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Abstract
The bipartite independence number of a graph G, denoted as α̃(G), is the minimal number k such that
there exist positive integers a and b with a+ b= k+ 1 with the property that for any two disjoint sets
A, B⊆V(G) with |A| = a and |B| = b, there is an edge between A and B. McDiarmid and Yolov showed
that if δ(G)≥ α̃(G) then G is Hamiltonian, extending the famous theorem of Dirac which states that if
δ(G)≥ |G|/2 then G is Hamiltonian. In 1973, Bondy showed that, unless G is a complete bipartite graph,
Dirac’s Hamiltonicity condition also implies pancyclicity, i.e., existence of cycles of all the lengths from 3
up to n. In this paper, we show that δ(G)≥ α̃(G) implies thatG is pancyclic or thatG=Kn

2 ,
n
2
, thus extending

the result of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
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1. Introduction
The notion of Hamiltonicity is one of the most central and extensively studied topics in com-
binatorics. Since the problem of determining whether a graph is Hamiltonian is NP-complete, a
central theme in combinatorics is to derive sufficient conditions for this property. A classic exam-
ple is Dirac’s theorem [14] which dates back to 1952 and states that every n-vertex graph with
minimum degree at least n/2 is Hamiltonian. Since then, a plethora of interesting and important
results about various aspects of Hamiltonicity has been obtained, see e.g. [1, 11–13, 19, 24, 26, 27,
34], and the surveys [21, 31].

Besides finding sufficient conditions for containing a Hamilton cycle, significant attention has
been given to conditions which force a graph to have cycles of other lengths. Indeed, the cycle
spectrum of a graph, which is the set of lengths of cycles contained in that graph, has been the
focus of study of numerous papers and in particular gained a lot of attention in recent years [2, 3,
8, 16, 20, 23, 29, 30, 33, 36]. Among other graph parameters, the relation of the cycle spectrum to
the minimum degree, number of edges, independence number, chromatic number, and expansion
properties of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers from
3 up to n. Bondy suggested that in the cycle spectrum of a graph, it is usually hardest to guar-
antee the existence of the longest cycle, i.e. a Hamilton cycle. This intuition was captured by his
famous meta-conjecture [5] from 1973, which asserts that any non-trivial condition which implies
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Hamiltonicity, also implies pancyclicity (up to a small class of exceptional graphs). As a first exam-
ple, he proved in ref. [6], an extension of Dirac’s theorem, showing that minimum degree at least
n/2 implies that the graph is either pancyclic or that it is the complete bipartite graph Kn

2 ,
n
2
.

Further, Bauer and Schmeichel [4], relying on previous results of Schmeichel and Hakimi [35],
showed that the sufficient conditions for Hamiltonicity given by Bondy [7], Chvátal [10] and Fan
[18] all imply pancyclicity, up to a certain small family of exceptional graphs.

Another classic Hamiltonicity result is the Chvátal-Erdős theorem, which states that κ(G)≥
α(G) implies that G is Hamiltonian, where κ(G) is the connectivity of G, and α(G) its indepen-
dence number. Motivated by Bondy’s meta-conjecture, Jackson and Ordaz [22] suggested thirty
years ago that κ(G)> α(G) already implies pancyclicity. The first progress towards this prob-
lem was obtained by Keevash and Sudakov [23], who showed pancyclicity when κ(G)≥ 600α(G).
Recently, in ref. [15], we were able to resolve the Jackson–Ordaz conjecture asymptotically, prov-
ing that κ(G)≥ (1+ o(1))α(G) is already enough for pancyclicity. Building on our work in ref.
[15], Letzter [28] proved the Jackson–Ordaz conjecture for large enough graphs. It is worth
mentioning that, in all the listed work, the proof that the Hamiltonicity condition also implies
pancyclicity is usually significantly harder than just proving Hamiltonicity, and requires new ideas
and techniques.

An interesting sufficient condition for Hamiltonicity was given by McDiarmid and Yolov [32].
To state their result, we need the following natural graph parameter. For a graph G, its bipartite
independence number α̃(G) is the minimal number k, such that there exist positive integers a
and b with a+ b= k+ 1, such that between any two disjoint sets A, B⊆V(G) with |A| = a and
|B| = b, there is an edge between A and B. Notice that we always have that α(G)≤ α̃(G). Indeed, if
α̃(G)= k, then G does not contain independent sets I of size at least k+ 1, since if it did contain
such an I, then evidently for every a+ b= k+ 1, there would exist disjoint sets A, B⊂ I, so that
|A| = a and |B| = b and with no edge between A and B. Let us now state the result of McDiarmid
and Yolov.

Theorem 1.1 ([32]). If δ(G)≥ α̃(G), then G is Hamiltonian.

This result implies Dirac’s theorem, because if δ(G)≥ n/2, then �n/2	 ≥ α̃(G), as for every |A| =
1 and |B| = �n/2	 there is an edge between A and B. Hence also δ(G)≥ �n/2	 ≥ α̃(G), so G is
Hamiltonian by Theorem 1.1.

Naturally, the immediate question which arises is whether the McDiarmid–Yolov condition
implies that the graph satisfies the stronger property of pancyclicity. As a very preliminary step in
this direction, Chen [9] was able to show that for any given positive constant c, for sufficiently large
n it holds that if G is an n-vertex graph with α̃(G)= cn and δ(G)≥ 10

3 cn, then G is pancyclic. In
this paper we completely resolve this problem, showing that δ(G)≥ α̃(G) implies that G pancyclic
or G=Kn

2 ,
n
2
. This generalizes the classical theorem of Bondy [6], and gives additional evidence

for his meta-conjecture, mentioned above.

Theorem 1.2. If δ(G)≥ α̃(G), then G is pancyclic, unless G is a balanced complete bipartite graph
G=Kn

2 ,
n
2
.

Our proof is completely self-contained and relies on a novel variant of Pósa’s celebrated rotation-
extension technique, which is used to extend paths and cycles in expanding graphs (see, e.g.,
[34]). Define the graph C̃�, to be the cycle of length � together with an additional vertex which
is adjacent to two consecutive vertices on the cycle (thus forming a triangle with them). For each
� ∈ [3, n− 1], our goal is to either find a C̃� or a C̃�+1, which is clearly enough to show pancyclic-
ity. The proof is recursive in nature, as we will derive the existence of a C̃� or a C̃�+1 from the
existence of a C̃�−1. In our setting, we would like to apply the rotation-extension technique to
the C̃�−1 with the additional requirement that the extended cycle preserves the attached triangle.
However, this is not possible in general and from the existence of a C̃�−1 we will in turn derive the
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existence of a gadget denoted as a switch, which is a path with triangles attached to it, to which we
can apply our rotation-extension technique. One of the key ideas is to consider the switch which
is optimal with respect to how close the triangles are to the beginning of the path (see Definition
2.5). The application of the rotation-extension technique to such an optimal switch will then result
in either a C̃�, a C̃�+1, or a better switch, contradicting the optimality of the original switch. The
details are given in the next section.

2. The proof
We first recall the definition of α̃(G).

Definition 2.1. For a graph G, let α̃(G) denote the minimal number k, such that there exist posi-
tive integers a and b with a+ b= k+ 1, such that between any two disjoint sets A, B⊆V(G) with
|A| = a and |B| = b, there is an edge between A and B.

We will also need the following definition of a cycle which has one triangle attached to one of
its edges.

Definition 2.2. Define the graph C̃�, to be the cycle of length � together with an additional vertex
which is adjacent to two consecutive vertices on the cycle.

Proof of Theorem 1.2. Let n := |V(G)|, denote k := α̃(G) and suppose that for a≤ b and a+ b=
k+ 1, between every two disjoint vertex sets of sizes a and b, there is an edge. By assumption,
we have δ(G)≥ k. Note also that as observed before G has independence number α(G)≤ k. Note
further that since δ(G)≥ α(G), we have that ifG is bipartite then it must be isomorphic toKn/2,n/2.
Finally, note also that G is connected. Indeed, consider two non-adjacent vertices u, v; if their
neighbourhoods intersect, there clearly exists a uv-path; otherwise, since both neighbourhoods
have size at least δ(G)≥ k≥ a, b, there exists an edge between them and thus also a uv-path. �
Claim 2.3. Either G contains a triangle or G is bipartite.

Proof. For sake of contradiction, suppose it does not contain a triangle nor is it bipartite and
consider any vertex v ∈G. If its neighbourhood is of size at least k+ 1, then as observed above it
contains an edge, which together with v creates a triangle. Therefore, every vertex has degree k
and its neighbourhood does not contain an edge.

Furthermore, observe that every two non-adjacent vertices u, v must have at least b≥ k+1
2

common neighbours. Indeed, suppose u has fewer than b neighbours in N(v) and consider a set
S⊆N(v)∪ {u} of size precisely b which contains u and all of its neighbours in N(v), and possibly
some other vertices inN(v). Now, by the assumption on the graph, there is an edge between S and
N(v) \ S, since the sizes of these are b and a, respectively. However, this is a contradiction, since
there are no edges between u and N(v) \ S and any edge contained in N(v) creates a triangle.

To finish, recall that G is non-bipartite and thus contains an odd cycle, which is then not a tri-
angle. Further, it contains an induced odd cycle – indeed, the shortest odd cycle must be induced.
Since this cycle is not a triangle, it must then contain three vertices x, y, z such that yz is an edge
and y, z are not adjacent to x. Since by the previous paragraph we have that both y, z have at least
k+1
2 > |N(x)|/2 neighbours in N(x), they have a common neighbour (in N(x)), which together

with the edge yz creates a triangle, a contradiction. �
We will now continue with the proof assuming that b≥ 3, and in the end we will deal with

the few simple remaining cases when b≤ 2. So assume G is not isomorphic to Kn/2,n/2, so it is not
bipartite. Note thatG contains a C̃3 or a C̃4. Indeed, we get this by considering the neighbourhoods
of any two vertices lying on a triangle xyz, whose existence is guaranteed by the previous claim;
if any two neighbourhoods intersect in a vertex outside of the triangle, this gives C̃3. Otherwise,
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Figure 1. A (t, 3)-switch.

between N(x)− {y, z} which is of size at least k− 2≥ a, and the set N(y)− {x} + {y} which is of
size at least k≥ b, there is an edge which gives the required C̃3 or C̃4. Theorem 1.2 will now follow
from the following lemma.

Lemma 2.4. If G contains a copy of C̃� for some � < n− 1, then it also contains C̃�+1 or C̃�+2.

Indeed, to finish the proof, note that since G contains C̃3 or C̃4, we can iteratively apply the
lemma to get a family {C̃� | � ∈ I} of graphs which are all contained in G, such that for every pair
(i, i+ 1) of consecutive integers in [3, n], one of the two is in I. Since each C̃� contains both C�

and C�+1 we are done.

Proof of Lemma 2.4. Suppose for sake of contradiction thatG contains a C̃�, but does not contain
a C̃�+1, nor a C̃�+2. We fix such an � until the end of the proof. The central gadget we use in our
proof is given by the following definition. �
Definition 2.5. A (t, s)-switch in G is a subgraph R which consists of a path P = (1, 2, . . . , � + 1)
together with the vertex x adjacent to vertices t, t + 1, . . . , t + s with t, s≥ 1 (see Fig. 1). We also
write (t, ·)-switch to denote a switch for which the s is not specified.

Note first that a (t, s)-switch exists for some t and s. Indeed, since we have a C̃� and G is con-
nected, there is an edge between C̃� and a vertex v outside of the C̃� - this evidently produces a
(t, 1)-switch whose path starts at v.

Let us now take a (t, s)-switch R such that t is minimized and s is maximized with respect to t
and consider the following ordering of its vertices: π = (1, 2, . . . t, x, t + 1, t + 2 . . . � + 1), i.e. the
natural order of the path P with x inserted between t and t + 1. Denote p1 := 1 and p2 := � + 1.
Given v ∈V(R), we define v+ to be the vertex which comes after v in the ordering π . Given a set
of vertices T ⊂V(R), we define T+ to be the vertices obtained by shifting T to the right by one,
i.e., T+ = {v+ | v ∈ T}; similarly define T−. We start with the following simple claim.

Claim 2.6. If t > 1, then p2 has no neighbours outside of V(R). If t = 1 then p2 has fewer than a
neighbours outside of V(R).

Proof. First, note that if t > 1 and p2 has a neighbour outside of R, we could add that neighbour
to R, and remove p1 from R, thus obtaining a (t − 1, s)-switch, a contradiction. Now, suppose that
t = 1. Observe that p1 has fewer than a neighbours outside of R. Indeed, let A=N(p1) \V(R) and
let T be the set of neighbours of p2 − 1 in R− {p2}, and let Tout be the set of neighbours of p2 − 1
outside of R− {p2}. Then, the set Tout ∪ T+ is of size at least δ(G)≥ k≥ b and does not contain
any vertices in A, since this creates a C̃�+1. If |A| ≥ a, then there is an edge (i, j) between A and
Tout ∪ T+, which creates either a C̃�+1 or a C̃�+2. Indeed, if j ∈ Tout then obviously we get a C̃�+2,
if j ∈ T+ \ {2, x} then we get a C̃�+1 as in Fig. 2(b), and if j= 2 then we get a C̃�+1 whose triangle
contains 1, i, 2, while if j= x then we get a C̃�+1 whose triangle contains 1, i, x. Hence, |A| < a.

To conclude the case when t = 1, suppose that p2 has at least a neighbours outside R and denote
the set of these by B. Since p1 has fewer than a neighbours outsideV(R) by the previous paragraph,
we can take a set T of at least k− (a− 1)≥ b neighbours of p1 in V(R). Hence, there is an edge
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(a) (b)

Figure 2. In the first case we get a copy of C̃�+1, and in the second a copy of C̃�+2, whose respective cycles C�+1 and C�+2 are
depicted in red.

(a) (b)

Figure 3. In the first case we get a copy of C̃�+1, and in the second a copy of C̃�+2, whose respective cycles C�+1 and C�+2 are
depicted in red.

Figure 4. If p2 has a neighbour before t then we can use the red path to create a (t0, s)-switch.

(i, j) between T− and B, which creates a C̃�+2 (this is easy to see when i= p1 or i= x; otherwise
we get the same situation as illustrated in Fig. 3(b), a contradiction. �
Claim 2.7. If t > 1, then p2 has no neighbours t0 with t0 < t.

Proof. Otherwise, their exists a (t − t0, s)-switch, as depicted in Fig. 4, thus contradicting the
optimality of R. �

Now, define the set S to consist of the last a neighbours of p2 in π . Observe that by Claim 2.6
this set exists and as usual, let min(S) denote the smallest element of S in the ordering π . We then
have the following.

Claim 2.8. min(S)≥ t + 1.

Proof. If t = 1, note that p2 is not adjacent to any of 1 or x since any such case would create a
C̃�+1, a contradiction. Therefore, min(S)≥ 2. If t > 1, then Claims 2.6 and 2.7 imply that all of
the at least k neighbours of p2 are in V(R) and all of them are larger or equal to t in π . Hence, at
least k− 2≥ a (recall that we are assuming that b≥ 3) neighbours are larger or equal to t + 1 in
π , which completes the proof. �
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Figure 5. The case of i= x. We get a C̃�+1 where the triangle consists of vertices 1, 2, 3.

From now on, we will differentiate between two scenarios:

(A) p1 has fewer than a neighbours in the interval [ min(S)+ 1, p2].
Then, denote by T the set of neighbours of p1 in [p1, min(S)], and by Tout the neighbours
of p1 outside of V(R). Note that |T| + |Tout| ≥ k− (a− 1)= b.

(B) p1 has at least a neighbours in the interval [ min(S)+ 1, p2].
Then, denote this set of neighbours by A, denote by T the set of neighbours of p2 in
[p1, min(S)], by Tout the set of neighbours of p2 outside of V(R). Note that by defini-
tion of S, p2 has precisely a− 1 neighbours in [ min(S)+ 1, p2] and so we have that
|T| + |Tout| ≥ k− (a− 1)= b. Recall further that Tout = ∅ if t > 1 by Claim 2.6.

We will now consider a few cases, depending on the parameters s and t. We will argue that
besides the edges of R, there exist additional edges in G[R] which would imply the existence of a
better switch, or a copy of C̃�+1 or C̃�+2 in G, thus giving a contradiction. For example, note that
p1 and p2 are not adjacent, since this would create a copy of C̃�+1 in G. In the figures below, we
give some more complex examples of edges which we may find in G. In the following subsections,
we will consider each one of these situations and we recommend the reader to focus on the figures
below only when they are referred to in the proof. We recommend reading case (A) in all sections
first, and subsequently case (B) in all sections.

2.1. Triangle at the start: t= 1
(A) holds:

Since |T−| + |Tout| = |T| + |Tout| ≥ b and |S+| = |S| = a, there is an edge between T− ∪ Tout
and S+. This creates either a C̃�+1 or a C̃�+2 (see Fig. 2), so we are done.
(B) holds: Let T0 = T − {2}. Note that none of p1 and x are in T since otherwise a C̃�+1 exists, and
thus, min(T0)> 2. Now, T−

0 ∪ Tout ∪ {p2} is of size at least b and so, there is an edge between this
set and A−, which always creates either a C̃�+1 or a C̃�+2 (see Fig. 3).

2.2. Triangle starts at the second vertex: t= 2
(A) holds: Note that x /∈ T since otherwise there would exist a (1, ·)-switch, starting with the tri-
angle (1, x, 2). Consider then the set T− ∪ Tout which is of size at least b. Between T− ∪ Tout and
S+ (which is of size a) there is an edge (i, j), which creates a C̃�+1 or a C̃�+2. Indeed, if i 
= x then
we can proceed as in Fig. 2(a), and if i= x we proceed as in Fig. 5.

(B) holds: Recall that |T| ≥ b since Tout = ∅, and that p1 /∈ T. If not both edges (x, p2) and (3, p2)
are present, then for each vertex (if it is in T) we can assign a unique vertex as follows: 2→ 1,
x→ 4, and for all other vertices v→ v+ 1. If T∗ is the set of vertices assigned to T, then there is
an edge (i, j) between T∗ and A+ (note that these are disjoint since min(A)>max (T)=min(S)≥
t + 1= 3, implying that all elements in A+ are larger than max (T∗)). This edge always creates a
copy of C̃�+1 when i 
= 1 (as in Fig. 6a), and when i= 1 then it creates a (1, ·)-switch (as in Fig. 6b),
a contradiction.
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(a)
(b)

Figure 6. In the first case we get a copy of C̃�+1, and in the second a (t− 1, 1)-switch. The cycle C�+1 and the switch are
depicted in red.

Figure 7. Obtaining a (t, 2)-switch, when p2 is adjacent to both x and 3.

(a) (b)

Figure 8. p1 is not adjacent to both t and x, and p1 is not adjacent to both t and t− 1 as in both cases we create a better
switch.

Otherwise, if both (x, p2) and (3, p2) exist, then it must be that s≥ 2, since these edges can be
used to form a (t, 2)-switch (see Fig. 7).

Now we define T∗ differently as follows: x→ p1 and v→ v+ 1 (recalling that v+ 1 is not the
same as v+) for all other v in T, and we can proceed as before, by finding an edge (i, j) between
T∗ and A+. Note that if now i= 3, after doing rotation (as in Fig. 6a), we do destroy the triangle
2, x, 3, but the triangle 3, x, 4 is preserved, so it was crucial that s≥ 2.

2.3. Triangle in the middle: t> 2
(A) holds: First, note that p1 is not adjacent to both t and x, and p1 is not adjacent to both t and
t − 1, as in both cases we get a better switch (see Fig. 8).

Now, to each vertex in T we assign a unique vertex as follows, depending on the adjacencies
between p1 and the set Q= {t, t + 1, x}:

(i) If p1 is adjacent to at most one vertex in Q, then assign: x→ t − 1, t + 1→ t − 1 and v→
v− for all other vertices in T.

(ii) If p1 is adjacent to only x, t + 1 in Q, then: x→ t, t + 1→ t − 1 and v→ v− for all other
vertices in T.

(iii) If p1 is adjacent only to t, t + 1 in Q, then by the observation above it is not adjacent to
t − 1. We then take: t → t − 1, t + 1→ t − 2 and v→ v− for all other vertices in T.

As shown before, p1 cannot be adjacent to both x, t and so, one of the options above must hold.
Let T∗ be the set of assigned vertices, and note that |T∗| = |T| and thus |T∗ ∪ Tout| ≥ b. Hence we
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Figure 9. The red line represents the path of a switch with the triangle closer to p1.

Figure 10. The red line represents the path of a switch with the (blue) triangle closer to p1.

Figure 11. The red line represents the path of a switch with the triangle closer to p1.

have an edge (i, j) between T∗ and S+, and we check that in each case we either get a (t′, s′)-switch
with some t′ < t or a C̃�+1.

Indeed, for (i) we have a situation as depicted in Fig. 9 if i= t − 1, and Fig. 2 otherwise. For (ii)
we have a situation as in Fig. 10 if i= t, as in Fig. 9 if i= t − 1 and otherwise we have again the
situation in Fig. 2. For (iii) we have the situation of Fig. 9 if i ∈ {t − 1, t − 2} and the situation of
Fig. 2 otherwise.
(B) holds: Recall that by Claim 2.7, the vertex p2 has no neighbours before t in the ordering π

and that Tout = ∅. To each vertex in T we can then assign a unique vertex as follows: x→ t − 2,
t → t − 1 and v→ v+ 1 for all other v ∈ T (which must satisfy v≥ t + 1). Let T∗ be the set of
assigned vertices, and note then that |T∗| = |T| ≥ b. Hence, we have an edge (i, j) between T∗ and
A+, which are disjoint, as we already explained in Section 2.2, Part (B). In each case we either get
a (t′, ·)-switch with t′ < t or we create a C̃�+1. Indeed, if i= t − 1 or i= t − 2 then we are done by
Fig 11, otherwise we are done by Fig. 6a.

This completes the proof of Lemma 2.4.

2.4. Completing the proof: b≤ 2
When a≤ b≤ 2, the proof is significantly shorter. Indeed, this implies that there is an edge
between any two disjoint sets of size at least 2 in G. If |G| ≤ 7 one can check by hand that the
statement holds and we leave this as an exercise to the reader (one can already assume that G is
Hamiltonian, as guaranteed by Theorem 1.1, and then analyse what cycles are created by adding
edges between pairs of vertices in the Hamilton cycle).

Otherwise, first note that by Theorem 1.1, G contains a Hamilton cycle. We will now show
that if G contains a cycle of length � with 6≤ � ≤ n− 2, then it contains a cycle of length
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� + 1. This reduces pancyclicity to only finding cycles of length 3, 4, 5 and 6 in G. Consider then
a cycle C� in G and suppose for sake of contradiction that there is no C�+1. Let x, y be two ver-
tices outside of the cycle C�. Trivially, since l≥ 6, it must be that at least one of x, y has at least 3
neighbours in C� (otherwise there would be two vertices in C� not adjacent to {x, y}, contradicting
the assumption on G). Without loss of generality, assume that x is adjacent to z1, z2, z3 ∈ C�. If
any pair of vertices zi, zj is consecutive in the cycle C�, then we can extend this cycle using x to
create a C�+1. Otherwise, fix some orientation of C� and for each v ∈ C�, denote by v− the vertex
before v ∈ C� in this orientation. By assumption, there is then an edge between the sets {z−1 , x} and
{z−2 , z−3 }. In turn, it is easy to check that any such edge creates a cycle C�+1 on the vertex set of
C� + x.

We now prove the existence of cycles of lengths from 3, 4, 5, 6. Note that we have already shown
that G contains a triangle xyz in Claim 2.3. Now, if two vertices on the triangle have a common
neighbour outside then we also have a C4. Otherwise, note that since by assumption there is an
edge between every two disjoint sets of size two, it must be that every pair of vertices has a vertex
with degree at least n−3

2 > 2 – therefore, two vertices in the triangle have a disjoint neighbourhood
of size at least 2 outside the triangle. Between those two neighbourhoods there is an edge, which
again gives a C4 (and a C5). If G does not have a C5, then we are in the former case with two
triangles sharing an edge (C4 with a diagonal). Now, all except one vertex outside of these four
vertices have at least two neighbours inside of it. The only way not to create a C5 is to have all of
these (at least two) vertices be adjacent only to the two vertices of degree 3. But then there is no
edge between those vertices outside, and the remaining vertices of our C4.

Finally, if we have a C5 then again all but at most one vertex outside of it, are adjacent to at least
two vertices in C5. One can check that since we have at least 2 of them, this always gives a C6 as
well. This completes our proof.

3. Concluding remarks
Bondy’s meta-conjecture states that every non-trivial condition which implies Hamiltonicity, also
implies pancyclicity, up to a certain small collection of exceptional graphs. Clearly, there are some
cases of natural Hamiltonicity conditions for which this statement fails. For example, it is well
known (see [25]) that pseudo-random graphs are Hamiltonian, but even rather dense pseudo-
random graphs might have no short cycles to be pancyclic. On the other hand, in addition to the
results presented in this paper, we know by now that several well-known Hamiltonicity theorems
can be extended to give pancyclicity, for example see [4, 6, 15, 28]. Hence, it would be interesting
to explore other interesting Hamiltonicity conditions and understand whether they indeed imply
pancyclicity.
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