,, C,, C;;, and C,, are refuted by
MA + “1CH. From [2], we quote the following lemma.

LEMMA 1. Let A and B be collections of subsets of w, each of
cardinality < 2%, such that if xc¢ B and K is a finite subset of A then
x — UK is infinite. If we assume MA, then there exists a subset t of
o such that x Nt is finite if xe¢ A and infinite if xe B.

Let 0 be the set of all functions from o into w, (more generally,
Z, be the set of all functions from x into y). Following Sierpinski [3],
we define a partial ordering < on “w as follows:

f<9ge@keco)vn > B)f(n) < g)] .
The following lemma is due to K. Kunen [1].

LEMMA 2. Let F be a subset of “o of cardinality <2%. If we
assume MA, then there exists g e “w such that if feF then f <g.

From Lemma 2, we have the following proposition, which is the
negation of C,.

PROPOSITION 1 (Assume MA and 2% > \R,). Let E be an uncountable
subset of R, the set of reals, and {f,:neco)y be a convergent sequence
of functions from E to R. Then there exists an uncountable subset N
of E such that {f,:new)y is uniformly convergent on N.

Proof. We may assume E is of cardinality Y,. Let f be the limit
of {fn:mewy. Then for any xe X and m e w, there is ke such that
if m >k then |f,() — f(»)| <1/m + 1. Take such kco and denote it
by ¢.(m). Then we can define R, functions ¢, from o into ». Using
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Lemma 2, we can find ¢ €“w such that ¢, <¢ for all xeE. For each
xe E, let k, denote the least ke w such that ¢,(m) < ¢(m) for all m > k.
Since F is uncountable, there is k€ » and an uncountable subset N of E
such that if xe¢N then %, = k. Then for any xeN and m >k, if
n > ¢(m) then |f,(x) — f(x)| <1/m + 1. This means {f,: n € w)y converges
uniformly to f on N.

Since C; and C, are equivalent, C, is also refuted by MA 4 2% > \R..

Recall that an F,-set is the union of a countable family of closed
sets and a G;-set is the intersection of a countable family of open sets.

LEMMA 3. Let X be a separable metric space of cardinality < 2%,
If we assume MA, then every subset of X is F, and G, in X.

Proof. Let D be any subset of X and {B;: i< »} be a basis for open
sets of X such that all B, are non-empty. For each ze X, let s, =
{icw:xzeB;}. If weput A={s,:xeX — D} and B = {s,: ye D}, then 4
and B are of cardinality 2%. It is easily checked that if ye D and z,,
v, 2,€X — D then s, — (s;,U --- Us,,) is infinite. By Lemma 1, we
can find a subset ¢ of w such that s, N ¢ is finite if xte X — D and s, Nt
is infinite if y e D. For each necw, let

K, = LSJ B,.
i€t
And let K = (M,eo Kn- Then K is a Gy-set of X. In order to prove that
D is a G,-set of X, it suffices to prove the following (1) and (2):

(1) DCK
(2) X-DNK=0.

Let ¥ be an arbitrary element of D and new. Since tNs, is infinite,
there is et Ns, such that ¢>n. Then yeB; and B,Z K,, so ycK,.
Since ¥ and n are arbitrary, we have (1). Let x be any element of
X — D. Since tNs, is finite, there is mew such that if iet and
1>mn then i¢s,. For such new, we have x¢ K,, and so ¢ K. Thus
we have (2).

Replacing D with X — D, we have that X — D is a G,set of X.
Hence D is an F,-set of X. Therefore D is F, and G, in X.

» This lemma is a slight generalization of that of J. Silver.
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The following proposition is the negation of Cg,.

PROPOSITION 2. (Suppose MA and 2% >\,). Let E be any uncount-
able set of reals and f be any function from E into R, the set of reals.
Then there ewists an uncountable subset N of E such that f | N, the
restriction of f to N, is continuous on N.

Proof. We may assume E is of cardinality R, Let F be an
arbitrary closed set in R. Then, by Lemma 3, f'(F), the inverse
image of F, is a G,set of E. Thus f, is Baire function of class < 1.
As is well-known, every Baire function of class <1 whose range is a
subset of R is the limit of a sequence of continuous functions. Let
{fn:mewy be a sequence of continuous functions from E to R which
converges to f. Then, by Proposition 1, there exists an uncountable
subset N of E such that {f,:neco)> converges uniformly to f on N.
Since each f, | N is continuous on N, so is f | N.

This proposition implies the following proposition, which is the
negation of Cg,.

PROPOSITION 3. (Suppose MA and 2% > \R,). There is a subset F
of BR of cardinality 2% such that if g ®R then for some feF the set
{xeR: f(x) = g(x)} s uncountable.

Proof. Let F be the set of Baire functions from R into R. Then
clearly, F is of cardinality 2®. By Proposition 2, if g ¢ #R, then there
exists an uncountable subset N of R such that g | N is continuous on N.
The following is a well-known theorem.

Let X be an arbitrary metric space, let Y be a complete separable
space and A be a subset of X. Then every Baire function from A to
Y can be extended to a Baire function from X into Y.

Since f | N is a Baire function on N, by this theorem, there exists

feF such that f | N =g | N. Thus the set {x e R: f(z) = 9(x)} includes
N, and is uncountable.

§2. Let [w]* denote the set of all infinite subsets of w. We define
a relation C* on [w]® as follows:

aC*be a— b is finite, where a, b € [w]* .

Intuitively @ &* b iff o € b almost everywhere.
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LEMMA.Y Suppose MA. Let ® be an ordinal such that ©® < 2%, and
let {a,: a < O be a sequence of elements of [w]* such that if « < <O
then a, < *a,. Then there exists a ¢ [w]® such that if « < O then a C*a,.

Proof. Let A ={w —a,:« <0} and B = {a,: « < 6}. Then clearly,
A and B are of cardinality < 2%, If «,a;, - -,a, < O, then

.~ J—a)=a,Na,0 - Na,.
i=1

It is easily checked the intersection of finite elements of B is an element
of [w]*. Thus A and B satisfy the condition of Lemma 1 of §1. There-
fore there is a subset a of o such that a — a, is finite and o N @, is in-
finite for any-« < ©. For such ¢« C w, we have aclw]® and o &* a,.

From this lemma, we obtain the following proposition, which is the
negation of C,.

PROPOSITION. (Assume MA and 2% >W). Let {f,:ncwy be a
sequence of functions from R to R. Then there ewxists a sequence

{my: ke wy of natural numbers such that my <m, < --- <m; < --- and
the set {xe R: {fn(®): kecw)y converges to a finite or infinite value} is
uncountable.

Proof.? For each aelw]®™, let ¢’ denote the sequence {(n,:kew)
such that n,<n <-.-- <n,<-..--<-.-- and a={n.: kew}. By the
limit of the sequence (f,(x): nea), we mean the limit of the sequence
{fn(®): ke wy in the usual sense, where {(n,:keow) =0a'. Let E be a
subset of R of cardinality §};,. Order E into a transfinite sequence of
type o, as follows:

Loy Xyy = vy Lgy * v * (a<a)1)

By transfinite induction on «, we define a sequence <a,:a < o> of
elements of [w]* such that a,C*a, if «a < <o and the sequences
{fr(®): nea,> with a«ew, are convergent. The sequence {f,(x):new)
includes a convergent subsequence < f,.(%,): k € wy, whose limit is finite or
infinite. So, we define a, to be {n,: kc0}. Assume that a, with p<a
are defined and a,&*a, if § <y <a. Then, by the above lemma, we
can find a € [w]* such that a &*a, for all 8 <a. The sequence {fy(x,):

Y It was pointed out by the referee that this lemma could be proved from Lemma
2 of § 1.

? This proof was suggested to the author by Professor Kanji Namba.
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tea) includes a convergent subsequence {f;(x,):kecwy. So, we define
a, to be {i,: ke w}.

By the lemma of this section, let b be an element of [w]®* such that
bC*a, for all «a <w. For every a <w, since b &*a, the sequence
{fulx,); meb) is convergent. If we put {(m;:keowy =10/, then the set
{x: {(fn,(®): ke o) is convergent} includes E, and is uncountable.

§3. Let F be a subset of R and ac R. By E(a) we denote the set
{# + a:xc K}
Without MA, we can prove the following proposition.

PROPOSITION. (Suppose 2% > NR). If E is an uncountable subset of
R such that its complement is of cardinality 2%, then there exists a € R
such that E(@)AE, the symmetric difference of E(a) and FE, is
uncountable.

Proof. Suppose, on the contrary, that for any aec R, E(@AFE is
countable. Let N be a subset F of cardinality Y, Then we show
Meen [R — E(—x2)1#£0. If Myen[R — E(—x)] = 0, then R = | J, ey E(—2).
On the other hand

U E(—2) = UN [E(—2)AE(—y)]1U QNE(—x) .

TEN Z,Y€

Therefore,

AU N E(—x) =R, where A= |J [E(—x)AE(—¥y)].

TEN Z,YEN

Since A and (M;cx E(—) are disjoint, we have R — (M v E(—2x) = A. Let
x be an arbitrary element of N. Then we have R — F(—x) C A. Note
that each E(a)AE(b) is countable because E(a)AE(b) = J(a) U K(b), where
J=EOb — AE, K =E(a — D)AE. Therefore A is of cardinality < \,.
This contradicts the hypothesis that the complement of E is of cardinality
2%, Thus Myen [R — E(—2)] = 0.

Let a e Mzen [R — E(—x)], then NC R — E(—a) because a¢g E(—x)
iff ¢ EF(—a). Therefore E(—a)AFE includes N, and is uncountable.

The following corollary is the negation of C,,.

COROLLARY. (suppose MA and 2% > \W)). Let E be a non-measur-
able set of reals. Then for some ac R, E(@AFE is uncountabdle.

Proof. 1If we assume MA, then every set of reals of cardinalily

https://doi.org/10.1017/50027763000015336 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015336

MARTIN’S AXIOM AND THE CONTINUUM HYPOTHESIS 123

< 2% js of Lebesgue measure 0 ([2, §4]). Hence, if E is non-measurable,
the E and its complement are of cardinality 2®. Thus E satisfies the
condition of the proposition.

§4. A set E of reals is said to have the property (M)V if, for any
collection % of open sets satisfying the condition

(%) (Ve e E)(ve > 00QU € 2)[6(U) < e N\ xe U]

where §(U) is the diameter of U, there is a sequence <{(U,: neo)> of
elements of # such that £ C | J,e, U, and lim,_. 6(U,) = 0.
As a direct application of MA, we have the following proposition.

PROPOSITION. (Suppose MA). Every set of reals of cardinality < 2%.
has the property (M).

Proof. Let E be a set of reals of cardinality < 2%, and # be a
collection of open sets satisfying the condition (x). For each %€ w, there
is a sequence {U,,,: m € w) of elements of % such that £ € Unco Unn and
0(Unm) <1/n + 1 for all mew. We define a partially ordered set & =
(P, <> as follows:

P = {p: p is a finite function with dom (p) U rang (») € w}, ,
P<qeop<Sq.

Then clearly, & satisfies the countable chain condition. For each x ¢ FE,
if we put X, = {peP: 2€U,ciomp Unnmy}» then X, is dense in 2. Let
F ={X,:xeFE}. Then & is of cardinality < 2%, so there is an -
generic filter G on #. If we put f = |JG, then f is a function with
dom (f) € 0 and rang (f) € w. We define U, as follows:

U sny if nedom (f)

U, = .
U otherwise

Then, clearly, U,c % and lim,_. 6(U,) = 0. Let x be an arbitrary ele-
ment of E. Since X, N G # 0, there is p € G such that 2 € U, caomm Unpmr-
Since Pe G, we have U,ciomwmp) Unpiy & Uneo Uny 80 @€ Uneo Un.  There-
fore E has the property (M).

D See [3, p. 48]
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§5. A set E of reals is said to have the property (¥ if every
countable subset of F is a Gy-set of E.

In this section, we shall show there is a non-measurable set of reals
of cardinality 2% with the property (2).

A set E of reals is said to have the property (§*)? if, for every
set N of Lebesgue measure 0, E N N is of cardinality < 2®. If a set
E is measurable and has positive measure, then E includes a set of
measure 0 and cardinality 2%, If we assume MA, then every set of
reals of cardinality < 2% is of Lebesgue measure 0. Therefore every set
of reals of cardinality 2% with the property (S§*) is non-measurable. The
existence of a non-measurable set of reals of cardinality 2% with the
property (1) follows from the following proposition.

PROPOSITION. (Suppose MA). There is a set E of reals of cardinality

2% with the property (8*) such that every subset of E of cardinality <
2% 45 G, in K.

Proof. Order the set of all G,-sets of measure 0 into a transfinite
sequence of type 2% as follows:

NOSND "'sNea "'y(§<2“°) .

By transfinite induction on «, we define a sequence {z,: & < 2% of reals
and a sequence (K,: a < 2%% of G,-sets of measure 0. Let K, = N, and

%, be an arbitrary element of R. Suppose z, and K, with g <« are
defined, and let

8.= UK Uls: p<aj UN,.

"Then, by MA, S, is of measure 0, so R — S, # 0. Let z, be an arbitrary
element of R — S, and K, be the first N, such that S, U {z,} S N..
Let I be the set {x,: « <2®}. Then we have
(1) FE is of cardinality 2%c;
(2) for each a < 2%, FF N N, is of cardinality < 2%;
3 K,CK,if a<p2¥,
From (1) and (2), E is a set of cardinality 2% with the property (§%).
Let D be an arbitrary subset of E of cardinality < 2%. Since 2%
is a regular cardinal, there is o < 2% such that D C {x,: ﬁg&}. Put

» See [3, p. 94]
» Cf. [3, p. 81]
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X ={x;: p< a}. Then, by Lemma 3 of §1, D is a G;set in X. Since

X=FENK,and K, is G, in R, X is G, in E. Therefore D is a G,set
in E.
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