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Abstract
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional
parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization
of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates.
High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source
optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the
influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of
maximum proton energy, through control of the laser wavefront and target position, produced proton beams with
equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This
demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight
and the construction of future radiation sources.
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1. Introduction

Laser–target interactions have been demonstrated to provide
a highly versatile source of secondary radiation, of interest
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for many applications[1,2] as well as the study of fundamen-
tal science[3–5]. Specifically, laser-driven ion accelerators[6,7]

have desirable characteristics pertaining to applications in
medicine[8], material science[9], nuclear fusion[10] and imag-
ing[11–13]. The need for stable, reproducible beams that can
be tuned presents a necessary, yet challenging, goal towards
the realization of many of these applications[6].
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The most extensively researched mechanism driving
laser-driven proton acceleration is sheath acceleration (often
termed target normal sheath acceleration, or TNSA)[14].
Here, a laser pulse is focused to a relativistic intensity
on the surface of a solid foil, ionizing the material and
heating electrons to MeV temperatures. As the accelerated
electrons escape the rear target surface, they build an
electrostatic sheath field that can reach approximately more
than 1 TV/m and accelerate ions to much greater than 1 MeV
energies over just a few micrometres[15]. Although target
materials vary, the accelerated ions are typically dominated
by protons from hydrocarbon surface contaminants, which
are preferentially accelerated due to their high charge–mass
ratio[16].

Due to their dependence on the rear-surface electrostatic
sheath field, the specific characteristics of these MeV proton
beams are strongly influenced by the laser–electron energy
coupling, electron transport through the bulk of the target
and disruption to the target rear surface. Experiments have
demonstrated the dependence of the electron and proton
beam on various experimental control parameters (e.g., laser
intensity and contrast or target thickness). Of particular
importance is the plasma scale length at the front surface,
which affects the laser–electron coupling mechanisms[17–19].
In pre-plasmas with long scale lengths (>100 µm) the laser
beam has been observed to filament, subsequently reducing
the coupling efficiency, while for optimal scale lengths
the beam can undergo relativistic self-focusing effects that
enhance laser energy coupling[18–20]. The amplified sponta-
neous emission (ASE) pedestal and prepulses, common to
short pulse lasers, can pre-heat the target and lead to signif-
icant plasma expansion before the main pulse arrives. For a
given ASE pedestal duration, an optimal thickness exists at
which this enhanced coupling and electron recirculation[21]

will be advantageous for the acceleration process, while for
thinner targets the inward travelling shock-wave launched by
the rapid surface pre-heating can disrupt the accelerating
sheath field at the rear surface[22–24]. Radiative heating from
X-rays, generated in the focus of a prepulse incident on the
target front-side, can similarly induce rear-surface expansion
of thin targets, impacting TNSA for interaction parameters in
which the ASE-induced shock may not reach the rear surface
during the acceleration window[22].

While broad trends within TNSA proton beams have
been established, comparison of experimental results from
different experiments highlights variation in measured beam
parameters and is indicative of the nuanced relationship
between laser parameters and proton beam characteristics.
For example, while maximum proton energy has been
observed to increase with laser intensity, the scaling follows
an approximately I1/2 dependence for long (>300 fs)
duration laser pulses and a linear dependence of approxi-
mately I for ultra-short (40–150 fs) pulses[7,25,26]. A number

of numerical and experimental studies have explored
the impact of laser pulse duration on maximum proton
energy due to TNSA in interactions with moderate laser
contrast. These indicate an optimal pulse duration for
proton acceleration associated with a fixed laser intensity
or laser energy[27–30] (e.g., optimal duration between 100 and
300 fs for laser pulse energies of 1 J). The dependence is
attributed to differences in laser energy to electron coupling
efficiency and acceleration time relative to the rear-surface
expansion timescale. For higher laser contrast, a similar
trend is observed for targets with thicknesses of tens of
micrometres[31]. More advanced temporal pulse shaping
(e.g., shaping of the rising and falling edge of the pulse) has
been explored recently for the interaction of high-contrast
lasers with ultra-thin targets, which indicates significant
enhancement of proton maximum energies over those
observed for best laser compression[32,33].

With the proliferation of multi-Hz high-power laser
pulses[34] and the development of high repetition-rate
(HRR)-compatible solid-density targetry[35–41], it is now
possible to quickly obtain large datasets from laser-driven
ion acceleration experiments. This opens up the possibility
to perform extensive multi-dimensional parameter scans
to elucidate the interdependence of different experimental
control parameters, as well as to apply machine learning
techniques to optimize ion beam properties – within
complex multi-dimensional parameter spaces – in automated
experiments[42–44] and simulations[45,46].

Here, we describe the first experimental demonstration of
real-time Bayesian optimization (BO) of a laser-driven ion
source, using a closed-loop algorithm. The fully automated
control system operated the laser, analysed the diagnostic
results and made changes to the experiment control param-
eters. This enabled rapid and efficient optimization of the
accelerator performance through simultaneous tuning of up
to six different input parameters, producing proton beams
with equivalent peak energy using 57% of the laser energy
of the manually optimized interaction.

2. Experimental setup

The experiment (see Figure 1 for the setup) was performed at
the Gemini TA2 facility, using a Ti:sapphire laser that forms
part of the Central Laser Facility at the Rutherford Appleton
Laboratory. The laser pulses contained up to 500 mJ in a
transform-limited pulse duration full width at half maximum
(FWHM) of approximately 40 fs, with a central wavelength
of 800 nm and an FWHM bandwidth of 30 nm. The laser was
focused to a high intensity (IL > 1019 W/cm2) using an f /2.5
off-axis parabolic mirror and interacted with the target at an
angle of incidence of 30◦ with p-polarization. The target was
Kapton tape of 12 µm, spooled continuously during shots
using a motorized tape drive[35].
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Figure 1. Illustration of the experimental setup, showing the orientation
of the laser–plasma interaction and the main diagnostics. The laser was
focused, with an f /2.5 90◦ diamond-turned off-axis parabolic mirror (OAP),
to a 1.6 µm radius focal spot containing a median of 35% ± 3% of pulse
energy. The plane of the laser–plasma interaction was monitored by imaging
self-emission at 800 nm at 60◦ to the laser propagation axis.

The interaction was diagnosed using a suite of parti-
cle diagnostics, including a scintillator (EJ-440), positioned
along the rear-surface target normal, to measure the pro-
ton spatial profile, two point measurements of the pro-
ton energy spectrum using a time-of-flight (TOF) diamond
detector[47] and fibre-coupled Thomson parabola spectrome-
ter (at 3◦ to the target normal and along the target normal axis
respectively) and a 0.15 T permanent magnet electron spec-
trometer in the laser-forward direction. The near-field of the
specularly reflected laser light was also measured at the first
and second harmonics of the drive laser.

The laser spectral phase was controlled by an acousto-optic
programmable dispersive filter (DAZZLER) and measured
using a small central sample of the compressed pulse and
a SPIDER diagnostic. The laser parameters (six wavefront
aberrations generated through Zernike polynomials, second-,
third- and fourth-order temporal phases, energy and polar-
ization) and target position relative to the laser focus were
controlled using a fully automated control and acquisition
system. This enabled data scans consisted of bursts of shots
(up to 20) at fixed input values in parameter space. Following
a burst of shots, the control code performed analysis of
the measured data from the online diagnostics and adjusted
the laser or target parameters for the next burst. Although
the controls enabled adjustment of the laser temporal pulse
shape, the data presented here corresponds to pulse shapes
close to best compression (∼ 40 fs) with variations due to
the day-to-day variation in laser tuning.

For high-energy, multi-Hz laser facilities, prolonged HRR
operation can affect the laser pulse parameters, leading
to a degradation in peak intensity[48]. To ensure that our
setup was not subject to these effects, measurements of
laser parameters were made over periods of extended 1 Hz
operation. These measurements concluded that the effect of
prolonged HRR operation on the quality of the temporal
pulse shape was negligible, with the standard deviation
of the random fluctuation in pulse FWHM measured as
approximately 3 fs over 1400 shots.

3. Automated grid scans

With the automated setup, parameter scans can be read-
ily obtained by following a pre-programmed procedure. In
doing this, the control algorithm moved through a series of
equally spaced locations, taking a number of repeat shots
at each configuration to quantify shot-to-shot fluctuations.
Figure 2 shows proton and electron spectra for a 1D scan
of the target position through the laser focus with a 12 µm
Kapton tape and a pulse length of τFWHM = 49 ± 3 fs.
The burst-averaged 95th percentile proton energy (hereafter
referred to as the maximum energy) and average electron
energies are overlaid in magenta with the standard deviation
for each burst indicated by error bars. The proton and
electron spectra are seen to extend to higher energies as the
target position approaches the laser best focus, as would be
expected due to the increasing laser intensity at the target
surface. While the electron spectra peak around the best
focus, where the laser intensity is highest, a characteristic
dip in the maximum proton energy and flux is observed.
Around the best focus (|zT| < 25 µm), a comparatively small
number of protons are still observed at high (≈ 3.5 MeV)

Figure 2. (a) Proton and (b) electron energy spectra from the rear side of
the target during an automated target position scan (zT) with a 12 µm Kap-
ton tape and an on-target laser energy of 438 ± 32 mJ. (c) Average proton
spectra (and standard deviation) for different zT positions as indicated in
the legend. The proton spectra are recorded by the time-of-flight diamond
detector. Each column of the waterfall plots is the average of the 10 shots
from each burst. The scan comprises 31 bursts at different target positions
spaced at 7.3 µm intervals along the laser propagation axis. Negative values
of zT are when the target plane is closer to the incoming laser pulse and
zT = 0 is the target at the best focus of the laser pulse. The magenta
data points, connected with a guide line, indicate the burst-averaged 95th
percentile energy as well as the standard deviation of this value across the
burst.
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energy, with the spectrum dominated by lower (sub-MeV)
energies, as seen in Figure 2(c). A second signal is also seen
in the TOF spectrum, appearing as a band peaking at approx-
imately equal to 0.5 MeV per nucleon in Figure 2(a). This is
most likely due to heavy ions that were accelerated to lower
velocities due to their lower charge-to-mass ratio. Together
with the spectrally peaked proton spectrum, this appears
similar to observations of ‘buffered’ proton acceleration for
higher intensities and thinner targets[49], suggesting that the
sheath field is dynamic during the acceleration process.

An increase in the laser focal spot size has previously been
observed to increase the number of accelerated particles,
although with a reduced maximum energy[50]. While this
is consistent with our measurements, the strong suppression
of proton flux at the highest intensity may indicate that the
acceleration process is further compromised at the highest
laser intensities by the contrast levels of our laser, with
the prepulses and amplified spontaneous emission (ASE)
causing adverse pre-heating of the target. Similar disruption
has previously been attributed to rear-surface deformation by
ASE-driven shock break-out, which can effectively steer a
high-energy component of the proton beam emission towards
the laser axis[23,24], modifying the spectrum measured at a
single angular position, or the presence of a long scale-length
plasma on the rear surface, which has been shown to sup-
press the production of ions through TNSA in experiments
and simulations[51–53].

A laser pulse contrast measurement (using an Amplitude
Sequoia) showed an ASE intensity contrast of better than
10−9 up to t = −20 ps, after which the laser intensity in
the coherent pedestal[54] increased exponentially. Individ-
ual prepulses with a relative intensity of 10−6 were also
observed between t = −50 ps and t = −65 ps. The measured
contrast, starting at t = −150 ps, was used to perform 2D
cylindrical hydrodynamic modelling of the target evolution
ahead of the arrival of the peak intensity. The modelling
was performed using the FLASH code (v4.6.2). The ASE
and coherent pedestal from t = −150 ps to t = −1 ps
were coupled to the target electrons using ray-tracing with
inverse bremsstrahlung heating, and Lee–More conductivity
and heat exchange models were used. This indicated the for-
mation of an approximately 2 µm exponential scale-length
pre-plasma. For the target thicknesses used in the experiment
(�1 µm), the measured prepulse was not large enough for
the generation of a shock moving quickly enough to perturb
the density step of the target rear surface. This matches
previous results[22,24] in similar interaction conditions, which
indicates that the ablation-launched density shock does not
have time to affect the rear surface during the acceleration
process. This dip in signal at the highest intensities is a
surprising result for targets with tens of micrometre thick-
ness. It is more commonly observed for experiments using
ultra-thin targets, where it is attributed to ASE shock break-
out[55]. For the interaction presented here, the rear surface

may be affected by poor long-timescale contrast (before the
start of the measurement window at t = −150 ps), or through
X-ray heating of the target bulk[22]. Determination of the
specific processes driving the disruption of proton acceler-
ation for this interaction requires additional measurements
of long-timescale contrast and pre-plasma scale length, and
is beyond the scope of this optimization demonstration.

The laser intensity can be varied by adding wavefront
aberrations to the laser, which changes the focal spot shape
as well as the peak intensity. Figures 3(a)–3(d) show the
burst-averaged electron and proton flux as well as the relative
specular reflectivity at the fundamental and second harmonic
wavelengths for a varying target plane, zT (Figures 3(a)
and 3(c)) and 45-degree astigmatism, Z−2

2 (Figures 3(b) and
3(d)). Again, a characteristic drop was observed in the proton
flux and maximum energy for the best focus. Moderately
decreasing the peak intensity by either defocusing or adding
astigmatism decreased the electron flux and average energy,
but maximized the proton acceleration. At the low intensity
limit the particle acceleration drops to zero, as expected.

Evidence of disruption to the front surface during the inter-
action can be seen from the sharp drop in the fundamental
and second harmonic laser reflectivity at high intensities.
This matches previous observations of target reflectivity
and harmonic generation being adversely affected for high-
intensity low-contrast laser–plasma interactions as a result of
the formation of a large scale-length pre-plasma[17,56,57].

To explore the interplay between astigmatism and defocus,
an automated 2D grid scan was performed. Burst-averaged
measurements of the electron and proton flux, mean elec-
tron energy and maximum proton energy are displayed in
Figures 3(e)–3(h). The electron generation was maximized
for both zero defocus and zero astigmatism, monotonically
decreasing as zT and Z−2

2 were increased. The proton flux
and energy are approximately maximized for a ring around
the origin, indicating a threshold intensity for disrupting the
proton acceleration that can be achieved either by defocusing
or increasing the focal spot size through optical aberrations.
There also appears to be enhanced proton flux for zero
defocus, zT = 0 µm, but with the application of signif-
icant astigmatism Z−2

2 = ±1.2 µm when compared with
the increased flux achieved just through defocusing with
no astigmatism. This indicates that the proton acceleration
process is not just intensity dependent, but rather is also
sensitive to the spatial intensity profile on-target[58].

For all results in Figure 3, the laser pulse had a shorter
pulse duration of τFWHM = 46 ± 4 fs and was skewed with a
slower rising edge than for the results in Figure 2, as can be
seen in Figure 4. The pulse shape appears to affect the range
of zT over which the proton acceleration was suppressed. For
the case of Figure 2, proton acceleration was maximized at
zT = ±30 µm, while with the slower rising edge used for
Figure 3(a), the maximum occurs at zT = ±67 µm, with very
low flux obtained at zT = ±33 µm. For a slower rising edge,
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Figure 3. One-dimensional scans of (a) and (c) target z-position zT and (b) and (d) astigmatism Z−2
2 for 12 µm thickness Kapton tape and a pre-plasma laser

energy of 453 ± 40 mJ. The electron and proton flux are plotted in (a) and (b), and the specularly reflected fundamental and second harmonic laser signals
are plotted in (c) and (d). All fluxes are normalized to their observed maxima over the 2D parameter scans. Two-dimensional scans of electron and proton
flux are shown in (e) and (f), with the average detected electron energy and the maximum (95th percentile) proton energies shown in (g) and (h), respectively.
The 2D scan is a result of 143 bursts of 15 shots and the datapoints are the mean of each individual burst.

Figure 4. Laser pulse temporal profiles as measured by the on-shot
SPIDER diagnostic for the results of the 1D scan (Figure 2), 2D scan
(Figure 3) and optimization (Figure 5). The integrals of the signals are
set by independent measurements of the on-target laser energy, which
were 438 ± 32 mJ (1D scan), 453 ± 40 mJ (2D scan) and 258 ± 22 mJ
(optimization). The corresponding measured FWHM pulse widths were
49±3 fs, 45±4 fs and 39±1 fs.

there is more time for any disruption of the target to occur
prior to the arrival of the peak of the pulse, meaning that a
larger defocus is required to maintain proton acceleration. A
lower maximum proton energy of 0.8±0.1 MeV is observed
in Figure 3(a) compared to 2.8 ± 0.4 MeV for Figure 2.
This shows the benefit of using temporal pulse shaping
to minimize target pre-heating, as it allows for efficient
proton acceleration at higher intensity interaction, leading to
higher energy protons. Despite the very different interaction
conditions (here – moderate laser contrast and micrometre
thick target), this indicates a similar trend to that observed
in recent experiments using high-contrast ultra-thin targets
that demonstrated the enhancement of particle energies and
numbers by modification of the pulse shape, away from
nominal pulse compression, with a steepened rising edge in
comparison with the falling edge of the pulse[32,33].

The interaction parameter space is multi-dimensional.
While 1D and 2D slices of this parameter space provide
valuable insights, true mapping of the parameter space is
required for deeper understanding and control of sheath-
accelerated proton beams, and the location of global
optima requires the inclusion of more dimensions. This
is particularly important when individual parameters are
coupled in complex relationships, as is evident in the case
of proton acceleration in Figure 3. While grid scanning
is feasible for mapping up to 2D slices of parameter
space with multi-Hz laser systems, for higher numbers of
dimensions it becomes prohibitively time consuming. In
addition, a grid scan covers regions of parameters with a high
signal and no signal with the same resolution. Given that
measurements in large regions of the accessible parameter
space will return no appreciable proton acceleration, this is
uneconomical in terms of target usage, debris production
and laser operation. It is therefore desirable to use more
intelligent algorithms for probing and optimization of the
beam in high-dimensional parameter spaces.

4. Bayesian optimization

In BO, experimental data is used to update a prior model to
more accurately fit observations, thereby obtaining a poste-
rior model. The model is then used to make predictions over
the experimental parameter space and select the parameter
set for the next measurement, with the goal of efficiently
finding the optimum within the parameter space. A com-
monly used type of model is Gaussian process regression
(GPR)[59], which is a well-suited technique for modelling
multi-dimensional experimental data. A key advantage for
experimental science is that GPR can naturally include
uncertainty quantification on the data, and also can be used
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to estimate the uncertainty when making predictions. BO is
widely used for the optimization of noisy processes that are
expensive to evaluate and for which there is no adequate
analytical description, as is typically the case in complex
non-linear systems.

In the field of laser–plasma acceleration, BO has been used
in laser-wakefield acceleration to optimize the generated
electron and X-ray beam properties[43,44] and in simulated
laser-driven ion beams for maximizing proton energy[45]. To
demonstrate its applicability in a laser-driven ion accelera-
tion experiment, we have adapted the algorithm from Shalloo
et al.[43]. Using the automated control of the experiment and
online analysis of the experimental diagnostics, we were able
to perform multi-dimensional optimization of any fitness
function that outputted a scalar property of interest, such as
the maximum proton energy.

The input values passed to the model for each burst were
taken from the parameters set by the control algorithm,
with the exception of the plane of the interaction, zT. It
was found that errors in positioning the tape target, while
significantly smaller than the Rayleigh range of the focusing
laser (15 µm), were large compared to the sensitivity of the
plasma accelerator, and so the target position input values
were taken from a spatially resolved measurement of the self-
emission region at the target surface, collected at 60◦ to the
front surface normal of the tape. This was found to greatly
improve the confidence of the model and its ability to find
the optimum.

To demonstrate the BO algorithm, a 6D optimization
was performed to maximize the maximum proton energy
(as measured by the TOF). Five Zernike mode coefficients
– namely Z−2

2 , Z2
2 (oblique and vertical astigmatism), Z−1

3 ,
Z1

3 (vertical and horizontal coma) and Z−2
4 (oblique second

astigmatism) – were used to change the spatial phase of the
laser pulse, affecting the focal spot shape and peak intensity.
In addition, the tape surface position relative to the focal
plane of the laser, zT, was varied using a linearly motorized
stage and an online self-emission diagnostic to measure its
position, as mentioned. This optimization started from an
initially flat wavefront (optimized using a feedback loop with
a HASO wavefront sensor) and the tape target was initially
positioned at the estimated focal plane of the laser. This
represents the typical starting point for conventional opti-
mization of manual experiments, with the highest intensity
being assumed to be optimal.

Figure 5 shows the measured maximum proton energy
along with the variation of each input parameter as a function
of the burst number. By chance, one of the initial randomly
selected points produced a large enhancement in maximum
proton energy, with every parameter apart from Z2

2 close to
its eventual optimum value. With each additional measure-
ment, the model gained more knowledge of the parameter
space and adjusted its prediction of the global optimum of
proton energy (red line) and its location in parameter space.

Figure 5. Optimization of the 95th percentile proton energy determined by
the rear-surface time-of-flight diagnostic through the adjustment of the laser
wavefront and position of target along the laser propagation direction (zT).
The top panel shows the measured values of the proton energy (median
and median absolute difference of each burst) as a function of the burst
number (black points and error bars, respectively), together with the model
predicted optimum after each burst (red line and shaded region) as well as
the final optimal value from the model (blue horizontal line). The variation
of each control parameter (given in micrometres) is shown in the lower plots
(black points) along with the final optimized values (blue horizontal line),
also as functions of the burst number. The best individual burst is indicated
by the vertical magenta line in each plot and it can be seen that, for all
parameters, the experimental parameters fall very close to the optimum
value predicted by the model (e.g., they are close to the horizontal blue
line). For this data series, each burst contained 20 shots, the target was
12 µm Kapton tape and the laser energy was 258±22 mJ.

After 61 bursts, the model optimum was 2.30 ± 0.10 MeV,
compared to a starting point of 1.22 ± 0.04 MeV. This
optimized maximum energy is close to the value shown in
Figure 2 and significantly greater than that seen in Figure 3,
despite being limited to only 260 mJ of on-target laser
energy, compared to more than 430 mJ for the parameter
scans.

The optimum found involved a shift of 70 µm from
the initial position (best focus), as well as the addition of
significant wavefront aberrations compared to the initially
flat wavefront. The focal spot fluence distribution at the
target plane was calculated from on-shot measurement of
the near-field phase and fluence profiles using a HASO
wavefront sensor. The resulting intensity maps are shown
in Figure 6 for Z−2

2 = −1,0,1 at zero defocus and for the
optimized wavefront found through the optimization. The
peak intensity was I0 = 5 × 1019 W cm−2 for the case of a
flat wavefront at the focal plane. Each of the modified pulses
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Figure 6. Reconstructed laser intensity profiles at zT = 0 µm for (a) Z−2
2 =

−1.2 µm, (b) Z−2
2 = 0 µm, (c) Z−2

2 = 1.2 µm and (d) for the optimal pulse
(burst 53) from the optimization shown in Figure 5. The peak intensity of
each focus was 2.7 × 1019, 5.1 × 1019, 2.9 × 1019 and 3.2 × 1019 W cm−2,
respectively.

had a similar peak intensity of I0 ≈ 3 × 1019 W cm−2, with
the spot shape appearing close to an ellipse for the optimized
pulse case. From analysis of the previous parameter scans
it is inferred that this intensity distribution was optimal,
maintaining a maximum possible intensity, while limiting
disruption to the rear target surface.

The reason for the focal spot shape found in this optimiza-
tion would require expensive 2D–3D numerical simulations
investigating how subtle changes in the wavefront affect the
various energy transfer processes and plasma dynamics in
sheath acceleration. This would be valuable for understand-
ing how to further optimize laser-driven proton acceleration,
but is beyond the scope of this paper, which is focused on
the utility of online optimization for proton beam parameter
optimization as a particle source for applications as well as
its use to identify interesting regions for deeper study within
a complex non-linear system.

5. Conclusion

In conclusion, we have demonstrated the automation and
optimization of laser-driven proton acceleration from a solid
tape drive. The ability to take high-fidelity parameter scans
in one or two dimensions will be of great benefit to the
field in understanding what is a highly complex and dynamic
interaction. BO of the generated proton beam was demon-
strated, by using real-time analysis of experimental diag-
nostics to create a closed-loop system with limited human
intervention. This can find optima that would elude manual
optimization or single-parameter scans, due to the complex
interplay among the large number of control parameters. In
the case of this low-contrast interaction, the temporal pulse
shape was shown to play an important role in determining the
intensity threshold at which the proton acceleration process
was disrupted. Including temporal and spatial pulse shaping
simultaneously in the optimization process may lead to
further improvement.

Automated BO can quickly find regimes of stable
and optimized operation without requiring the constant
attention of laser–plasma experts. It is anticipated that this
development will be essential for efficient utilization of laser-
driven ion acceleration for its many applications in future

user facilities[60]. BO could also be extremely valuable for
optimizing radiation pressure acceleration for which laser–
plasma instabilities[61,62] typically limit the acceleration
process, as well as for optimizing enhanced acceleration
through relativistic transparency, which has already demon-
strated highly desirable near-100 MeV proton energies[63]

and for which target evolution plays a central role. Fine
tuning of the laser parameters may be able to mitigate these
instabilities or further tailor the target evolution respectively,
significantly enhancing the accelerated proton beam.
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46. B. Z. Djordjević, A. J. Kemp, J. Kim, R. A. Simpson, S. C.
Wilks, T. Ma, and D. A. Mariscal, Phys. Plasmas 28, 043105
(2021).

47. D. Margarone, J. Krsa, L. Giuffrida, A. Picciotto, L. Torrisi,
T. Nowak, P. Musumeci, A. Velyhan, J. Prokpek, L. Lska, T.
Mocek, J. Ullschmied, and B. Rus, J. Appl. Phys. 109, 103302
(2011).

48. Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N.
Miyanaga, Appl. Phys. Express 10, 102702 (2017).

49. N. P. Dover, C. A. J. Palmer, M. J. V. Streeter, H. Ahmed, B.
Albertazzi, M. Borghesi, D. C. Carroll, J. Fuchs, R. Heathcote,
P. Hilz, K. F. Kakolee, S. Kar, R. Kodama, A. Kon, D. A.
MacLellan, P. McKenna, S. R. Nagel, D. Neely, M. M. Notley,
M. Nakatsutsumi, R. Prasad, G. Scott, M. Tampo, M. Zepf, J.
Schreiber, and Z. Najmudin, New J. Phys. 18, 013038 (2016).

50. J. S. Green, D.C. Carroll, C. M. Brenner, B. Dromey, P. S.
Foster, S. Kar, Y. T. Li, K. Markey, P. Mckenna, D. Neely, A.
P. L. Robinson, M. J. V. Streeter, M. Tolley, C.-G. Wahlström,
M. H. Xu, and M. Zepf, New J. Phys. 12, 085012 (2010).

51. A. J. Mackinnon, M. Borghesi, S. Hatchett, M. H. Key, P. K.
Patel, H. Campbell, A. Schiavi, R. Snavely, S. C. Wilks, and
O. Willi, Phys. Rev. Lett. 86, 1769 (2001).

52. J. Fuchs, C. A. Cecchetti, M. Borghesi, T. Grismayer, E.
D’Humières, P. Antici, S. Atzeni, P. Mora, A. Pipahl, L.
Romagnani, A. Schiavi, Y. Sentoku, T. Toncian, P. Audebert,
and O. Willi, Phys. Rev. Lett. 99, 015002 (2007).

53. A. Higginson, R. Wilson, J. Goodman, M. King, R. J. Dance,
N. M.H. Butler, C. D. Armstrong, M. Notley, D. C. Carroll,
Y. Fang, X. H. Yuan, D. Neely, R. J. Gray, and P. McKenna,
Plasma Phys. Control. Fusion 63, 114001 (2021).

54. C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel,
S. Hawkes, B. Parry, and P. P. Rajeev, Opt. Express 19, 2193
(2011).

55. J. T. Morrison, S. Feister, K. D. Frische, D. R. Austin,
G. K. Ngirmang, N. R. Murphy, C. Orban, E. A. Chowdhury,
and W. M. Roquemore, New J. Phys. 20, 022001 (2018).

56. A. S. Pirozhkov, I. W. Choi, J. H. Sung, S. K. Lee, T. J.
Yu, T. M. Jeong, I. J. Kim, N. Hafz, C. M. Kim, K. H. Pae,
Y. C. Noh, D. K. Ko, J. Lee, A. P. L. Robinson, P. Foster,
S. Hawkes, M. Streeter, C. Spindloe, P. McKenna, D. C.
Carroll, C. G. Wahlström, M. Zepf, D. Adams, B. Dromey,
K. Markey, S. Kar, Y. T. Li, M. H. Xu, H. Nagatomo, M.
Mori, A. Yogo, H. Kiriyama, K. Ogura, A. Sagisaka, S. Orimo,
M. Nishiuchi, H. Sugiyama, T. Zh. Esirkepov, H. Okada, S.
Kondo, S. Kanazawa, Y. Nakai, A. Akutsu, T. Motomura, M.
Tanoue, T. Shimomura, M. Ikegami, I. Daito, M. Kando, T.
Kameshima, P. Bolton, S. V. Bulanov, H. Daido, and D. Neely,
Appl. Phys. Lett. 94, 241102 (2009).

57. M. J. V. Streeter, P. S. Foster, F. H. Cameron, M. Borghesi,
C. Brenner, D. C. Carroll, E. Divall, N. P. Dover, B. Dromey,
P. Gallegos, J. S. Green, S. Hawkes, C. J. Hooker, S. Kar,
P. McKenna, S. R. Nagel, Z. Najmudin, C. A. J. Palmer,
R. Prasad, K. E. Quinn, P. P. Rajeev, A. P. L. Robinson, L.
Romagnani, J. Schreiber, C. Spindloe, S. Ter-Avetisyan, O.
Tresca, M. Zepf, and D. Neely, New J. Phys. 13, 023041
(2011).

58. R. Wilson, M. King, N. M. H. Butler, D. C. Carroll, T. P.
Frazer, M. J. Duff, A. Higginson, R. J. Dance, J. Jarrett, Z.
E. Davidson, C. D. Armstrong, H. Liu, S. J. Hawkes, R. J.
Clarke, D. Neely, R. J. Gray, and P. McKenna, Sci. Rep. 12,
1910 (2022).

59. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning (Adaptive Computation and Machine
Learning) (The MIT Press, 2005).

60. F. Schillaci, L. Giuffrida, M. Tryus, F. Grepl, S. Stancek, A.
Velyhan, V. Istokskaia, T. Levato, G. Petringa, G. A. P. Cirrone,
J. Cupal, L. Koubiková, D. Peceli, J. A. Jarboe, T. de Castro
Silva, M. Cuhra, T. Chagovets, V. Kantarelou, M. Tosca, V.
Ivanyan, M. G. Žáková, J. Psikal, R. Truneček, A. Cimmino,
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