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ON THE ith LATENT ROOT OF A COMPLEX MATRIX()

BY
SABRI AL-ANI(?)

1. Introduction and summary. Goodman [1] has pointed out the applications of
the distributional results of the complex multivariate normal statistical analysis.
Khatri [4], has suggested the maximum latent root statistic for testing the reality
of a covariance matrix. The joint distribution of the latent roots under certain
null hypotheses can be written as, [2], [3],
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We may also note that when n is large, the joint distribution of nw;=f}, j=
1,...,q,0<fi< - -<f,< 00, can be written as
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Khatri [2], has derived the distribution of w, (or w;) and f, in a determinant
form. In this paper we first derive the distribution of w,_; and f,_; and then the
distribution of w; and f;. In this connection a lemma has been proved.

2. Preliminary results. In this section, we first state two lemmas, and prove a
third lemma.

LeMma 1.
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where 2':(0<x, <+ <x,<x), (xL1); and on the left-hand side (m,, n,), ...,
(my, my) is any permutation of (ms, ny), . .., (my, ny) and the summation is taken
over all such permutations.

For proof, see Roy [6, p. 203, A. 9.3].

Lemma 2.
2q—2 2q—3 q—1
W%I 3 ;2 4 qu2
q— q— aq—
. Wi, ia Wiq
ITwi—w)3=3| - : -,
i>j . . .
q—1 a2 0
Wi, Wi, Wiq
where Z means summation over all permutations (jy,ja, ... ,jg) of (1,2,...,9),

and |A| means the determinant of A.
For proof, see Khatri [2].

LEMMA 3.

5[, wrt—xyax) = 11 [ | sra—sxpax,],

j=1 x

where D' : (x<x;<x, < + < x,<1), and on the left-hand side (m,, n), . . . , (my, my)
is any permutation of (mg, n,), . .., (my, ny) and the summation is taken over all
such permutations.

Proof is similar to Lemma 1.

3. The distribution of w,_,. In this section we obtain first the cdf’s of w,_, and
fo1 and in the next those of w; and f;. Note that

(3) Pr{wq—l S x} = Pr{wa S x}+Pr{wq—1 S. x < Wq S 1}

Khatri [1], showed that
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where ¢, is defined in (1), B, _e=[ow™t*t-2(1—w)"dw for i,j=1,2,...,q
and (B,,, o) is a ¢ Xq matrix. Now the determinant in Lemma 2, can be written as

©) > sign(ty, - . ., Wi TOWEETE L w)l,
1

where (4, . . . , t,) is a permutation of (0, 1,...,g—1), sign(t,, . . . , £,) is positive
if the permutation is even and negative if the permutation is odd, and Y, means
the summation over all such permutations. Then (1) can be written as

61{13 wi(l—wy)" 3 Ssign(ty, ..., 1)

1

Loews,dg1
g—1+t1 g—2+iz a—3+i3  fe a—2+t2  g—1+t1  q-8+ts | ig .
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tq,,,a—1+11, a—2+t2 . 144
+wwir T Wig Wil

First taking summation over (jy, ... ,j,—1), the permutation of (1,2,...,g9—1)
and integrate w, over x<w,<1, and apply lemma, we get

Priw,, <x & w, < 1) =1¢ g sign(ty, . . ., tq)[ﬂ;—l+t1ﬂq—2+tz e ﬂtq
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where

1
Bioss = f WL )" d,

&

then (7) can be written as

q
® & 2 (Bl

k=
where l(ﬂiﬁ)j_z)l is the determinant obtained from |(f;,,;_.)| by replacing, the kth
column of [(8;4;_s)l, B, by the corresponding 8,’s. So we proved the following
theorem.

THEOREM 1. If the joint distribution of w,, . .., w, is given by (1), then
a
9 Pr{iw,; < x} = ¢ Eol(ﬂffu’,_z)l
k=
where |(B;_)=|(Birs_s)|, and |(B,_)| is defined in (8), and c, is defined in (1).
THEOREM 2. If the distribution of f,, . . . , f, is given by (2) then

(10) Pf{fq-l < x} = czkél(%(fu)j—z)l,

where y,.;_o=[owm™ 2 exp(—w) dw, (7;1;.5) is @ gXq matrix and (y{;_s) is
defined similar to that of (9), and c, is defined in (2).
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Proof is similar to that of Theorem 1.

4. The distribution of w,. It may be noted here that

(11) Pr{w; < x} = Pr{w,y < x} + Pr{w; < x < w4}, i=1,...,q9—1.

To evaluate the second term of (11), we may write

II (wi— Wj)2

>3

12 . ) ;

(12 =Ssign(tn ... 1) 3 D whwE w3 wEw g
1 241,..., tq—i J1,eees Ji

where (iy, ... ,I, ) is permutation of (i41,...,q) and zil ‘‘‘‘‘ ;,_, runs over all
such permutations; (j;, ... ,J;) is a permutation of (1,...,7) and 3,

over all such permutations; », is the summation over the terms ( 1 i) terms of

obtained by taking g—i, (e, ..., ®,;), at a time of g—141,, g—2+1s, ..., ;.
Substituting (12) in (1) and using Lemma 1 and Lemma 3, and as in § (3),
we get

13) Priw, <x <w, ) =¢ 22 I( ;—?}—2)"

where ({0} ,) is a g xg matrix obtained from (B;,, ,) by replacing i columns of
(Bi1;—2) by the corresponding B,’s. Therefore by (10), (14) and Theorem 1 and
reduction process, we can get the distribution of w;.

It may be pointed out that, [5],

13y’ Pr{w; < x;m,n) = 1 — Pr(wo_; 11 < 1—x;n, m)

where on the right side of (13) the parameters m and » are interchanged, hence
the distribution of wy, [2], can be written as

(14) Pr{Wl < x} =1—¢ I((SH-J'—Z)I:

where d;; o=/[¢"z"tH2(1—z)" dz, and (d,,,_,) is a ¢Xq matrix, similarly, if
we define d;; ,=] 1 Z"H+i=2(1—z)™ dz, the distribution of w, can be written as

q
(15) Pr{w, < x} = 1—¢; > l(éz(f)J—.’.)la

k=0
where, as before, |(6f.f3,-_2)| is the determinant obtained from |(d,,,_»)| by replacing
the kth column of |(8;,,_,)| by the corresponding 8.’s, and ({7} _o)=(0;,;_5). A

similar method gives

(16) Pr{f; < x} = Pr{fi1 < x} + Pr{f; < x < fi11)> i=1,2,...,q—1,
and

a7 Pr{fi <x <ﬁ'+1} = Cy Z’ |(7§io}—2)|,
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where ¢, is defined in (2), and also (yg?}_z) is a ¢ Xg matrix obtained from (y,.;_,)
by replacing i columns of (y,,,_,) by the corresponding y,’s.
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