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Abstract. Let G be a real reductive Lie group, K its compact subgroup. Let A4 be the algebra of
G-invariant real-analytic functions on 7*%(G/K) (with respect to the Poisson bracket) and let
C be the center of 4. Denote by 2¢(G, K) the maximal number of functionally independent
functions from A4\ C. We prove that &G, K) is equal to the codimension (G, K) of maximal
dimension orbits of the Borel subgroup B C G® in the complex algebraic variety G©/KC.
Moreover, if (G, K) = 1, then all G-invariant Hamiltonian systems on 7*(G/K) are integrable
in the class of the integrals generated by the symmetry group G. We also discuss related questions
in the geometry of the Borel group action.
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1. Introduction

Let X be a symplectic manifold. One calls a Hamiltonian system on X completely
integrable if it admits a maximal number of independent integrals in involution
(dim X/2 functions commuting with respect to the Poisson bracket on X). Denote
by G a real connected reductive Lie group which acts on X in a Hamiltonian fashion,
by K a closed connected subgroup of G. Let P: X — g* be the moment mapping,
where g is the Lie algebra of G. The functions of type /i o P, for h: ¢* — R, are called
collective. These functions are integrals for any flow on X with a G-invariant
Hamiltonian H. The question arises, for which symplectic manifolds X

all G-invariant Hamiltonian systems on X are integrable in

the class of the integrals generated by its symmetry group G. *)
Of course, X has this property if on X there exists a completely integrable system
consisting of real-analytic functions of type /o P (so-called collective completely
integrable system [1]). All symmetric spaces G/K admit a collective completely
integrable system on the face space 7%(G/K) ([2, 4-6, 10]). Moreover, the following
conditions and (x) (with X = T*(G/K)) are equivalent [1, 7, 8]:

(I) onthe phase space 7*(G/K) there exists a collective completely integrable system;
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(2) the codimension 8(G®, K©) of maximal dimension orbits of the Borel subgroup
B C G° in the complex algebraic variety G“/K* is 0;

(3) the subgroup K of G is spherical, i.e. the quasiregular representation of G© on
the space C[G"/K"] of regular functions on the affine algebraic variety G©/K*
has the simple spectrum;

(4) the algebra of G-invariant functions on 7*(G/K) is commutative, i.e. &(G, K) = 0.

The classification of spherical subgroups of semisimple complex (connected) Lie
groups was obtained in [7, 11, 12]. Since the Poisson structure on X is nondegenerate,
in the case of existence of a collective completely integrable system any G-invariant
Hamiltonian H locally has the form /o P; i.e., for the integrability we don’t use
‘effectively’ the function H. This fact was observed in [9] and used to obtain
new classes of spaces with property (x).

Let Npax(X) be the maximal number of independent real-analytic functions
in involution on X of type ho P. If Npax(X)=(dim X/2) — 1 we will call the
corresponding system of functions an almost collective completely integrable
system [9] and if, in addition, X = T*(G/K) we will call such homogeneous space
G/K an almost spherical space [9]. The classification of all almost spherical spaces
G/K with compact simple (connected) Lie groups G was obtained in [9].

The purpose of this note is to prove that Np(T*(G/K))=
dim T*(G/K)/2 — &G, K). Moreover, we prove that every space X = T*(G/K) with
&(G, K) =1, where the subgroup K C G is compact, also has property (x): for
the integrability we can use either H or another G-invariant function (see [9,
Prop. 1] and Prop. 12). We also show that the number ¢(G, K) defined above admits
an equivalent definition using the equation (6). But by [16, 17] the analogous
equation defines the number (G, K) so that 4(G, K) = ¢(G, K). In particular, the
almost spherical spaces G/K are affine homogencous spaces of complexity
1 = d(G, K) classified in [17]. Here we find some new properties of pairs (G, K)
of reductive Lie groups (Lemmas 15, 16) and as a consequence a new proof of
the equality 4(G, K) = &(G, K) in the reductive case (Theorem 17). We investigate
properties of the function 6(G, K). The main results are the interpolation property
(Theorem 8): (G, S) + J(S, K) < (G, K), where K C S C G, and Theorem 11.

2. Integrability and Actions of Borel Subgroups on Homogeneous Spaces of
Reductive Lie Groups

2.1. MOMENT MAP AND HAMILTONIAN ACTION

Let M be a homogeneous space of a real connected Lie group G, i.e. M = G/K,
where K is a closed subgroup of G. Let n: G — M be the canonical projection from
G onto M. The natural action t of G on the quotient space M extends to the (left)
action of G on T*M, which we denote by t*. This G-action on T*M is symplectic
since it preserves the canonical 1-form 4 (the form ‘pdg’ ) and thus also the symplectic
2-form dA. For each vector ¢ belonging to the Lie algebra g of G the 1-parameter
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subgroup exp?f induces the Hamiltonian vector field Zf on T*M with the
Hamiltonian function f: = /1(%): df: = —Ejdﬂ,. The map &i—f: of g into the algebra
C®(T*M) (with Poisson bracket) is an equivariant algebra homomorphism:
f(g'-m) = fadgy(m),m € T*M and hence the action t* of G on T*M is
Poisson [3,8]. This action defines the moment map P: T*M — g* from T*M to
the dual space of the Lie algebra g by P(m)({) = f:(m). For arbitrary smooth
functions 4, and %, on g* we have {h o P, hy o P} = {hy, h,} o P, where the Poisson
bracket on g* is given by the formula {/;, i }(f) = p([dhi1(B), dha(P)]), B € g*.

Using the map 7.|,: T.G = g — Tre)M we can identify the tangent space Ty M
with the quotient space g/f, where f is the Lie algebra of the Lie group K. Thus
we can identify 77, M with the subspace ¥ c g*, where = {« € g*: a(f) = 0}, using
the map 1 — T oM, oi—4& and putting a(m.(¢)) = a(£). Because of the transitive
action of G on M we see that the moment map P is determined completely by
the restriction P| T M- From the definitions of the canonical form A it can be
concluded that P(&) = « (see [6] or [4]).

Since the Poisson bracket on g* induces a symplectic structure on the orbits of the
coadjoint representation Ad* of G on g*, the maximal number of functions (or linear
functions ¢ € g) on g* independent at o = P(&) and with pairwise Poisson bracket
equal to zero (at this point) is dimg* + %dim(g/ g*), where " =qer {¢ € q:
ad* (o) = 0} is the Lie algebra of the isotropy group G* of the point a for Ad*-action
of G. On the other hand, the isotropy group G* of the point & is a subgroup of 'K. But
clearly the space T3, M is invariant under the action | and k- & = Ad" (k™).
Hence G* = G* N K and t* =4.r g* N Tis the Lie algebra of G*. That is, t* is the kernel
of the linear mapping ¢&i— E(&), ¢ eg and therefore the maximal number of
independent functions of the form hoP in involution at & is equal to
dim(g*/t*) +%dim(g/g°‘). This number does not exceed %dim T*M (because of the
nondegeneracy of the symplectic form diA on T*M) so that we can define the
nonnegative integer ¢ = &(g, f) such that

dim(g”/t*) + 3 dim(g/g”) = dim(g/f) — ¢ (1)

for any o from some (Zariski) open subset of ¥ C g*.

Now let us consider the tangent space W (&) to the orbit G - & C T*M. This space is
generated by vectors E(x), ¢eg and has the dimension dim(g/f*). Let
W (&)t =g {X € T, T*M:dA(X, W(6)) =0} be the orthogonal complement to
W (&) with respect to the symplectic structure dA. We show that the codimension
of Wt(&) N W(&) in W+(a) is equal to 2e¢. Indeed, multiplying both sides of (1)
by 2, we obtain after simple rearrangements

dim(g*/t*) + dim(g/f*) = 2dim(g/t) — 2e. 2)
Because of the relations

dA(R), E@NE) = Uz, f,)8) = fiem(®) = PGXE, 7))
=o([¢, n]) =ad" &(a)(n) forany & neg
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it follows that W (&) N W(&) = {i1(&), n € ¢*} and dim(W (&) N W(&)) = dim(g*/).
Taking into account that 2-form d/ is nondegenerate we obtain dim W(&)+
dim W (&) = dim T*M = 2dim(g/f). Thus dim W(&)* — dim(W(x) N W(x)) = 2e.

Suppose that the Lie group K is compact. Then any two orbits of the linear
representation p = Ad* | of K in 1 are separated by some invariant polynomial
function on . Since the action of G on T*M is reduced to the action of K on
= T;,M induced by p, we see that for some point &€ T, M the space
WL(%) is spanned by values of Hamiltonian vector fields (at &) of G-invariant
real-analytic functions on 7*M. Now applying this to the action of the group G
on M = G/K we obtain

PROPOSITION 1. If the subgroup K of G is compact then on T*(G/K) there exists
2¢(q, T) independent G-invariant real-analytic functions which are independent of
functions of type ho P.

2.2. PAIRS OF REDUCTIVE LIE ALGEBRAS

Let g be a reductive real (or complex) Lie algebra. There exists a faithful
representation of g such that its associated bilinear form @ is nondegenerate on
g (if g is semi-simple we can take as @ the Killing form associated with the adjoint
representation of g). Let ¥ C g be a reductive in g subalgebra, i.e. the representation
xi1— ady x of f on g is completely reducible. This subalgebra is necessarily reductive
(in itself). For each element x € g let g°(x) (respectively g¥) denote the set of all
z € g which satisfy (ad x)"(z) = 0 for sufficiently large n (respectively [x, z] = 0).
Let ¥ = fNg*. By consideration of minors it is clear that the set of R-elements
inm=f ={xeq: dx, =0}

R(m) = {x e m:dimg* < dim¢’, dim go(x) < dim go(y),

(©)

dimt* < dim¥,Vy € m}

is a non-empty Zariski open subset of m. Let us define the integer ¢ = &(g, T) for the
pair (g, ¥) putting

dim(g*/t") +3dim(g/g") = dim(g/H) — &, (4)

where x € R(m). Multiplying both sides of (4) by 2 and taking into account that
dim g = dimf + dim m we obtain after simple rearrangements

dim(g*/t") + dim(f/f") = dim m — 2. (5)

The set R(m) consists of semi-simple elements of g [7, Prop. 1.2], i.e. the centralizer
g, x € R(m)is a reductive (in g) subalgebra of g. Moreover, the maximal semi-simple
ideal [g¥, g*] of g* is contained in the algebra t* (see [5] or [7, Prop. 1.1]) so that
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dim(g*/t*) = rank g — rank t*, and so (5) can be rewritten as
(rank g — rank ) + dim(¥/f") = dim m — 2e. (6)

Dividing both sides of (6) by 2 and taking into account that dimg = dimf + dimm
we conclude that

I(rank ' 4+ dim ") = } (rank g + dim g) — dimm + ¢ (7)
and

dimg — ¢ = }(rank g + dim g) + dim t — § (rank ¥ + dim ). (8)
Moreover, it is evident that dim(g*/t") < rank g < dimg* and, consequently, (4)
implies

dimt > §(dim g — rank g) — &. )

Denote by b(m) the non-negative integer %(rank g+ dim g) — dim m + &(g, ) (the
right side of (7)). However, " is a reductive algebra. Hence 1 (rank t* + dim ¥) (the
left side of (7)) is the dimension of a Borel subalgebra of ¥ and as an immediate
consequence of (7) we obtain

PROPOSITION 2. For any x € R(m) the dimension of a Borel subalgebra of t* is equal
to b(m) and, consequently, is the same for all x € R(m).

DEFINITION 3. Let g be a reductive real (or complex) Lie algebra, let ® be a
nondegenerate bilinear form on g associated with a faithful representation of g,
and let T C g be a reductive in g subalgebra. Let m = {x € g: ®(x, ) = 0}. We say
that (g, f) is an é&-pair, if the equivalent conditions (4)—(8) are satisfied for all points
x belonging to some open subset of m (or, what is the same thing, for some x € R(im)).

Remark 4. The reductive Lie algebra t is the Lie algebra direct sum f=3& 1,
where 3 is the center of f and f; = [, {] is the maximal semi-simple ideal in f. Since
t is reductive in g, the center 3 consists of semi-simple elements of g. Let §; be a
Cartan subalgebra of the centralizer Z(¥;) of f; in g containing the center 3. Then
for some subspace 3; C h; we have ) = 3; 3. The restrictions of ® to the sub-
algebras f; and f;, = 0, @ f; are nondegenerate with ®(f;, ;) = 0 [13, Chapter VII,
Section 1]. The algebra f, is its own normalizer in g (the Cartan subalgebra b is
its own normalizer in Z(¥;)). Let p, be the orthogonal complement of f, in g relative
to ®. Let p be the adf-invariant complement to f in g (so g=f®p and
[t,p] € p). Since, by invariance of ®, [, m]Ccm and p,CmcCh ®p, the
representations xi— ad, x, x— ad;gp, ¥ and x—ad,x of f are isomorphic.
By (6) the number &(g, ) is defined via the latter representation, i.e. the definition
of &(g, f) does not depend on the choice of the form ©.
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Remark 5. It is clear that if g© and t* are complexifications of algebras g and f
respectively then &g, t%) = &(g, T).

Our interest now centers on what will be shown to be an important subset of m.
Define for any x € m the subspace m(x) C m putting

m(0) &z e m:[x, 2] € m), (10)

i.e. ad x(m(x)) € m. By the invariance of ®
m(x) = {z € m: ®(z, ad x(¥)) = 0}. (1D

We continue with previous notations but throughout the remainder of this
subsection it is assumed in addition that the form ® is nondegenerate on f. Then
g = m & f. Denote by (-),, the projection into m along f. Since [f, m] C m, it is clear
that (g%),, € m(x) for any x € m. An immediate consequence of (5) is the following
proposition.

PROPOSITION 6. For any x € R(m) the codimension of (§),, in m(x) is equal 2¢(g, ).
In particular, &(g, %) = 0.

Remark 7. If a pair (g, T) of real (or complex) reductive Lie algebras is a symmetric
pair, 1.e. tis the algebra of fixed points of an involutory automorphism of the algebra
g, then [m, m] C f and, consequently, for any x € m: ad x(m(x)) C (mN{f) = 0. Thus
m(x) C ¢* and by Proposition 6 &(g, ) = 0. We say that the pair (g, f) of real (or
complex) reductive Lie algebras is a spherical pair and the subalgebra t C g is a
spherical subalgebra if &(g,t) =0 [7, 8]. All spherical subalgebras f of compact
Lie algebras g are classified in [11] (for simple g) and [7, 12] (semi-simple case).

A theorem proved in [7] (see [7, Theorem 2.5] in the case of compact Lie algebras
asserts, among other things, that if &(g, f) = 0 then &(g, s) = 0 and &(s, f) = 0, where
s is any subalgebra of g containing . Theorem 8 below may be regarded as a
generalization of this theorem to the case of arbitrary pair of reductive (not
necessarily compact) Lie algebras. The proof which we have found is simple but
uses limit arguments. We continue with previous notations.

THEOREM 8. Let s be a reductive subalgebra of g containing t such that the
restriction of ® to s is non-degenerate. Then 0 < &(g, s) + &(s, T) < &(g, ).

Proof. Let m; (respectively my) be the orthogonal complement to the subalgebra t
in s (respectively to the subalgebra s in g) with respect to the form ®@;i.e., s =t d
(respectively g = s @ mp). Denote by (-),,,, and (-),,,, the projections into the subspaces
m; and m; respectively defined by the decomposition g =t @ m; @ n,. Recall that
m=m; ®&nm,. Fix an element X; + x; € R(m; & my) such that X; € R(m;) and
X3 € R(my). Consider the subspace my(x;) C my defined by (10). Let V, = Va(x?)
be some complementary subspace to (g*%),, in m(xz). By Proposition 6
dim V;, = 2¢&(g, 9).
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Let us show that ¥, N (g%17),, = 0 for all x| from some nonempty Zariski open
subset Q;(x,) C R(m;). Towards this end define Q;(x,) C m; as the set of all elements
x; such that (1) x} € R(my) and x] 4 x> € R(m; @ my); (2) the intersection
V5(x;) = V2N (g12),, has the minimal possible dimension /. Since V5(x)) C
(g"1+2),,, it follows that ad(x} + x2) V5(x)) C ad(x} + x2)(f). But V3 C ma(x7) so that
[x2, V5(x})] € my. Taking into account the relations [f, m;] C m;,i = 1,2 we obtain
ad(x] + x2)Vj(x]) C ad x»(¥). It is well known that the nonempty Zariski open set
0i(x2) is dense in m;. Thus we may find a sequence x|, € Q1(x2), n=1,2,...,
converging to 0 € m;. Now consider the Grassmann manifold G; of all /-planes
in my,. This manifold, of course, is compact and hence we may find a subsequence
X1, of the sequence x), with the property x;, — 0 and the subspaces V;(x1,)
converge to an /-plaine V7(0) in the Grassmann manifold. From the above it
follows immediately by taking the limit that ad x,(775(0)) C ad x»(¥) C ad x»(s), i.e.
V5(0) C (g™),y,- But V3(0) C V5 and V> N (g%),,, =0 so [ =0. That is, there exists
an element x; € R(m;) such that x; +x; € R(my & myp) and ¥, N (g H2),, = 0.
Let V1 = Vi(x1) be some complementary subspace to (s*),, in my(x;). By
Proposition 6 dim V| = 2¢(s, ).

Now to prove the theorem it suffices to prove that (V7 & V2) N (g9 +%2),, = 0. Let
i+ v e (V1@ V2)N(gt2),. Then there exists ze€f such that [x; + xp, vi+
vy +2z] =0. Since adxy(my(xp)) C My, [my, mp] C my, [E,m;] C m;, we see that
[x1,v1 + 2] = 0.Thus v; € (s*),,, N V1, i.e. vi =0 and, consequently, v, = 0. O

The following properties of m(x) are needed for the proof of Theorem 11.

PROPOSITION 9. For any x € R(m) we have [m(x), ¥] = 0.

Proof. For the proof we will use the approach of [15]. Consider the subbundle £ of
the trivial bundle R(m) x m x f consisting of points (x, y, z) with y € m(x) and z € t".
Since dim m(x) and dim " are constants for x € R(m), this is indeed a bundle, and for
any curve x;, C R(m) and vectors yy € m(xy), zo € £, we may construct curves y,, z,
over x, in E. By the definition [x,, m(x,)] Cm so that ®(z,[x, y]) =0.
Differentiating the former identity at zero and using the invariance of the form
® we obtain

D(zg, [x0, yol) — P(o, [x0, 20]) + P(X0, [yo, Z0]) = 0. (12)

Since fLm and [x, '] =0, the first two terms on the left side of (12) vanish, i.e.
D(y, [0, zo]) = 0 for all y € m. Using the non-singularity of ® on m and the relation
[t, m] € m we prove the proposition. O

Proceeding in a manner similar to the proof of Proposition 9 with the subbundle £
of the trivial bundle R(m) x g x g consisting of points (x,y,z) with y,z € g*
(differentiating the identity ®(x,, [y;, z;]) = 0) we obtain

PROPOSITION 10 ([5,7]). For any x € R(m) we have [g*, ] C L.
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Note. 1t is useful to observe that the above proof of Proposition 10 (1) depends
essentially on the fact that m = £ in g (2) does not use the direct sum decomposition
g=meHt, ie. the nonsingularity of ® on f.

THEOREM 11. Assume that y € R(m)and ais areductive (ing) subalgebra of ¥. Let
§ and t be the centalizers of a in g and t respectively. Then &g, T) = &8, 1).

Proof Algebras g and tare subalgebras reductive in g and the restrictions of @ to g
and f respectively are nondegenerate [13, Chapter VII, Section 1]. Let m be the
orthogonal complement of tin § relative to ®:§ = f @ 1iv. Since f and m are stable
under ad(a) we have

g=gnNt@egnNnm and WM=3Nm. (13)

Let x be any element of the set R(m) N1 containing y. Clearly this set is a Zariski
open subset of M so that without loss we may assume x € R(m)N R(m). By
Proposition 9 [m(x), ] =0. But clearly a C t° and, consequently, m(x) C n.
Therefore by definition (10) th(x) = m(x).

The reductive Lie algebra g* is the Lie algebra direct sum g* = 3 ® [g¥, g*], where 3
is the center of g*. The commutator [g¥, g*] = [t¥, ] is the maximal semi-simple ideal
in g*. Hence, [3, ] = 0. Recalling that a C ¥ we see 3 C g. But, obviously then,
3C g*. Since g C g* and (g%),, = (3),, we have (g )m (¢%),,- But mcm and
t C f 50 that the projection (§%);; of §* C g into 1t along t coincides with (§* V- Thus
(6%),, = (6. Now Theorem 11 follows immediately from Proposition 6. O

2.3. INTEGRABILITY

We continue with notations of the previous subsection 2.2. Let G be a real connected
reductive Lie groups with the Lie algebra g. By K we denote its reductive subgroup
with the Lie algebra f C g. Suppose also that the subgroup K C G is closed. Since
® is nondegenerate on g, we may use it to identify the spaces g* and g, ¥ C g* (the
annihilator of f in g*) and m. Under this identification the coadjoint action of G
on g* goes over to the adjoint action of G on g, and the annihilator g* of o €
coincides with the centralizer g* of the corresponding element x(x) € m.

The centralizer of the semi-simple element x € R(m) is the reductive Lie algebra
g* =3(x) ®[g% g*], while ¥ =3(x)D[g%, ¢"] [7, Prop. 1.1 and 1.2], where
31(x) C 3(x). On g there are real polynomials /1, ..., h,, where p = %dim(g/gx), such
that Ay, ..., h, are pairwise in involution on g and the vectors {[x, grad h;(x)]},
i=1,...,p, are independent [6, Theorem 2.6]; here grad /;(x) is the vector dual
to the differential d/;(x) relative to ®. The gradients of the polynomial invariants
of g at the point x generate the center 3(x) of g* [6, Theorem 2.5]. Since
dim(g*/F) = dim(3(x)/3;(x)) and we have identified the spaces m and =
T7(G/K), by what was said in subsection 2.1 about 7%(G/K), there exist
s = dim(g*/t") + %dim(g/ g*) functions of the form /hoJ in involution and
independent at x € m =,
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If &(g,f) = 0 then s = %dimT*(G/K); i.e., on the manifold 7*(G/K) there exists a
collective completely integrable system and hence any G-invariant flow on
T*(G/K) is integrable. If &(g,f) = 1 and in addition K is a compact subgroup of
G then by Proposition 1 there exists a G-invariant function F on T7*(G/K) which
is independent of the functions {#; o P},i=1,s. The set {F,hjoP,..., hyo P} is
the maximal involutive set of independent functions: s+ 1 = %dim T*(G/K). If a
G-invariant function H is independent of {h;oP},i=1,s then the set

{H,hjoP, ..., hgo P}is the maximal involutive set, if H is dependent then we have
the commutative set of integrals {F,h o P,...,h;o P}. We proved the following
proposition:

PROPOSITION 12. If K is a reductive closed subgroup of a real reductive connected
Lie group G and &(g,¥) =1 then on T*(G/K) there exists an almost collective
completely integrable system. If in addition the subgroup K C G is compact then
any Hamiltonian system on T*(G/K) with a G-invariant Hamiltonian function H
is integrable.

Remark 13. We say that a pair (g, f) of real (or complex) reductive Lie algebras is
an almost spherical pair and a subalgebra T C g is a almost spherical subalgebra
if &(g, f) = 1. All almost spherical subalgebras f of compact simple Lie algebras g
are classified in [9, 17].

2.4. ACTIONS OF BOREL SUBGROUPS ON HOMOGENEOUS SPACES OF REDUCTIVE
ALGEBRAIC LIE GROUPS

Let G be a connected reductive complex algebraic Lie group with reductive closed (in
the Zariski topology) subgroup K, and let g and f be their Lie algebras. Since the
subalgebra t is algebraic and reductive in g, there exists a compact real form f,
of the complex reductive Lie algebra f. The algebra f; is a compactly embedded
subalgebra of g and, consequently, f, is contained in some compact real form g,
of g (see [14, Chapter VI, Section 2]). Moreover, there exists a faithful representation
p of g such that its associated bilinear form ® is nondegenerate on g and negatively
definite on g, (we can take as p the natural representation of the algebraic Lie algebra
g € End(C") or adjoint representation ad if g is semi-simple). Then g = m @ t and
go = Mo ® fp, where m = - (in g) and my = mnN Go-

Let x € R(mg). Then m = m(x) @ ad x(f) and by Proposition 9 [m(x), ] =0.
Moreover, using the dimensional arguments we have ¥ =t for any
y € m(x) N R(m). Therefore the set Ad(K)(m(x) N R(m)) contains a Zariski open
subset R'(m) C R(m)of mandif z € R'(m) the algebra ¥ is conjugate to *. We proved

PROPOSITION 14. There exists a Zariski open subset R'(m) C R(m) of m such that
for any y,z € R'(m) the algebras ¥ and ¥ are conjugate to each other.
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Consider the action of some Borel subgroup of the Lie group G on the affine
algebraic variety G/K. Let 6(G, K) be the codimension in G/K of maximal dimension
orbits of this Borel subgroup. That is, for ‘almost all’ Borel subalgebras b’ of g the
codimension of the subspace b’ 4 in g is equal to (G, K). Below we shall prove
Theorem 17 asserting that (G, K) = &(g, f). Taking into account that dimb’ =
%(rankg + dim g), we can rewrite (8) in the form

dimg — ¢ = dimb’ + dim f — b(m). (14)

That is, to prove that é = ¢ it suffices to show that dim(t’ N f) = b(m) for ‘almost all’
Borel subalgebras b’. The major point in the proof of Theorem 17 is the observation
contained in the following lemma.

LEMMA 15. For any x € m N R(my) there exists a Borel subalgebrab of g containing
x such that (1) bNi=0bN*t"; (2) the algebra bNT" is a Borel subalgebra of the
reductive Lie algebra ¥* (of dimension b(m)); (3) the codimension of the subspace
b+1tin gis equal to &g, %), (4) b+T+m(x) =g

Proof. Let 1 denote conjugation (an involution) of g with respect to the real form
go: 8o = (1 +1)g, m =mg + imy. Fix an element x € R(my) C R(m) and a Cartan
subalgebra b in g containing x and invariant with respect to 7. Let R be the root
system of g relative to §. Choose eigenvectors E, € g corresponding to the roots
o € R such that ©(E,) = E_, and ®(E,, E_,) = —1. Let Ry = {o € R: oa(x) = 0}. Since
[g%, g*] C ¥, we see that Ry is the root system of the semi-simple ideal [g*, g*] of
the centralizers £ and g%, ie. E, € ¥'(e g") iff x € Ry and ¢*=h® }_, . CE,.
Moreover, the centers of algebras £ and g* are subalgebras of the Cartan subalgebra
b. Since 7(x) = x, there exists the basis (the system of simple roots) B for the root
system R such that fi(ix) > 0 for all § € B. Let b be the Borel subalgebra defined
by the set of positive roots R* in R relative to B.

Assume that ze bN¥t Since fLm and ©(f) =%, by invariance of ® we have
O(ix, [z, 7(2)]) = O([ix, z], ©(2)]) = 0. If z=)", p+ CxEy+h with 7 €D, then from
the definition of the vectors {E,} we obtain ), g+ ¢,C,0(ix) = 0. All terms in this
sum are non-negative, and so ¢, # 0 only in the case when a(ix) = 0, i.e. z € *. Hence
bNt=>bNt". By the definition of the basis B the set BN Ry is the basis of the root
system Ry so that RT™ N Ry is the set of positive roots of Ry and bN T is a Borel
subalgebra of t*. Moreover, since ad x(E,) = a(x)E,, we have b Nad x(f) = 0.

By Proposition 2 the dimension of a Borel subalgebra of t* is equal to b(m), i.e.
dim(b N ) = b(m) and assertions (1)—(3) are proved.

Now our goal is to show that g=b+%+ m(x). Let ' be the orthogonal
complement to b+ f+ m(x) in g (relative to ®). It is well known that b* is the
maximal nilpotent subalgebra n=[b,b] =) . CE, of b. On the other hand,
by (11) (f+m(x))" =adx(®). Thus V¥ cadx(f)nn. But then recalling that
bNadx() =0 and n C b we obtain V' =0. O

We note the following corollary of the proof of Lemma 15
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LEMMA 16. Let x € R(m) and let V' be any Borel subalgebra of g containing x. Then
' N is Borel subalgebra of the reductive Lie algebra ¥° and dim(b’ N ) = b(m).
Proof. To prove this lemma we will need some results about a Cartan subalgebras
of arbitrary Lie algebras. Our reference for all definitions will be [13] where for us the
fixed algebraically closed field is of course C. Let b™* be the centralizer of x in b’ and
let h be some Cartan subalgebra of the algebra b™. Since § is its normalizer in
b, we have x € h. But x is a semi-simple element of g so that the endomorphisms
adq x and ady x are semi-simple. Then by Proposition 10 in [13, Chapter VII, Section
2] his a Cartan subalgebra of the Borel subalgebra b'. Since [) is a Cartan subalgebra
of the reductive Lie algebra g [13, Chapter VIII, Section 3, Corol. to Prop. 9], we have
the root decomposition g=b® ), .r CE,, where R is the root system of g with
respect to b. Moreover, because of the inclusion h C b’ there is the system
R* C R of positive roots of R such that b’ =h& Y, . CE, [13, Chapter VIII,
Section 3, Prop. 11]. Hence, Ry = {o € R:a(x) = 0} is the root system of the
semi-simple ideal [g¥, g*] = [f%, F']. Since R' is determined by the lexicographic
ordering induced by some basis of 1), it follows that Rf = Ry N R* is the system
of positive roots of the root system Ry. Thus b’ Ng* and b Nt are the Borel
subalgebras of the reductive Lie algebras g* and * respectively. By Proposition 2
dim(b’ N £*) = b(m). OJ

THEOREM 17. All orbits of maximal dimension of some Borel subgroup on G/K have
the codimension (g, 1) in G/K.

Proof. Since G is a connected algebraic reductive group, it follows that G has the
structure of an affine variety and the adjoint representation of G is a polynomial
mapping (morphism). For any x € m define the Zariski closed subset N(x) =
{g € G: Ad g(x) € m} of G. Its irreducible component containing the identity element
e of G is denoted by N.(x). It is evident that K C N(x). Let N,(x) be the Zariski open
(non-empty) subset of N.(x) of simple points; i.e., N,(x) is a smooth complex
manifold. Let Q C R(m) be the subset of all y € R(m) such that e is a simple point
of the variety N.(y). We wish to prove now that Q is a Zariski open dense subset
of R(m) and, consequently, if Q # ¢, the intersection of Q with the real form mg
is not empty. Indeed, because of the evident relation N(Ad a(x)) = N(x)a~!, where
a € N(x), the identity element ee€ G is a simple point of all varieties
No(z),z = Adg(x),g € N/(x). This, density N.(x) in N,(x) and openness of
R(m) C m imply Q # @. But the tangent space T.(N.(z)) coincides with m(z) &t
and if z € R(m) has minimal possible constant dimension N. Hence the complement
to Q in R(m) is the set of common zeros of some polynomials in m (all # x #» minors
of some Jacobi matrix at point e depending polynomially on a parameter
x € R(m), where n =dim G — N), i.e. Q is a Zariski open subset of m.

Now let x € R(mg) N Q. It is evident that N,(x) = {g € N.(x): Adg(x) € R(m)} is
the Zariski open subset of N.(x) containing e. Let b be the Borel subalgebra of g
as in Lemma 15. By B denote the Borel subgroup of G corresponding to b C g
and consider the morphism ®: N.(x) x B— G, (n, b)i—nb. Since Im:dO(e, e) =
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m(x) +t+b=g, the set N,(x)B C G contains a Zariski open subset Og of G.
Moreover, for any g = nb € Og we have Adn(x) € R(m)N Adg(b). By Lemma 16
dim(f N Ad g(b)) = b(m). But dim(Nb) =b(m) so that for ‘almost all’ Borel
subalgebras b’ of g the dimension of the subspace b’ Nt is equal to b(m), i.e.
(G, K) = &g, 1). ]

COROLLARY 17.1. Let b be a Borel subalgebra of g. There is a Zariski open
subset O C G such that for any ge€ O we have: (1) Adg(®)NR(m)#@,; (2)
Adgd)Ni=Adg)Nt" for every xebNR(m) and Adg®) Nt is a Borel
subalgebra of T*.

Assume that S is a connected reductive closed (in the Zariski topology) subgroup
of G containing K. Denote by s its Lie algebra and by m;, the orthogonal complement
to s in g with respect to the form @; i.e., g = s @ m,. Let B be some Borel subgroup of
G with a Lie algebra b C g such that B{K} and B{S} are its maximal dimension
orbits in G/K and G/S respectively. It is evident that §(G, S) < d(G, K). Assume
(G, S) = (G, K). That is the codimensions of b+ f and b+ s in g are the same.
But fCs so that b+s=Db+1f and, consequently, s = (bNs)+ I By virtue of
Corollary 17.1 we may assume that bNns =bNs2 for some x; € R(my). Then
s=¢241L

COROLLARY 17.2. Let £t C s be two reductive algebraic Lie subalgebras of a
reductive complex Lie algebra g. Assume &(g, T) = &(g, s). There exists a Zariski open
subset Oy C R(my) such that for any x, € Qy we have s = s + 1, where s = g2 N s.

Note. Corollary above may be regarded as a generalization of one assertion of
Theorem 2.5 in [7], where &(g, f) = &(g, ) = 0.
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