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Abstract. Let G be a real reductive Lie group, K its compact subgroup. Let A be the algebra of
G-invariant real-analytic functions on T��G=K� (with respect to the Poisson bracket) and let
C be the center of A. Denote by 2e�G;K� the maximal number of functionally independent
functions from A n C.We prove that e�G;K� is equal to the codimension d�G;K� of maximal
dimension orbits of the Borel subgroup B � GC in the complex algebraic variety GC=KC.
Moreover, if d�G;K� � 1, then all G-invariant Hamiltonian systems on T��G=K� are integrable
in the class of the integrals generated by the symmetry group G.We also discuss related questions
in the geometry of the Borel group action.
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1. Introduction

Let X be a symplectic manifold. One calls a Hamiltonian system on X completely
integrable if it admits a maximal number of independent integrals in involution
(dimX=2 functions commuting with respect to the Poisson bracket on X ). Denote
by G a real connected reductive Lie group which acts on X in a Hamiltonian fashion,
by K a closed connected subgroup of G. Let P:X ! g� be the moment mapping,
where g is the Lie algebra of G. The functions of type h � P, for h: g� ! R, are called
collective. These functions are integrals for any £ow on X with a G-invariant
Hamiltonian H. The question arises, for which symplectic manifolds X

all G-invariant Hamiltonian systems on X are integrable in
the class of the integrals generated by its symmetry group G:

���

Of course, X has this property if on X there exists a completely integrable system
consisting of real-analytic functions of type h � P (so-called collective completely
integrable system [1]). All symmetric spaces G=K admit a collective completely
integrable system on the face space T��G=K� ([2, 4^6, 10]). Moreover, the following
conditions and ��� (with X � T��G=K�) are equivalent [1, 7, 8]:

(1) on the phase space T��G=K� there exists a collective completely integrable system;
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(2) the codimension d�GC;KC� of maximal dimension orbits of the Borel subgroup
B � GC in the complex algebraic variety GC=KC is 0;

(3) the subgroup KC of GC is spherical, i.e. the quasiregular representation of GC on
the space C�GC=KC� of regular functions on the a¤ne algebraic variety GC=KC

has the simple spectrum;
(4) the algebra of G-invariant functions on T��G=K� is commutative, i.e. e�G;K� � 0.

The classi¢cation of spherical subgroups of semisimple complex (connected) Lie
groups was obtained in [7, 11, 12]. Since the Poisson structure on X is nondegenerate,
in the case of existence of a collective completely integrable system any G-invariant
Hamiltonian H locally has the form h � P; i.e., for the integrability we don't use
`effectively' the function H. This fact was observed in [9] and used to obtain
new classes of spaces with property ���.

Let Nmax�X � be the maximal number of independent real-analytic functions
in involution on X of type h � P. If Nmax�X � � �dimX=2� ÿ 1 we will call the
corresponding system of functions an almost collective completely integrable
system [9] and if, in addition, X � T��G=K� we will call such homogeneous space
G=K an almost spherical space [9]. The classi¢cation of all almost spherical spaces
G=K with compact simple (connected) Lie groups G was obtained in [9].

The purpose of this note is to prove that Nmax�T��G=K�� �
dimT��G=K�=2ÿ e�G;K�. Moreover, we prove that every space X � T��G=K� with
e�G;K� � 1, where the subgroup K � G is compact, also has property ���: for
the integrability we can use either H or another G-invariant function (see [9,
Prop. 1] and Prop. 12). We also show that the number e�G;K� de¢ned above admits
an equivalent de¢nition using the equation (6). But by [16, 17] the analogous
equation de¢nes the number d�G;K� so that d�G;K� � e�G;K�. In particular, the
almost spherical spaces G=K are af¢ne homogeneous spaces of complexity
1 � d�G;K� classi¢ed in [17]. Here we ¢nd some new properties of pairs �G;K�
of reductive Lie groups (Lemmas 15, 16) and as a consequence a new proof of
the equality d�G;K� � e�G;K� in the reductive case (Theorem 17). We investigate
properties of the function d�G;K�. The main results are the interpolation property
(Theorem 8): d�G;S� � d�S;K�W d�G;K�, where K � S � G, and Theorem 11.

2. Integrability and Actions of Borel Subgroups on Homogeneous Spaces of
Reductive Lie Groups

2.1. MOMENT MAP AND HAMILTONIAN ACTION

Let M be a homogeneous space of a real connected Lie group G, i.e. M � G=K,
where K is a closed subgroup of G. Let p:G!M be the canonical projection from
G onto M. The natural action t of G on the quotient space M extends to the (left)
action of G on T�M, which we denote by t�. This G-action on T�M is symplectic
since it preserves the canonical 1-form l (the form `pdq' ) and thus also the symplectic
2-form dl. For each vector x belonging to the Lie algebra g of G the 1-parameter
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subgroup exp tx induces the Hamiltonian vector ¢eld x̂ on T�M with the
Hamiltonian function fx � l�x̂�: dfx � ÿx̂cdl. The map x 7!fx of g into the algebra
C1�T�M� (with Poisson bracket) is an equivariant algebra homomorphism:
f �gÿ1 �m� � fAd g�x��m�;m 2 T�M and hence the action t� of G on T�M is
Poisson [3,8]. This action de¢nes the moment map P:T�M ! g� from T�M to
the dual space of the Lie algebra g by P�m��x� � fx�m�. For arbitrary smooth
functions h1 and h2 on g� we have fh1 � P; h2 � Pg � fh1; h2g � P; where the Poisson
bracket on g� is given by the formula fh1; h2g�b� � b��dh1�b�; dh2�b���; b 2 g�.

Using the map p�je:TeG � g! Tp�e�M we can identify the tangent space Tp�e�M
with the quotient space g=k, where k is the Lie algebra of the Lie group K . Thus
we can identify T�p�e�M with the subspace k0 � g�, where k0 � fa 2 g�: a�k� � 0g, using
the map k0! T�p�e�M; a 7!â and putting â�p��x�� � a�x�. Because of the transitive
action of G on M we see that the moment map P is determined completely by
the restriction PjT�p�e�M . From the de¢nitions of the canonical form l it can be
concluded that P�â� � a (see [6] or [4]).

Since the Poisson bracket on g� induces a symplectic structure on the orbits of the
coadjoint representation Ad� of G on g�, the maximal number of functions (or linear
functions x 2 g) on g� independent at a � P�â� and with pairwise Poisson bracket
equal to zero (at this point) is dim ga � 1

2 dim�g=ga�, where ga �def fx 2 g:

ad� x�a� � 0g is the Lie algebra of the isotropy group Ga of the point a for Ad�-action
of G. On the other hand, the isotropy group Gâ of the point â is a subgroup of K. But
clearly the space T�p�e�M is invariant under the action t�jK and k � â � dAd��kÿ1�a.
Hence Gâ � Ga \ K and ka �def g

a \ k is the Lie algebra of Gâ. That is, ka is the kernel
of the linear mapping x 7!x̂�â�; x 2 g and therefore the maximal number of
independent functions of the form h � P in involution at â is equal to
dim�ga=ka� � 1

2 dim�g=ga�. This number does not exceed 1
2 dimT�M (because of the

nondegeneracy of the symplectic form dl on T�M) so that we can de¢ne the
nonnegative integer e � e�g; k� such that

dim�ga=ka� � 1
2 dim�g=ga� � dim�g=k� ÿ e �1�

for any a from some (Zariski) open subset of k0 � g�.
Now let us consider the tangent spaceW �â� to the orbit G � â � T�M. This space is

generated by vectors x̂�x�; x 2 g and has the dimension dim�g=ka�. Let
W �â�? �def fX 2 TâT�M: dl�X ;W �â�� � 0g be the orthogonal complement to
W �â� with respect to the symplectic structure dl. We show that the codimension
of W?�â� \W �â� in W?�â� is equal to 2e. Indeed, multiplying both sides of (1)
by 2, we obtain after simple rearrangements

dim�ga=ka� � dim�g=ka� � 2 dim�g=k� ÿ 2e: �2�
Because of the relations

dl�Ẑ�â�; x̂�â���â� � ffx; fZg�â� � f�x;Z��â� � P�â���x; Z��
� a��x; Z�� � ad� x�a��Z� for any x; Z 2 g
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it follows that W �â� \W?�â� � fẐ�â�; Z 2 gag and dim�W �â� \W?�â�� � dim�ga=ka�.
Taking into account that 2-form dl is nondegenerate we obtain dimW?�â��
dimW �â� � dimT�M � 2 dim�g=k�. Thus dimW �â�? ÿ dim�W �a� \W?�a�� � 2e.

Suppose that the Lie group K is compact. Then any two orbits of the linear
representation r � Ad� jk0 of K in k0 are separated by some invariant polynomial
function on k0. Since the action of G on T�M is reduced to the action of K on
k0 � T�p�e�M induced by r, we see that for some point â 2 T�p�e�M the space
W?�â� is spanned by values of Hamiltonian vector ¢elds (at â) of G-invariant
real-analytic functions on T�M. Now applying this to the action of the group G
on M � G=K we obtain

PROPOSITION 1. If the subgroup K of G is compact then on T��G=K� there exists
2e�g; k� independent G-invariant real-analytic functions which are independent of
functions of type h � P.

2.2. PAIRS OF REDUCTIVE LIE ALGEBRAS

Let g be a reductive real (or complex) Lie algebra. There exists a faithful
representation of g such that its associated bilinear form F is nondegenerate on
g (if g is semi-simple we can take as F the Killing form associated with the adjoint
representation of g). Let k � g be a reductive in g subalgebra, i.e. the representation
x 7! adg x of k on g is completely reducible. This subalgebra is necessarily reductive
(in itself). For each element x 2 g let g0�x� (respectively gx) denote the set of all
z 2 g which satisfy �ad x�n�z� � 0 for suf¢ciently large n (respectively �x; z� � 0).
Let kx � k \ gx. By consideration of minors it is clear that the set of R-elements
in m � k? � fx 2 g : F�x; k� � 0g

R�m� � fx 2 m: dim gx W dim gy; dim g0�x�W dim g0�y�;
dim kx W dim ky; 8y 2 mg �3�

is a non-empty Zariski open subset of m. Let us de¢ne the integer e � e�g; k� for the
pair �g; k� putting

dim�gx=kx� � 1
2 dim�g=gx� � dim�g=k� ÿ e; �4�

where x 2 R�m�. Multiplying both sides of (4) by 2 and taking into account that
dim g � dim k� dimm we obtain after simple rearrangements

dim�gx=kx� � dim�k=kx� � dimmÿ 2e: �5�

The set R�m� consists of semi-simple elements of g [7, Prop. 1.2], i.e. the centralizer
gx; x 2 R�m� is a reductive (in g) subalgebra of g. Moreover, the maximal semi-simple
ideal �gx; gx� of gx is contained in the algebra kx (see [5] or [7, Prop. 1.1]) so that
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dim�gx=kx� � rank gÿ rank kx, and so (5) can be rewritten as

�rank gÿ rank kx� � dim�k=kx� � dimmÿ 2e: �6�
Dividing both sides of (6) by 2 and taking into account that dim g � dim k� dimm

we conclude that

1
2 �rank kx � dim kx� � 1

2 �rank g� dim g� ÿ dimm� e �7�

and

dim gÿ e � 1
2 �rank g� dim g� � dim kÿ 1

2 �rank kx � dim kx�: �8�

Moreover, it is evident that dim�gx=kx�W rank gW dim gx and, consequently, (4)
implies

dim kX 1
2 �dim gÿ rank g� ÿ e: �9�

Denote by b�m� the non-negative integer 1
2 �rank g� dim g� ÿ dimm� e�g; k� (the

right side of (7)). However, kx is a reductive algebra. Hence 1
2 �rank kx � dim kx� (the

left side of (7)) is the dimension of a Borel subalgebra of kx and as an immediate
consequence of (7) we obtain

PROPOSITION 2.For any x 2 R�m� the dimension of a Borel subalgebra of kx is equal
to b�m� and, consequently, is the same for all x 2 R�m�.

DEFINITION 3. Let g be a reductive real (or complex) Lie algebra, let F be a
nondegenerate bilinear form on g associated with a faithful representation of g,
and let k � g be a reductive in g subalgebra. Let m � fx 2 g:F�x; k� � 0g. We say
that �g; k� is an e-pair, if the equivalent conditions (4)^(8) are satis¢ed for all points
x belonging to some open subset ofm (or, what is the same thing, for some x 2 R�m�).

Remark 4. The reductive Lie algebra k is the Lie algebra direct sum k � z� k1,
where z is the center of k and k1 � �k; k� is the maximal semi-simple ideal in k. Since
k is reductive in g, the center z consists of semi-simple elements of g. Let h1 be a
Cartan subalgebra of the centralizer Z�k1� of k1 in g containing the center z. Then
for some subspace z1 � h1 we have h1 � z1 � z. The restrictions of F to the sub-
algebras k1 and k2 � h1 � k1 are nondegenerate with F�k1; h1� � 0 [13, Chapter VII,
Section 1]. The algebra k2 is its own normalizer in g (the Cartan subalgebra h1 is
its own normalizer in Z�k1�). Let p2 be the orthogonal complement of k2 in g relative
to F. Let p be the ad k-invariant complement to k in g (so g � k� p and
�k; p� � p). Since, by invariance of F, �k;m� � m and p2 � m � h1 � p2 the
representations x 7! adp x, x 7! adz1�p2 x and x 7! adm x of k are isomorphic.
By (6) the number e�g; k� is de¢ned via the latter representation, i.e. the de¢nition
of e�g; k� does not depend on the choice of the form F.
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Remark 5. It is clear that if gC and kC are complexi¢cations of algebras g and k

respectively then e�gC; kC� � e�g; k�.
Our interest now centers on what will be shown to be an important subset of m.

De¢ne for any x 2 m the subspace m�x� � m putting

m�x�def�fz 2 m: �x; z� 2 mg; �10�

i.e. ad x�m�x�� � m. By the invariance of F

m�x� � fz 2 m:F�z; ad x�k�� � 0g: �11�
We continue with previous notations but throughout the remainder of this
subsection it is assumed in addition that the form F is nondegenerate on k. Then
g � m� k. Denote by ���m the projection into m along k. Since �k;m� � m, it is clear
that �gx�m � m�x� for any x 2 m. An immediate consequence of (5) is the following
proposition.

PROPOSITION 6. For any x 2 R�m� the codimension of �gx�m inm�x� is equal 2e�g; k�.
In particular, e�g; k�X 0.

Remark 7. If a pair �g; k� of real (or complex) reductive Lie algebras is a symmetric
pair, i.e. k is the algebra of ¢xed points of an involutory automorphism of the algebra
g, then �m;m� � k and, consequently, for any x 2 m: ad x�m�x�� � �m \ k� � 0. Thus
m�x� � gx and by Proposition 6 e�g; k� � 0. We say that the pair �g; k� of real (or
complex) reductive Lie algebras is a spherical pair and the subalgebra k � g is a
spherical subalgebra if e�g; k� � 0 [7, 8]. All spherical subalgebras k of compact
Lie algebras g are classi¢ed in [11] (for simple g) and [7, 12] (semi-simple case).

A theorem proved in [7] (see [7, Theorem 2.5] in the case of compact Lie algebras
asserts, among other things, that if e�g; k� � 0 then e�g; s� � 0 and e�s; k� � 0, where
s is any subalgebra of g containing k. Theorem 8 below may be regarded as a
generalization of this theorem to the case of arbitrary pair of reductive (not
necessarily compact) Lie algebras. The proof which we have found is simple but
uses limit arguments. We continue with previous notations.

THEOREM 8. Let s be a reductive subalgebra of g containing k such that the
restriction of F to s is non-degenerate. Then 0W e�g; s� � e�s; k�W e�g; k�.

Proof. Let m1 (respectively m2) be the orthogonal complement to the subalgebra k
in s (respectively to the subalgebra s in g) with respect to the form F; i.e., s � k�m1

(respectively g � s�m2). Denote by ���m1
and ���m2

the projections into the subspaces
m1 and m2 respectively de¢ned by the decomposition g � k�m1 �m2. Recall that
m � m1 �m2. Fix an element ~x1 � x2 2 R�m1 �m2� such that ~x1 2 R�m1� and
x2 2 R�m2�. Consider the subspace m2�x2� � m2 de¢ned by (10). Let V2 � V2�x2�
be some complementary subspace to �gx2 �m2

in m2�x2�. By Proposition 6
dimV2 � 2e�g; s�.
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Let us show that V2 \ �gx01�x2�m � 0 for all x01 from some nonempty Zariski open
subsetQ1�x2� � R�m1�. Towards this end de¢neQ1�x2� � m1 as the set of all elements
x01 such that (1) x01 2 R�m1� and x01 � x2 2 R�m1 �m2�; (2) the intersection
V 02�x01� � V2 \ �gx01�x2 �m has the minimal possible dimension l. Since V 02�x01� �
�gx01�x2�m, it follows that ad�x01 � x2�V 02�x01� � ad�x01 � x2��k�. But V2 � m2�x2� so that
�x2;V 02�x01�� � m2. Taking into account the relations �k;mi� � mi; i � 1; 2 we obtain
ad�x01 � x2�V 02�x01� � ad x2�k�. It is well known that the nonempty Zariski open set
Q1�x2� is dense in m1. Thus we may ¢nd a sequence x01;n 2 Q1�x2�; n � 1; 2; . . . ;

converging to 0 2 m1. Now consider the Grassmann manifold Gl of all l-planes
in m2. This manifold, of course, is compact and hence we may ¢nd a subsequence
x1;n of the sequence x01;n with the property x1;n ! 0 and the subspaces V 02�x1;n�
converge to an l-plaine V 02�0� in the Grassmann manifold. From the above it
follows immediately by taking the limit that ad x2�V 02�0�� � ad x2�k� � ad x2�s�, i.e.
V 02�0� � �gx2�m2

. But V 02�0� � V2 and V2 \ �gx2 �m2
� 0 so l � 0. That is, there exists

an element x1 2 R�m1� such that x1 � x2 2 R�m1 �m2� and V2 \ �gx1�x2�m � 0.
Let V1 � V1�x1� be some complementary subspace to �sx1 �m1

in m1�x1�. By
Proposition 6 dimV1 � 2e�s; k�.

Now to prove the theorem it suf¢ces to prove that �V1 � V2� \ �gx1�x2�m � 0. Let
v1 � v2 2 �V1 � V2� \ �gx1�x2 �m. Then there exists z 2 k such that �x1 � x2; v1�
v2 � z� � 0. Since ad x2�m2�x2�� � m2, �m1;m2� � m2, �k;mi� � mi, we see that
�x1; v1 � z� � 0.Thus v1 2 �sx1�m1

\ V1, i.e. v1 � 0 and, consequently, v2 � 0. &

The following properties of m�x� are needed for the proof of Theorem 11.

PROPOSITION 9. For any x 2 R�m� we have �m�x�; kx� � 0.
Proof. For the proof we will use the approach of [15]. Consider the subbundle E of

the trivial bundle R�m� �m� k consisting of points �x; y; z� with y 2 m�x� and z 2 kx.
Since dimm�x� and dim kx are constants for x 2 R�m�, this is indeed a bundle, and for
any curve xt � R�m� and vectors y0 2 m�x0�; z0 2 kx0 , we may construct curves yt; zt
over xt in E. By the de¢nition �xt;m�xt�� � m so that F�zt; �xt; yt�� � 0.
Differentiating the former identity at zero and using the invariance of the form
F we obtain

F�_z0; �x0; y0�� ÿ F�_y0; �x0; z0�� � F� _x0; �y0; z0�� � 0: �12�
Since k?m and �x; kx� � 0, the ¢rst two terms on the left side of (12) vanish, i.e.
F�y; �y0; z0�� � 0 for all y 2 m. Using the non-singularity of F on m and the relation
�k;m� � m we prove the proposition. &

Proceeding in a manner similar to the proof of Proposition 9 with the subbundle E
of the trivial bundle R�m� � g� g consisting of points �x; y; z� with y; z 2 gx

(differentiating the identity F�xt; �yt; zt�� � 0) we obtain

PROPOSITION 10 ([5,7]). For any x 2 R�m� we have �gx; gx� � k.
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Note. It is useful to observe that the above proof of Proposition 10 (1) depends
essentially on the fact that m � k? in g (2) does not use the direct sum decomposition
g � m� k, i.e. the nonsingularity of F on k.

THEOREM 11.Assume that y 2 R�m� and a is a reductive (in g) subalgebra of ky. Let
ĝ and k̂ be the centalizers of a in g and k respectively. Then e�g; k� � e�ĝ; k̂�.

Proof. Algebras ĝ and k̂ are subalgebras reductive in g and the restrictions ofF to ĝ

and k̂ respectively are nondegenerate [13, Chapter VII, Section 1]. Let m̂ be the
orthogonal complement of k̂ in ĝ relative to F: ĝ � k̂� m̂. Since k and m are stable
under ad�a� we have

ĝ � ĝ \ k� ĝ \m and m̂ � ĝ \m: �13�
Let x be any element of the set R�m� \ m̂ containing y. Clearly this set is a Zariski
open subset of m̂ so that without loss we may assume x 2 R�m̂� \ R�m�. By
Proposition 9 �m�x�; kx� � 0. But clearly a � kx and, consequently, m�x� � m̂.
Therefore by de¢nition (10) m̂�x� � m�x�.

The reductive Lie algebra gx is the Lie algebra direct sum gx � z� �gx; gx�, where z
is the center of gx. The commutator �gx; gx� � �kx; kx� is the maximal semi-simple ideal
in gx. Hence, �z; kx� � 0. Recalling that a � kx we see z � ĝ. But, obviously then,
z � ĝx. Since ĝx � gx and �gx�m � �z�m we have �ĝx�m � �gx�m. But m̂ � m and
k̂ � k so that the projection �ĝx�m̂ of ĝx � ĝ into m̂ along k̂ coincides with �ĝx�m. Thus
�gx�m � �ĝx�m̂. Now Theorem 11 follows immediately from Proposition 6. &

2.3. INTEGRABILITY

We continue with notations of the previous subsection 2.2. Let G be a real connected
reductive Lie groups with the Lie algebra g. By K we denote its reductive subgroup
with the Lie algebra k � g. Suppose also that the subgroup K � G is closed. Since
F is nondegenerate on g, we may use it to identify the spaces g� and g, k0 � g� (the
annihilator of k in g�) and m. Under this identi¢cation the coadjoint action of G
on g� goes over to the adjoint action of G on g, and the annihilator ga of a 2 k0

coincides with the centralizer gx of the corresponding element x�a� 2 m.
The centralizer of the semi-simple element x 2 R�m� is the reductive Lie algebra

gx � z�x� � �gx; gx�, while kx � z1�x� � �gx; gx� [7, Prop. 1.1 and 1.2], where
z1�x� � z�x�. On g there are real polynomials h1; . . . ; hp, where p � 1

2 dim�g=gx�, such
that h1; . . . ; hp are pairwise in involution on g and the vectors f�x; grad hi�x��g,
i � 1; . . . ; p, are independent [6, Theorem 2.6]; here grad hi�x� is the vector dual
to the differential dhi�x� relative to F. The gradients of the polynomial invariants
of g at the point x generate the center z�x� of gx [6, Theorem 2.5]. Since
dim�gx=kx� � dim�z�x�=z1�x�� and we have identi¢ed the spaces m and k0 �
T�p�e��G=K�, by what was said in subsection 2.1 about T��G=K�, there exist
s � dim�gx=kx� � 1

2 dim�g=gx� functions of the form h � J in involution and
independent at x 2 m � k0.
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If e�g; k� � 0 then s � 1
2 dimT��G=K�; i.e., on the manifold T��G=K� there exists a

collective completely integrable system and hence any G-invariant £ow on
T��G=K� is integrable. If e�g; k� � 1 and in addition K is a compact subgroup of
G then by Proposition 1 there exists a G-invariant function F on T��G=K� which
is independent of the functions fhi � Pg; i � 1; s. The set fF ; h1 � P; . . . ; hs � Pg is
the maximal involutive set of independent functions: s� 1 � 1

2 dimT��G=K�. If a
G-invariant function H is independent of fhi � Pg; i � 1; s then the set
fH; h1 � P; . . . ; hs � Pg is the maximal involutive set, if H is dependent then we have
the commutative set of integrals fF ; h1 � P; . . . ; hs � Pg. We proved the following
proposition:

PROPOSITION 12. If K is a reductive closed subgroup of a real reductive connected
Lie group G and e�g; k� � 1 then on T��G=K� there exists an almost collective
completely integrable system. If in addition the subgroup K � G is compact then
any Hamiltonian system on T��G=K� with a G-invariant Hamiltonian function H
is integrable.

Remark 13. We say that a pair �g; k� of real (or complex) reductive Lie algebras is
an almost spherical pair and a subalgebra k � g is a almost spherical subalgebra
if e�g; k� � 1. All almost spherical subalgebras k of compact simple Lie algebras g

are classi¢ed in [9, 17].

2.4. ACTIONS OF BOREL SUBGROUPS ON HOMOGENEOUS SPACES OF REDUCTIVE

ALGEBRAIC LIE GROUPS

Let G be a connected reductive complex algebraic Lie group with reductive closed (in
the Zariski topology) subgroup K , and let g and k be their Lie algebras. Since the
subalgebra k is algebraic and reductive in g, there exists a compact real form k0
of the complex reductive Lie algebra k. The algebra k0 is a compactly embedded
subalgebra of g and, consequently, k0 is contained in some compact real form g0
of g (see [14, Chapter VI, Section 2]). Moreover, there exists a faithful representation
r of g such that its associated bilinear form F is nondegenerate on g and negatively
de¢nite on g0 (we can take as r the natural representation of the algebraic Lie algebra
g � End�Cn� or adjoint representation ad if g is semi-simple). Then g � m� k and
g0 � m0 � k0, where m � k? (in g) and m0 � m \ g0.

Let x 2 R�m0�. Then m � m�x� � ad x�k� and by Proposition 9 �m�x�; kx� � 0.
Moreover, using the dimensional arguments we have ky � kx for any
y 2 m�x� \ R�m�. Therefore the set Ad�K��m�x� \ R�m�� contains a Zariski open
subsetR0�m� � R�m� ofm and if z 2 R0�m� the algebra kz is conjugate to kx. We proved

PROPOSITION 14. There exists a Zariski open subset R0�m� � R�m� of m such that
for any y; z 2 R0�m� the algebras ky and kz are conjugate to each other.
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Consider the action of some Borel subgroup of the Lie group G on the af¢ne
algebraic varietyG=K . Let d�G;K� be the codimension inG=K of maximal dimension
orbits of this Borel subgroup. That is, for `almost all' Borel subalgebras b0 of g the
codimension of the subspace b0 � k in g is equal to d�G;K�. Below we shall prove
Theorem 17 asserting that d�G;K� � e�g; k�. Taking into account that dim b0 �
1
2 �rank g� dim g�, we can rewrite (8) in the form

dim gÿ e � dim b0 � dim kÿ b�m�: �14�
That is, to prove that d � e it suf¢ces to show that dim�b0 \ k� � b�m� for `almost all'
Borel subalgebras b0. The major point in the proof of Theorem 17 is the observation
contained in the following lemma.

LEMMA 15. For any x 2 m \ R�m0� there exists a Borel subalgebra b of g containing
x such that (1) b \ k � b \ kx; (2) the algebra b \ kx is a Borel subalgebra of the
reductive Lie algebra kx (of dimension b�m�); (3) the codimension of the subspace
b� k in g is equal to e�g; k�; (4) b� k�m�x� � g.

Proof. Let t denote conjugation (an involution) of g with respect to the real form
g0: g0 � �1� t�g, m � m0 � im0. Fix an element x 2 R�m0� � R�m� and a Cartan
subalgebra h in g containing x and invariant with respect to t. Let R be the root
system of g relative to h. Choose eigenvectors Ea 2 g corresponding to the roots
a 2 R such that t�Ea� � Eÿa and F�Ea;Eÿa� � ÿ1. Let R0 � fa 2 R: a�x� � 0g. Since
�gx; gx� � kx, we see that R0 is the root system of the semi-simple ideal �gx; gx� of
the centralizers kx and gx, i.e. Ea 2 kx�2 gx� iff a 2 R0 and gx � h�Pa2R0

CEa.
Moreover, the centers of algebras kx and gx are subalgebras of the Cartan subalgebra
h. Since t�x� � x, there exists the basis (the system of simple roots) B for the root
system R such that b�ix�X 0 for all b 2 B. Let b be the Borel subalgebra de¢ned
by the set of positive roots R� in R relative to B.

Assume that z 2 b \ k. Since k?m and t�k� � k, by invariance of F we have
F�ix; �z; t�z��� � F��ix; z�; t�z��� � 0. If z �Pa2R� caEa � h with h 2 h, then from
the de¢nition of the vectors fEag we obtain

P
a2R� ca �caa�ix� � 0. All terms in this

sum are non-negative, and so ca 6� 0 only in the case when a�ix� � 0, i.e. z 2 kx. Hence
b \ k � b \ kx. By the de¢nition of the basis B the set B \ R0 is the basis of the root
system R0 so that R� \ R0 is the set of positive roots of R0 and b \ kx is a Borel
subalgebra of kx. Moreover, since ad x�Ea� � a�x�Ea, we have b \ ad x�k� � 0.

By Proposition 2 the dimension of a Borel subalgebra of kx is equal to b�m�, i.e.
dim�b \ k� � b�m� and assertions (1)^(3) are proved.

Now our goal is to show that g � b� k�m�x�. Let V be the orthogonal
complement to b� k�m�x� in g (relative to F). It is well known that b? is the
maximal nilpotent subalgebra n � �b; b� �Pa2R� CEa of b. On the other hand,
by (11) �k�m�x��? � ad x�k�. Thus V � ad x�k� \ n. But then recalling that
b \ ad x�k� � 0 and n � b we obtain V � 0. &

We note the following corollary of the proof of Lemma 15
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LEMMA 16. Let x 2 R�m� and let b0 be any Borel subalgebra of g containing x. Then
b0 \ kx is Borel subalgebra of the reductive Lie algebra kx and dim�b0 \ k�X b�m�.

Proof. To prove this lemma we will need some results about a Cartan subalgebras
of arbitrary Lie algebras. Our reference for all de¢nitions will be [13] where for us the
¢xed algebraically closed ¢eld is of course C. Let b0x be the centralizer of x in b0 and
let h be some Cartan subalgebra of the algebra b0x. Since h is its normalizer in
b0x, we have x 2 h. But x is a semi-simple element of g so that the endomorphisms
adg x and adb0 x are semi-simple. Then by Proposition 10 in [13, Chapter VII, Section
2] h is a Cartan subalgebra of the Borel subalgebra b0. Since h is a Cartan subalgebra
of the reductive Lie algebra g [13, Chapter VIII, Section 3, Corol. to Prop. 9], we have
the root decomposition g � h�Pa2R CEa, where R is the root system of g with
respect to h. Moreover, because of the inclusion h � b0 there is the system
R� � R of positive roots of R such that b0 � h�Pa2R� CEa [13, Chapter VIII,
Section 3, Prop. 11]. Hence, R0 � fa 2 R: a�x� � 0g is the root system of the
semi-simple ideal �gx; gx� � �kx; kx�. Since R� is determined by the lexicographic
ordering induced by some basis of h, it follows that R�0 � R0 \ R� is the system
of positive roots of the root system R0. Thus b0 \ gx and b0 \ kx are the Borel
subalgebras of the reductive Lie algebras gx and kx respectively. By Proposition 2
dim�b0 \ kx� � b�m�. &

THEOREM 17.All orbits of maximal dimension of some Borel subgroup on G=K have
the codimension e�g; k� in G=K.

Proof. Since G is a connected algebraic reductive group, it follows that G has the
structure of an af¢ne variety and the adjoint representation of G is a polynomial
mapping (morphism). For any x 2 m de¢ne the Zariski closed subset N�x� �
fg 2 G: Ad g�x� 2 mg of G. Its irreducible component containing the identity element
e of G is denoted by Ne�x�. It is evident that K � N�x�. Let N 0e�x� be the Zariski open
(non-empty) subset of Ne�x� of simple points; i.e., N 0e�x� is a smooth complex
manifold. Let Q � R�m� be the subset of all y 2 R�m� such that e is a simple point
of the variety Ne�y�. We wish to prove now that Q is a Zariski open dense subset
of R�m� and, consequently, if Q 6� ;, the intersection of Q with the real form m0

is not empty. Indeed, because of the evident relation N�Ad a�x�� � N�x�aÿ1, where
a 2 N�x�, the identity element e 2 G is a simple point of all varieties
Ne�z�; z � Ad g�x�; g 2 N 0e�x�. This, density N 0e�x� in Ne�x� and openness of
R�m� � m imply Q 6� ;. But the tangent space Te�Ne�z�� coincides with m�z� � k

and if z 2 R�m� has minimal possible constant dimension N. Hence the complement
to Q in R�m� is the set of common zeros of some polynomials in m (all n� n minors
of some Jacobi matrix at point e depending polynomially on a parameter
x 2 R�m�, where n � dimGÿN), i.e. Q is a Zariski open subset of m.

Now let x 2 R�m0� \Q. It is evident that ~Ne�x� � fg 2 Ne�x�: Ad g�x� 2 R�m�g is
the Zariski open subset of Ne�x� containing e. Let b be the Borel subalgebra of g
as in Lemma 15. By B denote the Borel subgroup of G corresponding to b � g

and consider the morphism Y: ~Ne�x� � B! G; �n; b� 7!nb. Since Im: dY�e; e� �
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m�x� � k� b � g, the set ~Ne�x�B � G contains a Zariski open subset OG of G.
Moreover, for any g � nb 2 OG we have Ad n�x� 2 R�m� \Ad g�b�. By Lemma 16
dim�k \Ad g�b��X b�m�. But dim�k \ b� � b�m� so that for `almost all' Borel
subalgebras b0 of g the dimension of the subspace b0 \ k is equal to b�m�, i.e.
d�G;K� � e�g; k�. &

COROLLARY 17.1. Let b be a Borel subalgebra of g. There is a Zariski open
subset O � G such that for any g 2 O we have: (1) Ad g�b� \ R�m� 6� ;; (2)
Ad g�b� \ k � Ad g�b� \ kx for every x 2 b \ R�m� and Ad g�b� \ kx is a Borel
subalgebra of kx.

Assume that S is a connected reductive closed (in the Zariski topology) subgroup
of G containingK . Denote by s its Lie algebra and bym2 the orthogonal complement
to s in g with respect to the form F; i.e., g � s�m2. Let B be some Borel subgroup of
G with a Lie algebra b � g such that BfKg and BfSg are its maximal dimension
orbits in G=K and G=S respectively. It is evident that d�G;S�W d�G;K�. Assume
d�G;S� � d�G;K�. That is the codimensions of b� k and b� s in g are the same.
But k � s so that b� s � b� k and, consequently, s � �b \ s� � k. By virtue of
Corollary 17.1 we may assume that b \ s � b \ sx2 for some x2 2 R�m2�. Then
s � sx2 � k.

COROLLARY 17.2. Let k � s be two reductive algebraic Lie subalgebras of a
reductive complex Lie algebra g. Assume e�g; k� � e�g; s�. There exists a Zariski open
subset Q2 � R�m2� such that for any x2 2 Q2 we have s � sx2 � k, where sx2 � gx2 \ s.

Note. Corollary above may be regarded as a generalization of one assertion of
Theorem 2.5 in [7], where e�g; k� � e�g; s� � 0.
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