A NOTE ON GENERALIZED UNIQUE EXTENSION OF MEASURES*
DENG-YUAN HUANG

(Received 11 September 1970)

Communicated by J. B. Miller

In Theorem 1, we shall discuss some properties of semifinite measure, that
is, the measure u on a ring R of sets with the property that, for every E in R,
U(E) is equal to the least upper bound of u(F) where F runs over sets such that F
isin R (F < E) and u(F) < oo. Let 6(R) be the o-ring generated by R. To prove
Theorem 2 we shall use the uniqueness theorem in Luther’s paper [2], which is
stated as a lemma in this paper. Theorem 2 is to the effect that for measures u,
and p, on o(R), py < yt, on R implies p, £ u, provided that g;/R (i =1,2) is
semifinite on o(R). Here /R is the restriction, on o(R), of the outer measure
(1;/R)* induced by the restricted measure y;/R of u; on R. Definitions of terms
are the same as [1] and [2].

Fix a set X. Let R be a ring of subsets of X and u a measure on R. Let 6(R)
be the o-ring generated by R, p* the outer measure induced by u on the hereditary
o-ring H(R) generated by R and let i be the restriction of u* to a(R), that is,
i = p*[o(R). Then i is a measure on o(R). In [2] Luther showed that semifiniteness
of fi implies that of u on R and that the semifiniteness of u can not imply that of j.
We can prove the following:

THEOREM 1. If the measure u is semifinite on R and if for every Aeca(R)
there is an F in R (F < A) such that g(A) = u(F) then [ is semifinite.

ProoF. For every A4 in 6(R), there is an F in R (F = A) such that
A = u(F)

sup{u(G): G < F, u(G) < o0, GER}

sup {ii(G): G < 4, i(G) < 0, Gea(R)}

f(A).

Al

IIA

Hence f is semifinite.

ReMARK. The converse of Theorem 1 is not true. For example, let X = [0, 1],
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1 1
R, = {A: A is Lebesgue measurable and 4 o [O, > + m] or

1 1

(n=1,2,---)and let R = U‘f’Rn. Then R is aring (actually is an algebra). Let u be
the Lebesgue measure restricted to R. Then [0,1] is in ¢(R), so F = [0,4], F in
R (and u(F) < o) implies F = ¢.* Further, semifiniteness of x4 can not imply
that 4 in o(R) yields the existence of an E in R such that ji(4) = u(E). Moreover,
we can not get semifiniteness of u even if also A in o(R) implies the existence of an
F in R (F < A) satisfying ji(A) = p(F). For example, let X be any infinite set and
R the ring of all finite subsets of X. Define u on R by

0 fE=g,
“(E)‘{oo if E# .

The following lemma is due to Luther [2].

LEMMA. Let p be a measure on a ring R. If i is semifinite on o(R) then
there exists a unique extension of it to 6(R).

By using this lemma we shall prove the following:

THEOREM 2. Let p(i=1,2,---) be measures on o(R). If ;R (i=1,2) is
semifinite on o(R) and if p, < u, on R, then u, < u,.

Proor. Let M = {Eco(R): p,(E) £ u,(E)}. Clearly, M o R. First we note
that, if u; and p, are finite measures on o(R), then y; < p, on o(R). In fact, it is
easy to see that M is a monotone class. Hence M > ¢(R). This proves that

(i) for finite measures p, and u,, u,(E) £ u,(E) for all E € 6(R).

Let v; = u, /R (i = 1,2). Then ¥, is semifinite and y; = %; on R. By the lemma,
we can obtain

(ii) 5, =p,ono(R) fori =1,2.

Choose E € 6(R); in proving that u,(E) £ u,(E), one may assume that y,(E) < 0.
By semifiniteness of #,, we can find Feg(R) (F < E) with 7,-o-finite measure
such that #,(E) = %,(F). Hence there is a sequence {F,} of sets in R such that
F cU‘fF,, and v,(F,) < oo . Since by (ii)

Vo(F) = p(F) £ py(E) < 0,

there is a sequence {G,} of sets in R such that F < U‘l’"G,l and v,(G,) < oo . Hence
we can suppose that

* I know this example from Dr. N. Y. Luther.
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FclJ H, H,eR,v(H)<ow (i=12;n=12,--)and H; NH, = & (j # k).

1
Therefore we see F = UT(H,, N F) and p;(H,) < o0 and we get

uy(F)

i

1§ j(H, A F) = 2°° (1) (F) < 5 G (F)  (by (i)

= % Uy(H, NF) = p,(F) £ py(E),

which leads to the required inequality,

1 (E) = ¥,(E) = ¥,(F) = i, (F) £ po(E).  (by (i)

ReMARK. If we drop the hypothesis that y; /R is semifinite, then the result is
false, even though f, and /i, are semifinite or pu, and u, are o-finite, as the
following example shows.

ExAMPLE. Let R be a ring of subsets of a countable set X with the property
that every non-empty set in R is infinite and such that ¢(R) is the class of all subsets
of X. If, for every subset E of X, u,(E) is the number of points in E and u,(E)
= 1u,(E), then y, and p, are o-finite on 6(R) and p, /R and 1, /R are not semifinite
but ; = y; (i = 1,2) is o-finite (hence semifinite) on ¢(R). In this case y; < gy, on R
but py 2 p, and py # p, on o(R).

CoR. 1. Suppose R is a ring, and p, and u, are measures on o(R) such that
(i} p(E) £ uy(E) for all E in R, and (ii) y; /R is o-finite. Then p; < u, on o(R).

Proor. Obviously, y; /R is o-finite and hence semifinite.

Cor. 2. Let yu; (i = 1,2) be measure on o(R). If 1;/R (i = 1,2) is semifinite
and for every A in o(R) there is an F in R (F < A) such that

pi/R (A) = p;[R (F)
and if uy < pu, on R, then py < p,.

ProOF. By Theorem 1, 11, /R (i = 1,2) is semifinite, and by Theorem 2, we get
By = K.
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