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A NOETHER-LEFSCHETZ THEOREM FOR VARIETIES
OF r-PLANES IN COMPLETE INTERSECTIONS

ZHI JIANG

Abstract. We prove a Noether-Lefschetz type theorem for varieties of r-planes
in complete intersections. We then use it to study the Abel-Jacobi map of planes
on a smooth cubic fivefold.

§0. Introduction

Let X be a general complete intersection in complex projective space.
The Picard number of X is known. We may state it in the following form.

Theorem 0.1. Let X be a smooth complete intersection of dimension at
least 2 in complex projective space.

• If dimX ≥ 3, the second Betti number of X is 1, and in particular, the
Picard number ρ(X) of X is 1.

• If dimX = 2 and if X is very general, the Picard number ρ(X) is 1, except
when X is a quadric surface in P3, or X is a cubic surface in P3, or X

is a complete intersection of two quadrics in P4.

The first part of the above theorem comes from the Lefschetz hyperplane
theorem and the second part is the so-called Noether-Lefschetz theorem (see
[V1, Section 3] or [S, Section 2]). Bonavero and Voisin [BV], using Deligne’s
global invariant cycles theorem, proved an analogue of the first part of
the above theorem for the schemes parameterizing r-planes contained in
a complete intersection in complex projective space. Debarre and Manivel
[DM] later used Bott’s theorem to give another proof of the same theorem.
The goal of this paper is to complete their result. We will prove an analogue
of the second part of Theorem 0.1 for such schemes.

We first recall some notation.
We follow the presentation in [DM]. Let V be a complex vector space of

dimension n + 1. For a finite sequence d = (d1, . . . , ds) of integers at least 2
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and a positive integer r, we set |d| =
∑s

i=1 di, d + r = (d1 + r, . . . , ds + r),
and d/r =

∑s
i=1

(
di
r

)
.

Let X ⊂ P(V ) be a complete intersection defined by f1 = · · · = fs = 0,
where fi ∈ SdiV ∗ for each 1 ≤ i ≤ s. We denote by Fr(X) the subscheme of
G := G(r + 1, V ) parameterizing linear spaces of dimension r contained in
X . On G(r +1, V ), there is the tautological subbundle Σ of V ⊗ OG of rank
r+1 and the tautological quotient bundle Q of rank n − r, and Ω1

G � Σ ⊗ Q∗.
Each fi induces a global section σi of SdiΣ∗ on G. We can also see Fr(X)
as the zero locus of the global sections σi for all 1 ≤ i ≤ s. We then set

δ(n,d, r) = (r + 1)(n − r) −
(

d + r

r

)
,

which is the expected dimension of Fr(X), and set

δ−(n,d, r) = min
{
δ(n,d, r), n − 2r − s

}
.

There are many works about the schemes Fr(X). The basic properties of
Fr(X) are studied in [AK], [B1], [BVV], and [DM]. As interesting examples,
the schemes Fr(X) have been considered in different context (see [B2], [BD],
[BV], and [J]), and there are important applications to X (see [BM], [CG],
and [ELV]).

The following theorem is our starting point.

Theorem 0.2. Assume that X is a general complete intersection as
above.
(1) If δ−(n,d, r) ≥ 1, the scheme Fr(X) is connected, smooth, and of dimen-

sion δ(n,d, r) (see [B1] and [DM]).
(2) If δ−(n,d, r) ≥ 3, the second Betti number of Fr(X) is 1, and in partic-

ular, the Picard number ρ(Fr(X)) of Fr(X) is 1 (see [BV] and [DM]).

The above theorem is optimal. Indeed, when δ−(n,d, r) ≤ 2, the Hodge
number h2,0(Fr(X)) is often nonzero. Hence, though we know the second
Betti number of Fr(X), it is a priori not clear what the Picard number is.

The main theorem of this paper is the following.

Theorem 0.3. Let X be a very general complete intersection in pro-
jective space. Assume that δ(n,d, r) ≥ 2 and that δ−(n,d, r) > 0.† We have
ρ(Fr(X)) = 1 except in the following cases:

†This assumption is not important. We use it only to exclude the case when X is a
quadric in P2r+1 for r ≥ 1, where Fr(X) has two smooth isomorphic disjoint components
and the Picard number of each component is 1.
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• X is a quadric in P2r+3, r ≥ 1, where the Picard number of Fr(X) is 2;
• X is a complete intersection of two quadrics in P2r+4, r ≥ 1, where the

Picard number of Fr(X) is 2r + 6.

In the following examples, we will see that when δ−(n,d, r) ≤ 2, the Picard
number ρ(Fr(X)) varies, where the situation is similar to the families of
smooth hypersurfaces of degree at least 4 in P3.

Example 0.4. Let X ↪→ P2r+3 be a general complete intersection of two
quadrics, where r ≥ 1. We have δ(2r+3, d, r) = r+1 and δ−(2r+3, d, r) = 1.
Hence, Fr(X) is a smooth irreducible projective variety of dimension r + 1.

We may assume that the two quadrics defining X are∑
i

x2
i and

∑
i

λix
2
i ,

where λi 	= λj if i 	= j. By [Re], we know that Fr(X) is an abelian variety
and is isomorphic to the Jacobian of the hyperelliptic curve defined by

y2 = Πi(x0 − λix1).

Therefore, by [P], ρ(Fr(X)) = 1 for a very general X . There also exist
smooth X such that ρ(Fr(X)) ≥ 2, for instance, when the hyperelliptic curve
is defined by y2 = x2r+4 − 1.

Example 0.5 (see [CG]). Let X ↪→ P4 be a cubic threefold. We consider
F1(X) and have in this case δ(4,3,1) = 2 and δ−(4,3,1) = 1.

Clemens and Griffiths [CG] proved that the Abel-Jacobi map α : F1(X) →
JX induces an isomorphism α∗ : Alb(F1(X)) � JX and ∧2H1(F1(X),Q) �
H2(F1(X),Q). We conclude that

H2
(
F1(X),Q

)
� H2(JX,Q) � ∧2H3(X,Q).

Since the Zariski closure of the monodromy group for the family of cubic
threefolds is the whole symplectic group (see [PS, Theorem 10.22]), we have
ρ(F1(X)) = 1 for X very general. We see in [Ro] that there is a 7-dimensional
family in the 10-dimensional moduli space of cubic threefolds parameterizing
cubics X whose variety of lines F1(X) contains elliptic curves. For such X ,
we have ρ(F1(X)) ≥ 2.

Remark 0.6. Roulleau showed me a more precise relation between the
Néron-Severi group of F1(X) and JX :

0 → NS(JX) α∗
−→ NS

(
F1(X)

)
→ Z/2Z → 0.
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Example 0.7. Let X ↪→ P7 be a cubic sixfold. We have δ(7,3,2) = 5 and
δ−(7,3,2) = 2.

The 2-planes cover the whole of X ; hence, the Abel-Jacobi map induces
an injective map H6(X,Q)prim → H2(F2(X),Q). We can also compute that

dimH6(X,Q) = dimH2
(
F2(X),Q

)
= 87.

Hence, since the monodromy group of the family of cubic of dimension 6 is
again big [PS, Theorem 10.22], if X is general, ρ(F2(X)) = rank(H3,3(X) ∩
H6(X,Q)) = 1. If X contains some special codimension 3 subvariety (e.g.,
P3), we have ρ(F2(X)) = rank(H3,3(X) ∩ H6(X,Q)) ≥ 2.

We will give in the last section the following application of our Noether-
Lefschetz-type theorem.

For any smooth cubic fivefold Z, we denote by (JZ,Θ) the principally
polarized intermediate Jacobian of Z which is a 21-dimensional principally
polarized abelian variety. We then have the Abel-Jacobi map

α : F2(Z) → JZ.

As an application of our main theorem, we have the following.

Theorem 0.8. With the notation as above, the cohomology class

[
α∗

(
F2(Z)

)]
= 12

[Θ19

19!

]
.

§1. Preliminaries

We will use deformation arguments to prove the main theorem. In this
section, we first recall a lemma which reduces the proof to certain calcula-
tions of cohomology groups, and then we recall Bott’s theorem, which helps
us to calculate the cohomology groups of homogeneous vector bundles on
Grassmannians.

Let Y be a smooth projective variety of dimension N and Picard num-
ber 1. Let W be a vector bundle of rank R on Y with N − R ≥ 2. For a
section σ of W , we denote by Xσ the zero locus of s.

Lemma 1.1. We fix a general section σ of W . Assume that Xσ is smooth
and of dimension N − R, and assume that we have

(a) dimH1(Xσ,Ω1
Y |Xσ) = 1;
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(b) HN −R−2(Xσ,KXσ) ⊗ H0(Y,W )|Xσ → HN −R−2(Xσ,W ⊗ KXσ) is sur-
jective.

Then for a very general section ρ ∈ H0(Y,W ), the Picard number of the zero
locus Xρ is 1.

Proof. Let U ⊂ H0(Y,W ) be the open subset parameterizing sections
whose zero locus is smooth of the expected dimension. We set π : X → U

as the family of Xσ. We have the sequence

0 → TXσ → TX |Xσ → TU,σ → 0.

And for any t ∈ TU,σ, we have the Kodaira-Spencer class δ(t) ∈ H1(Xσ, TXσ),
where δ is the coboundary map in (1).

We denote by h the cohomology class of an ample divisor of Y , and
we denote by H1,1(Xσ)prim the primitive (1,1)-forms on Xσ relative to
h. In order to prove the lemma, we just need to show that for any λ ∈
H1,1(Xσ)prim, the map

∇λ ◦ δ : H0(Y,W ) � TU,σ → H2(Xσ,OXσ)(1)

is nontrivial (see, e.g., [V1, Chapter 5]).
Considering the sequence

0 → W ∗ → Ω1
Y |Xσ → Ω1

Xσ
→ 0,

we have
H1(Xσ,Ω1

Y |Xσ) → H1(Xσ,Ω1
Xσ

) δ−→ H2(Xσ,W ∗).

Since dimH1(Xσ,Ω1
Y |Xσ) = 1, we have that the map

δ : H1,1(Xσ)prim → H2(Xσ,W ∗)

is injective. Thus, by Serre duality of the map (1), we just need to show
that the map

HN −R−2(Xσ,KXσ) ⊗ H0(Y,W )|Xσ → HN −R−2(Xσ,W ⊗ KXσ)

is surjective to conclude that the Picard number of a general zero locus Xρ

is 1.
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In our situation, the ambient variety Y will be the Grassmannian G(r +
1, V ), and the vector bundle W will be

⊕s
i=1 SdiΣ∗. Hence, in order to verify

conditions (a) and (b) in Lemma 1.1, we need to study the cohomology
groups of homogeneous vector bundles on Grassmannians. We first recall
Bott’s theorem. Since we work only on G(r + 1, V ) in this paper, we will
present Bott’s theorem in an elementary way (see, e.g., [S, Section 4.6]).

We call a finite decreasing sequence of integers c = (c1, . . . , ck) a partition.
For a vector space W of dimension k, we denote by ΓcW the irreducible
GL(W )-module associated to c. For example, we have

Γ(k,0,...,0)W = SkW,

Γ(0,0,...,−k)W = SkW ∗,

Γ(1,1,...,1)W = detW.

Let b = (b1, b2, . . . , bn−r) and a = (a1, a2, . . . , ar+1) be partitions. We define

φ(b, a) = (b1, b2, . . . , bn−r, a1, a2, . . . , ar+1) − (1,2, . . . , n + 1)

= (c1, c2, . . . , cn+1),

and we define the set Φb,a to be the set consisting of the pairs (s, t) with s < t

and cs < ct. We denote by i(b, a) the cardinality of Φb,a. We then reorder
φ(b, a) by making it decreasing, and we denote the resulting sequence by
φ(b, a)+ and set

ψ(b, a) := φ(b, a)+ + (1,2, . . . , n + 1).

If ψ(b, a) is not decreasing, we have Γψ(b,a)V = 0 by convention. The follow-
ing is a special case of Bott’s theorem.

Theorem 1.2 ([Bot, Theorem 1]). With the above notation, we have
(1) Hq(G,ΓbQ ⊗ ΓaΣ) = 0 if q 	= i(b, a);
(2) H i(b,a)(G,ΓbQ ⊗ ΓaΣ) = Γψ(b,a)V .

Here is a useful corollary.

Corollary 1.3. On the Grassmannian G = G(r+1, V ), assume that for
some partition a, we have

Hq(G,ΓaΣ) 	= 0.

Then there exists k ≥ 0 such that q = k(n − r).
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We will often identify the partitions (a1, . . . , an−r) and (a1, . . . , an−r,0).
The following proposition is crucial.

Proposition 1.4. We keep the notation as above.

(1) Let a1 and a2 be partitions at least zero; then the multiplication map

H0(G,Γa1Σ∗) ⊗ H0(G,Γa2Σ∗) → H0(G,Γa1Σ∗ ⊗ Γa2Σ∗)

is surjective.
(2) For any positive partition a > 0 and some positive integer d > 0, if there

exists some k ≥ 1 such that the multiplication

Hk(n−r)(G,ΓaΣ) ⊗ H0(G,SdΣ∗) → Hk(n−r)(G,ΓaΣ ⊗ SdΣ∗)

is not surjective, we have ak ≥ n − r + k and ak+1 ≥ k + 1.

Proof. We first prove (1). By Theorem 1.2, we have H0(G,Γa1Σ∗) =
Γa1V ∗ and H0(G,Γa2Σ∗) = Γa2V ∗. We have by the Littlewood-Richardson
rule that

Γa1Σ∗ ⊗ Γa2Σ∗ =
⊕

v

Nv · ΓvΣ∗,

Γa1V ∗ ⊗ Γa2V ∗ =
⊕

v

N ′
v · ΓvV ∗.

Since dimV ∗ > rankΣ∗, N ′
v ≥ Nv for any partition v. Then we conclude the

proof of (1) by Theorem 1.2.
For (2), we write

ΓaΣ ⊗ SdΣ∗ =
⊕

α

ΓαΣ,

where by the Littlewood-Richardson rule, α goes through all partitions sat-
isfying

a1 ≥ α1 ≥ a2 ≥ α2 ≥ · · · ≥ ar+1 ≥ αr+1,

and
r+1∑
i=1

αi =
r+1∑
i=1

ai − d.

Fix any such partition α.
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If ak < n − r + k, we have αk < n − r + k. Hence, by Bott’s theorem, we
have

Hk(n−r)(G,ΓaΣ) = Hk(n−r)(G,ΓaΣ ⊗ SdΣ∗) = 0,

which contradicts our hypothesis.
If ak+1 ≤ k, we have Hk(n−r)(G,ΓaΣ) � Γψ(0,a)V 	= 0. We now study the

map

mα : Hk(n−r)(G,ΓaΣ) ⊗ H0(G,SdΣ∗) → Hk(n−r)(G,ΓaΣ ⊗ SdΣ∗)

→ Hk(n−r)(G,ΓαΣ).

Now we denote by V1 a linear subspace of codimension (r + 1 − k) of V ,
and we take a linear subspace V2 of V so that V � V1 ⊕ V2. Let G1 := G(k,V1)
be the Grassmannian, and denote by i : G1 → G the natural embedding
which sends a subspace Σ1 of V1 to a subspace Σ1 ⊕ V2 of V . Then we denote
by a (resp., α) the partition (a1, . . . , ak) (resp., (α1, . . . , αk)) and denote by
ã (resp., α̃) the partition (ak+1, . . . , ar+1) (resp., (αk+1, . . . , αr+1)). Hence,
a = (a, ã) and α = (α, α̃). Finally, we denote d1 =

∑k
i=1(ai − αi) and d2 =∑r+1

i=k+1(ai − αi). We have that both d1 and d2 are at least zero and that
d1 + d2 = d. We notice that ΓaΣ1 ⊗ ΓãV2 (resp., Sd1Σ∗

1 ⊗ Sd2V ∗
2 ) is a direct

summand of i∗ΓaΣ (resp., i∗SdΣ∗).
We notice that i(G1) is the zero locus of a global section of Q ⊗ V ∗

2 in G.
We claim that the restriction maps

r1 : Hk(n−r)(G,ΓaΣ) � Γψ(0,a)V → Hk(n−r)(G1, i
∗ΓaΣ),

r2 : H0(G,SdΣ∗) → H0(G1, i
∗SdΣ∗

1),(2)

r3 : H0(G,ΓαΣ) → H0(G1, i
∗ΓαΣ)

are surjective.
We prove that r1 is surjective, and the others are easy. We use the Koszul

resolution of the structure sheaf Oi(G1):

0 → det(Q∗ ⊗ V2) → · · · → Q∗ ⊗ V2 → OG → Oi(G1) → 0.

Therefore, we just need to prove that

Hk(n−r)+i
(
G,ΓaΣ ⊗ ∧i(Q∗ ⊗ V2)

)
= 0

for each i ≥ 1. We then argue by contradiction. Assume that there exists a
direct summand ΓbQ∗ of ∧i(Q∗ ⊗ V2) such that Hk(n−r)+i(G,ΓaΣ ⊗ ΓbQ∗) 	=
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0. We have |b| = i, and we may write b = (b1, . . . , bn−r) ≥ 0. Since Hk(n−r)(G,

ΓaΣ) 	= 0, we have ak ≥ n − r + k and ak+1 ≤ k. Again by Bott’s theorem,
there exists a positive integer t ≤ n − r such that for each 1 ≤ s ≤ t, there
exists is ≥ 1 with

−bs − (n − r + 1 − s) < ak+is − (n − r + k + is),

and
∑t

s=1 is = i. We then conclude that

bs ≥ is + s + k − ak+is ≥ is + s.

It contradicts the fact that |b| = i. Hence, we finish the proof of the claim.
We now consider on G1 the multiplication

mα,α̃ : Hk(n−r)(G1,ΓaΣ1 ⊗ ΓãV2) ⊗ H0(G1,Sd1Σ∗
1 ⊗ Sd2V ∗

2 )

→ Hk(n−r)(G1,ΓαΣ1 ⊗ Γα̃V2),

where both sides are nonzero. Take the Serre duality; the multiplication

H0(G1,ΓαΣ∗
1 ⊗ KG1 ⊗ Γα̃V ∗

2 ) ⊗ H0(G1,Sd1Σ∗
1 ⊗ Sd2V ∗

2 )

→ H0(G1,ΓaΣ∗
1 ⊗ KG1 ⊗ ΓãV ∗

2 )

is surjective by statement (1) of this proposition. Therefore, the map mα,α̃

is nontrivial.
We then consider the commutative diagram

Hk(n−r)(G,ΓaΣ) ⊗ H0(G,SdΣ∗)

r1⊗r2

Hk(n−r)(G1, i
∗ΓaΣ) ⊗ H0(G1, i

∗SdΣ∗)

projection to direct summand

Hk(n−r)(G1,ΓaΣ1 ⊗ ΓãV2) ⊗ H0(G1,Sd1Σ∗
1 ⊗ Sd2V ∗

2 )
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mα

Hk(n−r)(G,ΓαΣ)

r3

mα |G1

Hk(n−r)(G1, i
∗ΓαΣ)

projection to direct summand

mα,α̃

Hk(n−r)(G1,ΓαΣ1 ⊗ Γα̃V2)

Since we know by (2) that all the vertical maps are surjective, and we
have seen above that the map mα,α̃ is nontrivial, we deduce that mα is also
nontrivial. Moreover, since Γψ(0,α)V is an irreducible GL(V )-module, mα is
surjective.

Since the multiplicity of each ΓαΣ in ΓaΣ ⊗ SdΣ∗ is 1 and since Γψ(0,α)V

is an irreducible GL(V )-module, by Schur’s lemma we deduce that the mul-
tiplication

Hk(n−r)(G,ΓaΣ) ⊗ H0(G,SdΣ∗) → Hk(n−r)(G,ΓaΣ ⊗ SdΣ∗)

is again surjective.
This concludes the proof.

Remark 1.5. Assume that we have H i(G,ΓαΣ) 	= 0, Hj(G,ΓβΣ) 	= 0,
and H i+j(G,ΓαΣ ⊗ ΓβΣ) 	= 0 for partitions α,β and integers i, j > 0. The
multiplication

H i(G,ΓαΣ) ⊗ Hj(G,ΓβΣ) → H i+j(G,ΓαΣ ⊗ ΓβΣ)

is in general not surjective.
We may consider G := G(2,4). Let α = β = (3,1). Then Γ(4,4)Σ is a direct

summand of Γ(3,1)Σ ⊗ Γ(3,1)Σ. However, through restrictions on G(2,3) ↪→
G, we can see that the multiplication

H2(G,Γ(3,1)Σ) ⊗ H2(G,Γ(3,1)Σ) → H4(G,Γ(4,4)Σ)

is zero.
The cup products of line bundles on homogeneous varieties have been

studied in [DR]. It may be possible to prove Proposition 1.4 directly by
applying the main theorem in [DR].
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§2. Proof of the main theorem when dim(Fr(X)) = 2

Under the assumptions of the main theorem, we will assume furthermore
in this section that δ(n,d, r) = 2. We notice that δ−(n,d, r) ≥ 1, and hence
Fr(X) is smooth and connected.

Proposition 2.1. Assume that δ(n,d, r) = 2. Set G := G(r+1, V ). Then,
for any 1 ≤ i ≤ s, the map

H0
(
Fr(X),KFr(X)

)
⊗ H0(G,SdiΣ∗) → H0

(
Fr(X),SdiΣ∗ ⊗ KFr(X)

)
is surjective, except in the following cases:
• X is a complete intersection of two quadrics in P5 and r = 1;
• X is a cubic in P4 and r = 1.

Proof. Denote by H the Plücker polarization on G. Set

M =
(

d + r

r + 1

)
− n − 1.

Then KFr(X) = MH . Since δ(n,d, r) = 2, we can verify that M ≥ 0 with
equality only when n = 5, r = 1, and d = (2,2).

Let W be the vector bundle
s⊕

i=1

SdiΣ

on G. We have the Koszul resolution of the structure sheaf OFr(X):

0 → ∧(d+r
r )W → · · · → ∧n−1W → · · · → W → OG → OFr(X) → 0.

By splitting the Koszul resolution to short exact sequences, we see that in
order to prove the proposition, we just need to prove that the multiplication

Ψk,i : Hk(n−r)
(
G, ∧k(n−r)W ⊗ OG(MH)

)
⊗ H0(G,SdiΣ∗)

→ Hk(n−r)
(
G,SdiΣ∗ ⊗ ∧k(n−r)W ⊗ OG(MH)

)
is surjective for all 0 ≤ k ≤ r and 1 ≤ i ≤ s.

We now assume that there exist k and i such that Ψk,i is not surjective.
Considering the decomposition of the vector bundle ∧k(n−r)W on G, we

may write
∧k(n−r)W =

⊕
α

ΓαΣ.
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Then according to Proposition 1.4, we have k ≥ 1, and there exists α such
that

αk ≥ M + n − r + k,(3)

αk+1 ≥ M + k + 1.(4)

Moreover, we notice that M + n − r + k =
(
d+r
r+1

)
− r − 1 + k and

detW = −
(

d + r

r + 1

)
H = Γ((d+r

r+1),...,(d+r
r+1))Σ.

Hence, by Lemma 2.2 (take s = r +1 − k), we have the following inequality:

k(n − r) ≥
[(

r + d

r

)
−

(
r − k + d

r − k

)]
− k(r + 1 − k).

Since δ(n,d, r) = 2, we conclude that

1
r + 1

(
r + d

r

)
+

2
r + 1

+ r + 1 − k

(5)
≥ 1

k

[(
r + d

r

)
−

(
r − k + d

r − k

)]
.

Since k ≤ r, the function

1
k

[(
r + d

r

)
−

(
r − k + d

r − k

)]
− 1

r + 1

(
r + d

r

)
> 0

is a strictly increasing function of each di. By induction on di, we can check
that the inequality (5) holds for some k only in the following cases.
• r = 1:
(1.1) d = (2,2), M = 0, and n = 5;
(1.2) d = (2,2,2,2), M = 3, and n = 8;
(1.3) d = 3, M = 1, and n = 4;
(1.4) d = (3,3), M = 5, and n = 6;
(1.5) d = (3,2,2), M = 4, and n = 7;
(1.6) d = (4,2), M = 6, and n = 6;
(1.7) d = 5, M = 9, and n = 5.
• r = 2:
(2.1) d = 3, M = 3, and n = 6;
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(2.2) d = (3,2), M = 5, and n = 8.
• r = 3:
(3.1) d = (2,2,2), M = 3, and n = 11.

In the next step, we will check in the above cases whether inequalities (3)
and (4) actually hold for some α. We will use the program LIE to get precise
information on the decompositions of ∧k(n−r)W and then show that these
inequalities do not hold except in cases (1.1) and (1.3). This will conclude
the proof of the proposition. Since this is only a computation, we just show
the case r = 3.

In case (3.1), we have n = 11, r = 3, and M = 3.
When k = 1, we have α1 ≥ 12 and α2 ≥ 5 by (3) and (4). However, the

total weight for ∧8W = ∧8(S2Σ ⊕ S2Σ ⊕ S2Σ) is only 16.
When k = 3, we have α1 ≥ α2 ≥ α3 ≥ 14 and α4 ≥ 7. But the total weight

of ∧24(S2Σ ⊕ S2Σ ⊕ S2Σ) is 48. This is again impossible.
We have the decompositions

∧tS2Σ =
⊕

i

Γαt
iΣ,

where
• t = 1, α1

1 = (2,0,0,0);
• t = 2, α2

1 = (3,1,0,0);
• t = 3, α3

1 = (4,1,1,0), and α3
2 = (3,3,0,0);

• t = 4, α4
1 = (4,3,1,0), and α4

2 = (5,1,1,1);
• t = 5, α5

1 = (5,3,1,1), and α5
2 = (4,4,2,0);

• t = 6, α6
1 = (5,4,2,1), and α6

2 = (4,4,4,0);
• t = 7, α7

1 = (5,4,4,1), and α7
2 = (5,5,2,2);

• t = 8, α8
1 = (5,5,4,2);

• t = 9, α9
1 = (5,5,5,3);

• t = 10, α10
1 = (5,5,5,5).

When k = 2, we have α1 ≥ α2 ≥ 13 and α3 ≥ 6. Hence, Γ(13,13,6,0)Σ should
be a subbundle of ∧16W = ∧16(S2Σ ⊕ S2Σ ⊕ S2Σ). We have

∧16(S2Σ ⊕ S2Σ ⊕ S2Σ) =
⊕

(s1,s2,s3)
s1+s2+s3=16

∧s1S2Σ ⊗ ∧s1S2Σ ⊗ ∧s3S2Σ.

By the above list, we see that any αt
i with (αt

i)4 = 0 has (αt
i)1 ≤ 4. Hence,

we exclude this case by the Littlewood-Richardson rule.
We have thus excluded case (3.1).
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Lemma 2.2. Let V be a vector space of dimension r + 1, and let d =
(d1, . . . , ds) be a sequence of integers at least 2. Denote by W the vector
space Sd1V ⊕ · · · ⊕ SdsV . For any integer s ≥ 0 and 1 ≤ k ≤ r, we take an
integer t such that

0 < t <

[(
d + r

r

)
−

(
d + r − k

r − k

)]
− ks.

Then for any irreducible component ΓλV of ∧tW , we have

λk <

(
d + r

r + 1

)
− s.

The proof of this lemma is parallel to the proof of [DM, lemme 3.9]. For
reader’s convenience, we give the details.

Proof. For simplicity, we assume that d = d. We denote by X the Grass-
mannian parameterizing subspaces of dimension r + 1 − k of V , and we
denote by Y the Grassmannian parameterizing subspaces of dimension(
d+r−k

r−k

)
of W . We denote by ΣX (resp., QX) and ΣY (resp., QY ) the tau-

tological subbundles (resp., quotient bundles) on X and Y , respectively.
There is a natural embedding i : X ↪→ Y so that i∗ΣY = SdΣX . Let N be
the normal bundle of X ↪→ Y .

By Bott’s theorem, we have H0(Y, ∧tQY ) = ∧tW . Considering the exact
sequences

0 → IX ⊗ ∧tQY → ∧tQY → ∧tQY |X → 0

and, for each l ≥ 1,

0 → I l+1
X ⊗ ∧tQY → I l

X ⊗ ∧tQY → ∧tQY |X ⊗ SlN ∗ → 0,

we see that there exists a filtration (Γl)l≥0 on ∧tW so that

Γl/Γl+1 ↪→ H0
(
X, i∗(∧tQY ) ⊗ SlN ∗)

.

There is a filtration (Gm)0≤m≤d−1 of i∗QY such that

Gm/Gm+1 = Sd−mQX ⊗ SmΣX .

Denote by

U = Gr(i∗QY ) =
d−1⊕
m=0

Sd−mQX ⊗ SmΣX .
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By the same argument in [DM, lemme 3.9], we have

Γl/Γl+1 ↪→ H0
(
X, i∗(∧tQY ) ⊗ SlN ∗)

↪→ H0(X, ∧tU ⊗ SlN ∗).

We now set T =
(
d+r

r

)
−

(
d+r−k

r−k

)
as the rank of U . Then

∧tU = detU ⊗ ∧T −tU ∗.

By definition of t, we have T − t > ks, and hence by considering the total
weights, for any irreducible component Γα̂Q∗

X ⊗ Γβ̂Σ∗
X of ∧T −tU ∗, we have

α̂1 > s. Moreover, we notice that

detU = (detQX)⊗(d+r
r+1) ⊗ (detΣX)⊗((d+r

r+1)−(d+r−k
r−k+1)).

Therefore, for any irreducible component ΓαQX ⊗ ΓβΣX of ∧T −tU , we have

αk <

(
d + r

r + 1

)
− s.

We notice that N ∗ is a subbundle of i∗Ω1
Y = SdΣX ⊗ i∗Q∗

Y . Hence, by the
Littlewood-Richardson rule, for any irreducible component ΓαQX ⊗ ΓβΣX

of ∧T −tU ⊗ SlN ∗, we still have αk <
(
d+r
r+1

)
− s.

Therefore, by Bott’s theorem, for any irreducible component ΓλV of ∧tW ,
we have

λk <

(
d + r

r + 1

)
− s.

Lemma 2.3. If δ(n,d, r) = 2, we have

dimH1
(
Fr(X),Ω1

G

∣∣
Fr(X)

)
= 1,

except when X ⊂ P5 is a smooth complete intersection of two quadrics and
r = 1.

Proof. We first notice that in the proof of [DM, théorème 3.4], the authors
showed that

dimH1
(
Fr(X),Ω1

G

∣∣
Fr(X)

)
= 1

if δ−(n,d, r) ≥ 2. As we assume here that δ(n,d, r) = 2, the cases when
δ−(n,d, r) = 1 are
• n = 4, r = 1, d = 3;
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• n = 6, r = 2, d = 3;
• n = 5, r = 1, d = (2,2).

We then need to show that in the first two cases H i(G,Ω1
G ⊗ IFr(X)) = 0

for i = 1,2. Again denote by W the vector bundle
⊕

i S
diΣ. By the Koszul

resolution of IFr(X), we need to prove that

H i+t−1(G,Ω1
G ⊗ ∧tW ) = 0

for all t ≥ 1 and i = 1,2. We can use the program LIE to check the decom-
positions of ∧tW in each case. By Bott’s theorem, we conclude the proof of
the lemma.

Theorem 2.4. Let X be a very general complete intersection on Pn such
that δ(n,d, r) = 2. Then the Picard number ρ(Fr(X)) is 1.

Proof. By Lemma 1.1, Proposition 2.1, and Lemma 2.3, we have proved
the theorem except when r = 1 and X is a complete intersection of two
quadrics in P5 or when r = 1 and X is a cubic threefold. These two remain-
ing cases were studied in Examples 0.4 and 0.5.

§3. Proof of the remaining cases

In this section, we verify the remaining cases, namely, when dimFr(X) =
δ(n,d, r) ≥ 3 and 1 ≤ δ−(n,d, r) ≤ 2 (see Theorem 0.2). The list is the fol-
lowing.

• d1 = 2:
(Q.1) d = (2), and 2r + 2 ≤ n ≤ 2r + 3;
(Q.2) d = (2,2), and 2r + 3 ≤ n ≤ 2r + 4;
(Q.3) d = (2,2,2), r = 1, n = 7, and δ(n,d, r) = 3;
(Q.4) d = (2,2,2), r = 2, n = 9, and δ(n,d, r) = 3;
• d1 = 3:
(C.1) d = (3), r = 3, n = 9, and δ(n,d, r) = 4;
(C.2) d = (3), r = 2, n = 7, and δ(n,d, r) = 5;
(C.3) d = (3), r = 1, n = 5, and δ(n,d, r) = 4;
(C.4) d = (3,2), r = 1, n = 6, and δ(n,d, r) = 3;
• d1 = 4:
(Qr) d = (4), r = 1, n = 5, and δ(n,d, r) = 3.

We will first study case by case the complete intersections of fewer than
two quadrics and then discuss the others.
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3.1. Case (Q.1)
In case (Q.1), X ⊂ P2r+3 is a smooth quadric, and Fr+1(X) has two

isomorphic connected components, denoted by S1 and S2. Each r-plane in
X is contained in exactly one (r + 1)-plane in each component of Fr+1(X).
Hence, Fr(X) � PS1(Σ

∗). In particular, ρ(Fr(X)) = ρ(S1)+1. We then com-
pute ρ(Fr(X)) using the short exact sequence

0 → S2Σ → Ω1
G|Fr(X) → Ω1

Fr(X) → 0.

We again have a resolution of OFr(X):

0 → ∧
(r+1)(r+2)

2 S2Σ → · · · → ∧2S2Σ → S2Σ → OG → OFr(X) → 0.

By Bott’s theorem, we have

hj
(
Fr(X),S2Σ

)
=

{
0 if j 	= 2

1 if j = 2

hj
(
Fr(X),Ω1

G|Fr(X)

)
=

{
0 if j 	= 1

1 if j = 1.

Therefore, if n = 2r + 3, ρ(Fr(X)) = 2, and if n = 2r + 1, the Picard
number of each component of Fr(X) is 1.

If n = 2r + 2, we can also compute that

hj
(
Fr(X),S2Σ

)
= 0, for any j;

hj
(
Fr(X),Ω1

G|Fr(X)

)
=

{
0 if j 	= 1

1 if j = 1

and hence, in this case ρ(Fr(X)) = 1.

Remark 3.1. A smooth quadric is a homogeneous variety. If X is of
dimension 2r + 2 (resp., 2r + 1), X = G/P1 (resp., G′/P ′

1), where G (resp.,
G′) is a complex simple Lie group of type Dr+2 (resp., Br+1) and where P1

(resp., P ′
1) is a maximal parabolic subgroup of G (resp., G′).

Hence, the above results can be easily deduced by [LM, Theorem 4.9].
Indeed, Landsberg and Manivel [LM] tell us much more: they imply that,
if dimX = 2r + 2, then Fr(X) is isomorphic to G/Pr+1,r+2 and Fr+1(X) =
G/Pr+1 � G/Pr+2. Hence, ρ(Fr(X)) = 2, and the Picard number of each
component of Fr+1(X) is 1. Similarly, if dimX = 2r + 1, Fr(X) = G′/P ′

r+1

and ρ(Fr(X)) = 1.
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3.2. Case (Q.2)
In case (Q.2), we first consider X ⊂ P(V ) = P2r+4, which is the smooth

complete intersection of two quadrics. Then Fr(X) is a Fano variety of
dimension 2r + 2.

Proposition 3.2. We have dimH1(Fr(X),Ω1
Fr(X)) = 2r + 6. Hence, the

Picard number ρ(Fr(X)) is 2r + 6.

The case when r = 1 is already proved by Borcea [B2].

Remark 3.3. It is relatively easy to prove that ρ(Fr(X)) ≥ 2r+6. Indeed,

dimH2r+2(X)prim = dimHr+1(X,Ωr+1
X )prim = 2r + 5,

and the Abel-Jacobi map H2r+2(X)prim → H2(Fr(X)) is injective.

Proof. We assume that X is defined by two quadrics, Q and Q′.
We claim that

hj
(
Fr(X),S2Σ

)
=

{
0 if j 	= 2,4,

2r + 5 if j = 2;
(6)

hj
(
Fr(X),Ω1

G|Fr(X)

)
=

⎧⎪⎨⎪⎩
1 if j = 1,

2r + 5 if j = 2,

0 if j 	= 1,2,4.

(7)

From [W, Proposition 2.3.9], we know that there is a decomposition

∧mS2Σ =
⊕

λ

ΓλΣ,(8)

where |λ| = 2m and λ ≥ 0 ranges over all partitions whose Frobenius nota-
tion has the form λ = (λ1 − 1, . . . , λt − t | λ1 − 2, . . . , λt − t − 1), where t is
the rank of λ.

We will compute

Hk,m := Hk(r+4)
(
G, ∧m(S2Σ ⊕ S2Σ) ⊗ S2Σ

)
to prove (6) using the Koszul resolution of OFr(X). More precisely, we will
prove that only H1,r+1, H1,r+2, and H2,2r+4 may be nonzero and that the
natural map H1,r+2 → H1,r+1 is surjective.

If Hk,m 	= 0, there exists a component ΓaΣ of

∧m(S2Σ ⊕ S2Σ) ⊗ S2Σ
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satisfying ak ≥ r + 4 + k and ak+1 ≤ k. We then assume that

ΓaΣ ⊂ ΓβΣ ⊗ ΓγΣ ⊗ S2Σ,

where
ΓβΣ ⊂ ∧m1S2Σ

and
ΓγΣ ⊂ ∧m2S2Σ

for some m1 + m2 = m.
Since ar+1 ≤ · · · ≤ ak+1 ≤ k, we have by the Littlewood-Richardson rule

that
r+1∑

i=k+1

(βi + γi) ≤ k(r + 1 − k),(9)

and both βk+1 and γk+1 are at most k.
We denote by p (resp., q) the largest integer such that βp ≥ k + 1 (resp.,

γq ≥ k + 1). Clearly, p, q ≤ k. Moreover, by (8), according to the definition
of Frobenius notation, we have

p∑
i=1

βi − (k + 1)p ≤
r+1∑

i=k+1

βi

and
q∑

i=1

γi − (k + 1)q ≤
r+1∑

i=k+1

γi.

On the other hand, since a1 ≥ · · · ≥ ak ≥ r + 4 + k, we have, again by the
Littlewood-Richardson rule, that

p∑
i=1

βi +
q∑

i=1

γi + k(k − p) + k(k − q) ≥
k∑

i=1

(βi + γi)

≥
k∑

i=1

ai − 2(10)

≥ k(r + 4 + k) − 2.

Combining all the above inequalities, we have

k(r + 3 + k) ≥ k(r + 1 + k) + p + q ≥ k(r + 4 + k) − 2.
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Namely, if Hk,m 	= 0, we should have k ≤ 2.
If k = 1 and H1,m 	= 0, both β2 and γ2 are at most 1. Hence, there exists

1 ≤ s ≤ r + 1 so that β1 = s + 1 and β2 = · · · = βs = 1 > βs+1 = 0. Similarly,
there exists 1 ≤ t ≤ r + 1 so that γ1 = t + 1 and γ2 = · · · = γt = 1 > γt+1 = 0.
We then conclude that r + 1 ≤ s + t ≤ r + 2. Using Bott’s theorem, a direct
computation shows that

H1,r+2 � V ⊕(r+1)

and
H1,r+1 � (V ∗)⊕r,

and the natural map in the Koszul complex induces a surjective map

H1,r+2 → H1,r+1.

If k = 2 and H2,m 	= 0, equality holds in (9) and (10). Therefore,

m = m1 + m2 =
1
2
(|β| + |γ|) = 2r + 4,

while 2(r + 4) − 2r − 4 = 4.
Therefore, we have finished the proof of (6).
A similar analysis allows us to prove (7). Indeed, we can show that

H ′
t,m := Ht

(
G, ∧m(S2Σ ⊕ S2Σ) ⊗ Ω1

G

)
= 0,

unless t = 1 and m = 0, or t = r +5 and r +2 ≤ m ≤ r +3, or t = 2r +9 and
m = 2r + 5. Moreover, dimH ′

1,0 = 1, and the natural map

H ′
r+5,r+3 � V ⊕r → H ′

r+5,r+2 � (V ∗)⊕(r−1)

is surjective; this proves (7).
We have the following exact sequence:

0 → S2Σ ⊕ S2Σ
(∂Q,∂Q′)∗

−−−−−−→ Ω1
G|Fr(X) → Ω1

Fr(X) → 0.

Since X is smooth, the map (∂Q,∂Q′)∗ induces a surjective map between

H2
(
Fr(X),S2Σ ⊕ S2Σ

)
= V ⊕2 → H2

(
Fr(X),Ω1

G|Fr(X)

)
= V.

We conclude that

h1
(
Fr(X),Ω1

Fr(X)

)
= 2r + 6.

Since Fr(X) is Fano, we have h2,0(Fr(X)) = 0, and this concludes the proof
of the proposition.

Assume now that X ⊂ P2r+3 is a very general complete intersection of
two quadrics. We saw in Example 0.4 that ρ(Fr(X)) = 1.
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3.3. The remaining cases
Some of the remaining cases are classical. For instance, in case (C.3), X

is a smooth cubic fourfold. By [BD], it is known that for X very general,
F1(X) is a very general deformation of S[2] for some polarized K3 surface
S; hence, ρ(F1(X)) = 1.

In the remaining cases (Q.3), (Q.4), (C.1)–(C.4), and (Qr), we have the
following.

Proposition 3.4. Under the above assumptions, for each di, the multi-
plication

Hδ(n,d,r)−2
(
F1(X),KF1(X)

)
⊗ H0(G,SdiΣ∗)

→ Hδ(n,d,r)−2
(
F1(X),SdiΣ∗ ⊗ KF1(X)

)
is surjective.

We omit the proof since it is again a direct application of Bott’s theorem
and Proposition 1.4. We also notice that in all the above cases, δ−(n,d, r) =
2. Therefore, by Debarre and Manivel’s calculation (see [DM]),

dimH1
(
Fr(X),Ω1

G|Fr(X)

)
= 1.

Then by Lemma 1.1, we have completed the proof of the main theorem.

§4. The cohomology class of varieties of planes of a cubic fivefold

4.1. An intersection formula
In this section, we will always assume that Z is a general smooth hyper-

surface of degree d ≥ 3 in P(V ) = Pn and that the planes contained in Z

cover a divisor of Z; namely, we have 3n − 4 −
(
d+2
2

)
≥ n − 2. The assump-

tion holds when Z is a cubic fivefold. We then automatically have n − 1 ≥ d;
hence, the lines contained in Z cover the whole variety.

We have the following correspondences:

I1(Z)
q1

p1

Z,

F1(Z)

I2(Z)
q2

p2

Z

F2(Z)
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where I1(Z) and I2(Z) are the incidence varieties. Then I1(Z) = P(Σ1)
and I2(Z) = P(Σ2), where Σ1 and Σ2 are, respectively, the tautological
subbundle on F1(Z) and F2(Z). We denote respectively by Q1 and Q2 the
tautological quotient bundle on F1(Z) and F2(Z), and we denote by H1

and H2 the respective Plücker polarization. We have q∗
1OZ(1) = Op1(1) and

q∗
2OZ(1) = Op2(1), and then we set

h1 = c1

(
Op1(1)

)
, h2 = c1

(
Op2(1)

)
, l = c1(H1), l′ = c1(H2);

c2 = c2(Σ∗
1), c′

2 = c2(Σ∗
2), c′

3 = c3(Σ∗
2).

By definition, we have the following relations:

h2
1 = h1p

∗
1l − p∗

1c2,

h3
2 = h2

2p
∗
2l

′ − h2p
∗
2c

′
2 + p∗

2c
′
3.

For any α ∈ Hn−1(Z,Z)prim, we may write

q∗
1α = h1p

∗
1α1 + p∗

1α2,
(11)

q∗
2α = h2

2p
∗
2α

′
1 + h2p

∗
2α

′
2 + p∗

2α
′
3,

where αi ∈ H∗(F1(Z),Z) and α′
i ∈ H∗(F2(Z),Z). Denote

Φ(α) = p1∗q∗
1α = α1 ∈ Hn−3

(
F1(Z),Z

)
,

Ψ(α) = p2∗q∗
2α = α′

1 ∈ Hn−5
(
F2(Z),Z

)
.

The following lemma is known (see [BD]).

Lemma 4.1. For any α,β ∈ Hn−1(Z,Z)prim, we have(
Φ(α) · Φ(β) · ln−d

)
F1(Z)

= −d!(α · β)Z ,

and c2 · α1 = 0.

We then consider the correspondence C(Z) = {([Π], [L]) ∈ F2(Z) × F1(Z) |
L ⊂ Π} between F1(Z) and F2(Z):

C(Z)
p q

F2(Z) F1(Z),
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where p and q are the natural projections. Hence, C(Z) = PF2(Z)(Σ∗
2), and

there is a tautological sequence of vector bundles on C(Z):

0 → q∗Σ1 → p∗Σ2 → Op(1) → 0.(12)

On the other hand, from the complex

0 q∗Σ1 p∗Σ2 Op(1) 0

0 q∗Σ1 V ⊗ OC(Z) q∗Q1 0,

we see that C(Z) is a natural subscheme of PF1(Z)(Q1):

C(Z)
i

q

PF1(Z)(Q1)

π

F1(Z),

and i∗Oπ(1) = Op(−1). Moreover, there is a natural short exact sequence
on PF1(Z)(Q1),

0 π∗Σ1 K Oπ(−1) 0,(13)

where i∗K = p∗Σ2. Hence, we can describe C(Z) to be the zero locus of
a section of Sd−1K ∗ ⊗ Oπ(1). Indeed, F defines a section of SdK ∗ which
vanishes on π∗SdΣ∗

1 and hence defines a section in

H0
(
PF1(Z)(Q1), Sd−1K ∗ ⊗ Oπ(1)

)
,

and C(Z) is just the zero locus of this section.
Let η = c1(Op(1)). Since C(Z) = PF2(Z)(Σ∗

2) and by (12), we have

η3 = −η2p∗l′ − ηp∗c′
2 − p∗c′

3;
(14)

q∗l = p∗l′ + η, q∗c2 = p∗c′
2 + ηq∗l = η2 + ηp∗l′ + p∗c′

2,

and for α1 ∈ Hn−3(F1(Z),Z) in (11), we may write

q∗α1 = η2p∗α3 + ηp∗α4 + p∗α5.

By a direct computation, we have the following.
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Lemma 4.2. For any α ∈ Hn−1(X,Z), let α4 be as above. Then we have
α4 = Ψ(α) = p2∗q∗

2α.

We now have the main result of this section.

Proposition 4.3. If Z is a general cubic fivefold, for any α,β ∈H5(Z,Z),
we have

(α · β)Z =
1

180
(
Ψ(α) · Ψ(β) · l′)

F2(Z)
.

The main ingredient of the proof is the following calculation due to Voisin
([V2]).

We first assume more generally that we are working on a hypersurface of
degree d in Pn with 3n − 4 −

(
d+2
2

)
= n − 2.

Claim. For any α, β ∈ Hn−1(Z)prim, we define α1, β1 ∈ Hn−3(F1(Z)) as
in (11). There exists a positive integer N > 0 such that

(q∗α1 · q∗β1 · p∗l′)C(Z) = −N(α1 · β1 · ln−d)F1(Z).

We have already seen that C(Z) ↪→ PF1(Z)(Q1) is defined by a section of
Sd−1K ∗ ⊗ Oπ(1). We just need to calculate the cohomology class q∗[p∗l′]
in F1(Z). By (13), this class is a polynomial of l and c2. By Lemma 4.1,
c2α1 = 0; hence, we are only interested in the coefficient of ln−d. We may
formally assume that Σ∗

1 = H1 ⊕ OF1(Z). Denote by c1(Oπ(1)) = ε. We have
seen that i∗ε = −η. As Sd−1K ∗ ⊗ Oπ(1) is filtered with successive quotient

Oπ(i) ⊗ Sd−iΣ∗
1

for i = 1, . . . , d, we have modulo c2,

c(d+1
2 )

(
Sd−1K ∗ ⊗ Oπ(1)

)
=

∏
1≤i≤j≤d

(
iε + (d − j)l

)
= d!εd

∏
1≤i≤j≤d−1

(
iε + (d − j)l

)
.

By (14), p∗l′ = q∗l − η = q∗l + ε. Therefore,

q∗[C(Z)] = π∗

(
d!

(
εd

∏
1≤i≤j≤d−1

(
iε + (d − j)l

)))
mod c2

and

q∗[p∗l′] = π∗
(
d!(π∗l + ε)εd

∏
1≤i≤j≤d−1

(
iε + (d − j)l

))
mod c2.

https://doi.org/10.1215/00277630-1548484 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-1548484


A NOETHER-LEFSCHETZ THEOREM 63

We define the polynomial in two variables M(x, y) =
∏

1≤i≤j≤d−1(ix + (d −

j)y) =
∑(d

2)
i=1 αix

iy(d
2)−i. By symmetry, we have αi = α(d

2)−i
and it is easy to

see that αi−1 < αi for 2i ≤
(
d
2

)
.

On the other hand, π∗εn−2+i = si(Q1) = ci(Σ1); hence, we have π∗εn−2 =
1, π∗εn−1 = −l, π∗εn = c2, and π∗εn−2+i = 0, for i ≥ 3. We conclude that

q∗[C(Z)] = d!(αn−2−d − αn−1−d)ln−d−1 mod c2

and

q∗[p∗l′] = d!(αn−2−d − αn−1−d + αn−3−d − αn−2−d)ln−d

= d!(αn−3−d − αn−1−d)ln−d mod c2.

Since we have 3n − 4 −
(
n+2

2

)
= n − 2, then (n − 2 − d)+ (n − 1 − d) =

(
d−1
2

)
,

d!(αn−2−d − αn−1−d) = 0, and d!(αn−3−d − αn−1−d) := −N < 0. Hence,
q∗[C(Z)] = 0 mod c2 and

(q∗α1 · q∗β1 · p∗l2)C(Z) = −N(α1 · β1 · ln−d)F1(Z).

Hence, we have proved Claim 1.

Proof of Proposition 4.3. We use the notation in the above calculation.
Since

q∗α1 = ηp∗α4 + p∗α5, q∗β1 = ηp∗β4 + p∗β5 ∈ H3
(
C(Z),Z

)
,

by Lemma 4.2, we have

(q∗α1 · q∗β1 · p∗l′)C(Z) = (α4 · β4 · l′)F2(Z) =
(
Ψ(α) · Ψ(β) · l′)

F2(Z)
.

By Lemma 4.1 and Claim 1, we just need to show that N = 30. In this
case, M(x, y) = (x+2y)(2x+2y)(2x+ y) = 2x3 +7x2y +7xy2 +2y3. There-
fore, N = d!(αn−d−1 − αn−d−3) = 3!(7 − 2) = 30.

4.2. Proof of Theorem 0.8
Let U ⊂ P

(
H0(P(V ),O(3))

)
be the open subset of a smooth cubic five-

fold. There is the universal family of cubics pr : Z → U . We consider the
monodromy action

ρ : π1(U,0) → Aut
(
H5(Z,Q), I

)
,
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where I is the intersection form on H5(Z,Q). It is known that the Zariski
closure of the image of ρ is the full group Sp(H5(Z,Q), I) (see, e.g., [PS]).
For any d, we denote by Hdg2d(JZ) := Hd,d(JZ) ∩ H2d(JZ,Q) the group of
Hodge classes of JZ. As a corollary of the big monodromy group, we have
the following.

Lemma 4.4. We have Hdg2d(JZ) = Q〈Θd〉 for all 0 ≤ d ≤ 21.

Proof. We consider the relative intermediate Jacobian pr : J → U . Then
the Zariski closure of the monodromy action π(U,0) → H1(JZ,Q) is again
the full symplectic group. The subspace of invariants in ∧2dH1(JZ,Q), with
respect to the full symplectic group, is 1-dimensional and is spanned by
Q〈Θd〉.

Theorem 4.5. Let Z be a general cubic fivefold. We consider the Abel-
Jacobi map α : F2(Z) → JZ. Then the cohomology class [α∗(F2(Z))] =
12[Θ19/19!].

Proof. We may assume that Z is very general. By Theorem 0.3 in the
introduction, we know that ρ(F2(Z)) = 1. Hence, we have l′ ≡ xα∗Θ for
some rational number x. By Lemma 4.4, we may also write [α∗(F2(Z))] =
y[Θ19/19!] for some integer y. For any α,β ∈ H1(JZ,Z) = H5(Z,Z), we have

(
α · β · 1

20!

20∧
[Θ]

)
JZ

= (α · β)Z

=
1

180
(
Ψ(α) · Ψ(β) · l′)

F2(Z)

=
1

180
xy

(
α · β · 1

19!

20∧
[Θ]

)
JZ

,

where the first equality holds by the definition of intermediate Jacobian,
the second equality holds because of Proposition 4.3, and the last equal-
ity holds by projection formula. We have xy = 9. On the other hand, we
know from [IM, Corollary 10, Remark] that (l′ 2)F2(X) = 2835. Hence, x2y =
2835/(21 · 20) = 27/4. We deduce that x = 3/4 and y = 12.

Remark 4.6. It is not difficult to prove that for any smooth cubic fivefold
Z, the variety of plane F2(Z) is always of dimension 2. Moreover, if F2(Z)
is smooth, the Abel-Jacobi map α is generically injective. Hence, JZ has a
subvariety of dimension 2 whose cohomology class is 12[Θ19/19!].
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Université Paris-Sud

F-91405 Orsay

France

zhi.jiang@math.u-psud.fr

https://doi.org/10.1215/00277630-1548484 Published online by Cambridge University Press

mailto:zhi.jiang@math.u-psud.fr
https://doi.org/10.1215/00277630-1548484

